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Abstract—The simple but general formal theory of fun & mechanism that uses reinforcement learning (RL) to maxmiz
intrinsic motivation & creativity (1990-) is based on the cocept of  the fun or internal joy for the discovery or creation afovel
maximizing intrinsic reward for the active creation or discovery patterns. Both concepts are essentiglattern and novelty

of novel, surprising patterns allowing for improved prediction or L T
data compression. It generalizes the traditional field ofactive A data sequence exhibits pattern or regularity if it is

learning, and is related to old but less formal ideas in aesthetics compressible [45], that is, if there is a relatively shodgram
theory and developmental psychology. It has been argued tha program that encodes it, for example, by predicting some of
the theory explains many essential aspects of intelligendeclud-  jts components from others (irregular noise is unpredietab
ing autonomous development, science, art, music, humor. ™1 5,4hqring). Relative to some subjective observer, a pattern is

overview first describes theoretically optimal (but not neessarily ¢ i lor int fi isinaif the ob
practical) ways of implementing the basic computational pm- emporarilynovetor interestingor surprising It theé observer

ciples on exploratory, intrinsically motivated agents or obots, initially did not know the regularity but is able tearnit. The
encouraging them to provoke event sequences exhibiting pre  observer’s learning progress can be precisaasuredand

ously unknown but learnable algorithmic regularities. Emphasis  translated intointrinsic reward for a separate RL controller
is put on the importance of limited computational resources geacting the actions causing the data. Hence the contislle

for online prediction and compression. Discrete and continous fi I tivated t i ising dat
time formulations are given. Previouspractical but non-optimal continually motivated to create more surprising data.

implementations (1991, 1995, 1997-2002) are reviewed, aslixas Since 1990, agents were built that implement this idea. They
several recent variants by others (2005-). A simplified typogy may be viewed as simple artificial scientists or artists with
addresses current confusion concemning the precise naturef  an ntrinsic desire to build a better model of the world and
intrinsic motivation. of what can be done in it. To improve their models, they

Index Terms—Formal theory of creativity, fun, surprise, nov-  acquire skills to create / discovenore data predictable or
S'g/'e E)O\:’ﬁlerete:itltergsél?(ﬁgmlO?i;‘n?’[(;t(ljvi(l?rﬂltg?i’()r?;StrI::sugozy, compressible in hitherto unknown ways [67], [71], [69], ]70
pologypof intrinsri)cymotiva%)i/cy)n, science, aF;t, music, humor e [111_]’ [_77]_’ [79], [85_]’ [92], [9_3]’ [97], [96], [94], [99].They

are intrinsically motivated to invent and conduct experitse

actively exploring their environment, always trying to fiea
new behaviors exhibiting previously unknown algorithmic

To solve existential problems such as avoiding hunger gggularities. They embody approximations of a simple, but
heat, a baby has to learn how the initially unknown envirogreneral, formal theory of creativity and curiosity and nets-
ment responds to its actions. Therefore, even when thergrigness and fun, explaining essential aspects of humanrer no
no immediate need to satisfy thirst or other built-in priwt human intelligence, including selective attention, sceerart,

drives, the baby does not run idle. Instead it actively cat&lu mysic, humor [85], [92], [97], [96], [94]. Crucial ingrediés
experiments: what sensory feedback do | get if | move myte:

eyes or my fingers or my tongue just like that? Being able
to predict effects of actions will later make it easier torpla
control sequences leading to desirable states, such as thos ; 4 ,
where heat and hunger sensors are switched off. events / sensory inputs, reflecting what's currently known

The growing infant quickly gets bored by things it already about hO_W the quld works, . .
understands well, but also by those it does not understand: Alearnlng algorl'Fh_mthat CO”“_”Pa”y'mPro"es the model
at all, always searching for new effects exhibiting some yet (detecting novel, initially surprising spatio-temporaitp
unexplained butkasily learnableregularity. It acquires more 3terns. th?t subseéquently be?"mi knowg ﬁ)'at'Ferns),
and more complex behaviors building on previously acquired ~: _Intnnsu; rewards measuring the model’s |mprovemelnts
simpler behaviors. Eventually it might become a physicist (first _derlvatlve of Iearqlng progress) du_e K_) the Iea_rmng
discovering previously unknown physical laws, or an artist algorithm (thus measuring thiegreeof subjective surprise

creating new eye-opening artworks, or a comedian coming up40rAfun), ‘ d optimi i Ol
with novel jokes. . A separate reward optimizer or reinforcement learner,

For a long time | have been arguing, using various wordings, which.translates those reyvqrds into action sequences or
that all this behavior is driven by a very simple algorithmic behaviors expected to optimize future reward.

I. INTRODUCTION

1. An adaptive world model, essentially a predictor or
compressor of the continually growing history of actions /

_ o _ _ A simple example may help to see that it is really possible
J. Schmidhuber is with the Swiss Al Lab IDSIA, Galleria 2, 892 | f L d si B la | 3 th
Manno-Lugano, the University of Lugano & SUPSI, Switzedansee (O I€arn from intrinsic reward signaia la ltem 3 that one

http:/www.idsia.ch/ juergen/interest.html can learn even more in places never visited before. In an



environment with red and blue boxes, whenever the learnifay achieving goals such as the satisfaction of hunger and

agent opens a red box, it will find an easily learnable noviHirst, but alsointrinsic reward for learning a better world

geometric pattern (that is, its predictor will make progrand model, by creating / discovering / learning novel patterns

thus generate intrinsic reward), while all blue boxes condéa in the growing history of actions and sensory inputs, where

generator of unpredictable, incompressible white noidetT the theory formally specifies what exactly ispattern what

is, all the RL controller has to learn is a simple policy: opeaxactly isnovel or surprising, and what exactly it means to

the next unopened red box. incrementallylearn novel skills leading to more novel patterns.
Ignoring issues of computation time, it is possible to de-

vise mathematically optimalniversalRL methods for such A The Agent and its Improving Model

systems [85], [92], [37], [96] (2006-2009). More about this Let us consider a learning agent whose single life consists

Section Il. However, the practical implementations so ] : : o
[70], [111], [77], [79] were non-universal and made appro of discrete cycles or time stegs=1,2,..., T Its complete

e . TOitetime T may or may not be known in advance. In what
imative assumptions. Among the many ways of combini

: . . : Wilows, the value of any time-varying variabtge at time¢
algorithms for1-4 the following variants were implemented: (1 <t < T) will be denoted byQ(t), the ordered sequence

A. 1990: Non-traditional RL (without restrictive Markoviangf vajuesQ(1), ..., Q(t) by Q(<t), and the (possibly empty)
assumptions [72]) based on an adaptive recurrent newghuence)(1),...,Q(t — 1) by Q(< t). At any givent the
network as a predictive world model [68] is used to maxlgent receives a real-valued inpt(t) from the environment
mize the controller’s intrinsic reward, which is proport@d 5 executes a real-valued actign) which may affect future

to the model's prediction errors [67], [71]. __ inputs. At timest < T its goal is to maximize future success
B. 1991: Traditional RL [35], [114] is used to maximizegy, utility

intrinsic reward created in proportion to expectegbrove-

. . .. T
ments(first dervatives) of prediction error [69], [70]. B
C. 1995: Traditional RL maximizes intrinsic reward created u(t) = E, ;LIT(T) h(=t)|, @

in proportion to relative entropies between the learning
agent's priors and posteriors [111]. where the reward (t) is a special real-valued input (vector)
D. 1997-2002: Non-traditional RL [103] (without restrictive@t time ¢, h(t) the ordered triplefxz(t), y(t), r(¢)] (hence
Markovian assumptions) learns probabilistic, hierarahic?(< t) is _the known hlSt(_)fy up td), and _Eu(' | -) denotes
programs and skills through zero-sum intrinsic rewardl€ conditional expectation operator with respect to some
games of two players (called the right brain and the leRossibly unknown distribution. from a setM of possible
brain), each trying to out-predict or surprise the othedlistributions. HereM reflects whatever is known about the
taking into account the computational costs of learnin§0ssibly probabilistic reactions of the environment. Aseayv
and learningwhento learn andwhatto learn [77], [79]. 9eneral exampleM may contain all computable distributions

B-D (1991-2002) also showed experimentally how intrinsi[:llo]’ [45], [32]. This essentially includes all environmie

rewards can substantially accelerate goal-directedileguand one could write SC|ent|f_|c papers about. _There IS IUSt_ one
externalreward intake. life, no need for predefined repeatable trials, no restmcti

. . . . to Markovian interfaces between sensors and environment
Outline. Section Il will summarize the formal theory of " .
y [72]. (Note that traditional Markovian RL [114] assumesttha
but not necessarily practical framework. Section 11l wileh the world can be modeled as a Markov Decision Process

discuss previous concrete implementations of the nonvapbti (MDP), and that the perceptual system reveals the current

but currently still more practical variantd-D mentioned state. In realistic scenarios, however, robots have tonlear
above, and their limitations. Section IV will discuss redat fo memorize previous relevant inputs in form of appropriate

- internal representations, which motivates the work on RL in
to work by others, explain how the theory extends the trf2ter !
ditional field of active learning, and how it formalizes an(ﬁ)art'a”y observable MDPs or POMDPs, e. g., [72], [35])

extends previous informal ideas of developmental psycg)oloThe ‘%“!“y fgnction implicitly takes into account the _e>.q_]ed
and aesthetics theory. Section V will offer a natural tygglo remaining lifespank, (T | h(<t)) and thus the possibility to

of computational intrinsic motivation, and Section VI Wi”extend the lifespan through appropriate actions [83],.[#8}e

