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Tyringham, MassachusettsKey Message 1

Reduced Agricultural Productivity
Food and forage production will decline in regions experiencing increased frequency and 
duration of drought. Shifting precipitation patterns, when associated with high temperatures, 
will intensify wildfires that reduce forage on rangelands, accelerate the depletion of water 
supplies for irrigation, and expand the distribution and incidence of pests and diseases for 
crops and livestock. Modern breeding approaches and the use of novel genes from crop wild 
relatives are being employed to develop higher-yielding, stress-tolerant crops. 

Key Message 2

Degradation of Soil and Water Resources
The degradation of critical soil and water resources will expand as extreme precipitation 
events increase across our agricultural landscape. Sustainable crop production is threatened 
by excessive runoff, leaching, and flooding, which results in soil erosion, degraded water 
quality in lakes and streams, and damage to rural community infrastructure. Management 
practices to restore soil structure and the hydrologic function of landscapes are essential for 
improving resilience to these challenges.

Key Message 3 

Health Challenges to Rural Populations and Livestock 
Challenges to human and livestock health are growing due to the increased frequency and intensity 
of high temperature extremes. Extreme heat conditions contribute to heat exhaustion, heatstroke, 
and heart attacks in humans. Heat stress in livestock results in large economic losses for producers. 
Expanded health services in rural areas, heat-tolerant livestock, and improved design of confined 
animal housing are all important advances to minimize these challenges.
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Key Message 4 

Vulnerability and Adaptive Capacity of Rural Communities 
Residents in rural communities often have limited capacity to respond to climate change 
impacts, due to poverty and limitations in community resources. Communication, 
transportation, water, and sanitary infrastructure are vulnerable to disruption from climate 
stressors. Achieving social resilience to these challenges would require increases in local 
capacity to make adaptive improvements in shared community resources.

Executive Summary 

In 2015, U.S. agricultural producers contributed 
$136.7 billion to the economy and accounted for 
2.6 million jobs. About half of the revenue comes 
from livestock production. Other agriculture- 
related sectors in the food supply chain contrib-
uted an additional $855 billion of gross domestic 
product and accounted for 21 million jobs. 

In 2013, about 46 million people, or 15% of the 
U.S. population, lived in rural counties covering 
72% of the Nation’s land area. From 2010 to 2015, 
a historic number of rural counties experienced 
population declines, and recent demographic 
trends point to relatively slow employment and 
population growth in rural areas as well as high 
rates of poverty. Rural communities, where 
livelihoods are more tightly interconnected with 
agriculture, are particularly vulnerable to the 
agricultural volatility related to climate.

Climate change has the potential to adversely 
impact agricultural productivity at local, regional, 
and continental scales through alterations in 
rainfall patterns, more frequent occurrences of 
climate extremes (including high temperatures or 
drought), and altered patterns of pest pressure. 
Risks associated with climate change depend 
on the rate and severity of the change and the 
ability of producers to adapt to changes. These 
adaptations include altering what is produced, 
modifying the inputs used for production, 
adopting new technologies, and adjusting man-
agement strategies. 

U.S. agricultural production relies heavily on the 
Nation’s land, water, and other natural resources, 
and these resources are affected directly by 
agricultural practices and by climate. Climate 
change is expected to increase the frequency of 
extreme precipitation events in many regions in 
the United States. Because increased precipita-
tion extremes elevate the risk of surface runoff, 
soil erosion, and the loss of soil carbon, additional 
protective measures are needed to safeguard 
the progress that has been made in reducing soil 
erosion and water quality degradation through 
the implementation of grassed waterways, 
cover crops, conservation tillage, and waterway 
protection strips.

Climate change impacts, such as changes in 
extreme weather conditions, have a complex 
influence on human and livestock health. The 
consequences of climate change on the incidence 
of drought also impact the frequency and inten-
sity of wildfires, and this holds implications for 
agriculture and rural communities. Rural popu-
lations are the stewards of most of the Nation’s 
forests, watersheds, rangelands, agricultural 
land, and fisheries. Much of the rural economy 
is closely tied to the natural environment. Rural 
residents, and the lands they manage, have the 
potential to make important economic and 
conservation contributions to climate change 
mitigation and adaptation, but their capacity to 
adapt is impacted by a host of demographic and 
economic concerns. 
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Agricultural Jobs and Revenue

The figure shows (a) the contribution of agriculture and related sectors to the U.S. economy and (b) employment figures in 
agriculture and related sectors (as of 2015). Agriculture and other food-related value-added sectors account for 21 million full- 
and part-time jobs and contribute about $1 trillion annually to the United States economy. From Figure 10.1 (Source: adapted 
from Kassel et al. 20171). 
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Population Changes and Poverty Rates in Rural Counties

The figure shows county-level (a) population changes for 2010–2017 and (b) poverty rates for 2011–2015 in rural U.S. 
communities. Rural populations are migrating to urban regions due to relatively slow employment growth and high rates of 
poverty. Data for the U.S. Caribbean region were not available at the time of publication of this report. From Figure 10.2 
(Sources: [a] adapted from ERS 20182; [b] redrawn from ERS 20173). 
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State of the Agriculture and Rural 
Communities Sectors
U.S. farmers and ranchers are among the most 
productive in the world. The agricultural sector 
makes an important contribution to the U.S. 
economy, from promoting food and energy 
security to providing jobs in rural communities 
across the country. In 2015, U.S. farms contrib-
uted $136.7 billion to the economy, accounting 
for 0.76% of gross domestic product (GDP) and 
2.6 million jobs (1.4% of total U.S. employment; 
Figure 10.1).1 About half of the farm revenue 
comes from livestock production. Other agri-
culture- and food-related value-added sectors 
contributed an additional 4.74% ($855 billion) 
of GDP and accounted for 21 million full- and 
part-time jobs (11.1% of U.S. employment). U.S. 
agriculture enjoys a trade surplus in which 
the value of agricultural exports (both bulk 
and high-value products) accounts for more 
than 20% of total U.S. agricultural production. 
Top high-value exports include feedstocks, 
livestock products, horticulture products, 
and oilseeds and oilseed products, and these 
exports help support rural communities 
across the Nation.

A major portion of rural communities in the 
United States depend on agriculture and 
other related industries as economic drivers. 
During 2010–2012, a total of 444 counties were 
classified as farming dependent, of which 391 
were rural counties.4 In 2013, about 46 million 
people, or 15% of the U.S. population, lived in 
rural counties, covering 72% of the Nation’s 
land area. From 2010 to 2017, a historic number 
of rural counties in the United States experi-
enced population declines due to persistent 
outmigration of young adults.2 However, 
some counties in the Northern Great Plains 
reversed decades of population loss to grow 
at a modest rate due to the energy boom in 
that region. Recent demographic trends point 
to relatively slow employment and population 

growth in rural areas, as well as higher rates 
of poverty in rural compared to urban regions 
(Figure 10.2).1,5,6,7

U.S. agricultural production relies heavily on 
the Nation’s land, water, and other natural 
resources.8 In 2012, about 40%, or 915 million 
acres, of U.S. land was farmland, of which 
45.4% was permanent pasture, 42.6% was 
cropland, and 8.4% was woodland.9 Only about 
6% of the farmland was irrigated. Agricultural 
land use can change over time,10,11 and these 
changes are sometimes reversible, such as 
when shifting between cropland and pasture-
land (Ch. 22: N. Great Plains, Table 22.3, Figure 
22.4), and sometimes irreversible, such as when 
agricultural land is converted to urban uses.12 
These natural resource bases are affected 
continually by agricultural production prac- 
tices and climate change.13,14,15,16

Bioenergy cropping is increasing and remains a 
major focus of research to develop appropriate 
dedicated feedstocks for different regions of 
the United States.17,18,19,20,21,22 Crop residue har-
vest, particularly from corn, has the potential 
to provide additional income streams to pro-
ducers and rural communities, but the impact 
on soil carbon sequestration and greenhouse 
gas (GHG) emissions indicates that only part of 
the residue can be harvested sustainably.23,24,25,26 
Biochar, a by-product of cellulosic bioenergy 
production, holds potential as a soil amend-
ment27,28 that in some soils provides a GHG 
mitigation29 and adaptation benefit. However, 
many questions remain on how to develop 
sustainable crop- and grass-based bioenergy 
systems within a region.30,31,32 

