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Formal Theory of Creativity, Fun,
and Intrinsic Motivation (1990-2010)

Jürgen Schmidhuber

Abstract—The simple but general formal theory of fun &
intrinsic motivation & creativity (1990-) is based on the concept of
maximizing intrinsic reward for the active creation or discovery
of novel, surprising patterns allowing for improved prediction or
data compression. It generalizes the traditional field ofactive
learning, and is related to old but less formal ideas in aesthetics
theory and developmental psychology. It has been argued that
the theory explains many essential aspects of intelligenceinclud-
ing autonomous development, science, art, music, humor. This
overview first describes theoretically optimal (but not necessarily
practical) ways of implementing the basic computational prin-
ciples on exploratory, intrinsically motivated agents or robots,
encouraging them to provoke event sequences exhibiting previ-
ously unknown but learnable algorithmic regularities. Emphasis
is put on the importance of limited computational resources
for online prediction and compression. Discrete and continuous
time formulations are given. Previouspractical but non-optimal
implementations (1991, 1995, 1997-2002) are reviewed, as well as
several recent variants by others (2005-). A simplified typology
addresses current confusion concerning the precise natureof
intrinsic motivation.

Index Terms—Formal theory of creativity, fun, surprise, nov-
elty, novel patterns, attention, active learning, aesthetics theory,
developmental psychology, limited computational resources, ty-
pology of intrinsic motivation, science, art, music, humor.

I. I NTRODUCTION

To solve existential problems such as avoiding hunger or
heat, a baby has to learn how the initially unknown environ-
ment responds to its actions. Therefore, even when there is
no immediate need to satisfy thirst or other built-in primitive
drives, the baby does not run idle. Instead it actively conducts
experiments: what sensory feedback do I get if I move my
eyes or my fingers or my tongue just like that? Being able
to predict effects of actions will later make it easier to plan
control sequences leading to desirable states, such as those
where heat and hunger sensors are switched off.

The growing infant quickly gets bored by things it already
understands well, but also by those it does not understand
at all, always searching for new effects exhibiting some yet
unexplained buteasily learnableregularity. It acquires more
and more complex behaviors building on previously acquired,
simpler behaviors. Eventually it might become a physicist
discovering previously unknown physical laws, or an artist
creating new eye-opening artworks, or a comedian coming up
with novel jokes.

For a long time I have been arguing, using various wordings,
that all this behavior is driven by a very simple algorithmic
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mechanism that uses reinforcement learning (RL) to maximize
the fun or internal joy for the discovery or creation ofnovel
patterns.Both concepts are essential:pattern, and novelty.
A data sequence exhibits apattern or regularity if it is
compressible [45], that is, if there is a relatively short program
program that encodes it, for example, by predicting some of
its components from others (irregular noise is unpredictable
andboring). Relative to some subjective observer, a pattern is
temporarilynovel or interestingor surprising if the observer
initially did not know the regularity but is able tolearn it. The
observer’s learning progress can be preciselymeasuredand
translated intointrinsic reward for a separate RL controller
selecting the actions causing the data. Hence the controller is
continually motivated to create more surprising data.

Since 1990, agents were built that implement this idea. They
may be viewed as simple artificial scientists or artists with
an intrinsic desire to build a better model of the world and
of what can be done in it. To improve their models, they
acquire skills to create / discovermore data predictable or
compressible in hitherto unknown ways [67], [71], [69], [70],
[111], [77], [79], [85], [92], [93], [97], [96], [94], [99].They
are intrinsically motivated to invent and conduct experiments,
actively exploring their environment, always trying to learn
new behaviors exhibiting previously unknown algorithmic
regularities. They embody approximations of a simple, but
general, formal theory of creativity and curiosity and interest-
ingness and fun, explaining essential aspects of human or non-
human intelligence, including selective attention, science, art,
music, humor [85], [92], [97], [96], [94]. Crucial ingredients
are:

1. An adaptive world model, essentially a predictor or
compressor of the continually growing history of actions /
events / sensory inputs, reflecting what’s currently known
about how the world works,

2. A learning algorithm that continually improves the model
(detecting novel, initially surprising spatio-temporal pat-
terns that subsequently become known patterns),

3. Intrinsic rewards measuring the model’s improvements
(first derivative of learning progress) due to the learning
algorithm (thus measuring thedegreeof subjective surprise
or fun),

4. A separate reward optimizer or reinforcement learner,
which translates those rewards into action sequences or
behaviors expected to optimize future reward.

A simple example may help to see that it is really possible
to learn from intrinsic reward signals̀a la Item 3 that one
can learn even more in places never visited before. In an
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environment with red and blue boxes, whenever the learning
agent opens a red box, it will find an easily learnable novel
geometric pattern (that is, its predictor will make progress and
thus generate intrinsic reward), while all blue boxes contain a
generator of unpredictable, incompressible white noise. That
is, all the RL controller has to learn is a simple policy: open
the next unopened red box.

Ignoring issues of computation time, it is possible to de-
vise mathematically optimal,universalRL methods for such
systems [85], [92], [97], [96] (2006-2009). More about thisin
Section II. However, the practical implementations so far [69],
[70], [111], [77], [79] were non-universal and made approx-
imative assumptions. Among the many ways of combining
algorithms for1-4 the following variants were implemented:

A. 1990: Non-traditional RL (without restrictive Markovian
assumptions [72]) based on an adaptive recurrent neural
network as a predictive world model [68] is used to maxi-
mize the controller’s intrinsic reward, which is proportional
to the model’s prediction errors [67], [71].

B. 1991: Traditional RL [35], [114] is used to maximize
intrinsic reward created in proportion to expectedimprove-
ments(first dervatives) of prediction error [69], [70].

C. 1995: Traditional RL maximizes intrinsic reward created
in proportion to relative entropies between the learning
agent’s priors and posteriors [111].

D. 1997-2002: Non-traditional RL [103] (without restrictive
Markovian assumptions) learns probabilistic, hierarchical
programs and skills through zero-sum intrinsic reward
games of two players (called the right brain and the left
brain), each trying to out-predict or surprise the other,
taking into account the computational costs of learning,
and learningwhento learn andwhat to learn [77], [79].