; : o e t mathematical analysis isot simplified by discounting
briefly explain how the theory is indeed sufficiently gener%-"”l S i
to explain all kinds of creative behavior, from the discgver uture rewards like in traditional RL theory [114]—one shibu

of new physical laws through active design of experimeiats, §v0|d such d_|stort|ons of real rewards w_henever pOSS|bI(_a.
the invention of jokes and music and works of art. To maximizeu(t), the agent may profit from an adaptive,
predictivemodelp of the consequences of its possible inter-

actions with the environment. At any time(1 <t < T), the
Il. FORMAL DETAILS OF THETHEORY OFCREATIVITY  mqqel;(¢) will depend on the observed history so faf<t).
The theory formulates essential principles behind nungrolt may be viewed as the current explanation or description
intrinsically motivated creative behaviors of biological or of h(<t), and may help to predict future events, including
artificial agents embedded in a possibly unknown envirorimerewards. LetC(p, h) denote some given modgls quality or
The corresponding algorithmic framework uses general Rierformance evaluated on a given histdryNatural quality
(Section 1I-G; [32], [98]) to maximize not only external ramd measures will be discussed in Section II-B.

creativity in a nutshell, laying out a mathematically rigos



To encourage the agent to actively create data leading- || pred(p, (7)) —r(7) ||* + || pred(p, y(7)) — y(7) ||
to easily learnable improvements of [71], [70], [111], . - .
[79], [85], [92], [97], [96], [94], [99], the reward signal Whel’eprled(n q) is p’s prediction of event from earlier parts
r(1) is simply split into two scalar real-valued component&f the history [85]. n
r(t) = g(rest(t), rine(t)), Whereg maps pairs of real values Cyry ignores thg da_nger of_overflttlng throughpathat
to real values, e.g.g(a,b) = a + b. Here r..,({) denotes !ust stores .the _entlre h|story. W|.thout compactly reprqggnt
traditionalexternalreward provided by the environment, suchS regularities, if any. The principle of Minimum Desciig
as negative reward in response to bumping against a W&ﬁ%ngth (MD_L) [37], [115], [116], [1,10,]' [62_]’ [45]'_ hoyvever
or positive reward in response to reaching some teach@S0 takes into account the description sizeppiviewing p
given goal state. The formal theory of creativity, however, & & compressor program of the datact). This programp
especially interested i, (¢), the intrinsic reward, which is Should be able to deal with any prefix of the growing history,

provided whenever the model's quality improves—fnmely COMPUting an output starting with(< ) for any time ¢
creativeagentsr...(t) = 0 for all valid ¢: (1 <t < T). (A program that wants to halt aftersteps can

. o easily be fixed / augmented by the trivial method that simply
The currentintrinsic reward orcreativity reward or o S
e ; stores any raw additional data coming in after the halt.)
curiosityreward oraesthetic rewarar fun r;,,; (¢) of

the action selector is the curresirpriseor novelty . Ct;l] (p, h(ﬁg)) dfeg_(:te@s(;:ocrjntpresslq? pberIﬁrtr;:ance dmtg d
measured by thémprovementof the world model ): the number of bits needed to specify bo € predictoran

p at timet. the deviations of the sensory history from its predictions,

L . the sense of loss-free compression. The sméllethe more
Formally, the intrinsic rewqrd In response to the r.nOdellsegularity and lawfulness in the observations so far.
progress (QUe to some appllcatlon—dependent model IMProveLoy example, suppogeuses a small predictor that correctly
ment algorithm) between timesand? + 1 is predicts many:(7) for 1 < 7 < t. This can be used to encode
Tint(t+1) = f[C(p(t), (<t +1)),C(p(t +1),h(<t+1))], =(< t) compactly: Given the predictor, only the wrongly

(2) predictede(7) plus information about the corresponding time
where f maps pairs of real values to real values. Variowstepsr are necessary to reconstruct input histo( ¢), e.g.,
alternative progress measures are possible; most obviou$7B]. Similarly, a predictor that learns a probability dikttion
f(a,b) = a—b. This corresponds to a discrete time version afn the possible next events, given previous events, can be
maximizing the first derivative of the model’s qualityote that used to efficiently encode observations with high (respelsti
both the old and the new model have to be tested on the sdowe) predicted probability by few (respectively many) bits
data, namely, the history so fa&Bo progress between timeés (Section III-C; [31], [101]), thus achieving a compressed
and¢+1 is defined based on two models/of< ¢+ 1), where history representation.
the old one is trained only oh(< ¢) and the new one also Alternatively,p could also make use of a 3D world model
gets to sedi(t < ¢+ 1). This is like p(¢) predicting data of or simulation. The corresponding MDL-based quality measur
time ¢ + 1, then observing it, then learning something, the@'sp(p, h(< t)) is the number of bits needed to specify all
becoming a measurably better mogét + 1). polygons and surface textures in the 3D simulation, plus the
The above description of the agent's motivation concepumber of bits needed to encode deviationsh¢f t) from
tually separates the goal (finding or creating data that cttre predictions of the simulation. Improving the 3D model by
be modeled better or faster than before) from the meansawfding or removing polygons may reduce the total number of
achieving the goal. Let the controller’'s RL mechanism figuraits required.
out how to translate such rewards into action sequences thathe ultimate limit forC;(p, h(<t)) would be K*(h(<t)),
allow the given world model improvement algorithm to finda variant of the Kolmogorov complexity di(< t), namely,
and exploit previously unknown types of regularities. Ithe the length of the shortest program (for the given hardware)
task of the RL algorithm to trade off long-term vs short-terrthat computes an output starting with(< ¢) [110], [37],
intrinsic rewards of this kind, taking into account all cost[45], [80]. Here there is no need not worry about the fact
of action sequences [71], [70], [111], [79], [85], [92], [97 that K*(h(< t)) in general cannot be computed exactly,
[96], [94], [99]. The universal RL methods of Section II-G a®nly approximated from above (indeed, for most practical
well as RNN-based RL (Section IlI-A) and SSA-based Rbredictors the approximation will be crude). This just nean
(Section 11I-D) can in principle learn useful internal stat that some patterns will be hard to detect by the limited
containing memories of relevant previous events; less golve predictor of choice, that is, the reward maximizer will get
RL methods (Sections 1lI-B, IlI-C) cannot. discouraged from spending too much effort on creating those
patterns.

B. How to Measure Model Quality Under Time Constraints Cj(p, h(<t)) does not take into account the timép, h(<

In theory C(p, h(< t)) should take the entire history of!)) SPentbyp on computingi(<1). A runtime-dependent per-
actions and perceptions into account [85], like the folluyyi formance measure inspired by concepts of optimal universal
performance measur€, . : search [43], [81], [82], [85], [96], [99] is

Cir (p, h(<1)) = Ci(p, h(<1)) +1og 7(p, h(<t)).  (4)

t
Cory(p, h(< 1)) = red(p, (7)) —z(7) || 3
(B (< 1) ;1 I predip, =(r)) == I* () Here compression by one bit is worth as much as runtime



reduction by a factor o%. From an asymptotic optimality- identify shared regularities among different already taxis
oriented point of view this is one of the best ways of tradinmpternal data structures, to shrink the storage space deede
off storage and computation time [43], [81], [82]. for the whole.Consciousnesmay be viewed as a by-product
In practical applications (Section Ill) the predictor / comof this [97], [96], since there is one thing that is involved
pressor of the continually growing data typically will hate in all actions and sensory inputs of the agent, namely, the
calculate its output online, that is, it will be able to usdyon agent itself. To efficiently encode the entire data histdry,
a constant number of computational instructions per secowdl profit from creating some sort of internaymbolor code
to predict / compress new data. The goal of the possiblg. g., a neural activity pattern) representing itself. Vidheer
much slower learning algorithm must then be to improve thbis representation is actively used, say, by activating th
compressor such that it keeps operating online within thoserresponding neurons through new incoming sensory inputs
time limits, while compressing / predicting better thandsef or otherwise, the agent could be calksif-awareor conscious
The costs of computing’,.,(p, h(< ¢)) and Ci(p, h(< t)) [97], [96].
and similar performance measures are lineat, iassuming True, any loss-free compression method will require space
consumes equal amounts of computation time for each singkat grows without bound over time. But this et a funda-
prediction. Therefore online evaluations of learning pesg mental practical obstacle. Soon storage for 100 years d¢f hig
on the full history so far generally cannot take place agsolution video of will be cheap. If you can store the data, d
frequently as the continually ongoing online predictions.  not throw it away! The data ikoly as it is the only basis of
At least some of the learning and its progress evaluatioall that can be known about the world [97], [96]. Attempts at
may take place during occasional “sleep” phases [85], [96]redicting / compressing the raw data (by finding regukssifi
But practical implementations so far have looked only atgpamabstractions) should take place is@paratetypically smaller
of the history for efficiency reasons: The systems desciibedpart of the storage.
Sections llI, III-A, 1I-B, 1I-C, IlI-D [71], [70], [111], [79] Even humans may store much of the incoming sensory
used online settings (one prediction per time step, andtaohs data. A human lifetime rarely lasts much longer tf8ar 10°
computational effort per prediction), non-universal dil@p seconds. The human brain has rought/® neurons, each
compressors or predictors, and approximative evaluatidnswith 10* synapses on average. Assuming that only half of the
learning progress, each consuming only constant time tesfiirain’s capacity is used for storing raw data, and that each
the continual growth of the history. synapse can store at most 6 bits, there is still enough dgtpaci
to encode the lifelong sensory input stream with a rate of
at least10° bits/s, comparable to the demands of a movie
with reasonable resolution, but possibly at a much highter, ra
Any set of raw data, such as the history of some olassuming that human compressors are much smarter than those
server's previous actions & sensations & rewards includingf cameras.
suspected noise, exhibits a pattern or regularity if theiste
an algorithm that is significantly shorter than the raw data i i i
but is able to encode it without loss of information [37]°- ©OPtimal Predictors vs Optimal Compressors
[109], [110], [45]. Random noise is irregular and arbitrary For the theoretically inclined: There is a deep connec-
and incompressible. But random-dot stereograms (e.gugéesi tion between optimal prediction and optimal compression.
foreground square against a more distant background) &ensider Solomonoff's theoretically optimal, universahyw
compressible since parts of the data are just copied frarh predicting the future [109], [110], [45], [32]. Given an
others. Videos are regular as most single frames are vedyservation sequencg< t), the Bayes formula is used to
similar to the previous one. By encoding only the deviatjonpredict the probability of the next possiblg¢ + 1). The
movie compression algorithms can save lots of storage spamely assumption is that there exists a computer program that
Complex-looking fractal images are regular, as they ugualtan take anyg(< t) as an input and compute i@ priori
look a lot like their details, being computable by very shogrobability according to theu prior. (This assumption is
programs that re-use the same code over and over agaxtremely general, essentially including all environnseoie
for different image parts. The entire universe is regulag artan write scientific papers about, as mentioned above.) In
apparently rather benign [74], [78], [88], [90]: every ptwt general this program is unknown, hence a mixture prior is
behaves the same way; gravity is the same on Jupiter arsd instead to predict:
Mars, mountains usually don’'t move overnight but tend to
remain where they are, etc. E(a(<1) =D wipi(g(<t)), (5)
Many data analysis techniques are natural by-products of g
loss-free compression. For example, data set compressiom iweighted sum ofill distributionsy; € M, i = 1,2,...,
possible if the data can be separated into clusters of numerwhere the sum of the constant positive weights satisfies
close neighbors and feautliers Abstractionis another typical > w; < 1. This is indeed the best one can possibly do,
by-product. For example, if the predictor / compressor usas a very general sense [110], [32]. The drawback of the
a neural net, the latter will create feature hierarchieghéi scheme is its incomputability, sinca1 contains infinitely
layer units typically corresponding to more abstract fezgy many distributions. One may increase the theoretical power
fine-grained where necessary. Any good compressor wilf the scheme by augmentingyt by certain non-enumerable