Technological advancements through con- 
certed public and private efforts and the 
increasing availability of inputs (such as fertil-
izers, pesticides, and feed additives) have led 
to significant improvements in productivity 
while reducing agriculture’s environmental 
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Agricultural Jobs and Revenue

Figure 10.1: The figure shows (a) the contribution of agriculture and related sectors to the U.S. economy and (b) employment 
figures in agriculture and related sectors (as of 2015).  Agriculture and other food-related value-added sectors account for 21 
million full- and part-time jobs and contribute about $1 trillion annually to the United States economy. Source: adapted from 
Kassel et al. 2017.1

footprint.33,34,35 However, there are some major 
challenges to the future of agriculture and food 
security.36 The agricultural sector accounted 
for about 9% of the Nation’s total GHG emis-
sions in 2015,37 so reducing emissions in the 
agriculture sector could have a significant 
impact on total U.S. emissions. Nonetheless, 
agriculture is one of the few sectors with the 
potential for significant increases in carbon 
sequestration to offset GHG emissions. Fur-
thermore, water quality degradation, including 

eutrophication (an overload of nutrients) in 
the Great Lakes and coastal water bodies (for 
example, the northern Gulf of Mexico and the 
Chesapeake Bay) (see Ch. 18: Northeast, Box 
18.6; Ch. 21: Midwest, Box 21.1; Ch. 23: S. Great 
Plains, KM 3), remains an ongoing challenge. 

The current state of agricultural systems 
in different regions of the United States is 
the result of continuous efforts made by 
farmers, ranchers, researchers, and extension 
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Population Changes and Poverty Rates in Rural Counties

Figure 10.2: The figure shows county-level (a) population changes for 2010–2017 and (b) poverty rates for 2011–2015 in rural 
U.S. communities. Rural populations are migrating to urban regions due to relatively slow employment growth and high rates of 
poverty. Data for the U.S. Caribbean region were not available at the time of publication. Sources: (a) adapted from ERS 20182; 
(b) redrawn from ERS 2017.3

specialists to identify opportunities, practices, 
and strategies that are viable in different 
climates. However, any change in the climate 
poses a major challenge to agriculture through 
increased rates of crop failure, reduced 
livestock productivity, and altered rates of 
pressure from pests, weeds, and diseases.38,39 
Rural communities, where economies are more 
tightly interconnected with agriculture than 
with other sectors, are particularly vulnerable 
to the agricultural volatility related to climate.40

Climate changes projected by global climate 
models are consistent with observed climate 
changes of concern to agriculture (Ch. 2: 
Climate).41,42,43 Climate change has the potential 
to adversely impact agricultural productivity at 
local, regional, and continental scales.44 Crop 
and livestock production in certain regions 
will be adversely impacted both by direct 
effects of climate change (such as increasing 
trends in daytime and nighttime temperatures; 
changes in rainfall patterns; and more frequent 

climate extremes, flooding, and drought) 
and consequent secondary effects (such as 
increased weed, pest, and disease pressures; 
reduced crop and forage production and 
quality; and damage to infrastructure). While 
climate change impacts on future agricultural 
production in specific regions of the United 
States remain uncertain, the ability of pro-
ducers to adapt to climate change through 
planting decisions, farming practices, and use 
of technology can reduce its negative impact 
on production (Ch. 21: Midwest, Case Study 
“Adaptation in Forestry”).45

Risks associated with climate changes depend 
on the rate and severity of the changes and 
the ability of producers to adapt to changes. 
The severity of financial risks also depends 
on changes in food prices as well as local-to-
global trade levels, as production and con-
sumption patterns will likely be altered due to 
climate change.10,46 Many countries are already 
experiencing rapid price increases for basic 
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food commodities, mainly due to production 
losses associated with more frequent weather 
extremes and unpredictable weather events. 
The United States is a major exporter of agri-
cultural commodities,47 and a disruption in its 
agricultural production will affect the agricul-
tural sector on a global scale. Food security, 
which is already a challenge across the globe, 
is likely to become an even greater challenge 
as climate change impacts agriculture.48,49 Food 
security will be further challenged by projected 
population growth and potential changes in 
diets as the world seeks to feed a projected 9.8 
billion people by 2050.50,51,52

In the late 1900s, U.S. agriculture started to 
develop significant capacities for adaptation to 
climate change, driven largely by public- 
sector investment in agricultural research and 
extension.53 Currently, there are numerous 
adaptation strategies available to cope with 
adverse impacts of climate change.38,54,55 These 
include altering what is produced in a region, 
modifying the inputs used for production, 
adopting new technologies, and adjusting 
management strategies. Crop management 
strategies include the selection of crop vari-
eties/species that meet changes in growing 
degree days and changes in requirements for 
fertilizer rates, timing, and placement to match 
plant requirements.56 Adaptation strategies 
also include changes in crop rotation, cover 
crops, and irrigation management.57,58,59,60,61,62 
With changes to rainfall patterns that greatly 
impact the environment, wider use of proven 
technologies will be required to prevent soil 
erosion, waterlogging, and nutrient losses.44,63 
Adaptation strategies for sustaining and 
improving livestock production systems 
include managing heat stress by altering 
diets,64,65,66,67,68,69,70 providing adequate shade and 
clean drinking water supplies,71,72 monitoring 
stock rates continuously to match forage 
availability,73,74,75 altering the timing of feeding/
grazing and reproduction,76 and selecting the 

species/breeds that match climatic condi-
tions.54,77 Other strategies to reduce climate 
change impacts include integrated pest and 
disease management,78,79 the use of climate 
forecasting tools,80 and crop insurance cover-
age to reduce financial risk.44,81,82 These strat-
egies have proven effective as evidenced by 
continued productivity growth and efficiency. 
The proper implementation of combinations of 
these strategies has the potential to effectively 
manage negative impacts of moderate climate 
change. However, these approaches have limits 
under severe climate change impacts.66,83,84,85 

Key Message 1
Reduced Agricultural Productivity

Food and forage production will decline 
in regions experiencing increased fre-
quency and duration of drought. Shifting 
precipitation patterns, when associated 
with high temperatures, will intensify 
wildfires that reduce forage on range-
lands, accelerate the depletion of water 
supplies for irrigation, and expand the 
distribution and incidence of pests and 
diseases for crops and livestock. Modern 
breeding approaches and the use of 
novel genes from crop wild relatives are 
being employed to develop higher-yielding, 
stress-tolerant crops. 

Climate projections to the year 2100 suggest 
that increases are expected in the incidence 
of drought and elevated growing-season 
temperatures.86 Elevated temperatures play a 
critical role in increasing the rate of drought 
onset, overall drought intensity, and drought 
impact through altered water availability and 
demand.87,88 Increased evaporation rates caused 
by high temperatures, in association with 
drought, will exacerbate plant stress,89 yield 
reduction,90,91,92 fire risks,93,94,95,96 and depletion 
of surface and groundwater resources.97,98,99,100 
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Soil carbon, important for enhancing plant 
productivity through a variety of mecha-
nisms,101 is depleted during drought due to low 
biomass productivity, which in turn decreases 
the resilience of agroecosystems.23 In 2012, the 
United States experienced a severe and exten-
sive drought, with more than two-thirds of 
its counties declared as disaster areas.102 This 
drought greatly affected livestock, wheat, corn, 
and soybean production in the Great Plains 
and Midwest regions 44,103,104,105 and accounted 
for $14.5 billion in loss payments by the federal 
crop insurance program.106 From 2013–2016, all 
of California faced serious drought conditions 
that depleted both reservoir and groundwater 
supplies. This lengthy drought, attributed in 
part to the influence of climate change,88,107 
resulted in the overdrawing of groundwater, 
primarily for irrigation, leading to large 
declines in aquifer levels (Ch. 3: Water, KM 
1).98,108 In 2014, the California state legislature 
passed the Sustainable Groundwater Manage-
ment Act to develop groundwater management 
plans for sustainable groundwater use over the 
next 10–20 years.109,110,111