B-D (1991-2002) also showed experimentally how intrinsic
rewards can substantially accelerate goal-directed learning and
externalreward intake.

Outline. Section II will summarize the formal theory of
creativity in a nutshell, laying out a mathematically rigorous
but not necessarily practical framework. Section III will then
discuss previous concrete implementations of the non-optimal
but currently still more practical variantsA-D mentioned
above, and their limitations. Section IV will discuss relations
to work by others, explain how the theory extends the tra-
ditional field of active learning, and how it formalizes and
extends previous informal ideas of developmental psychology
and aesthetics theory. Section V will offer a natural typology
of computational intrinsic motivation, and Section VI will
briefly explain how the theory is indeed sufficiently general
to explain all kinds of creative behavior, from the discovery
of new physical laws through active design of experiments, to
the invention of jokes and music and works of art.

II. FORMAL DETAILS OF THE THEORY OFCREATIVITY

The theory formulates essential principles behind numerous
intrinsically motivated creative behaviors of biological or
artificial agents embedded in a possibly unknown environment.
The corresponding algorithmic framework uses general RL
(Section II-G; [32], [98]) to maximize not only external reward

for achieving goals such as the satisfaction of hunger and
thirst, but alsointrinsic reward for learning a better world
model, by creating / discovering / learning novel patterns
in the growing history of actions and sensory inputs, where
the theory formally specifies what exactly is apattern, what
exactly is novel or surprising, and what exactly it means to
incrementallylearnnovel skills leading to more novel patterns.

A. The Agent and its Improving Model

Let us consider a learning agent whose single life consists
of discrete cycles or time stepst = 1, 2, . . . , T . Its complete
lifetime T may or may not be known in advance. In what
follows, the value of any time-varying variableQ at time t
(1 ≤ t ≤ T ) will be denoted byQ(t), the ordered sequence
of valuesQ(1), . . . , Q(t) by Q(≤ t), and the (possibly empty)
sequenceQ(1), . . . , Q(t − 1) by Q(< t). At any givent the
agent receives a real-valued inputx(t) from the environment
and executes a real-valued actiony(t) which may affect future
inputs. At timest < T its goal is to maximize future success
or utility

u(t) = Eµ

[

T
∑

τ=t+1

r(τ)

∣

∣

∣

∣

∣

h(≤ t)

]

, (1)

where the rewardr(t) is a special real-valued input (vector)
at time t, h(t) the ordered triple[x(t), y(t), r(t)] (hence
h(≤ t) is the known history up tot), and Eµ(· | ·) denotes
the conditional expectation operator with respect to some
possibly unknown distributionµ from a setM of possible
distributions. HereM reflects whatever is known about the
possibly probabilistic reactions of the environment. As a very
general example,M may contain all computable distributions
[110], [45], [32]. This essentially includes all environments
one could write scientific papers about. There is just one
life, no need for predefined repeatable trials, no restriction
to Markovian interfaces between sensors and environment
[72]. (Note that traditional Markovian RL [114] assumes that
the world can be modeled as a Markov Decision Process
(MDP), and that the perceptual system reveals the current
state. In realistic scenarios, however, robots have to learn
to memorize previous relevant inputs in form of appropriate
internal representations, which motivates the work on RL in
partially observable MDPs or POMDPs, e. g., [72], [35].)
The utility function implicitly takes into account the expected
remaining lifespanEµ(T | h(≤ t)) and thus the possibility to
extend the lifespan through appropriate actions [83], [98]. Note
that mathematical analysis isnot simplified by discounting
future rewards like in traditional RL theory [114]—one should
avoid such distortions of real rewards whenever possible.

To maximizeu(t), the agent may profit from an adaptive,
predictivemodelp of the consequences of its possible inter-
actions with the environment. At any timet (1 ≤ t < T ), the
modelp(t) will depend on the observed history so far,h(≤ t).
It may be viewed as the current explanation or description
of h(≤ t), and may help to predict future events, including
rewards. LetC(p, h) denote some given modelp’s quality or
performance evaluated on a given historyh. Natural quality
measures will be discussed in Section II-B.



3

To encourage the agent to actively create data leading
to easily learnable improvements ofp [71], [70], [111],
[79], [85], [92], [97], [96], [94], [99], the reward signal
r(t) is simply split into two scalar real-valued components:
r(t) = g(rext(t), rint(t)), whereg maps pairs of real values
to real values, e.g.,g(a, b) = a + b. Here rext(t) denotes
traditionalexternalreward provided by the environment, such
as negative reward in response to bumping against a wall,
or positive reward in response to reaching some teacher-
given goal state. The formal theory of creativity, however,is
especially interested inrint(t), the intrinsic reward, which is
provided whenever the model’s quality improves—forpurely
creativeagentsrext(t) = 0 for all valid t:

The currentintrinsic reward orcreativity reward or
curiosityreward oraesthetic rewardor fun rint(t) of
the action selector is the currentsurpriseor novelty
measured by theimprovementsof the world model
p at time t.

Formally, the intrinsic reward in response to the model’s
progress (due to some application-dependent model improve-
ment algorithm) between timest and t + 1 is

rint(t + 1) = f [C(p(t), h(≤ t + 1)), C(p(t + 1), h(≤ t + 1))],
(2)

where f maps pairs of real values to real values. Various
alternative progress measures are possible; most obvious is
f(a, b) = a−b. This corresponds to a discrete time version of
maximizing the first derivative of the model’s quality.Note that
both the old and the new model have to be tested on the same
data, namely, the history so far.So progress between timest
andt+1 is defined based on two models ofh(≤ t+1), where
the old one is trained only onh(≤ t) and the new one also
gets to seeh(t ≤ t + 1). This is like p(t) predicting data of
time t + 1, then observing it, then learning something, then
becoming a measurably better modelp(t + 1).