C. Feasibility of Loss-Free Compression, with Examples



but limit-computable distributions [80], or restrict it cu therefore improved compression performance [101]).
that it becomes computable, e.g., by assuming the world Although this may take many time steps (and could be
is computed by some unknown but deterministic computer partially performed offline during “sleep” [85], [96]),
program sampled from the Speed Prior [81] which assigns  p.., may not be optimal, due to limitations of the
low probability to environments that are hard to compute by  learning algorithm, e.g., local maxima. (To inform the

any method. controller about beginnings of compressor evaluation
Remarkably, under very general conditions both universal processes etc., augment its input by unique represen-

inductive inference [109], [110], [45] and the compression tations of such events.)

oriented MDL approach [37], [115], [116], [62], [45] conger  4) Evaluatep,c,, 0N hyq, to obtain C(prew, hotd). This

to the correct predictions in the limit [56]. It should be may take many time steps.

mentioned, however, that the former converges faster. 5) Get current time step and generate creativity reward
As far as discoveries of regularity and compressibility are

concerned, it does not make an essential difference whether Tint(T) = f[C(Potd; hotd), C(Prew, hota)],  (6)

we force the system to predict the entire history of inputd an
actions, or just parts thereof, or whether we allow it to ®ocu
on internal computable abstractions thereof, like theesyst
discussed in Section IlI-D. Partial compressibility ofessted ~ This asynchronuous scheme [85], [92], [96] may cause long
data covered by the system’s limited focus of attention iespl temporal delays between controller actions and correspgnd
compressibility of the whole, even if most of it is randontreativity rewards, and may impose a heavy burden on the
noise. controller's RL algorithm whose task is to assign credit &stp
actions. Nevertheless, Section II-G will discuss RL altdoris

dor this purpose which are theoretically optimal in various
senses [85], [92], [97], [96].

e.g., f(a,b) = a — b. (Here ther replaces the + 1 of
eq. 2.)

E. Discrete Asynchronous Framework for Maximizing Cr
ativity Reward

Let p(¢) denote the agent’s current compressor program at time

t, s(t) its current controller, an®O: F. Continuous Time Formulation
Controller: At any timet (1 <t < T) do:

1) Let s(t) use (parts of) historya(< t) to select and
executey(t + 1).

2) Observer(t + 1).

3) Check if there is non-zero creativity rewarg,; (¢t + 1)
provided by the asynchronously running improveme
algorithm of the compressor / predictor (see below).
not, setr;,,:(t + 1) = 0.

4) Let the controller’'s RL algorithm usi(<t¢+ 1) includ-
ing r,¢(t + 1) (and possibly also the latest availablé® dB(D,0(t))
compressed version of the observed data—see below) to I(D,0(t)) ~ ———==,
obtain a new controlles(t + 1), in line with objective ot
(1). Note that some actions may actually trigger learnirtfye first derivativeof subjective simplicity: a®) improves its
algorithms that compute changes of the compressor atwmpression algorithm, formerly apparently random datéspa
the controller’s policy, such as in Section IlI-D [79].become subjectively more regular and beautiful, requiring
That is, the computational cost of learning can be takdewer and fewer bits for their encoding.
into account by the reward optimizer, and the decision Note that there are at least two ways of having fun: execute
when and what to learn can be learnt as well [79]. a learning algorithm that improves the compression of the

Compressor / Predictor: Set p,..., equal to the initial data already known data (in online settings: without increasing
compressor / predictor. Starting at time 1, repeat forewit u computational needs of the compressor / predictor), orgrec

In continuous time [99], letO(¢) denote the state of
subjective observet) at time t. The subjective simplicity
or compressibility or regularity or beaut(D,O(t)) of a
sequence of observations and/or actidbsis the negative
r|i1tumber of bits required to encod®, given O(t)'s current
”mited prior knowledge and limited compression / predinoti
method. The observer-dependent and time-dependent subjec
tive Interestingnessr Surpriseor Aesthetic Valud (D, O(t))

()

interrupted by death at timé: actions that generate more data, then learn to compress /
1) Setpoid = Pnew; get current time step and seth,y = understand the new data better.
h(<Lt).

2) Evaluatep,;q on hq, to obtain performance measur
C(potd, hota)- This may take many time steps.

3) Let some (possibly application-dependent) compressorThe previous sections discussed how to measure compressor
improvement algorithm (such as a learning algorithm far predictor improvements and how to translate them into
an adaptive neural network predictor, possibly triggeradtrinsic reward signals, but did not say much about the RL
by a controller action) usé,;; to obtain a hopefully method used to maximize expected future reward. The chosen
better compressop,..,, (such as a neural net with thepredictor / compressor class typically will have certaiimeo
same size and the same constant computational effputational limitations. In the absence of any external relwa
per prediction but with improved predictive power anebne may defineoptimal pure curiosity behaviorelative to

eG. Optimal Creativity, Given the Predictor’s Limitations



these limitations: At discrete time steghis behavior would solver, e.g., some typically sub-optimal RL method [35]. It

select the action that maximizes also contains an asymptotically optimal initial proof sdrar,
T typically based on an online variant of Levingniversal
u(t) = B, Z ra(7) | R(<H)] . (8) Search[43],_wh|ch is used to run gnd Fep’roof. techniques

St Proof techniques are programs written in a universal laggua

implemented on the Gddel machine withih They are in
Since the true, world-governing probability distributipnis principle able to compute proofs concerning the system's ow
unknown, the resulting task of the controller's RL algamith future performance, based on an axiomatic systeencoded
may be a formidable one. As the system is revisiting previh S. A describes the formaltility function, in the present
ously incompressible parts of the environment, some ofethogase eq. (8), the hardware properties, axioms of arithmetic
will tend to become more subjectively compressible, andevhignd probability theory and data manipulation etc, &nitself,
the corresponding curiosity rewards may first go up, they wilhich is possible without introducing circularity [98].dpired
eventually decrease once the new regularity has been leagyt Kurt Godel's celebrated self-referential formulas 319
A good RL algorithm must somehow detect and tipeedict the Godel machine rewrites any part of its own code (inclgdi
this decrease, and act accordingly. Traditional RL albat& the proof searcher) through a self-generated executable pr
[35], however, do not provide any theoretical guarantee gfam as soon as itsniversal Searcivariant has found a proof
optimality for such situations. that the rewrite isisefulaccording to objective (8). According

Is there a best possible, universal RL algorithm that comgsthe Global Optimality Theorem [83], [86], [84], [98], dua
as close as any other computable one to maximizing objectif-rewrite is globally optimal—no local maxima possible
(8)? Indeed, there is. Its drawback, however, is that it is ngince the self-referential code first had to prove that itas n
computable in finite time. Nevertheless, it serves as aeat&r useful to continue the search for alternative self-rewsrité
point for defining what is achievable at best, that is, whatipere is no provably useful optimal way of rewritin§ at
optimal creativity. all, then humans will not find one either. But if there is one,

Readers who are not interested in the corresponding the¢gn S itself can find and exploit it. Unlike the previoumsn
may skip the remainder of this section and jump immediatedelf-referential methods based on hardwired proof seasche
to the practical implementations of Section Ill. For theest) [32], Godel machines not only boast an optinmtler of
the next paragraphs will outline how the universal appreachcomplexity but can optimally reduce (through self-changes
work. Optimal inductive inference as defined in Section Il-iny slowdowns hidden by thé()-notation, provided the
can be extended by formally including the effects of exedutetility of such speed-ups is provable [87], [91], [89].
actions, to define an optimal action selector maximizingr@it  Limitations of the “universal” approachesThe methods
expected reward. At any timg Hutter’s theoretically optimal above are optimal in various ways, some of them not only
(yet uncomputable) RL algorithm &1 [32] uses such an computable but even optimally time-efficient in the asyntipto
extended version of Solomonoff's scheme to select thokeit. Nevertheless, they leave open an essential remginin
action sequences that promise maximal future reward up geactical question: If the agent can execute only a fixed rermb
some horizonT" (e.g., twice the lifetime so far), given theof computational instructions per unit time interval (sag,
current dateh(<t). That is, in cyclef + 1, AIxI selects as its trillion elementary operations per second), what is thet bes
next action the first action of an action sequence maximizingay of using them to get as close as possible to the thearetica
¢-predicted reward up to the given horizon, appropriateljmits of universal Als? Especially when external rewards a
generalizing eq. (5). Xl uses observations optimally [32]:very rare, as is the case in many realistic environments? As
the Bayes-optimal policy* based on the mixturé is self- |ong as there is no good answer this question, one has td resor
optimizing in the sense that its average utility value coges to approximations and heuristics when it comes to practical
asymptotically for allx € M to the optimal value achieved applications. The next section reviews what has been agthiev
by the Bayes-optimal policy* which knowsy in advance. so far along these lines, discussing our implementations of
The necessary and sufficient condition is thdtadmits self- |M-based agents from the 1990s; quite a few aspects of these
optimizing policies. The policy* is also Pareto-optimal in concrete systems are still of relevance today.
the sense that there is no other policy yielding higher oméqu
value inall environments, € M and a strictly higher value
in at least one [32].