Average yields of many commodity crops (for 
example, corn, soybean, wheat, rice, sorghum, 
cotton, oats, and silage) decline beyond certain 
maximum temperature thresholds (in conjunc-
tion with rising atmospheric carbon dioxide 
[CO2] levels), and thus long-term temperature 
increases may reduce future yields under both 
irrigated and dryland production.37,91,92,97,103,112,113 
In contrast, even with warmer temperatures, 
future yields for certain crops such as wheat, 
hay, and barley are projected to increase in 
some regions due to anticipated increases in 
precipitation and carbon fertilization.97,114 How-
ever, yields from major U.S. commodity crops 
are expected to decline as a consequence of 
higher temperatures,45 especially when these 
higher temperatures occur during critical 
periods of reproductive development.115,116,117 
Increasing temperatures are also projected 

to have an impact on specialty crops (fruits, 
nuts, vegetables, and nursery crops) (Ch. 25: 
Southwest, KM 6), although the effects will be 
variable depending on the crops and where 
they are grown.118 Additional challenges involve 
the loss of synchrony of seasonal phenomena 
(for example, between crops and pollinators) 
(Ch. 7: Ecosystems; Ch. 25: Southwest, KM 6). 
Further, the interactive effects of rising atmo-
spheric CO2 concentrations, elevated tempera-
tures, and changes in other climate factors are 
expected to enhance weed competitiveness 
relative to crops,119 with temperature being a 
predominant factor.120,121 

Irrigated agriculture is one of the major 
consumers of water supplies in the United 
States (Ch. 3: Water; Ch. 25: Southwest, KM 
6). Irrigation is used for crop production in 
most of the western United States and since 
2002 has expanded into the northern Midwest 
(Ch. 21: Midwest, KM 1) and Southeast (Ch. 19: 
Southeast, KM 4). Expanded irrigation is often 
proposed as a strategy to deal with increasing 
crop water demand due to higher trending 
temperatures coupled with decreasing  
growing-season precipitation. However, under 
long-term climate change, irrigated acreage is 
expected to decrease, due to a combination of 
declining water resources and a diminishing 
relative profitability of irrigated production.97 
Continuing or expanding existing levels of 
irrigation will be limited by the availability 
of water in many areas.11,98,108 Surface water 
supplies are particularly vulnerable to shifts in 
precipitation and demand from nonagricultural 
sectors. Groundwater supplies are also in 
decline across major irrigated regions of the 
United States (see Case Study “Groundwater 
Depletion in the Ogallala Aquifer Region”) (see 
also Ch. 3: Water, Figure 3.2; Ch. 25: Southwest, 
KM 1; Ch. 23: S. Great Plains, KM 1). 

Crop productivity and quality may also be sig-
nificantly reduced due to increased crop water 
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demand coupled with limited water avail- 
ability122,123,124 as well as increased diseases and 
pest infestations (Ch. 25: Southwest, KM 6).125 
The expected demand for higher crop produc-
tivity and anticipated climate change stresses 
have driven advancements in crop genetics.126,127 
Seed companies have released numerous crop 
varieties that are tolerant to heat, drought, or 
pests and diseases. This trend is expected to 
continue as new crop varieties are developed 
to adapt to a changing climate.128 Recent 
advances in genetics have allowed researchers 
to access large and complex genomes of 
crops and their wild relatives.129 This has the 
potential to reduce the time and cost required 
to identify and incorporate useful traits in 
plant breeding and to develop crops that are 
more resilient to climate change. Currently, 
the United States has the largest gene bank 
in the world that manages publicly held crop 
germplasm (genetic material necessary for 
plant breeding). However, progress in this area 
has been modest despite advances in breeding 
techniques.130,131,132,133 Further, institutional 
factors such as intellectual property rights, 
and a lack of international access to crop 
genetic resources, are affecting the availability 
and utilization of genetic resources useful for 
adaptation to climate change.134 Investments 
by commercial firms alone are unlikely to be 
sufficient to maintain these resources, mean-
ing higher levels of public investment would 
be needed for genetic resource conservation, 
characterization, and use. Societal concerns 
over certain crop breeding technologies 
likely will continue, but current assessments 
of genetically engineered crops have shown 
economic benefits for producers, with no 
substantial evidence of animal or human health 
or environmental impacts.135

Climate-smart agriculture136 can reduce the 
impacts of climate change and consequent 
environmental conditions on crop yield.137,138 
Not only do producers take climate forecasts 

into consideration when deciding what to 
produce and how to produce it, they also 
adapt management strategies to cope with 
expected weather conditions. For example, 
drought resilience can be improved by 
adopting high-efficiency precision irrigation 
technologies.139,140,141 In order for these systems 
to work effectively, a network of weather 
stations is required in agricultural regions. 
Currently, 23 states have one or more publicly 
funded agricultural weather networks, such 
as the Oklahoma Mesonet142 and the Nebraska 
Agricultural Water Management Network.143 

The same aspects of climate change that 
affect the incidence of drought also affect the 
frequency and intensity of wildfires, which 
pose major risks to agriculture and rural 
communities. Grassland, rangeland, and forest 
ecosystems, which support ruminant livestock 
production, represent more than half of the 
land area of the United States.144 Wildfires are 
a normal occurrence in these ecosystems, 
and they play an important role in long-term 
ecosystem health. However, climate change 
threatens to increase the frequency and length 
of the wildfire season, as well as the size and 
extent of large fires.95 Increasing temperatures 
also promote an increased spread of invasive or 
encroaching species,145 which exacerbate wild-
fire risks. Beyond economic losses, wildfires 
also contribute to climate change by releasing 
CO2 into the atmosphere (Ch. 6: Forests, KM 1; 
Ch. 13: Air Quality, KM 2). The increased extent 
of high-severity fire expanding into commu-
nities further reduces the capacity to provide 
other services and puts communities, per-
sonnel, and infrastructures at higher risk.146,147 
Tribal communities are particularly vulnerable 
to wildfires, due to a lack of fire-fighting 
resources, insufficient experienced internal 
staff, and remote locations (Ch. 15: Tribes).148,149 
In addition, firefighting in many tribal com-
munities requires coordination across fire-
prone landscapes with various jurisdictional 
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controls.150 On average, the United States 
spends about $1 billion annually to fight wild-
fires, but it spent more than $2.9 billion in 2017 
due to extreme drought conditions in some 
regions.151 States, local governments, and the 

private sector also absorbed additional costs of 
firefighting and recovery. (For more on wild-
fires, see Ch. 5: Land Changes; Ch. 6: Forests; 
Ch. 15: Tribes.) 

The Ogallala Aquifer region (OAR) is one of the most productive farm belts in the world. Irrigated agriculture 
uses more than 95% of the groundwater extracted from the Ogallala Aquifer, and the economy of the region 
depends almost entirely on irrigated agriculture. Overlying states produce one-fifth of the Nation’s wheat, corn, 
and cotton, and the southern half of the region accounts for more than one-third of the beef cattle produc-
tion.152 In 2007, the market value of agricultural products from this region was about $35 billon, which ac-
counted for 11.6% of the total market value of agricultural products in the United States.153 

The management of agriculture, water, and soil in the OAR has come full circle over the past century. The 
conversion of native grasslands for crop production in the early part of the 20th century followed by prolonged 
drought led to severe dust storms that became known as the Dust Bowl of the 1930s. The adoption of soil 
conservation methods and irrigation with Ogallala water improved soil health and reduced soil erosion while 
expanding the region’s economy. However, major portions of the Ogallala Aquifer should now be considered 
a nonrenewable resource. Reduced well outputs due to excessive pumping, especially in central and southern 
parts of the OAR (Figure 10.3), coupled with frequent and prolonged droughts have led to recent dust storms 
that were similar to those of the 1930s and 1950s. Climate change is projected to further increase the duration 
and intensity of drought over much of the OAR in the next 50 years.39,86 Recent advances in precision irrigation 
technologies,154,155 improved understanding of the impacts of different dryland and irrigation management strat-
egies on crop productivity,60,156,157,158,159 and the adoption of weather-based irrigation scheduling tools160 as well 
as drought-tolerant crop varieties161 have increased the ability to cope with projected heat stress and drought 
conditions under climate change.162 However, current extraction for irrigation far exceeds recharge in this aqui-
fer, and climate change places additional pressure on this critical water resource. 