The above description of the agent’s motivation concep-
tually separates the goal (finding or creating data that can
be modeled better or faster than before) from the means of
achieving the goal. Let the controller’s RL mechanism figure
out how to translate such rewards into action sequences that
allow the given world model improvement algorithm to find
and exploit previously unknown types of regularities. It isthe
task of the RL algorithm to trade off long-term vs short-term
intrinsic rewards of this kind, taking into account all costs
of action sequences [71], [70], [111], [79], [85], [92], [97],
[96], [94], [99]. The universal RL methods of Section II-G as
well as RNN-based RL (Section III-A) and SSA-based RL
(Section III-D) can in principle learn useful internal states
containing memories of relevant previous events; less powerful
RL methods (Sections III-B, III-C) cannot.

B. How to Measure Model Quality Under Time Constraints

In theory C(p, h(≤ t)) should take the entire history of
actions and perceptions into account [85], like the following
performance measureCxry:

Cxry(p, h(≤ t)) =

t
∑

τ=1

|| pred(p, x(τ)) − x(τ) ||2 (3)

+ || pred(p, r(τ)) − r(τ) ||2 + || pred(p, y(τ)) − y(τ) ||2

wherepred(p, q) is p’s prediction of eventq from earlier parts
of the history [85].

Cxry ignores the danger of overfitting through ap that
just stores the entire history without compactly representing
its regularities, if any. The principle of Minimum Description
Length (MDL) [37], [115], [116], [110], [62], [45], however,
also takes into account the description size ofp, viewing p
as a compressor program of the datah(≤ t). This programp
should be able to deal with any prefix of the growing history,
computing an output starting withh(≤ t) for any time t
(1 ≤ t < T ). (A program that wants to halt aftert steps can
easily be fixed / augmented by the trivial method that simply
stores any raw additional data coming in after the halt.)

Cl(p, h(≤ t)) denotesp’s compression performance onh(≤
t): the number of bits needed to specify both the predictor and
the deviations of the sensory history from its predictions,in
the sense of loss-free compression. The smallerCl, the more
regularity and lawfulness in the observations so far.

For example, supposep uses a small predictor that correctly
predicts manyx(τ) for 1 ≤ τ ≤ t. This can be used to encode
x(≤ t) compactly: Given the predictor, only the wrongly
predictedx(τ) plus information about the corresponding time
stepsτ are necessary to reconstruct input historyx(≤ t), e.g.,
[73]. Similarly, a predictor that learns a probability distribution
on the possible next events, given previous events, can be
used to efficiently encode observations with high (respectively
low) predicted probability by few (respectively many) bits
(Section III-C; [31], [101]), thus achieving a compressed
history representation.

Alternatively,p could also make use of a 3D world model
or simulation. The corresponding MDL-based quality measure
C3D(p, h(≤ t)) is the number of bits needed to specify all
polygons and surface textures in the 3D simulation, plus the
number of bits needed to encode deviations ofh(≤ t) from
the predictions of the simulation. Improving the 3D model by
adding or removing polygons may reduce the total number of
bits required.

The ultimate limit forCl(p, h(≤ t)) would beK∗(h(≤ t)),
a variant of the Kolmogorov complexity ofh(≤ t), namely,
the length of the shortest program (for the given hardware)
that computes an output starting withh(≤ t) [110], [37],
[45], [80]. Here there is no need not worry about the fact
that K∗(h(≤ t)) in general cannot be computed exactly,
only approximated from above (indeed, for most practical
predictors the approximation will be crude). This just means
that some patterns will be hard to detect by the limited
predictor of choice, that is, the reward maximizer will get
discouraged from spending too much effort on creating those
patterns.

Cl(p, h(≤ t)) does not take into account the timeτ(p, h(≤
t)) spent byp on computingh(≤ t). A runtime-dependent per-
formance measure inspired by concepts of optimal universal
search [43], [81], [82], [85], [96], [99] is

Clτ (p, h(≤ t)) = Cl(p, h(≤ t)) + log τ(p, h(≤ t)). (4)

Here compression by one bit is worth as much as runtime
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reduction by a factor of1
2
. From an asymptotic optimality-

oriented point of view this is one of the best ways of trading
off storage and computation time [43], [81], [82].

In practical applications (Section III) the predictor / com-
pressor of the continually growing data typically will haveto
calculate its output online, that is, it will be able to use only
a constant number of computational instructions per second
to predict / compress new data. The goal of the possibly
much slower learning algorithm must then be to improve the
compressor such that it keeps operating online within those
time limits, while compressing / predicting better than before.
The costs of computingCxry(p, h(≤ t)) and Cl(p, h(≤ t))
and similar performance measures are linear int, assumingp
consumes equal amounts of computation time for each single
prediction. Therefore online evaluations of learning progress
on the full history so far generally cannot take place as
frequently as the continually ongoing online predictions.

At least some of the learning and its progress evaluations
may take place during occasional “sleep” phases [85], [96].
But practical implementations so far have looked only at parts
of the history for efficiency reasons: The systems describedin
Sections III, III-A, III-B, III-C, III-D [71], [70], [111], [79]
used online settings (one prediction per time step, and constant
computational effort per prediction), non-universal adaptive
compressors or predictors, and approximative evaluationsof
learning progress, each consuming only constant time despite
the continual growth of the history.

C. Feasibility of Loss-Free Compression, with Examples

Any set of raw data, such as the history of some ob-
server’s previous actions & sensations & rewards including
suspected noise, exhibits a pattern or regularity if there exists
an algorithm that is significantly shorter than the raw data
but is able to encode it without loss of information [37],
[109], [110], [45]. Random noise is irregular and arbitrary
and incompressible. But random-dot stereograms (e.g., a single
foreground square against a more distant background) are
compressible since parts of the data are just copied from
others. Videos are regular as most single frames are very
similar to the previous one. By encoding only the deviations,
movie compression algorithms can save lots of storage space.
Complex-looking fractal images are regular, as they usually
look a lot like their details, being computable by very short
programs that re-use the same code over and over again
for different image parts. The entire universe is regular and
apparently rather benign [74], [78], [88], [90]: every photon
behaves the same way; gravity is the same on Jupiter and
Mars, mountains usually don’t move overnight but tend to
remain where they are, etc.