AIXI as above needs unlimited computation time. Its com-
putable variant Axi(t,l) [32] has asymptotically optimal run- The above mathematically rigorous framework for optimal
time but may suffer from a huge constant slowdown. To taleuriosity and creativity (2006-) was establishadter first
the consumed computation time into account in a generapproximations thereof were implemented (1991, 1995, 1997
optimal way, one may use the recent Godel machines [82))02). Sections llI-A, 11I-B, IlI-C, 11I-D will discuss adan-
[86], [84], [98] instead. They represent the first class dhges and limitations of online learning systems describhed
mathematically rigorous, fully self-referential, setfyproving, the original publications on artificial intrinsic motivati [71],
general, optimally efficient problem solvers, and are aglie [70], [111], [77] which already can be viewed as example
to the problem embodied by objective (8). The initial softeva implementations of a compression progress drive or priedict
S of such a Godel machine contains an initial problemrogress drive that encourages the discovery or creation of

IIl. PREVIOUSIMPLEMENTATIONS OFINTRINSICALLY
MOTIVATED AGENTS. PROS AND CONS



surprising patterns. Some elements of this earlier work &reproportion to the currenthangeor first derivativeof the
believed to remain essential for creating systems that atfe breliability of the adaptive predictor. The “curiosity gdalf the

theoretically sound angractical. control system (it might have additional “pre-wired” extaf
goals) is to maximize the expectation of the cumulative sum
A. Intrinsic Reward for Prediction Error (1990) of future positive or negative changes in prediction religb

Early work [67], [71] describes a predictor based on an The second implementation replaces the confidence network

. . a network H which at every time step is trained to
adaptive world model implemented as a recurrent neural . )
. - . predict the currentthange of the model network’s output
network (RNN) (in principle a rather powerful computatibna , . ; .
. , . . due to the model’s learning algorithm. That &, will learn
device, even by today’s machine learning standards), gredi . ) L ,
. . ) . : .10 approximate the expectditst derivative of the model's
ing sensory inputs including reward signals from the entire """ . . . i
i . ; . rediction error, given the inputs. Thabsolute valueof H's
previous history of actions and inputs. A second RNN (t Sutput is taken as the intrinsic reward, thus rewardingiiear
controller) uses the world model and gradient descent ??opress '
search for a control policy or program maximizing the sum &o9 |

. While the neural predictor of the implementations is compu-
future expected rewards according to the model. Some of th

o S : ! ationally less powerful than the recurrent one of Sectlbl
rewards are intrinsic curiosity rewards, which are projpodil

to the predictor’s errors. So the same mechanism that is uéé]d]’ there is a nov_elty,,ne_\mely, an explicit (neural) "’_‘d‘&pt
; L . - model of the predictor's improvements, measured in terms
for normal goal-directed learning is used for implementin

creativity and curiosity and boredom—there is no need forga{ mean squared error (MSE). This model essentially leams

separate system aiming at improving the world model. to predict the predictor’s changes (the prediction deirea).

This first description of a general, curious, world-exgri For example, although noise is unpredictable and leads to

RL agent implicitly and optimistically assumes that the—preWIIdIy varying target signals for the predictor, in the long

. - ’ T fun these signals do not change the adaptive predictor’'s
dictor will indeed improve by motivating the controller tm g ; i ]
;o L. parameters much, and the predictor of predictor changes is
to places where the prediction error is high. One drawback o

- . . le to learn this. A variant of the standard RL algorithm Q-
the prediction error-based approach is that it encourdgyes F(laarnin [114] is fed with curiosity reward signals progonal
controller to focus its search on those parts of the envigmtm 9 Y 9 broj

where there will always be high prediction errors due ttcg) the expected long-term predictor changes; thus the agent

noise or randomness, or due to computational limitations |nftr|n5|cally motivated to make novel patterns within thieeg

the predictor. This mayreventlearning progress instead Ofﬁ)mltatlons. In fact, one may say that the system tries toimax

promoting it, and motivates the next subsection, WhosecbaEIZe an approximation of the (discounted) sum of the expecte

ideas could be combined with the RL method of [67], [71 |rsthr|yat|ves of the d_atas subjective pred|ctab|lity,|s also
. aximizing an approximation of the (discounted) sum of the
but this has not been done yet.

Another potential drawback is the nature of the particuIaerXpe(.:te<j changes of the data’s subjective compressititiey
rprise or novelty).

S
RNN-based RL method. Although the latter has the pOtentlatllBoth variants avoid the theoretically desirable but imprac

to learn internal memories of previous relevant sensorytip tical regular evaluations of the predictor on the entirddnis

and thus is not limited to Markovian interfaces between agen . . i )
i . : .2 "s0 far, as discussed in Section II-B. Instead they moniter th
and environment [72], like all gradient-based methods iy ma

. . recent effects of learning on the learning mechanism (aateur
suffer from local minima, as well as from potential problewnfis . . . .
) ) . . network in this case). Experiments illustrate the advagdag
online learning, since gradients for the recurrent RL culler . : : . i
. . . of this type of directed, curious exploration over traditb
are computed with the help of the dynamically changin

. . " Pandom exploration.
online learning recurrent predictive world model. Apaxrfr One Rmeethod-specific drawback is given by the limi-
this limitation, the RNN of back then were less powerful thapations of standard Markovian RL [72], which assumes the
today's LSTM R.NN [28], [1.00]’ Wh_|ch_y|elded state of thecurrent input tells the agent everything it needs to know, an
art performance in challenging applications such as cdedec

" o . does not work well in realistic scenarios where it has torlear
handwriting recognition [24], and should be used instead. . . . . )
to memorize previous relevant inputs to select optimabaeti

o For general robots scenarios more powerful RL methods are
B. Intrinsic Reward for World Model Improvements (1991) pecessary, such as those mentioned in Section I1I-A and othe
Follow-up work [69], [70] points out that one should noparts of the present paper.
focus on the errors of the predictor, but on its improvements Any RL algorithm has to deal with the fact that intrinsic
The basic principle can be formulated as follovksarn a rewards vanish where the predictor becomes perfect. In the
mapping from actions (or action sequences) to the expectmple toy world [69], [70] this is not a problem, since the
tion of future performance improvement of the world modedgent continually updates its Q-values based on recent expe
Encourage action sequences where this expectation is higience. But since the learning rate is chosen heuristidaléy
This is essentially the central principle of Section II-A. usual in RL applications), this approach lacks the thecaéti
Two implementations were described: The first models thestification of the general framework of Section II.
reliability of the predictions of the adaptive predictor by  For probabilistic worlds there are prediction error measur
separate, so-called confidence network. At any given timat are more principled than MSE. This motivates research
reinforcement for the model-building control system isateel described next.



C. Intrinsic Reward Depending on the Relative Entropy béaken into account. This insight drove the research distliss
tween Agent’s Prior and Posterior (1995) next.

Follow-up work (1995) describes an information theory- 10 @ddress the computational costs of learning, and the
oriented variant of the approach in non-deterministic demrl COStS Of measuring learning progress, computationallygpow

[111]. Here the curiosity reward is proportional to the preyl controllers and predictors [77], [79] were implementesi
dictor's surprise / information gain [15], measured as tH¥O Very general, co-evolving, symmetric, opposing mosule
Kullback-Leibler distance [39] between the learning pré:_alled theright brain and theleft brain, both able to construct
dictor's subjective probability distributions on possibhext Self-modifying probabilistic programs written in a unisef
events before and after new observations - the relativeptr Programming language (1997-2002). An internal storage for
between its prior and posterior, essentially another nreasffmpPorary computational results of the programs is vieneed a
of learning progress. Again experiments show the advastag@'t Of the changing environment. Each module can suggest
of this type of curious exploration over conventional ramdo €XPeriments in the form of probabilistic algorithms to be
exploration. executed, and make predictions about their effebtsting
Since this implementation also uses a traditional RL methdrinsic reward %n thglr outcomes. The opposglg molgule
[114] instead of a more general one, the discussion of Rpay accept such a bet in a zero-sum game by making a

method-specific drawbacks in previous subsections remaff'rary predlct|pn, or reject it. In case Of acceptance, th
valid here as well. winner is determined by executing the algorithmic expenime

%nd checking its outcome; the intrinsic reward eventuadiisg

Note the connection to Section II: the concepts of Huffm torred f i ised | o th trmed wi
coding [31] and relative entropy between prior and posteri ansterred from the surprised foser fo the contirmed winner
th modules try to maximize their intrinsic reward using a

immediately translate into a measure of learning progre :
reflecting the number of saved bits—a measure of improv %[’Iher general RL algpnthm (the so-called succefss-sﬂg_ ya
rithm SSA [103]) designed for complex stochastic policies—

data compression. ) . :
P . . .. alternative RL algorithms could be plugged in as well. Thus
Note also, however, a drawback of this naive probabilist|C . . L
LT ; oth modules are motivated to discowery novelalgorithmic
approach to data compression: it is unable to discover mare

general types oélgorithmic compressibility [45] as discussedpattems’ V\{her_e the dynamically changing subjective basel
in Section II. For example, the decimal expansiorrdboks for novelty is given by what the opponent already knows about

tt}e (external or internal) world’s repetitive patternsnci

;Tngﬁtrr?maggn:n3§?p§f§$lee?Lgn'Sgrz:itéhseéeufnse\;efr}d/i Si?s%e execution of any computational or physical action costs
g puting Y y N 9 something (as it will reduce the cumulative reward per time

will occur in s expansion as f_requently as expectedrif ratio), both modules are motivated to focus on those parts of
were truly random, that is, no simple statistical learnelt wi . :
) . - the dynamic world that currently make learning progreasy
outperform random guessing at predicting the next digitfieo A . e - .
to minimize the costs of identifying promising experiments

limited time w!ndow of previous digits. More genegaogram and executing them. The system learns a partly hierarchical
search techniques are necessary to extract the underlyi

n .
o . . . ) cture of more and more complex skills or programs
algorithmic regularity. This motivates the universal apgmh : P prog