Case Study: Groundwater Depletion in the Ogallala Aquifer Region

Dust storm approaching Stratford, Texas (in the state’s 
panhandle), during the Dust Bowl of the 1930s. Photo credit: 
NOAA George E. Marsh Album. 

Satellite image showing center pivot irrigation in Finney 
County, Kansas. This area utilizes irrigation water from the 
Ogallala aquifer. Image courtesy of NASA.
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Case Study: Groundwater Depletion in the Ogallala Aquifer Region, continued

Changes in the Ogallala Aquifer

Figure 10.3: The figure shows changes in groundwater levels in the Ogallala Aquifer from predevelopment to 2015. Source: 
adapted from McGuire 2017.163
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Key Message 2 
Degradation of Soil and Water 
Resources

The degradation of critical soil and 
water resources will expand as extreme 
precipitation events increase across 
our agricultural landscape. Sustainable 
crop production is threatened by ex-
cessive runoff, leaching, and flooding, 
which results in soil erosion, degraded 
water quality in lakes and streams, 
and damage to rural community infra-
structure. Management practices to 
restore soil structure and the hydrologic 
function of landscapes are essential for 
improving resilience to these challenges.

Soil erosion by water is one of the major 
environmental threats to sustainable crop 
production.164,165 It can also adversely affect 
drainage networks, water quality,166 and recre-
ation167. Climate change is expected to increase 
the frequency of extreme precipitation events 
in many regions of the United States (Ch. 
2: Climate). This, in turn, increases rainfall 
erosivity (the potential for soil to be eroded) 
and the sediment transport capacity of surface 
runoff from agricultural lands, both of which 
increase total soil erosion and sedimentation 
into receiving water bodies.168 Therefore, 
increasing soil erosion rates have the potential 
to not only reduce agricultural productivity but 
also accelerate climate change effects through 
the loss of large stocks of carbon and nutrients 
stored in soil.23,169,170

An analysis of historical data on extreme 
single-day precipitation events in the United 
States occurring from 1910–2017 shows that the 
share of land area that experienced extreme 
precipitation regimes remained fairly steady 
until the 1980s but has risen significantly since 

then (Figure 10.4) (see also Ch. 19: Southeast, 
Figure 19.3).171 This increase is expected to 
continue in this century. Because increased 
precipitation extremes elevate the risk of 
surface runoff, soil erosion, and loss of soil 
carbon, additional protective measures are 
needed to safeguard the progress that has been 
made in reducing soil erosion and water quality 
degradation from U.S. croplands through the 
implementation of grassed waterways, cover 
crops, conservation tillage, and waterway 
protection strips (Ch. 21: Midwest, KM 1).23,172 
Conservation strategies that are being imple-
mented to reduce soil erosion and increase 
carbon sequestration use the estimates of 
expected average climate conditions derived 
from historical data. It is possible that these 
strategies could be improved by considering 
current and projected future climate extremes 
and local conditions.23,173

The degradation of freshwater and marine 
ecosystems due to sediment and nutrient 
loadings from agricultural landscapes is a 
major environmental challenge in the United 
States.174,175,176,177 A strong correlation exists 
between extreme precipitation, high stream-
flow events, and large sediment and nutrient 
loadings entering river systems. Extreme 
precipitation events have been increasing 
across most of the United States over the past 
few decades; in particular, the frequency of 
heavy precipitation and streamflow events has 
increased in the central and eastern United 
States.178,179,180,181 Large nutrient-rich sediment 
loadings, coupled with global warming, have 
caused increases in the duration, intensity, and 
extent of hypoxia (low-oxygen conditions) in 
coastal and freshwater systems over the past 
century (Ch. 21: Midwest, Case Study “Great 
Lakes Climate Adaptation Network”).182,183,184,185,186

Hypoxia occurs when dissolved oxygen con-
centration is depleted to a certain low level 
below which aquatic organisms, especially 
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immobile species such as oysters and mussels, 
endure severe stress or die.187,188,189 The Ches-
apeake Bay,185 the northern Gulf of Mexico,190 
and Mobile Bay191 are common U.S. coastal 
locations for recurring hypoxic conditions. 
From 1960–2008, the incidences of hypoxia 
in the United States increased by a factor of 
30,192 threatening the U.S. coastal economy 
that in 2014, for example, generated more 
than $214 billion in sales and supported 1.83 
million jobs.193 

A recent study182 found that a majority of 
the documented hypoxic zones around the 
world are in regions projected to experi-
ence an increase in temperature of 3.6°F 
(2°C) by the end of century. Projections for 
hypoxia indicate a worsening trend, with 
increased frequency, intensity, and duration 
of hypoxic episodes.194 The consequences 
of this projected trend for the environment, 
society, and local economies will depend on 
1) a combination of climate change impacts, 
stemming primarily from global warming195 and 

altered wind, precipitation, and ocean current 
patterns,185,196,197 and 2) impacts resulting from 
land-use change (for example, streamflow and 
sediment and nutrient loadings).182,189,194 Long-
term, broad-scale efforts to reduce nutrient 
loads from landscapes impacted by human 
activity, especially agriculture, are required if 
water resources are to be adequately protect-
ed.194 These efforts would require programs 
to monitor, study, and manage water quality 
problems on both regional and local scales. 
Numerous programs of this kind have already 
been established for a few major coastal water 
bodies, such as Lake Erie, the northern Gulf 
of Mexico, the Chesapeake Bay, and Long 
Island Sound.198,199 

Flooding in agricultural and rural communities 
leads to the degradation of soil and water 
resources, negative impacts on human health, 
decreased economic activity, infrastructure 
damage, and environmental contamination.200 
Since the early 1900s, global sea level has risen 
by about 8 inches, and this has increased the 

Land Area and Extreme Precipitation

Figure 10.4: The figure shows the percent of land area in the contiguous 48 states experiencing extreme one-day precipitation events 
between 1910 and 2017. These extreme events pose erosion and water quality risks that have increased in recent decades. The bars 
represent individual years, and the orange line is a nine-year weighted average. Source: adapted from EPA 2016.171
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frequency, magnitude, and duration of flooding 
affecting agriculture and rural communities 
along coastal regions (Ch. 8: Coastal; Ch. 18: 
Northeast, KM 1 and 2). Projected climate 
change, including increased storm intensity 
and elevated global temperatures, is expected 
to worsen the problem. The outer range of 
global average sea level rise is projected to be 
between 1 foot and 8 feet by 2100, with a very 
likely range of between 1 foot and 4.3 feet (Ch. 
2: Climate, KM 4 and 9),201,202 putting U.S. coast-
al communities at risk, including many rural 
communities located along low-lying rivers 
in the coastal plains. Coastal erosion in the 
United States accounts for about $500 million 
in damages every year, for which the Federal 
Government spends an average of $150 million 
per year for erosion control measures.203 
Damage to coastal communities includes 
coastal erosion and the loss of wetlands due 
to flooding, coupled with high tides and sea 
level rise; the contamination of irrigation and 
drinking water due to saltwater intrusion; 
the loss of traditional food sources due to the 
loss of marine habitats and coral reefs; and 
the loss of agricultural lands due to rising sea 
levels.204 Low-relief islands and Pacific atolls 
are particularly at risk to both sea level rise 
and increasing storm surge intensity (Ch. 8: 
Coastal; Ch. 15: Tribes).205

Key Message 3 
Health Challenges to Rural 
Populations and Livestock

Challenges to human and livestock 
health are growing due to the increased 
frequency and intensity of high tempera-
ture extremes. Extreme heat conditions 
contribute to heat exhaustion, heat-
stroke, and heart attacks in humans. 
Heat stress in livestock results in large 
economic losses for producers. Ex-
panded health services in rural areas, 
heat-tolerant livestock, and improved 
design of confined animal housing are 
all important advances to minimize 
these challenges.