Many data analysis techniques are natural by-products of
loss-free compression. For example, data set compression is
possible if the data can be separated into clusters of numerous
close neighbors and fewoutliers. Abstractionis another typical
by-product. For example, if the predictor / compressor uses
a neural net, the latter will create feature hierarchies, higher
layer units typically corresponding to more abstract features,
fine-grained where necessary. Any good compressor will

identify shared regularities among different already existing
internal data structures, to shrink the storage space needed
for the whole.Consciousnessmay be viewed as a by-product
of this [97], [96], since there is one thing that is involved
in all actions and sensory inputs of the agent, namely, the
agent itself. To efficiently encode the entire data history,it
will profit from creating some sort of internalsymbolor code
(e. g., a neural activity pattern) representing itself. Whenever
this representation is actively used, say, by activating the
corresponding neurons through new incoming sensory inputs
or otherwise, the agent could be calledself-awareor conscious
[97], [96].

True, any loss-free compression method will require space
that grows without bound over time. But this isnot a funda-
mental practical obstacle. Soon storage for 100 years of high
resolution video of will be cheap. If you can store the data, do
not throw it away! The data isholy as it is the only basis of
all that can be known about the world [97], [96]. Attempts at
predicting / compressing the raw data (by finding regularities /
abstractions) should take place in aseparate, typically smaller
part of the storage.

Even humans may store much of the incoming sensory
data. A human lifetime rarely lasts much longer than3× 109

seconds. The human brain has roughly1010 neurons, each
with 104 synapses on average. Assuming that only half of the
brain’s capacity is used for storing raw data, and that each
synapse can store at most 6 bits, there is still enough capacity
to encode the lifelong sensory input stream with a rate of
at least105 bits/s, comparable to the demands of a movie
with reasonable resolution, but possibly at a much higher rate,
assuming that human compressors are much smarter than those
of cameras.

D. Optimal Predictors vs Optimal Compressors

For the theoretically inclined: There is a deep connec-
tion between optimal prediction and optimal compression.
Consider Solomonoff’s theoretically optimal, universal way
of predicting the future [109], [110], [45], [32]. Given an
observation sequenceq(≤ t), the Bayes formula is used to
predict the probability of the next possibleq(t + 1). The
only assumption is that there exists a computer program that
can take anyq(≤ t) as an input and compute itsa priori
probability according to theµ prior. (This assumption is
extremely general, essentially including all environments one
can write scientific papers about, as mentioned above.) In
general this program is unknown, hence a mixture prior is
used instead to predict:

ξ(q(≤ t)) =
∑

i

wiµi(q(≤ t)), (5)

a weighted sum ofall distributionsµi ∈ M, i = 1, 2, . . .,
where the sum of the constant positive weights satisfies
∑

i wi ≤ 1. This is indeed the best one can possibly do,
in a very general sense [110], [32]. The drawback of the
scheme is its incomputability, sinceM contains infinitely
many distributions. One may increase the theoretical power
of the scheme by augmentingM by certain non-enumerable
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but limit-computable distributions [80], or restrict it such
that it becomes computable, e.g., by assuming the world
is computed by some unknown but deterministic computer
program sampled from the Speed Prior [81] which assigns
low probability to environments that are hard to compute by
any method.

Remarkably, under very general conditions both universal
inductive inference [109], [110], [45] and the compression-
oriented MDL approach [37], [115], [116], [62], [45] converge
to the correct predictions in the limit [56]. It should be
mentioned, however, that the former converges faster.

As far as discoveries of regularity and compressibility are
concerned, it does not make an essential difference whether
we force the system to predict the entire history of inputs and
actions, or just parts thereof, or whether we allow it to focus
on internal computable abstractions thereof, like the system
discussed in Section III-D. Partial compressibility of selected
data covered by the system’s limited focus of attention implies
compressibility of the whole, even if most of it is random
noise.

E. Discrete Asynchronous Framework for Maximizing Cre-
ativity Reward

Let p(t) denote the agent’s current compressor program at time
t, s(t) its current controller, andDO:
Controller: At any time t (1 ≤ t < T ) do:

1) Let s(t) use (parts of) historyh(≤ t) to select and
executey(t + 1).

2) Observex(t + 1).
3) Check if there is non-zero creativity rewardrint(t + 1)

provided by the asynchronously running improvement
algorithm of the compressor / predictor (see below). If
not, setrint(t + 1) = 0.

4) Let the controller’s RL algorithm useh(≤ t+1) includ-
ing rint(t + 1) (and possibly also the latest available
compressed version of the observed data—see below) to
obtain a new controllers(t + 1), in line with objective
(1). Note that some actions may actually trigger learning
algorithms that compute changes of the compressor and
the controller’s policy, such as in Section III-D [79].
That is, the computational cost of learning can be taken
into account by the reward optimizer, and the decision
when and what to learn can be learnt as well [79].

Compressor / Predictor: Set pnew equal to the initial data
compressor / predictor. Starting at time 1, repeat forever until
interrupted by death at timeT :

1) Setpold = pnew; get current time stept and sethold =
h(≤ t).

2) Evaluatepold on hold, to obtain performance measure
C(pold, hold). This may take many time steps.

3) Let some (possibly application-dependent) compressor
improvement algorithm (such as a learning algorithm for
an adaptive neural network predictor, possibly triggered
by a controller action) usehold to obtain a hopefully
better compressorpnew (such as a neural net with the
same size and the same constant computational effort
per prediction but with improved predictive power and

therefore improved compression performance [101]).
Although this may take many time steps (and could be
partially performed offline during “sleep” [85], [96]),
pnew may not be optimal, due to limitations of the
learning algorithm, e.g., local maxima. (To inform the
controller about beginnings of compressor evaluation
processes etc., augment its input by unique represen-
tations of such events.)

4) Evaluatepnew on hold, to obtain C(pnew , hold). This
may take many time steps.

5) Get current time stepτ and generate creativity reward

rint(τ) = f [C(pold, hold), C(pnew , hold)], (6)

e.g.,f(a, b) = a − b. (Here theτ replaces thet + 1 of
eq. 2.)