. . : necessary to solve the growing sequence of self-generated
discussed in Section Il, but also the research on a more gen

oo . . ?asks, reusing previously acquired simpler skills wheis it
practical implementation described next. beneficial. Experimental studies [79] exhibit several sedial
stages of emergent developmental sequences, with anduwitho

D. Learning Programs & Skills Through Zero Sum Intrinsi€Xternal reward.
Reward Games (1997-2002) Many ingredients of this system may be just what one

] ) o needs to builgractical yet soundurious and creative systems
The universal variants of the principle of novel patterf,,i never stop expanding their knowledge about what can
creation of_ Section _II focused on theoretically optimal ®aype qone in a given world, although future re-implementation
of measuring learning progress & fun, as well as matiinoyig probably use alternative reward optimizers that are

ematically optimal ways of selecting action sequences Qore general and powerful than SSA [103], such as variants
experiments within the framework of artificial creativit§d], ¢ the Optimal Ordered Problem Solver [82].
[92], [97], [96]. These variants take the entire lifelongtbry

of actions and observations into account, and make minimal

assumptions about the nature of the environment, such as: th

(unknown) probabilities of possible event histories areeast E. Improving Real Reward Intake (1991-)

enumerable. The resulting systems exhibit “mathemagicall

optimal curiosity and creativity” and provide a yardstick The references above demonstrated in several experiments
against which all less universal intrinsically motivatggtems that the presence of intrinsic reward or curiosity reward ca
can be measured. However, most of them ignore importaaftually speed up the collection ekternalreward.

issues of time constraints in online settings. For examiple, However, the previous papers also pointed out that it is
practical applications one cannot frequently measureigiad always possible to design environments where the bias tsvar
improvements by testing predictor performance on the entiregularities introduced through artificial curiosity caradl to
history so far. The costs of learning and testing have to berse performance—curiosity can indeed kill the cat.



IV. RELATION TO WORK BY OTHERS C. Relation to Hand-Crafted Interestingness

A. Beyond Traditional Information Theory Lenat's discovery system EURISKO [41], [42] has a pre-
rogrammed interestingness measure which was observed to
differ from the notion of surprise in traditional informaiti ecome more an more inappropriate ("stagnation” problem) a
theory? Consider two extreme examples of uninterestin URISKO _created new concepts _from old ones with the help
unsurprising, boring data: A vision-based agent that adwa .human Intervention. Unguperwsed systems l')a.sed-on cre-
stays in the dark will experience an extremely compres,sibétIVIty theory, hpwever, continually redefm-e wha.t-s IRSAing ,
soon totally predictable history of unchanging visual itspu ased on what's currently easy to learn, in addition to vghat

In front of a screen full of white noise conveying a lot o]already known.

information and “novelty” and “surprise” in the traditiona

sense of Boltzmann and Shannon [106], however, it will expB- Related Implementations Since 2005

rience highly unpredictable and fundamentally incomphéss | 2005, Baldi & Itti demonstrated experimentally that
data. As pointed out since the early 1990s, according to thgr method of 1995 (Section IlI-C, [111]) explains certain
theory of creativity, in both cases the data is sotprisingbut  patterns of human visual attention better than certainiposv
boring [79], [92] as it does not allow for further compressiopproaches [34]. Their web site http:/ilab.usc.edufssep
progress—there is no novel pattern. Therefore the tramitio (yetrieved on 17 March 2010) points out that the approaches
notion of surprise is rejected. Neither the arbitrary nerfilly  of Section I111-C [111] and [34] are formally identical.
predictable istruly novel or surprising. Only data with still Klyubin et als seemingly related approach to intrinsic
unknownalgorithmic regularities are [71], [70], [111], [79], motivation [36] of 2005 tries to maximizempowermenby
[85], [92], [97], [96], for example, & previously unknownrg - maximizing the information an agent could potentially &of’
containing a subjectively novel harmonic pattern. Thattsyw jntg its future sensory inputs via a sequence of actionsikenl
one really has to measure thegress of the learning predictor gy 1995 method (Section 11I-C, [111]), this approach does
to compute the degree of surprise. (Compare Section IV-E2 {5t maximize informatiorgain; in fact, the authors assume a

How does the notion of surprise in the theory of creativitg

a related discussion on what's aesthetically pleasing.) good world model is already given, or at least learnt before
empowerments measured (D. Polani, personal communi-
B. Beyond Traditional Active Learning cation, 2010). For example, using 1 step look-ahead in a

eterministic and well-modeled world, their agent will fare
tates where the execution of alternative actions will meaks
€f difference in the immediate sensory inputs, accordindp¢o

How does the theory generalize the traditional field
active learning, e.g., [15]? To optimize a function may requir

expensivg data eva_ll_Jatic_ms. Original active leamingristéd already reliable world model. Generally speaking, howeier
to supervised classification tasks, e. g., [15], [33], [4705], might prefer actions leading to high-entropy, random isput

[55], [12], [2], asking which data points to evaluate next, ar others—compare Section I1I-A

to .maximize information gain, typically (but not_neceslse)ri. In 2005, Singhet al [107] also used intrinsic rewards

using 1 step look-ahead, assuming aII_ data point evfa,lwt'oﬁ}oportional to prediction errors as in Section IlI-A [71],

are equally costly. The objective (to improve Class'f'cm'oemploying a different type of reward maximizer based on