Climate change impacts, such as extreme 
weather conditions, have a complex influence 
on human health. Specific issues are discussed 
in more detail in Chapter 14: Human Health. 
Extreme heat can cause or contribute to 
potentially deadly conditions such as heat 
exhaustion, heatstroke, and heart attacks (Ch. 
18: Northeast, Figure 18.11) and reduced human 
productivity (Ch. 19: Southeast, Figure 19.21). 
In the United States, some communities of 
color, low-income groups, certain immigrant 
groups, and tribal communities are vulner-
able to impacts of climate change; pregnant 
women, children, and older people associated 
with these populations are the most at risk, 
considering their higher likelihood of living in 
risk-prone areas (such as isolated rural areas 
and areas with poor infrastructure).149 

Higher temperatures and consequent longer 
growing seasons can also affect human health 
by prolonging the duration of the pollen and 
allergy seasons.206 Further, higher atmospheric 
CO2 levels enable ragweed and other plants to 
produce allergenic pollen in larger quantities.207 
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Since the beginning of the 20th century, the 
length of the average growing season has 
increased by nearly two weeks in the contig-
uous 48 states, with larger increases in the 
West (2.2 days per decade) than in the East (1 
day per decade). Arizona and California have 
recorded the most dramatic increase, while the 
growing season has become shorter in a few 
southeastern states.

Health impacts to livestock are also an 
important concern. Livestock and poultry 
account for over half of U.S. agricultural cash 
receipts, exceeding $182 billion in 2012.9 One 
study estimated average annual losses related 
to heat stress for the year 2000, even with 
adaptation-appropriate techniques, at about 
$897 million, $369 million, $299 million, and 
$128 million for dairy, beef, swine, and poultry 
industries, respectively.208 Projected increases 
in daily maximum temperatures and heat 
waves will lead to further heat stress for live-
stock, although the severity of consequences 
will vary by region. Temperatures beyond the 
optimal range alter the physiological functions 
of animals, resulting in changes in respiration 
rate, heart rate, blood chemistry, hormones, 
and metabolism; such temperatures generally 
result in behavioral changes as well, such as 
increased intake of water and reduced feed 
intake.83 Heat stress also affects reproductive 
efficiency.209,210 High temperatures associated 
with drought conditions adversely affect pas-
ture and range conditions and reduce forage 
crop and grain production, thereby reducing 
feed availability for livestock.54,211,212 More vari-
able winter temperatures also cause stress to 
livestock and, if associated with high-moisture 
blizzard conditions or freezing rain and icy 
conditions, can result in significant livestock 
deaths.213,214 

Dairy cows are particularly sensitive to heat 
stress, as it negatively affects their appetite, 
rumen fermentation (a process that converts 

ingested feed into energy sources for the 
animal), and lactation yield.215,216 Frequent 
higher temperatures also lower milk quality 
(reduced fat, lactose, and protein percentag-
es).217,218 In 2010, heat stress was estimated to 
have lowered annual U.S. dairy production 
by $1.2 billion. A recent study indicates that 
the dairy industry expects to see production 
declines related to heat stress of 0.60%–1.35% 
for the average dairy over the next 12 years, 
with larger declines occurring in the South-
ern Great Plains and the Southeast due to 
increasing relative stress (assuming producing 
regional herd inventories remain stable; Figure 
10.5).83,218 Similar heat stress losses impact 
beef cow-calf, stocker, and feedlot production 
systems; higher temperatures result in reduced 
appetites and grazing/feeding activity, which 
subsequently reduce production efficiencies. 
Extreme temperature events also increase 
feedlot mortality. 

In contrast to beef and dairy production, a 
much larger segment of both pork and poultry 
production is housed in environmentally 
controlled facilities that lessen the impact of 
temperature extremes on production efficien-
cies. However, these systems rely on mecha-
nized cooling systems that are more expensive 
to operate as temperatures increase and are 
subject to extreme losses associated with 
the failures of cooling equipment. Traditional 
outdoor pork and poultry production systems 
will be subject to the same temperature- 
related issues as the beef and dairy industries. 
Consequently, livestock systems (such as beef 
and dairy cattle) that are raised outside in 
range environments or pen-based concen- 
trated animal feeding operations are expected 
to be impacted more negatively by heat stress 
and climate extremes than livestock that are 
produced in climate-controlled facilities (such 
as the majority of pork and poultry).219 As a 
result, feedlots and dairy production centers 
are expected to continue to migrate to more 
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temperate regions, due to heat stress, dimin-
ished water availability, and reduced crop/
forage availability and quality.54

In the absence of migration of livestock 
production to more temperate climates, 
adaptation strategies are possible to a degree.54 
For example, as local temperatures increase, 
livestock can be genetically adapted to local 
conditions.220 However, the physical mitigation 
of heat stress in livestock often requires long-
term investments such as climate-controlled 

buildings, portable or permanent shading 
structures, and planted trees, as well as short-
term production strategies such as altering 
feeds.76,218 Studies have shown that shading 
in combination with fans and sprinkler or 
evaporative cooling technologies can mitigate 
the short-term effects of heat stress on animal 
production and reproductive efficiency.221 
Other strategies include aligning feeding and 
management practices with the cooler times 
of the day and reducing the effort required by 
animals to access food and water.222 

Projected Reduction in Milk Production

Figure 10.5: The figure shows the predicted reduction in annual milk production in 2030 compared to 2010 in climate change-
induced heat stress. The regions are grouped according to USDA regional Climate Hubs (https://www.climatehubs.oce.usda.
gov), and the colored bars show the four global climate models used. Source: redrawn from Key et al. 2014.83
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Key Message 4 
Vulnerability and Adaptive Capacity 
of Rural Communities

Residents in rural communities often 
have limited capacity to respond to 
climate change impacts, due to poverty 
and limitations in community resources. 
Communication, transportation, water, 
and sanitary infrastructure are vul-
nerable to disruption from climate 
stressors. Achieving social resilience 
to these challenges would require 
increases in local capacity to make 
adaptive improvements in shared com-
munity resources.

Climate change is an issue of great importance 
for rural communities. Rural populations are 
the stewards of most of the Nation’s forests, 
watersheds, rangelands, agricultural land, and 
fisheries, and much of the rural economy is 
closely tied to its natural environment. Thus, 
rural residents and the lands that they manage 
have the potential to make important economic 
and conservation contributions to climate 
change mitigation and adaptation. However, 
rural residents are also highly vulnerable to 
climate change effects due to their economic 
dependence on their natural resource base, 
which is subject to multiple climate stressors 
(Ch. 19: Southeast, Figures 19.15 and 19.16; Ch. 2: 
Climate). Migrant workers, who provide much 
of the agricultural labor in some regions and 
some enterprises, are particularly vulnerable. 
Climate change has already had direct impacts 
on rural populations and economies (Ch. 26: 
Alaska, Figures 26.3 and 26.4) and will inevita-
bly have repercussions for rural livelihoods and 
prosperity in the future.223

The ability of a rural community to adjust 
to climate disturbances, take advantage of 

economic opportunities, and cope with the 
consequences of change depends on a host of 
demographic and economic factors. Specifi-
cally, rural areas have higher percentages of 
people living in poverty than do urban areas, 
and poverty rates among historically vulnerable 
populations such as children, the elderly, and 
racial and ethnic minorities tend to be higher 
(Ch. 15: Tribes, Figure 15.2; Ch. 19: Southeast, 
Figure 19.22; Ch. 21: Midwest, KM 6, Case Study 
“Great Lakes Climate Adaptation Network;” KM 
6; Ch. 23: S. Great Plains, KM 5).1 The social, 
economic, and institutional contexts in which 
these vulnerable populations are embedded 
can further influence their individual vulnera-
bilities and collective capacity to communicate, 
cooperate, and cope with a climate disturbance 
event.224 Rural communities are less likely to 
have local land-use regulations and building 
codes than urban communities, and those 
that do exist are more likely to be loosely 
enforced.225 Lack of economic diversity, limited 
access to the internet, and relatively limited 
infrastructure, resources, and political clout 
further detract from the adaptive capacity of 
rural communities.226,227,228 As a result, rural 
communities are subject to a “climate gap” 
defined by disproportionate and unequal 
impacts of climate change and extreme 
climate events.229