This asynchronuous scheme [85], [92], [96] may cause long
temporal delays between controller actions and corresponding
creativity rewards, and may impose a heavy burden on the
controller’s RL algorithm whose task is to assign credit to past
actions. Nevertheless, Section II-G will discuss RL algorithms
for this purpose which are theoretically optimal in various
senses [85], [92], [97], [96].

F. Continuous Time Formulation

In continuous time [99], letO(t) denote the state of
subjective observerO at time t. The subjective simplicity
or compressibility or regularity or beautyB(D, O(t)) of a
sequence of observations and/or actionsD is the negative
number of bits required to encodeD, given O(t)’s current
limited prior knowledge and limited compression / prediction
method. The observer-dependent and time-dependent subjec-
tive Interestingnessor Surpriseor Aesthetic ValueI(D, O(t))
is

I(D, O(t)) ∼
∂B(D, O(t))

∂t
, (7)

the first derivativeof subjective simplicity: asO improves its
compression algorithm, formerly apparently random data parts
become subjectively more regular and beautiful, requiring
fewer and fewer bits for their encoding.

Note that there are at least two ways of having fun: execute
a learning algorithm that improves the compression of the
already known data (in online settings: without increasing
computational needs of the compressor / predictor), or execute
actions that generate more data, then learn to compress /
understand the new data better.

G. Optimal Creativity, Given the Predictor’s Limitations

The previous sections discussed how to measure compressor
/ predictor improvements and how to translate them into
intrinsic reward signals, but did not say much about the RL
method used to maximize expected future reward. The chosen
predictor / compressor class typically will have certain com-
putational limitations. In the absence of any external rewards,
one may defineoptimal pure curiosity behaviorrelative to
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these limitations: At discrete time stept this behavior would
select the action that maximizes

u(t) = Eµ

[

T
∑

τ=t+1

rint(τ)

∣

∣

∣

∣

∣

h(≤ t)

]

. (8)

Since the true, world-governing probability distributionµ is
unknown, the resulting task of the controller’s RL algorithm
may be a formidable one. As the system is revisiting previ-
ously incompressible parts of the environment, some of those
will tend to become more subjectively compressible, and while
the corresponding curiosity rewards may first go up, they will
eventually decrease once the new regularity has been learnt.
A good RL algorithm must somehow detect and thenpredict
this decrease, and act accordingly. Traditional RL algorithms
[35], however, do not provide any theoretical guarantee of
optimality for such situations.

Is there a best possible, universal RL algorithm that comes
as close as any other computable one to maximizing objective
(8)? Indeed, there is. Its drawback, however, is that it is not
computable in finite time. Nevertheless, it serves as a reference
point for defining what is achievable at best, that is, what’s
optimal creativity.

Readers who are not interested in the corresponding theory
may skip the remainder of this section and jump immediately
to the practical implementations of Section III. For the others,
the next paragraphs will outline how the universal approaches
work. Optimal inductive inference as defined in Section II-D
can be extended by formally including the effects of executed
actions, to define an optimal action selector maximizing future
expected reward. At any timet, Hutter’s theoretically optimal
(yet uncomputable) RL algorithm AIXI [32] uses such an
extended version of Solomonoff’s scheme to select those
action sequences that promise maximal future reward up to
some horizonT (e.g., twice the lifetime so far), given the
current datah(≤ t). That is, in cyclet + 1, A IXI selects as its
next action the first action of an action sequence maximizing
ξ-predicted reward up to the given horizon, appropriately
generalizing eq. (5). AIXI uses observations optimally [32]:
the Bayes-optimal policypξ based on the mixtureξ is self-
optimizing in the sense that its average utility value converges
asymptotically for allµ ∈ M to the optimal value achieved
by the Bayes-optimal policypµ which knowsµ in advance.
The necessary and sufficient condition is thatM admits self-
optimizing policies. The policypξ is also Pareto-optimal in
the sense that there is no other policy yielding higher or equal
value in all environmentsν ∈ M and a strictly higher value
in at least one [32].

A IXI as above needs unlimited computation time. Its com-
putable variant AIXI (t,l) [32] has asymptotically optimal run-
time but may suffer from a huge constant slowdown. To take
the consumed computation time into account in a general,
optimal way, one may use the recent Gödel machines [83],
[86], [84], [98] instead. They represent the first class of
mathematically rigorous, fully self-referential, self-improving,
general, optimally efficient problem solvers, and are applicable
to the problem embodied by objective (8). The initial software
S of such a Gödel machine contains an initial problem

solver, e.g., some typically sub-optimal RL method [35]. It
also contains an asymptotically optimal initial proof searcher,
typically based on an online variant of Levin’sUniversal
Search[43], which is used to run and testproof techniques.
Proof techniques are programs written in a universal language
implemented on the Gödel machine withinS. They are in
principle able to compute proofs concerning the system’s own
future performance, based on an axiomatic systemA encoded
in S. A describes the formalutility function, in the present
case eq. (8), the hardware properties, axioms of arithmetic
and probability theory and data manipulation etc, andS itself,
which is possible without introducing circularity [98]. Inspired
by Kurt Gödel’s celebrated self-referential formulas (1931),
the Gödel machine rewrites any part of its own code (including
the proof searcher) through a self-generated executable pro-
gram as soon as itsUniversal Searchvariant has found a proof
that the rewrite isusefulaccording to objective (8). According
to the Global Optimality Theorem [83], [86], [84], [98], such a
self-rewrite is globally optimal—no local maxima possible!—
since the self-referential code first had to prove that it is not
useful to continue the search for alternative self-rewrites. If
there is no provably useful optimal way of rewritingS at
all, then humans will not find one either. But if there is one,
thenS itself can find and exploit it. Unlike the previousnon-
self-referential methods based on hardwired proof searchers
[32], Gödel machines not only boast an optimalorder of
complexity but can optimally reduce (through self-changes)
any slowdowns hidden by theO()-notation, provided the
utility of such speed-ups is provable [87], [91], [89].