_error) is given (_axternally;_there is no explicit intrinsieward the option framework which can be used to specify subgoals.
in the sense dlscussed_ln the present paper. The more Q'pointed out earlier, it is useful to make the conceptual
eral framework of creativity theory also takes forma"y(]mdistinction between the objective and the means of reaching
account: the objective: The latter is shared by the approaches of][107
1) Reinforcement learning agents embedded in an envirgfhd of Section I1I-A, the reward maximizer is different.
ment where there may be arbitrary delays between ex-|n related work, Schembrét al address the problem of
perimental actions and corresponding information gaingarning to compose skills, assuming different skills arit
e.g., [111], [70Q], by different RL modules. They speed up skill learning by
2) The highly environment-dependent costs of obtainingwarding a top level, module-selecting RL agent in prdpart
or creating not just individual data points but datg the TD error of the selected module [63]—compare Section
sequencesf a priori unknown size, I1-B.
3) Arbitrary algorithmic or statistical dependencies in se Other researchers in the nascent field of developmental
quences of actions & sensory inputs, e.g., [79], [85], robotics [9], [57], [38], [113], [64], [20], [51], [52], [2K
4) The computational cost of learning new skills, e.g., [79j26] and intrinsic reward also took up the basic idea, for
While others recently have started to study active RL @&xample, Oudeyeet al [53]. They call their method “Intel-
well, e. g., Brafman and Tennenholtz (R-MAX Algorithmligent Adaptive Curiosity” (IAC), reminiscent of our origal
[10]), Li et al (KWIK-framework [44]), Strehlet al [112], 1991 paper on “Adaptive Curiosity” (AC) [69] (Section 111}B
our more general systems measure and maxiralgerith- Like AC, IAC motivates the agent to go where it can expect
mic [110], [37], [45], [80] novelty (learnable but previouslylearning progress with a high derivative. Oudegéral write
unknown compressibility or predictability) of self-geatrd that IAC is “intelligent” because, itkeeps, as a side effect,
spatio-temporal patterns in the history of data and ac{i@bf the robot away both from situations which are too predictabl
[92], [97], [96]. and from situations which are too unpredictabl&éhat’s what
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the original AC does (Section IlI-B). However, IAC is lessspecial case of compression, e. g., [101], and free enew@y-is
general than AC in the following sense: IAC is restricted tother approximative measure of algorithmic compressjbili
one-step look-ahead, and does not allow for delayed iftringlgorithmic information [45]; the latter concept is morengeal
rewards. That is, even a small short-term intrinsic rewatough. As Fristoret alwrite: “Under simplifying assumptions
will be more attractive to IAC than many huge long-ternfree energy is just the amount of prediction errolike in the
rewards. Nonetheless, an interesting aspect of IAC’s greetB91 paper [71] discussed in Section IlI-A. Under slighégd
reward maximizer, is that it splits the state space intoamg)i simplifying assumptions it is the Kullback-Leibler divemyce
reminiscent of algorithms by Doya [14] and Moore [49]; thibetween probabilistic world model and probabilistic world
might make learning more robust in certain situations. like in the 1995 paper [111] (which looks at the learning nlode
Oudeyeret afs Section Ill A Group 1 on “Error Maxi- before and after new observations; see Section 1lI-C). Desp
mization” [53] covers some of the topics discussed in the firfhese similarities, however, what Fristeh al do is to select
paper on this subject: [71](our Section I11I-A). Their Sectill  actions thaminimizefree energy. In other words, their agents
B Group 2 on “Progress Maximization” addresses issues dige to visit highly predictable states. As the authors eurit
cussed in the first papers on this subject: [69], [70], [1blir( “Perception tries to suppress prediction error by adjusfin
Sections IlI-B and III-C). Referring to [70] in their Sectio expectations to furnish better predictions of signals,levhic-
Il C Group 3 on “Similarity-Based Progress Maximization,tion tries to fulfil these predictions by changing those aign
Oudeyeret al [53] write: “Schmidhuber [...] provided initial [...] In summary, under active inference, perception tries
implementations of artificial curiosity, but [was] not caraed explain away prediction errors by changing predictions,jleh
with the emergent development sequence and with the ircreastion tries to explain them away by changing the signals
of the complexity of their machines [...] They were onlgeing predicted”Hence, although Fristomt afs approach
concerned in how far artificial curiosity can speed up thehares buzzwords with the methods of Sections IlI-A, IlI-B,
acquisition of knowledge.However, emergent developmentll-C, (active data selection, reinforcement learningatige
sequences with and without external rewards (and several eetropy, Kullback-Leibler divergence), they dwt describe
guential stages) were studied in follow-up papers (1990220 a system intrinsically motivated to learn new, previously
[77], [79] (Section 1lI-D) containing action frequency pdo unknown things; instead their agents really want to stadili
similar to those of Oudeyeet al (2007). These papers alsoand make everything predictable. Fristenal are well aware
address many other issues such as continuous states (witfippotential objectionstAt this point, most (astute) people
the limits of floating point precision), whose importance isay: but that means | should retire to a dark room and cover
emphasized by Oudeyet al, who also write:*Another limit my ears.” This pretty much sums up the expected criticism. In
of this work resides within the particular formula that isegs contrast, the theory of creativity has no problem whatspeve
to evaluate the learning progress associated with a cartdidawith dark rooms—the latter get boring as soon as they are
situation, which consists of making the difference betwben predictable; then there is no learning progress no mor¢, tha
error in the anticipation of this situation before it has lmeeis, the first derivative of predictability / compressibjliis
experienced and the error in the anticipation of exactly theero, that is, the intrinsic reward is zero, that is, the rewa
same situation after it has been experienced. On the one hanthximizing agent is motivated to leave the room to find
this can only work for a learning machine with a low learningpr make additional rewarding, non-random, learnable, hove
rate, as pointed out by the author, and will not work with, fopatterns.
example, one-shot learning of memory-based methods. On thRecent related work in the field of evolutionary computation
other hand, considering the state of the learning machisé juaims at increasing diversity within populations of indivals
before and just after one single experience can possibly pE], [21], [23]. This can be done by measuring the “novelty”
sensitive to stochastic fluctuationdiowever, the 1991 AC of their behaviors [21], [23] using compression distancH,[1
system of Section IlI-B is in fact precisely designed to de&lased on the idea that compressing the concatenation désimi
with stochastic fluctuations: in states where the next inpbghaviors is cheaper than compressing them separately.
is random and unpredictable, the learning predictor’setisrg
will fluctuate stochastically, and the system will noticésttas . , .
there is no measurable learning progress (just small nmrdicE' Previous, Less Formal Work in Aesthetics Theory and
changes that cancel each other). And the general 2006 sg/stgr?‘ryChOIOgy
[85] (Section II) do not have any problems of the criticized Two millennia ago, Cicero already called curiosity a “pas-
type as long as the predictor’s performance is always medsusion for learning.” In the recent millennium’s final centuayt
on the entire history so far. Oudeyatral [53] also write:"The  theorists and developmental psychologists extended iéws v
guestion of whether hierarchical structures can simplyf-selln its final decade, the concept eventually became suffigient
organize without being explicitly programmed remains gpenformal to permit the computer implementations discussed in
apparently being unaware of previous work on hierarchital RSection ll.
systems that can discover their own subgoals [60], [104],,[6 1) Developmental Psychologyn the 1950s Berlyne and
[118], [79], [1]. other psychologists revisited the idea of curiosity as the
Friston et al [19] (2010) also propose an approach whicmotivation for exploratory behavior [5], [6], emphasizitite
in many ways seems similar to ours, based on free eneigyportance of novelty [5] and nonhomeostatic drives [25].
minimization and predictive coding. Predictive coding is ®iaget [54] explained explorative learning behavior ofdrgin
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through his concepts of assimilation (new inputs are emégddnotivation, 1a Information theoretic and distributionadaels,
in old schemas—this may be viewed as a type of compressidty Predictive models, 1c Learning progress, 2 Competence-
and accommaodation (adapting an old schema to a new inpubased models of intrinsic motivation, 2a Maximizing incawnp
this may be viewed as a type of compression improvemengnce, 2b Maximizing competence, 3 Morphological models of
All those ideas were informal, without providing detailsche intrinsic motivation, 3a Synchronicity motivation, 3b Biigty
essary to permit the construction of artificially curiougats. and Variance motivation.

2) Aesthetics TheoryThe closely related field of aesthetics Closer inspection reveals that la is a special case of 1b
theory [7], [48], [4], [16], [50], [18] emerged even earlier(the probabilistic predictors/models of information theare
in the 1930s. Why are some objects, such as works of apecial types of predictors), and many instances of 1la (@sich
more interesting or aesthetically rewarding than other$fy Wmaximizing information gain) are simultaneously specadeas
are humans somehow intrinsically motivated to observe theof 1c (learning progress). So it does not seem to make sense
even when they seem totally unrelated to solving typicabproto have 1a 1b 1c on the same level. It should be mentioned,
lems such as hunger, and even when the action of observatiowever, that the authors originally intended to present at
requires a serious effort, such as spending hours to getldast 1c as a special case of 1b—misleading section labels
the museum? Some of the previous attempts at explainivgre erroneously inserted by the editors (P. Oudeyer, patso
aesthetic experience in the context of information the@ily [ communication, 2010).
[48], [4], [16], [50], [18] tried to quantify the intrinsicesthetic In their section on “Morphological models”, the authors
reward through the idea of dideal” ratio between expected seem to make again a conceptual distinction between gtatist
and unexpected information conveyed by some aesthetictobjeinformation-theoretic predictors and other predictofshe
(its “order” vs its “complexity”). For example, using certain earlier section “Knowledge-based models.” Statisticabwia
measures based on information theory [106], Bense [4] arguedge, however, predicts probability distributions on aes
for an ideal ratio ofl /e ~ 37%. Generally speaking, however,events, instead of single, deterministic events, which are
these approaches also were not detailed and formal enougBpecial case. Likewise, synchronicity and stability (3a), &re
construct artificial, intrinsically motivated, creativgents. special cases of predictability (and therefore comprdigb

The theory of fun & creativity does not have to postulate afor example, given two synchronous event streams, one can
objective ideal ratio of this kind. Instead, and unlike soofie trivially predict the timing of the first from the timing of ¢
the previous works that already emphasized the significarsecond.
of the subjective observer [16], [18], [17], its dynamicIfal The authors of [52] originally intended to present 2a and
measure of interestingness reflects thangein the number 2b as examples of 2, not as sub-categories (P. Oudeyer, per-
of bits required to encode an object, and explicitly takde insonal communication, 2010). Nevertheless, there is noooisvi
account the subjective observer's prior knowledge as vedtika essential difference between 2 and 1, as most instances of 2
limited compressiomprovementlgorithm. Hence the value and 1 are again special cases of models that try to improve
of an aesthetic experience is not defined by the observamdiction mismatches (or, more generally, compressihili
object per se but by the algorithmic compressigorogress To see this, note that a general predictor or compressor will
(or predictionprogres3 of the subjective, learning observer. try to predict / compress all accessible data including @gns

Why didn’t early pioneers of aesthetic information theorjnputs, reinforcement signals, executed action sequepags
put forward similar views? Perhaps because back then tBection Il [85]. To test behavioral competence, one must
fields of algorithmic information theory and adaptive comsomehow compare predicted and actual outcome of some
pression through machine learning were still in their infgh action sequence (e.g., execute robot behavior - does the

final state match a predicted subgoal representation?)esko t

V. SIMPLE TYPOLOGY OF INTRINSIC MOTIVATION knowledge, one must do the same (e.g., move eyes here -

_— : do the properties of the resulting sensory input match the
After pointing out problems of a previous typolo 52], L X )
b 9 b P ypology [ ]pred|ctlon?). Here is a quote from [52]A second major

this section will provide a natural one without those prote . L T
addressing current confusion as to what exactly should B%mputatmnal approach to intrinsic motivation is b_as_ed on
called intrinsic reward, clarifying that this concept isthag- measures of competence that an agent has for achieving self-

onal to (a) secondary reward in RL economies, (b) interngiatermmeOI results or goals. Interestingly, this approdzts

reward for speeding up RL, (c) internal rewards for subgoc’zplé.)t y_et beer? StIUd'eg in the c%mputgnonal I|te|r§tut?dwever,.
in hierarchical RL, (d) evolution of reward functions, sinall thShIS fg;‘gsed}’ what (\;vgs Son? n Slﬁvlgrallllrcr:]pl(lelm[)em%ons
of the above are driven by external reward. of the s discussed in Sections IlI-B, 1II-C, 11I-D ([70]

[111], [77], [79]). These systems had goals that includédfd se

. ) determined goals, namely, to execute action sequencekingel

A. Problems with a Previous Typology data that allowed their predictive models to improve; thir
A recently published classification of computational imtri methods simply measured competence by the amount of intrin-

sic motivation [52] mentions a fraction of the relevantiitire sic reward they obtained. In particular, the system of $ecti
since 1990, and classifies it in a way that may introduce ulkD ([77], [79]) could design general algorithmic experénts
necessary complexity, hiding the fact that the basic ppiesi (programs) including all kinds of computable predictioniis
of intrinsic motivation are general and simple. The progos@&ncompasses all kinds of computable competence tests and
classes of [52] are: 1 Knowledge-based models of intringknowledge tests.
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a) Is the predictor actually a continually changing, growing
3D model or simulation of the agent in the environment,
used to predict future visual or tactile inputs, given agent
actions (Section 11-B)?

b) Is it a traditional machine learning model? A feed-
forward neural network mapping pairs of actions and
observations to predictions of the next observation as in
Section 11I-B [70]? A recurrent neural network that is in
principle able to deal with event histories of arbitraryesiz
as in Section IlI-A [71]? A Gaussian Process? A Support

(1) A more or less limited adaptive predictor / compressor Vector Machine? A Hidden Markov Model? Etc.