Vulnerability to climate change is a function 
of exposure, sensitivity, and adaptive capacity 
(Ch. 28: Adaptation). Developing the capacity 
to implement strategies that avoid stress 
or reduce system sensitivity can minimize 
vulnerability. Knowledge of climate change is 
underutilized in adaptation because proce-
dures for incorporating climate information 
into decision-making have not been adequately 
developed.230,231 Flexibility is a central feature 
of successful adaptation to climate change.232 
Adaptive capacity is highly diverse in terms of 
a community’s ability to plan, recognize, and 
manage risk and then to adopt and implement 



10 | Agriculture and Rural Communities

410 Fourth National Climate AssessmentU.S. Global Change Research Program 

adaptation strategies.230,233 This necessitates a 
range of flexible and cost-effective adaptation 
strategies that can address varied sensitivities 
and adaptive capacities (Ch. 15: Tribes, Box 
15.1; Ch. 24: Northwest, Figure 24.14, Box 24.5). 
Innovative efforts to build capacity in rural 
and Indigenous communities are described in 
Chapter 20: U.S. Caribbean, Key Message 6 and 
Chapter 21: Midwest, Key Message 6. 

Emerging Issues and Research Gaps
Agriculture is a highly complex system that 
is tightly integrated with local-to-global food 
systems and interlinked with rural communi-
ties that both rely on agricultural production 
for economic viability and support agricultural 
labor, input, and market requirements. Since 
the Third National Climate Assessment,234 there 
have been significant technological advances 
and a renewed emphasis on conservation 
management and precision agriculture, espe-
cially as it relates to climate. Climate-smart 
agricultural initiatives (such as cover crops, 
specialized irrigation, and nutrient manage-
ment) are being implemented to respond to 
or prepare for climate variability and change. 
In addition, genomics and plant breeding have 
targeted specific climate-related issues such as 
drought or increased ranges of pests. However, 
our understanding of the challenges posed by 
climate change is evolving, and new technolo-
gies and improved scientific understanding is 
warranted. Examples of these emerging issues 
and research gaps include the following: 

•	 Considerable private- and public-sector 
research is focused on the genetic improve-
ment of crops to enhance resilience under 
climate stress. However, most of the research 
has focused on a few major species, with 
minimal public resources invested in genetic 
improvement of specialty crops. Addition- 
ally, these efforts have focused largely on 
yield and much less on quality improvements 

that have significant nutritional and eco-
nomic implications.

•	 Additional research would improve our 
understanding of the interactive effects of 
CO2 concentration levels in the atmosphere, 
temperature, and water availability on plant 
physiological responses, particularly in 
highly dynamic field environments. 

•	 Field-scale research has been conducted 
on the potential of cellulosic bioenergy 
crops, including grasses, fast-growing 
woody species, and corn residue harvest. 
However, the cascading effects of land-use 
change (from food to bioenergy crops) on 
rural economies, labor, and the environment 
remain uncertain. 

•	 Scientific understanding of climate change 
impacts on beneficial and pest insects, 
pathogens and beneficial microorganisms, 
and weeds is limited, as is knowledge about 
the interactions of these organisms within 
complex agricultural landscapes.

•	 The Agricultural Model Intercomparison 
and Improvement Project (AgMIP) applies 
state-of-the art climate, crop/livestock, 
and agricultural economic models, along 
with stakeholder input, to coordinate multi- 
model regional and global assessments of 
climate impacts and adaptation. AgMIP is 
developing a rigorous process to evaluate 
agricultural models and thus is promoting 
continuous model improvement as well as 
supporting data sharing and the identifica-
tion of adaptation technologies and policies. 
Currently, there is no comparable modeling 
framework to address animal agriculture or 
to evaluate the cascading effects of produc-
tion on the broader food systems and food 
security issues. 
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•	 Agriculture has the ability to mitigate 
greenhouse gas emissions through carbon 
sequestration in the soil and perennial vege-
tation, through improved nutrient-use effi-
ciency of fertilizers, and through reduced 
methane emissions from ruminant livestock 
and manure. However, the magnitude of 
potential mitigation, particularly of nitrous 
oxides from soil and soil methanogens are 
poorly understood. Better understanding of 
the soil, rhizosphere, and rumen microbi-
omes would improve our ability to develop 
mitigation strategies. 

•	 A systems approach for research would 
facilitate understanding of the vulnerabili-
ties of food systems to climate change and 
quantifying the costs of business as usual 
relative to the adoption of adaptation and 
mitigation strategies.

•	 Social science research would improve 
understanding of the vulnerability of rural 
communities, strategies to enhance adap-
tive capacity and resilience, and barriers to 
adoption of new strategies. 
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Traceable Accounts
Process Description
Each regional author team organized a stakeholder engagement process to identify the highest- 
priority concerns, including priorities for agriculture and rural communities. Due to the het-
erogeneous nature of agriculture and rural communities, the national chapter leads (NCLs) 
and coauthor team put in place a structured process to gather and synthesize input from the 
regional stakeholder meetings. Where possible, one or more of the authors or the chapter lead 
author listened to stakeholder input during regional stakeholder listening sessions. Information 
about agriculture and rural communities was synthesized from the written reports from each 
regional engagement workshop. During the all-authors meeting on April 2–3, 2017, the NCL met 
with authors from each region and other national author teams to identify issues relevant to 
this chapter. To finalize our regional roll-up, a teleconference was scheduled with each regional 
author team to discuss agriculture and rural community issues. Most of the regional author 
teams identified issues related to agricultural productivity, with underlying topics dominated by 
drought, temperature, and changing seasonality. Grassland wildfire was identified as a concern 
in the Northern and Southern Great Plains. All regional author teams identified soil and water 
vulnerabilities as concerns, particularly as they relate to soil and water quality impacts and a 
depleting water supply, as well as reduced field operation days due to wet soils and an increased 
risk of soil erosion due to precipitation on frozen soil. Heat stress in rural communities and among 
agricultural workers was of concern in the Southeast, Southern Great Plains, Northwest, Hawai‘i 
and Pacific Islands, U.S. Caribbean, and Northeast. Livestock health was identified as a concern 
in the Northeast, Midwest, U.S. Caribbean, and Southern Great Plains. Additional health-related 
concerns were smoke from wildfire, pesticide impacts, allergens, changing disease vectors, and 
mental health issues related to disasters and climate change. Issues related to the vulnerability 
and adaptive capacity of rural communities were identified by all regions. Discussions with the 
regional teams were followed by expert deliberation on the draft Key Messages by the authors and 
targeted consultation with additional experts. Information was then synthesized into Key Mess- 
ages, which were refined based on published literature and professional judgment. 

Key Message 1 
Reduced Agricultural Productivity

Food and forage production will decline in regions experiencing increased frequency and duration of 
drought (high confidence). Shifting precipitation patterns, when associated with high temperatures, 
will intensify wildfires that reduce forage on rangelands, accelerate the depletion of water supplies 
for irrigation, and expand the distribution and incidence of pests and diseases for crops and 
livestock (very likely, high confidence). Modern breeding approaches and the use of novel genes from 
crop wild relatives are being employed to develop higher-yielding, stress-tolerant crops. 

Description of evidence base
The Key Message and supporting text summarize extensive evidence documented in the U.S. 
Global Change Research Program’s (USGCRP) Climate Science Special Report84 indicating increas-
ing drought frequency or severity in many parts of the United States, increased temperature, 
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and increased frost-free days. An increased probability of hot days concurrent with drought 
has been reported by Mueller and Seneviratne (2012),235 Mazdiyasni and AghaKouchak (2015),236 
and Diffenbaugh et al. (2015).107 The warming of minimum temperatures (lack of hard freezes) 
is contributing to expanding ranges for many insect, disease, and weed species.237 Bebber et al. 
(2013)238 report an average poleward shift of 2.7 km/year (1.68 miles/year) since 1960 of numerous 
pests and pathogens.