Limitations of the “universal” approaches:The methods
above are optimal in various ways, some of them not only
computable but even optimally time-efficient in the asymptotic
limit. Nevertheless, they leave open an essential remaining
practical question: If the agent can execute only a fixed number
of computational instructions per unit time interval (say,10
trillion elementary operations per second), what is the best
way of using them to get as close as possible to the theoretical
limits of universal AIs? Especially when external rewards are
very rare, as is the case in many realistic environments? As
long as there is no good answer this question, one has to resort
to approximations and heuristics when it comes to practical
applications. The next section reviews what has been achieved
so far along these lines, discussing our implementations of
IM-based agents from the 1990s; quite a few aspects of these
concrete systems are still of relevance today.

III. PREVIOUS IMPLEMENTATIONS OF INTRINSICALLY

MOTIVATED AGENTS: PROS AND CONS

The above mathematically rigorous framework for optimal
curiosity and creativity (2006-) was establishedafter first
approximations thereof were implemented (1991, 1995, 1997-
2002). Sections III-A, III-B, III-C, III-D will discuss advan-
tages and limitations of online learning systems describedin
the original publications on artificial intrinsic motivation [71],
[70], [111], [77] which already can be viewed as example
implementations of a compression progress drive or prediction
progress drive that encourages the discovery or creation of
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surprising patterns. Some elements of this earlier work are
believed to remain essential for creating systems that are both
theoretically sound andpractical.

A. Intrinsic Reward for Prediction Error (1990)

Early work [67], [71] describes a predictor based on an
adaptive world model implemented as a recurrent neural
network (RNN) (in principle a rather powerful computational
device, even by today’s machine learning standards), predict-
ing sensory inputs including reward signals from the entire
previous history of actions and inputs. A second RNN (the
controller) uses the world model and gradient descent to
search for a control policy or program maximizing the sum of
future expected rewards according to the model. Some of the
rewards are intrinsic curiosity rewards, which are proportional
to the predictor’s errors. So the same mechanism that is used
for normal goal-directed learning is used for implementing
creativity and curiosity and boredom—there is no need for a
separate system aiming at improving the world model.

This first description of a general, curious, world-exploring
RL agent implicitly and optimistically assumes that the pre-
dictor will indeed improve by motivating the controller to go
to places where the prediction error is high. One drawback of
the prediction error-based approach is that it encourages the
controller to focus its search on those parts of the environment
where there will always be high prediction errors due to
noise or randomness, or due to computational limitations of
the predictor. This mayprevent learning progress instead of
promoting it, and motivates the next subsection, whose basic
ideas could be combined with the RL method of [67], [71],
but this has not been done yet.

Another potential drawback is the nature of the particular
RNN-based RL method. Although the latter has the potential
to learn internal memories of previous relevant sensory inputs,
and thus is not limited to Markovian interfaces between agent
and environment [72], like all gradient-based methods it may
suffer from local minima, as well as from potential problemsof
online learning, since gradients for the recurrent RL controller
are computed with the help of the dynamically changing,
online learning recurrent predictive world model. Apart from
this limitation, the RNN of back then were less powerful than
today’s LSTM RNN [28], [100], which yielded state of the
art performance in challenging applications such as connected
handwriting recognition [24], and should be used instead.

B. Intrinsic Reward for World Model Improvements (1991)

Follow-up work [69], [70] points out that one should not
focus on the errors of the predictor, but on its improvements.
The basic principle can be formulated as follows:Learn a
mapping from actions (or action sequences) to the expecta-
tion of future performance improvement of the world model.
Encourage action sequences where this expectation is high.
This is essentially the central principle of Section II-A.

Two implementations were described: The first models the
reliability of the predictions of the adaptive predictor bya
separate, so-called confidence network. At any given time,
reinforcement for the model-building control system is created

in proportion to the currentchangeor first derivativeof the
reliability of the adaptive predictor. The “curiosity goal” of the
control system (it might have additional “pre-wired” external
goals) is to maximize the expectation of the cumulative sum
of future positive or negative changes in prediction reliability.

The second implementation replaces the confidence network
by a network H which at every time step is trained to
predict the currentchangeof the model network’s output
due to the model’s learning algorithm. That is,H will learn
to approximate the expectedfirst derivative of the model’s
prediction error, given the inputs. Theabsolute valueof H ’s
output is taken as the intrinsic reward, thus rewarding learning
progress.

While the neural predictor of the implementations is compu-
tationally less powerful than the recurrent one of Section III-A
[71], there is a novelty, namely, an explicit (neural) adaptive
model of the predictor’s improvements, measured in terms
of mean squared error (MSE). This model essentially learns
to predict the predictor’s changes (the prediction derivatives).
For example, although noise is unpredictable and leads to
wildly varying target signals for the predictor, in the long
run these signals do not change the adaptive predictor’s
parameters much, and the predictor of predictor changes is
able to learn this. A variant of the standard RL algorithm Q-
learning [114] is fed with curiosity reward signals proportional
to the expected long-term predictor changes; thus the agentis
intrinsically motivated to make novel patterns within the given
limitations. In fact, one may say that the system tries to maxi-
mize an approximation of the (discounted) sum of the expected
first derivatives of the data’s subjective predictability,thus also
maximizing an approximation of the (discounted) sum of the
expected changes of the data’s subjective compressibility(the
surprise or novelty).

Both variants avoid the theoretically desirable but imprac-
tical regular evaluations of the predictor on the entire history
so far, as discussed in Section II-B. Instead they monitor the
recent effects of learning on the learning mechanism (a neural
network in this case). Experiments illustrate the advantages
of this type of directed, curious exploration over traditional
random exploration.

One RL method-specific drawback is given by the limi-
tations of standard Markovian RL [72], which assumes the
current input tells the agent everything it needs to know, and
does not work well in realistic scenarios where it has to learn
to memorize previous relevant inputs to select optimal actions.
For general robots scenarios more powerful RL methods are
necessary, such as those mentioned in Section III-A and other
parts of the present paper.