/'model of the history of sensory inputs, internal stateg) includes many subtypes characterized by the answers
reinforcement signals, actions; to the following questions:

(2) Some sort of real-valued intrinsic reward indicative of

the learning progress df), A) Is the entire history used to evaluate the predictor's

(3) A more or less limited reinforcement learner able to performance as in Section Il [85], [92], [97], [96] (in thgor

maximize future expected reward. the correct thing to do, but sometimes impractical)? Or only

Hence the typology just needs to classify previous systemsrecent Qata, eg. the one acgu!red a}t the present timestep a

with respect to properties and limitations of their specific In Section lll-B [70], orin a I|m|ted_ time Wlndgw of recent

instances of1-3). In the spirit of MDL we describe a compact m_puts? (If so, a perfo_rmance decline on earlier parts of the

model (in this case: a typology) of the data (in this case; h|st0ry may go unr_10t|ced.) - .

various approaches to IM) by identifying what the majorityB) Wh'c_h measure 15 used to indicate learning progress and

of the previous IM approaches have in common. create intrinsic reward?

(1) includes many subtypes characterized by the answers a).Mean §quared prediction error or similar measures as
to the following questions: in Section IlI-A [71], [3], [107], [36]? This may fail

_ ) whenever high prediction errors do not imply expected
A) What exactly can the predictor predict (or the compressor

B. Alternative Natural Typology

Here a conceptually simpler typology is proposed. It essen-
tially just reflects the scheme from the introduction, anéslo
not suffer from the problems above.

By definition, intrinsic reward is something that is
independent of external reward,although it may sometimes
help to accelerate the latter as discussed in Section I[T-H,(
[111], [79]). So far, most if not all intrinsically motivate
computational systems had:

prediction progress, €. g., in noisy environments, but also
compress)?

a) All sensory inputs as in Section IlI-A [71]? A pre-

when the limitations of the predictor’s learning algorithm
prevent learning progress even in deterministic worlds.

processed subset of the sensory inputs? For example, feay) Improvements (first derivatives) of prediction error as in

tures indicating synchronicity of certain processes [52]?
The latter may be of interest for certain limited types of
IM-based learning.

Section 1lI-B [70], [52]? This properly deals with both
noisy / non-deterministic worlds and the computational
limitations of the predictor / compressor.

b) Reinforcement signals as in Section Ill-A [71]? (Even ¢) The information-theoretic Kullback-Leibler divergence

traditional RL agents without IM do this.)
¢) Controller actions as in Section Il [79], [85], [92], [97],

[96]? Then even in absence of sensory feedback, curious

& creative agents will be motivated to learn new motor
patterns, such as previously unknown dances.

d) Results of internal computations through sequences of
internal actions as in Section 1lI-D [79]? This will mo-
tivate a curious agent to create novel patterns not only
in the space of sensory inputs but also in the space

(a.k.a. relative entropy) [39] between belief distribaso
before and after learning steps, as in Section IlI-C
[111], [34]? A well-founded approach, at least under
the assumption that all potential statistical dependencie
between inputs can indeed be modeled by the given
probabilistic model, which in previous implementations
(Section 111-C) was limited to singular events [111], [34]
as opposed to arbitrary event sequences, for efficiency
reasons.

of abstract input transformations, such as earlier learntd) Minimum description length (MDL)-based measures

mappings from images of cars to an internal symbol
“car”. The agent will also be motivated to create purely
“mental” novel patterns independent of external inputs,

such as number sequences obeying previously unknown

mathematical laws (corresponding to mathematical dis-
coveries).

e) Some combination of the above? All of the above as in
Section 11I-D [79]? The latter should be the default for
AGls.

B) Is the predictor deterministic as in Section IlI-A [71], or
does it predict probability distributions on possible egen
as in Section IlI-C [111]?

C) How are the predictor and its learning algorithm imple-
mented?

[109], [115], [110], [116], [62] comparing the nhumber of
bits required to encode the observation history before and
after learning steps, as in Section Il [85], [92], [97], [26]
Unlike the methods above, this approach automatically
punishes unnecessarily complex predictors / compressors
that overfit the data, and can easily deal with long event
sequences instead of simple 1 step events. For example,
if the predictor uses a 3D world model or simulation,
the MDL approach will ask (Section 1I-B): how many
bits are currently needed to specify all polygons in the
simulation, and how many bits are needed to encode
deviations of the sensory history from the predictions
of the 3D simulation? Adding or removing polygons
may reduce the total number of bits (and decrease future
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prediction errors). d) One of the recent universal, mathematically optimal RL

C) Is the computational effort of the predictor and its  algorithms [32], [98], like in Section II-G? Variants of
learning algorithm taken into account when measuring its Universal search [43] or its incremental extension, the
performance, as in Section 1I-B [77], [79], [85]? The only ~ Optimal Ordered Problem Solver [82]?

implementation of this (Section IlI-C; [77], [79]) still tks e) Something else? Obviously lots of alternative search
theoretical optimality guarantees. methods can be plugged in here.
D) Which are the relative weights of external and intrinsicD) How does the system deal with problems of online
reward? This is of importance as long as the latter does nofearning?

vanish in environments where after some tinething new  3) Action sequences producing patterns that used to be

can be learnt any more. novel don't get rewarded any more once the patterns
(3) includes many subtypes characterized by the answers &€ known. Can the practical reward optimizer reliably
to the following questions: deal W!th this problem of vanlshlng_ rewards, like the

theoretically optimal systems of Section I1I-G?

A) Which is the action repertoire of the controller? b) Can the reward optimizer actually use the continually
a) Can it produce only external motor actions, as in Section improving predictive world model to improve or speed
lI-B [70], [111]? up the search for a better policy? This is automatically

b) Can it also manipulate an internal mental state through done by the above-mentioned action planner using a con-
internal actions as in Section llI-D ([77], [79]), thus bgin tinually improving 3D world simulation, and also by the

able to deal not only with raw sensory inputs but also with  RNN-based world model of the system in Section IlI-A
internal abstractions thereof, and to create / discoveeinov ~ [71]. Does the changing model cause problems of online
purely mathematical patterns, like certain theoreticians learning? Are those problems dealt with in a heuristic way
who sometimes do not care much about the external (e.g., small learning rates), or in a theoretically soungl wa
world? as in Section 1I-G?

c) Can it trigger learning processes by itself, by executing Each node or leaf of the typology above can be further
appropriate actions as in Section l1I-D ([77], [79])? Thigxpanded, thus becoming the root of additional straigtod
is important for learning when to learn and what t@efinements. But let us now address some of the recent
learn, trading off the costs of learning versus the expectegnfusion surrounding the concept of intrinsic motivatiand
benefits in terms of intrinsic and extrinsic rewards. clarify what it is not

B) Which are the perceptive abilities of the controller?

a) Can it choose at any time to see any element of tife Secondary Reward as an Orthogonal Issue
entire history [85] of all sensory inputs, rewards, exedute Reward propagation procedures of traditional RL such as
actions, internal states? Or only a subset thereof, pgssik)-learning [117] or RL economies & bucket brigade systems
a recent one, as in Section IlI-B [70]? The former shoulgB0], [66], [65], [120] may be viewed as translatingre
be the default for AGls. external rewards for achieving some goal ifrfequentinternal

b) Does it have access to the parameters and internal stawards for earlier actions setting the stage. Should one
of the predictor, like in Section IlI-D [79]? Or just acall these internal “secondary” rewards intrinsic rew&r@
subset thereof? Such introspective abilities are importazourse not. They are just internal by-products of the method
to predict future intrinsic rewards which depend on thesed to maximizeexternal reward, which remains the only
already existing knowledge encoded in the predictor. measure of overall success.

C) Which optimizer of expected intrinsic and extrinsic re-

ward is used? D. Speeding up RL as an Orthogonal Issue

a) A traditional Q-learner [117] able to deal with delayed Many methods have been proposed to speed up traditional
rewards as long as the environment is fully observablBL. Some Q-learning accelerators simply update pairs of
like in Section 11I-B? A more limited 1-step look-aheacRctions and states with currently quickly changing Q-value
learner [52] that will break down in presence of delayefore frequently than others (that is, Q-values with hight firs
intrinsic rewards? A more sophisticated RL algorithrilerivatives are favored). Others postpone updates urgdeut
for delayed rewards in partially observable environmenk$19]. Again one should resist the temptation to confuse
[72], [35], like in Section I11-A? A hierarchical, subgoal-such types of secondary reward modulation with intrinsic
learning RL algorithm [60], [102], [61], [118], [1] or reward, because the only thing important to such methods is
perhaps other hierarchical methods that do not learn tﬂﬁ externalreward. (Otherwise one would also have to call
create subgoals by themselves [3], [107], [13]? intrinsic reward many of the things that could be invented by

b) An action planner using a 3D simulation of the worldny (possibly universal [32], [98]) RL method whose only goa
to generate reward-promising trajectories (see MDL ej& to maximize expectedxternalreward.)
ample in Section II-B)?