Agricultural production: Walthall et al. (2012)38 synthesize a wide body of literature that docu- 
ments the impacts of climate, including drought, on crop and livestock productivity and on the 
natural resources that support agricultural production. Marshall et al. 201597 also quantified 
climate change impacts on the yield of major U.S. crops as well as the reduced ability in the future 
to mitigate drought by irrigation. Havstad et al. (2016)239 describe the resilience of livestock pro-
duction on rangelands in the Southwest and identify adaptation management strategies needed in 
an increasingly arid and variable climatic environment. Liang et al. (2017)240 found that total factor 
productivity (TFP) for the U.S. agriculture sector is related to regional and seasonal temperature 
and precipitation factors. Rosenzweig et al. (2014)241 indicated strong negative effects of climate 
change on crop yields, particularly at higher levels of warming and lower latitudes. While techno-
logical improvements have outweighed the aggregate negative impacts of climate to date, pro- 
jected climate change indicates that U.S. agriculture TFP could drop to pre-1980s levels by 2050. 
Ray et al. (2015)242 estimate that climate accounts for about one-third of global yield variability. 

Crop heat stress: Novick et al. (2016)243 indicate that atmospheric vapor pressure deficits play a 
critical role in plant function and productivity and that it will become more important at higher 
temperatures as an independent factor, relative to available soil moisture. For instance, high 
temperature has been documented to decrease yields of major crops, including wheat, corn, rice, 
and soybean.92,113,120,244 Multimodel simulations indicated that grain yield reductions of wheat at high 
temperature were associated with reduced grain number per head120 and that yield reductions 
were increased with higher temperature increases across a wide range of latitudes.241 Hatfield et 
al. (2017)245 report that yield gaps for Midwest corn were negatively related to July maximum and 
August minimum temperatures but positively related to July–August rainfall, and that soybeans 
were less sensitive to projected temperature changes than corn. For corn, projected yield gaps 
showed a strong North–South gradient, with large gaps in southern portions of the region. Kukal 
and Irmak (2018)246 reported that changes in the variability of maize, sorghum, and soybean yield 
patterns in the Great Plains from 1968–2013 were linked to temperature and precipitation, with 
irrigated crops showing low variability compared to rainfed crops. Temperature increases were 
detrimental to sorghum and soybean yield but not to corn during this period. Tebaldi and Lobbell 
(2015)247 projected that corn would benefit from greenhouse gas mitigation to limit temperature 
increases throughout this century. For wheat, but less so for corn, impacts of exposure to 
extremely high temperatures would be partially offset by carbon dioxide fertilization effects. Tack 
et al. (2015)248 report that the largest drivers of Kansas wheat yield loss over 1985–2013 were freez-
ing temperatures in the fall and extreme heat events in the spring.249,250 The overall effect of warm-
ing on yields was negative, even after accounting for the benefits of reduced exposure to freezing 
temperatures. Warming effects were partially offset by increased spring precipitation. Of concern 
was evidence that recently released wheat varieties are less able to resist high temperature stress 
than older varieties. Gammans et al. (2017)251 found that wheat and barley yields in France were 
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negatively related to spring and summer temperatures. Liu et al. (2016)252 report that with a 1.8°F 
(1°C) global temperature increase, global wheat yield is projected to decline between 4.1% and 
6.4%, with the greatest losses in warmer wheat-producing regions. Wienhold et al. (2017)253 iden-
tify an increase in the number of extreme temperature events (higher daytime highs or nighttime 
lows) as a vulnerability of Northern Great Plains crops due to increased plant stress during critical 
pollination and grain fill periods. Burke and Emerick (2016)254 found that adaptation appeared to 
have mitigated less than half of the negative impacts of extreme heat on productivity. 

Wildfire and rangelands: Margolis et al. (2017)255 report that fire scars in tree rings for the years 
1599–1899 indicate that large grassland fires in New Mexico are strongly influenced by the current 
year cool-season moisture, but that fires burning mid-summer to fall are also influenced by mon-
soon moisture. Wet conditions several years prior to the fire year, resulting in increased fuel load, 
are also important for spring through late-summer fires. Persistent cool-season drought lasting 
longer than three years may inhibit fires due to the lack of moisture to replenish surface fuels. 
Donovan et al. (2017)95 reported that wildfires greater than 400 hectares increased from 33.4 ± 5.6 
per year during the period 1985–1994 to 116.8 ± 28.8 wildfires per year for the period 2005–2014 
and that the total area burned in the Great Plains by large wildfires increased 400%. 

Water supply: Dai and Zhao (2017)256 quantify historical trends in drought based on indices derived 
from the self-calibrated Palmer Drought Severity Index and the Penman–Monteith potential 
evapotranspiration index. For greater reliability, they compare these results with observed precip-
itation change patterns, streamflow, and runoff in three different periods: 1950–2012, 1955–2000, 
and 1980–2012. They indicate that spatially consistent patterns of drying have occurred in many 
parts of the Americas, that evaporation trends were slightly negative or slightly positive (exclusive 
of 1950–1980), and that drought has been increasingly linked to increased vapor pressure deficits 
since the 1980s.

Pest pressures: Integrated pest management is rapidly evolving in the face of intensifying pest 
challenges to crop production.257 There is considerable capacity for genetic improvement in agri-
cultural crops and livestock breeds, but the ultimate ability to breed increased heat and drought 
tolerance into germplasm while retaining desired agronomic or horticultural attributes remains 
uncertain.258 The ability to breed pest-resistant varieties into a wide range of species to address 
rapidly evolving disease, insect, and weed species237 is also uncertain. 

Major uncertainties
Drought impacts on crop yields and forage are critical at the farm economic scale and are well 
documented.38,97 However, the extent to which drought impacts larger-scale issues of food 
security depends on a wide range of economic and social factors that are less certain. Chavez et 
al. (2015)259 lay out a framework for food security assessment that incorporates risk mitigation, 
risk forecast, and risk transfer instruments. There is considerable uncertainty in what is expected 
for the frequency and severity of future droughts.260 However, retrospective analyses and global 
climate modeling of 1900–2014 drought indicators show consistent results. The applied global cli-
mate models project 50%–200% increases in agricultural drought frequency in this century, even 
under low forcing scenarios. There is uncertainty about the interactive effects of carbon dioxide 
concentration, temperature, and water availability on plant physiological responses, particularly 
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in highly dynamic field environments. There is uncertainty about future technological advances in 
agriculture and about changes in diet choices and food systems. 

Description of confidence and likelihood
The USGCRP84 determined that recent droughts and associated heat waves have reached record 
intensities in some regions of the United States; however, by geographic scale and duration, the 
1930s Dust Bowl remains the benchmark drought and extreme heat event in the historical record 
since 1895 (very high confidence). The confidence is high that drought negatively impacts crop 
yield and quality, increases the risk of range wildfires, and accelerates the depletion of water 
supplies (very likely and high confidence).

Key Message 2 
Degradation of Soil and Water Resources

The degradation of critical soil and water resources will expand as extreme precipitation events 
increase across our agricultural landscape (high confidence). Sustainable crop production is 
threatened by excessive runoff, leaching, and flooding, which results in soil erosion, degraded 
water quality in lakes and streams, and damage to rural community infrastructure (very likely, very 
high confidence). Management practices to restore soil structure and the hydrologic function of 
landscapes are essential for improving resilience to these challenges.

Description of evidence base
Evidence of long-term changes in precipitation is based on analyses of daily precipitation observa-
tions from the National Weather Service’s Cooperative Observer Network.261

Groisman et al. (2012)262 reported that for the central United States, the frequency of very heavy 
precipitation increased by 20% from 1979–2009 compared to 1948–1978. Slater and Villarini 
(2016)263 report a significant increase in flooding frequency in the Southern Plains, California, and 
northern Minnesota; a smaller increase in the Southeast; and a decrease in the Northern Plains 
and Northwest. Mallakpour and Villarini (2015)264 report an increasing frequency of flooding in the 
Midwest, primarily in summer, but find limited evidence of a change in magnitude of flood peaks. 