Any RL algorithm has to deal with the fact that intrinsic
rewards vanish where the predictor becomes perfect. In the
simple toy world [69], [70] this is not a problem, since the
agent continually updates its Q-values based on recent expe-
rience. But since the learning rate is chosen heuristically(as
usual in RL applications), this approach lacks the theoretical
justification of the general framework of Section II.

For probabilistic worlds there are prediction error measures
that are more principled than MSE. This motivates research
described next.
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C. Intrinsic Reward Depending on the Relative Entropy be-
tween Agent’s Prior and Posterior (1995)

Follow-up work (1995) describes an information theory-
oriented variant of the approach in non-deterministic worlds
[111]. Here the curiosity reward is proportional to the pre-
dictor’s surprise / information gain [15], measured as the
Kullback-Leibler distance [39] between the learning pre-
dictor’s subjective probability distributions on possible next
events before and after new observations - the relative entropy
between its prior and posterior, essentially another measure
of learning progress. Again experiments show the advantages
of this type of curious exploration over conventional random
exploration.

Since this implementation also uses a traditional RL method
[114] instead of a more general one, the discussion of RL
method-specific drawbacks in previous subsections remains
valid here as well.

Note the connection to Section II: the concepts of Huffman
coding [31] and relative entropy between prior and posterior
immediately translate into a measure of learning progress
reflecting the number of saved bits—a measure of improved
data compression.

Note also, however, a drawback of this naive probabilistic
approach to data compression: it is unable to discover more
general types ofalgorithmiccompressibility [45] as discussed
in Section II. For example, the decimal expansion ofπ looks
random and incompressible but isn’t: there is a very short
algorithm computing all ofπ, yet any finite sequence of digits
will occur in π’s expansion as frequently as expected ifπ
were truly random, that is, no simple statistical learner will
outperform random guessing at predicting the next digit from a
limited time window of previous digits. More generalprogram
search techniques are necessary to extract the underlying
algorithmic regularity. This motivates the universal approach
discussed in Section II, but also the research on a more general
practical implementation described next.

D. Learning Programs & Skills Through Zero Sum Intrinsic
Reward Games (1997-2002)

The universal variants of the principle of novel pattern
creation of Section II focused on theoretically optimal ways
of measuring learning progress & fun, as well as math-
ematically optimal ways of selecting action sequences or
experiments within the framework of artificial creativity [85],
[92], [97], [96]. These variants take the entire lifelong history
of actions and observations into account, and make minimal
assumptions about the nature of the environment, such as: the
(unknown) probabilities of possible event histories are atleast
enumerable. The resulting systems exhibit “mathematically
optimal curiosity and creativity” and provide a yardstick
against which all less universal intrinsically motivated systems
can be measured. However, most of them ignore important
issues of time constraints in online settings. For example,in
practical applications one cannot frequently measure predictor
improvements by testing predictor performance on the entire
history so far. The costs of learning and testing have to be

taken into account. This insight drove the research discussed
next.

To address the computational costs of learning, and the
costs of measuring learning progress, computationally power-
ful controllers and predictors [77], [79] were implementedas
two very general, co-evolving, symmetric, opposing modules
called theright brain and theleft brain, both able to construct
self-modifying probabilistic programs written in a universal
programming language (1997-2002). An internal storage for
temporary computational results of the programs is viewed as
part of the changing environment. Each module can suggest
experiments in the form of probabilistic algorithms to be
executed, and make predictions about their effects,betting
intrinsic reward on their outcomes. The opposing module
may accept such a bet in a zero-sum game by making a
contrary prediction, or reject it. In case of acceptance, the
winner is determined by executing the algorithmic experiment
and checking its outcome; the intrinsic reward eventually gets
transferred from the surprised loser to the confirmed winner.
Both modules try to maximize their intrinsic reward using a
rather general RL algorithm (the so-called success-story algo-
rithm SSA [103]) designed for complex stochastic policies—
alternative RL algorithms could be plugged in as well. Thus
both modules are motivated to discovertruly novelalgorithmic
patterns, where the dynamically changing subjective baseline
for novelty is given by what the opponent already knows about
the (external or internal) world’s repetitive patterns. Since
the execution of any computational or physical action costs
something (as it will reduce the cumulative reward per time
ratio), both modules are motivated to focus on those parts of
the dynamic world that currently make learning progresseasy,
to minimize the costs of identifying promising experiments
and executing them. The system learns a partly hierarchical
structure of more and more complex skills or programs
necessary to solve the growing sequence of self-generated
tasks, reusing previously acquired simpler skills where this is
beneficial. Experimental studies [79] exhibit several sequential
stages of emergent developmental sequences, with and without
external reward.

Many ingredients of this system may be just what one
needs to buildpractical yet soundcurious and creative systems
that never stop expanding their knowledge about what can
be done in a given world, although future re-implementations
should probably use alternative reward optimizers that are
more general and powerful than SSA [103], such as variants
of the Optimal Ordered Problem Solver [82].

E. Improving Real Reward Intake (1991-)

The references above demonstrated in several experiments
that the presence of intrinsic reward or curiosity reward can
actually speed up the collection ofexternalreward.

However, the previous papers also pointed out that it is
always possible to design environments where the bias towards
regularities introduced through artificial curiosity can lead to
worse performance—curiosity can indeed kill the cat.
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IV. RELATION TO WORK BY OTHERS

A. Beyond Traditional Information Theory

How does the notion of surprise in the theory of creativity
differ from the notion of surprise in traditional information
theory? Consider two extreme examples of uninteresting,
unsurprising, boring data: A vision-based agent that always
stays in the dark will experience an extremely compressible,
soon totally predictable history of unchanging visual inputs.
In front of a screen full of white noise conveying a lot of
information and “novelty” and “surprise” in the traditional
sense of Boltzmann and Shannon [106], however, it will expe-
rience highly unpredictable and fundamentally incompressible
data. As pointed out since the early 1990s, according to the
theory of creativity, in both cases the data is notsurprisingbut
boring [79], [92] as it does not allow for further compression
progress—there is no novel pattern. Therefore the traditional
notion of surprise is rejected. Neither the arbitrary nor the fully
predictable istruly novel or surprising. Only data with still
unknownalgorithmic regularities are [71], [70], [111], [79],
[85], [92], [97], [96], for example, a previously unknown song
containing a subjectively novel harmonic pattern. That’s why
one really has to measure theprogress of the learning predictor
to compute the degree of surprise. (Compare Section IV-E2 for
a related discussion on what’s aesthetically pleasing.)