¢) An evolutionary algorithm [59], [104], [29], [22] applied E- Subgoal Learning as an Orthogonal Issue
to recurrent neural networks [22] or other devices that Some goal-seeking RL systems search a space of possible
compute action sequences? subgoal combinations, internally rewarding subsystemaseh
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policies learn to achieve those subgoals [102], [61], [118trong enough to motivate him to read on in search for more
[1]. Essentially they seek useful reward functions for theeward through additional yet unknown patterns.
subsystems. External reward (for reaching a final goal)éslus While most previous attempts at explaining humor (e. g.,
to measure the quality of subgoal combinations: good subgofb8]) also focus on the element of surprise, they lack the
survive, others are discarded. Again the internal rewardhfe essential concept ofovel pattern detectiormeasured by
subsystems should not be called intrinsic reward, as it&lyo compressiomrogressdue to learning. This progress is zero
driven and justified byexternalreward. whenever the unexpected is just random noise, and thus no
fun at all. Applications of the new theory of humor can be
) ) found in recent videos [95].
F. Evolution of Reward Functions as an Orthogonal Issue  How does the theory informally explain the motivation
Essentially the same argument holds for very similar mette create or perceivart and music [76], [75], [85], [92],
ods that search a space of reward functions until they find ol9&], [96], [94]? For example, why are some melodies more
that helps a given RL method to achieve more reward margeresting or aesthetically rewarding than others? Netathe
quickly, e.g., [46], [108]. Such methods are like the sulbgothe listener (composer) just heard (played) twenty timea in
evolvers [118] of Section V-E which also evolve or search faow. It became too subjectively predictable in the prockiss.
useful reward functions. The results of this search shootd rthe weird one with completely unfamiliar rhythm and tonalit
be called intrinsic reward functions, since once more thg onlt seems too irregular and contain too much arbitrariness
thing that counts here is thexternalreward; the rest is just and subjective noise. The observer (creator) of the data is
implementation details of the external reward maximizer. interested in melodies that are unfamiliar enough to cantai
But didn’t humans evolve to have such an intrinsic rewargPmewhat unexpected harmonies or beats etc., but familiar
function? Sure, they did, but now it is there, and now gnough to allow for quickly recognizing the presence of
is independent of external reward, otherwise it wouldn’t b@ new learnable regularity or compressibility in the sound
intrinsic reward, by definition. Scientific papers on ingim Stream: a novel pattern! Sure, it will get boring over time,
reward should start from there. It is a different issue tdymea but not yet. All of this perfectly fits the principle: The cant
how and why evolution or another search procas@nted compressor of the observer or data creator tries to compress

intrinsic rewards to facilitate satisfaction @xternal goals his history of acoustic and other inputs where possible. The
(such as survival). action selector tries to find history-influencing actionghsu

that the continually growing historic data allows for impig
the compressor’s performance. The interesting or aesttiigti
rewarding musical and other subsequences are preciselg tho
How does the prediction progress drive / compressiovith previously unknown yet learnable types of regulasitie
progress drive explaihumor? Consider the following state- because they lead to compressor improvements. The boring
ment:Biological organisms are driven by the “Four Big F's”: patterns are those that are either already perfectly knawn o
Feeding, Fighting, Fleeing, Matingsgome subjective observersarbitrary or random, or whose structure seems too hard to
who read this for the first time think it is funny. Why? Asunderstand.
the eyes are sequentially scanning the text the brain regeiv ~ Similar statements not only hold for other dynamic art
complex visual input stream. The latter is subjectivelptiply ~ including film and dance (take into account the compressibil
compressible as it relates to the observer’s previous keage of action sequences), but also for “static” art such as pajnt
about letters and words and their semantics. That is, givend sculpture, created through action sequences of trst, arti
the reader’s current knowledge and current compressor, tred perceived as dynamic spatio-temporal patterns through
raw data can be encoded by fewer bits than required to staaive attention shifts of the observer. When not occupiitd w
random data of the same size. But the punch line after thptimizingexternalreward, artists and observers of art are just
last comma is unexpected for those who expected anotifi@iowing their compression progress drive!
“F”. Initially this failed expectation results in sub-optal The previous computer programs discussed in Section ||
data compression—storage of expected events does not @bstady incorporated (approximations of) the basic oviti
anything, but deviations from predictions require extrgs biprinciple. But do they really deserve to be viewed as rudi-
to encode them. The compressor, however, does not stay ffentary artists and scientists? The patterns they create ar
same forever: within a short time interval its learning aitjon  novel with respect to their own limited predictors and prior
kicks in and improves the performance on the data seen so frpwledge, but not necessarily relative to the knowledge of
by discovering the non-random, non-arbitrary and theesfosophisticated adults. The main difference to human artists
compressible pattern relating the punch line to previous tescientists, however, may be only quantitative by naturé, no
and to the observer's previous elaborate, predictive kedge qualitative:
about the “Four Big F's.” This prior knowledge helps t The unknown learning algorithms of human predictors /
compress the whole history including the punch line a bittompressors are presumably still better suited to realdwvorl
better than before, which momentarily saves a few bits oflata. Recall, however, that there already exisiversal,
storage, that is, there is quick learning progress, thauis, mathematically optimal (but not necessarily practicatha-f
The number of saved bits (or a similar measure of learningible) prediction and compression algorithms (Sectiob;ll-
progress) becomes the observer’s intrinsic reward, plgssib[32], [98]), and that ongoing research is continually pro-

VI. How THE THEORY EXPLAINS ART, SCIENCE, HUMOR
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ducing better and bettgractical prediction & compression physicists are also just following their compression pesgr
methods, waiting to be plugged into the creativity framewor drive!
« Humans may have superior reinforcement learning algo-
rithms for maximizing rewards generated through compres-
sion improvements achieved by their predictors. Recall,
however, that there already exighiversal, mathematically ~ To build a creative agent that never stops generating non-
optimal (but not necessarily practically feasible) reward optirivial & novel & surprising data, we need two learning
mizing algorithms (Section 1I-G; [32], [98]), and that origg modules: (1) an adaptive predictor or compressor or model
research is continually producing better and betiectical of the growing data history as the agent is interacting with
reinforcement learning methods, also waiting to be pluggéé environment, and (2) a general reinforcement learniee. T
into the creativity principle. learning progressof (1) is thefun or intrinsic reward of (2).
« Renowned human artists and scientists have had decadlbat is, (2) is motivated to invent things that (1) does ndt ye
of training experiences involving a multitude of highknow but can easily learn.
dimensional sensory inputs and motoric outputs, while our While purely curious & creative behaviors aim at maxi-
systems so far only had a few hours with very lowmizing expected fun or surprise through the creation of hove
dimensional experiences in limited artificial worlds. Thigatterns, the relevance of all behaviors with respect te pre
quantitative gap, however, will narrow as IM researchees awired or external goals is measured by (delayed) external
scaling up their systems. reward. Recent work has led to the first RL machines that
o Human brains still have vastly more raw computationare universal and optimal in various very general senses [32
power and storage capacity than the best artificial computgB1], [98]—see Section 1I-G. Such machines can in theory
Note, however, that this statement is unlikely to remairm trifind out by themselves whether curiosity and creativity are
for more than a few decades - currently each decade bringseful or useless in a given environment, and learn to behave
a hardware speed-up factor of roughly 100-1000. accordingly. In realistic settings, however, external asig
are extremely rare, and one cannot expect quick progress of
Current computational limitations of artificial artists dot ;g type, not even by optimal machines. But typically one
prevent us from already using the basic principle in humagan |earn lots of useful behaviors even in absence of externa
computer interaction to create art appreciable by humaes—sewards: unsupervised behaviors that just lead to predéta
example applications in references [76], [85], [92], [9BB]. or compressible results and thus reflect the regularitighen
[94]. environment, e. g., repeatable patterns in the world'stieas
How does the theory explain the natureinfluctive sci- to certain action sequences. In this paper the assumptibatis
ences such as physi@sIf the history of the entire uni- a bias towards exploring previously unknown environmental
verse were computable, and there is no evidence agairegjularities isa priori good in the real world as we know
this possibility [88], then its simplest explanation woulé it, and should be inserted into practical Artificial General
the shortest program that computes it. Unfortunately therelntelligences (AGIs), whose goal-directed learning wilbfit
no general way of finding the shortest program computirigom this bias, in the sense that behaviors leading to exter-
any given data [45]. Therefore physicists have traditignalnal reward can often be quickly composed / derived from
proceeded incrementally, analyzing just a small aspech®f tpreviously learnt, purely curiosity-driven behaviors. &l
world at any given time, trying to find simple laws that allowhot worry about the undeniable possibility that curiosityda
for describing their limited observations better than thestb creativity can actually be harmful and “kill the cat”, assam
previously known law, essentially trying to find a prograratth the environment is “benign enough.” Based on experiende wit
compresses the observed data better than the best pregviotist real world it may be argued that this assumption is réalis
known program. An unusually large compression breakthmoughe resulting explorative bias greatly facilitates therskdor
deserves the namdiscovery For example, Newton’s law of goal-directed behaviors in environments where the adiprisi
gravity can be formulated as a short piece of code whidf external reward has indeed a lot to do with easily leamabl
allows for substantially compressing many observation senvironmental regularities.
guences involving falling apples and other objects. Altfflou It may be possible to formally quantify this bias towards
its predictive power is limited—for example, it does nohovel patterns in form of a mixture-based prior [110], [45],
explain quantum fluctuations of apple atoms—it still allowf81], [32], a weighted sum of probability distributions on
for greatly reducing the number of bits required to encodequences of actions and resulting inputs, and derive gareci
the data stream, by assigning short codes to events that @aditions for improved expected external reward intake. |
predictable with high probability [31] under the assumptiotrinsic reward may be viewed as analogous tegularizerin
that the law holds. Einstein’s general relativity theorglgls supervised learning, where the prior distribution on pussi
additional compression progress as it compactly explassym hypotheses greatly influences the most probable intetfreta
previously unexplained deviations from Newton’s preding. of the data in a Bayesian framework [8] (for example, the
Most physicists believe there is still room for further adwas, well-known synapse decay term of neural networks is a
and this is what is driving them to invent new experimenionsequence of a Gaussian prior with zero mean for each
unveiling novel, previously unpublished patterns [97]6][9 synapse). Note, however, that there is a difference totiosdil
[94]. When not occupied with optimizingxternal reward, regularizers witha priori fixed relative weights (also known

VII. CONCLUDING REMARKS & OUTLOOK



as hyper-parameters): intrinsic reward for learning peegr [20]
eventually vanishes in environments where after some time
nothing new can be learnt any more; that is, the intrinsic!?!
reward eventually becomes negligible where the sources of
external reward don’t run dry as well (e.g., no daily food[22]
no more). Following Section VI, some of the AGIs based
on the creativity principle will become scientists, agisor |23
comedians.

[24]
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