Infrastructure: Severe local storms constituted the largest class of billion-dollar natural disasters 
from 1980 to 2011, followed by tropical cyclones and nontropical floods.265 Špitalar et al. (2014)266 
evaluate flash floods from 2006 to 2012 and find that the floods with the highest human impacts, 
based on injuries and fatalities, are associated with small catchment areas in rural areas. Rural 
areas face particular challenges with road networks and connectivity.267

Soil and water: Soil carbon on agricultural lands is decreased due to land-use change and till-
age,268,269 resulting in decreased hydrologic function.101 Practices that increase soil carbon have 
an adaptation benefit through improved soil structure and infiltration, improved water-holding 
capacity, and improved nutrient cycling. There are many practices that can enhance agricultural 
resilience through increased soil carbon sequestration.75,268,270,271,272,273 Houghton et al. (2017)274 
identify the health effects associated with poor water quality that can be associated with nutrient 
transport to water bodies and subsequent eutrophication. 
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Major uncertainties
Floods are highly variable in space and time,86 and their characteristics are influenced by a number 
of non-climate factors.275 Groissman et al. (2012)262 note that the lack of sub-daily data to analyze 
precipitation intensity means that daily data are normally used, which limits the ability to detect 
the most intense precipitation rates. While many practices are available to protect soil and reduce 
nutrient runoff from agricultural lands,268,272 adoption rates by producers are uncertain. Addition-
ally, there is uncertainty about the extent to which agribusiness will invest in soil improvement to 
mitigate risks associated with a changing climate and its effects on water, energy, and plant and 
animal supply chains.276

Description of confidence and likelihood
The evidence on increasing precipitation intensity, with the largest increases occurring in the 
Northeast, is high (very likely, high confidence). The increase in flooding is less certain (likely, 
medium confidence). The evidence of the impact of precipitation extremes on infrastructure losses, 
soil erosion, and contaminant transport to water bodies is well established (very likely, high con-
fidence). Based on medium confidence on flooding but high confidence in increasing precipitation 
intensity and the impacts of precipitation extremes, there is high confidence in this Key Message.

Key Message 3 
Health Challenges to Rural Populations and Livestock

Challenges to human and livestock health are growing due to the increased frequency and intensity 
of high temperature extremes (very likely, high confidence). Extreme heat conditions contribute to 
heat exhaustion, heatstroke, and heart attacks in humans (very likely, high confidence). Heat stress 
in livestock results in large economic losses for producers (very likely, high confidence). Expanded 
health services in rural areas, heat-tolerant livestock, and improved design of confined animal 
housing are all important advances to minimize these challenges.

Description of evidence base
The Key Message and supporting text summarize extensive evidence documented in the 
USGCRP’s Climate Science Special Report.84

Humans: Houghton et al. (2017)274 synthesize the literature that presents strong evidence of cli-
mate change impacts on human health in rural areas. Anderson et al. (2018)278 find that heat waves 
pose risks to human mortality but that the risk associated with any single heat wave depends on 
many factors, including heat wave length, timing, and intensity. On average, heat waves increase 
daily mortality risk by approximately 4% in the United States,279 but extreme heat waves present 
significantly higher risks. While research on heat-related morbidity has focused on urban areas, 
Jagai et al. (2017)280 analyzed heat waves in Illinois over 1987–2014 and found that there were 
1.16 hospitalizations per 100,000 people in the most rural, thinly populated areas, compared to 
0.45 hospitalizations per 100,000 in metropolitan areas. Consequently, a 1.8°F (1°C) increase in 
maximum monthly temperature was associated with a 0.34 increase in hospitalization rates in 
rural areas compared to an increase of 0.02 per 100,000 in urbanized counties. The mean cost 
per hospital stay was $20,050. Fechter-Leggett et al. (2016),281 Hess et al. (2014),282 and Sugg et al. 
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(2016)283 also report an elevated risk in rural areas for emergency room visits for heat stress. Addi-
tionally, rural areas have a high proportion of outdoor workers who are at additional risk for heat 
stress.280,284,285 Merte (2017)286 analyzed data from 1960 to 2015 for 27 European countries and found 
that 0.61% of all deaths were caused by extreme heat. 

Major uncertainties
Humans: Much of the literature focuses on heat-related mortality in urban areas (e.g., Oleson et 
al. 2015, Marsha et al. 2017.287,288) Vulnerability and exposure in rural areas are not well understood, 
but Oleson et al. (2015),287 in quantifying projected future temperature impacts, indicate that urban 
areas will experience more summer heat days and reduced winter cold temperature days than 
rural areas. Huber et al. (2017)289 identify uncertainties in estimated impacts of death from cardio-
vascular diseases from a 1.8°F (1°C) increase in global temperature. Anderson et al. (2018)278 discuss 
uncertainties associated with changes in the size and age of the population and the breadth of 
plausible socioeconomic scenarios. Jones et al. (2015)290 identify uncertainties in the migration 
of population due to a changing climate and how that would impact exposure. Hallstrom et al. 
(2017)291 evaluated the possible effects of future diet choices on various health indicators, many of 
which would have impacts on an individual’s sensitivity to high temperature. 

Livestock: Walthall et al. (2012)38 synthesize a wide body of literature that documents the impacts 
of extreme temperature effects on livestock health and productivity. Ruminant livestock support 
rural livelihoods and produce high-quality food products from land that is otherwise unsuited to 
crop agriculture.292,293 

Description of confidence and likelihood
Extreme temperatures are projected to increase even more than average temperatures. The 
temperatures of extremely cold days and extremely warm days are both projected to increase. 
Cold waves are projected to become less intense, while heat waves will become more intense (very 
likely, very high confidence).277

Lehner et al. (2017)294 indicate a high likelihood and high confidence that there will be increased 
record-breaking summer temperatures by the end of the century. Evidence of challenges to 
human and livestock health due to temperature extremes is well established (very likely, very 
high confidence). 
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Key Message 4 
Vulnerability and Adaptive Capacity of Rural Communities

Residents in rural communities often have limited capacity to respond to climate change impacts, 
due to poverty and limitations in community resources (very likely, high confidence). Communication, 
transportation, water, and sanitary infrastructure are vulnerable to disruption from climate stressors 
(very likely, high confidence). Achieving social resilience to these challenges would require increases 
in local capacity to make adaptive improvements in shared community resources. 

Description of evidence base
A wealth of data shows that residents of rural areas generally have lower levels of education and 
lower wages for a given level of education compared to residents of urban areas.295 Higher levels 
of poverty, particularly childhood poverty,7 and food insecurity in rural compared to urban areas 
are also well documented.49 There is also research that documents the disproportionate impacts 
of climate change on areas with multiple socioeconomic disadvantages, such as an increased risk 
of exposure to extreme heat and poor air quality, lack of access to basic necessities, and fewer job 
opportunities.229

Major uncertainties
There is uncertainty about future economic activity and employment in rural U.S. communities. 
However, the patterns of lower education levels, higher poverty levels, and high unemployment 
have been persistent and are likely to require long-term, focused efforts to reverse.6,49,295 There are 
numerous federal programs (such as the USDA’s regional Climate Hubs, the National Oceanic and 
Atmospheric Administration’s Regional Integrated Sciences and Assessments program, and the 
U.S. Department of the Interior’s Climate Adaptation Science Centers) that focus on outreach and 
capacity building to rural and underserved communities. Additionally, the Cooperative Extension 
Service and state agencies, as well as various nongovernmental organizations, provide support and 
services to build the adaptive capacity of individuals and communities. 

Description of confidence and likelihood
Lower levels of education, poverty, limited infrastructure, and lack of access to resources will 
limit the adaptive capacity of individuals and communities (very likely, high confidence). Adaptive 
capacity in rural communities is being increased through federal, state, and local capacity building 
efforts (likely, low to medium confidence). However, the outreach to rural communities varies 
greatly in different parts of the United States.
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