Search

Given : Objective function $f: \mathbb{R}^n \to \mathbb{R}$

 $\textbf{Objective} : \textbf{Generate sequence } \left(\boldsymbol{x}^{(t)} \right)_{t=1,2,\dots} \in \mathbb{R}^n \text{ where } f(\boldsymbol{x}^{(t)}) \text{ as small as possible for all } \\ t=1,2,\dots$

Assumption : Best known problem encoding is used.

Randomized search: Every search point $x^{(t)}$ is drawn from a given distribution $P^{(t)}$.

1. Nikolaus Hansen 2004

Why Randomize Search?

- Black box optimization (derivatives not available)
- The typical difference quotients are not useful
- Discontinuities
- Noise and outlier
- Many local optima

In summary: Black box optimization in a rough or rugged landscape.

Randomized Search Example

Use normal distribution $\mathcal{N}ig(oldsymbol{\mu}^{(t)}, oldsymbol{I}ig)$ as search distribution $P^{(t)}$:

FOR
$$t = 1, 2, ...$$

$$\begin{array}{l} \text{Sample } P^{(t)} = \mathcal{N} \Big(\pmb{\mu}^{(t)}, \pmb{I} \Big) \rightarrow \pmb{x}_1^{(t)}, \dots, \pmb{x}_{\lambda}^{(t)} \in \mathbb{R}^n \\ \text{Set } \pmb{\mu}^{(t+1)} = \pmb{x}_{\text{selected}}^{(t)} := \arg \min_{k} \Big(f(\pmb{x}_k^{(t)}) \Big) \end{array}$$

ROF

implements the so-called $(1,\lambda)$ -ES (evolution strategy) without strategy parameter adaptation.

3. Nikolaus Hansen 2004

The CMA-ES (Evolution Strategy with Covariance Matrix Adaptation)

Consider $P^{(t)} = \mathcal{N}\left(\boldsymbol{\mu}^{(t)}, \ \sigma^{(t)^2}\boldsymbol{C}^{(t)}\right)$ where $\boldsymbol{\mu}^{(t)} \in \mathbb{R}^n$, $\sigma^{(t)} \in \mathbb{R}_+$, $\boldsymbol{C}^{(t)} \in \mathbb{R}^{n \times n}$

- ullet $m{\mu}^{(t)}
 ightarrow m{\mu}^{(t+1)}$: Maximum likelihood update, i.e. $P(m{x}_{
 m selected}^{(t)}|m{\mu}^{(t+1)})
 ightarrow \max$
- $C^{(t)} \to C^{(t+1)}$: Maximum likelihood update, i.e. $P(\frac{x_{\text{selected}}^{(t)} \mu^{(t)}}{\sigma^{(t)}}|C^{(t+1)}) \to \max$, under consideration of prior $C^{(t)}$ (otherwise $C^{(t+1)}$ becomes singular).
- $\sigma^{(t)} \to \sigma^{(t+1)}$: Update to achieve conjugate perpendicularity, i.e. conceptually $(\boldsymbol{\mu}^{(t+2)} \boldsymbol{\mu}^{(t+1)})^{\mathrm{T}} \boldsymbol{C^{(t)}}^{-1} (\boldsymbol{\mu}^{(t+1)} \boldsymbol{\mu}^{(t)})/\sigma^{(t+1)^2} \to 0$

Remark: It follows that ${m \mu}^{(t+1)} = {m x}_{
m selected}^{(t)}.$

Remark: The update of C roughly results in a PCA of the points $\frac{\boldsymbol{x}_{\text{selected}}^{(t)} - \boldsymbol{\mu}^{(t)}}{\sigma^{(t)}}, \frac{\boldsymbol{x}_{\text{selected}}^{(t-1)} - \boldsymbol{\mu}^{(t-1)}}{\sigma^{(t-1)}}, \dots, \frac{\boldsymbol{x}_{\text{selected}}^{(t-n^2)} - \boldsymbol{\mu}^{(t-n^2)}}{\sigma^{(t-n^2)}} \text{ assuming their empirical mean to be zero.}$