B. Beyond Traditional Active Learning

How does the theory generalize the traditional field of
active learning, e.g., [15]? To optimize a function may require
expensive data evaluations. Original active learning is limited
to supervised classification tasks, e. g., [15], [33], [47],[105],
[55], [12], [2], asking which data points to evaluate next
to maximize information gain, typically (but not necessarily)
using 1 step look-ahead, assuming all data point evaluations
are equally costly. The objective (to improve classification
error) is given externally; there is no explicit intrinsic reward
in the sense discussed in the present paper. The more gen-
eral framework of creativity theory also takes formally into
account:

1) Reinforcement learning agents embedded in an environ-
ment where there may be arbitrary delays between ex-
perimental actions and corresponding information gains,
e.g., [111], [70],

2) The highly environment-dependent costs of obtaining
or creating not just individual data points but data
sequencesof a priori unknown size,

3) Arbitrary algorithmic or statistical dependencies in se-
quences of actions & sensory inputs, e.g., [79], [85],

4) The computational cost of learning new skills, e.g., [79].

While others recently have started to study active RL as
well, e. g., Brafman and Tennenholtz (R-MAX Algorithm
[10]), Li et al (KWIK-framework [44]), Strehlet al [112],
our more general systems measure and maximizealgorith-
mic [110], [37], [45], [80] novelty (learnable but previously
unknown compressibility or predictability) of self-generated
spatio-temporal patterns in the history of data and actions[85],
[92], [97], [96].

C. Relation to Hand-Crafted Interestingness

Lenat’s discovery system EURISKO [41], [42] has a pre-
programmed interestingness measure which was observed to
become more an more inappropriate (“stagnation” problem) as
EURISKO created new concepts from old ones with the help
of human intervention. Unsupervised systems based on cre-
ativity theory, however, continually redefine what’s interesting
based on what’s currently easy to learn, in addition to what’s
already known.

D. Related Implementations Since 2005

In 2005, Baldi & Itti demonstrated experimentally that
our method of 1995 (Section III-C, [111]) explains certain
patterns of human visual attention better than certain previous
approaches [34]. Their web site http://ilab.usc.edu/surprise/
(retrieved on 17 March 2010) points out that the approaches
of Section III-C [111] and [34] are formally identical.

Klyubin et al’s seemingly related approach to intrinsic
motivation [36] of 2005 tries to maximizeempowermentby
maximizing the information an agent could potentially “inject”
into its future sensory inputs via a sequence of actions. Unlike
our 1995 method (Section III-C, [111]), this approach does
not maximize informationgain; in fact, the authors assume a
good world model is already given, or at least learnt before
empowermentis measured (D. Polani, personal communi-
cation, 2010). For example, using 1 step look-ahead in a
deterministic and well-modeled world, their agent will prefer
states where the execution of alternative actions will makea lot
of difference in the immediate sensory inputs, according tothe
already reliable world model. Generally speaking, however, it
might prefer actions leading to high-entropy, random inputs
over others—compare Section III-A.

In 2005, Singhet al [107] also used intrinsic rewards
proportional to prediction errors as in Section III-A [71],
employing a different type of reward maximizer based on
the option framework which can be used to specify subgoals.
As pointed out earlier, it is useful to make the conceptual
distinction between the objective and the means of reaching
the objective: The latter is shared by the approaches of [107]
and of Section III-A, the reward maximizer is different.

In related work, Schembriet al address the problem of
learning to compose skills, assuming different skills are learnt
by different RL modules. They speed up skill learning by
rewarding a top level, module-selecting RL agent in proportion
to the TD error of the selected module [63]—compare Section
III-B.

Other researchers in the nascent field of developmental
robotics [9], [57], [38], [113], [64], [20], [51], [52], [27],
[26] and intrinsic reward also took up the basic idea, for
example, Oudeyeret al [53]. They call their method “Intel-
ligent Adaptive Curiosity” (IAC), reminiscent of our original
1991 paper on “Adaptive Curiosity” (AC) [69] (Section III-B).
Like AC, IAC motivates the agent to go where it can expect
learning progress with a high derivative. Oudeyeret al write
that IAC is “intelligent” because, it“keeps, as a side effect,
the robot away both from situations which are too predictable
and from situations which are too unpredictable.”That’s what
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the original AC does (Section III-B). However, IAC is less
general than AC in the following sense: IAC is restricted to
one-step look-ahead, and does not allow for delayed intrinsic
rewards. That is, even a small short-term intrinsic reward
will be more attractive to IAC than many huge long-term
rewards. Nonetheless, an interesting aspect of IAC’s greedy
reward maximizer, is that it splits the state space into regions,
reminiscent of algorithms by Doya [14] and Moore [49]; this
might make learning more robust in certain situations.

Oudeyeret al’s Section III A Group 1 on “Error Maxi-
mization” [53] covers some of the topics discussed in the first
paper on this subject: [71](our Section III-A). Their Section III
B Group 2 on “Progress Maximization” addresses issues dis-
cussed in the first papers on this subject: [69], [70], [111] (our
Sections III-B and III-C). Referring to [70] in their Section
III C Group 3 on “Similarity-Based Progress Maximization,”
Oudeyeret al [53] write: “Schmidhuber [...] provided initial
implementations of artificial curiosity, but [was] not concerned
with the emergent development sequence and with the increase
of the complexity of their machines [...] They were only
concerned in how far artificial curiosity can speed up the
acquisition of knowledge.”However, emergent development
sequences with and without external rewards (and several se-
quential stages) were studied in follow-up papers (1997-2002)
[77], [79] (Section III-D) containing action frequency plots
similar to those of Oudeyeret al (2007). These papers also
address many other issues such as continuous states (within
the limits of floating point precision), whose importance is
emphasized by Oudeyeret al, who also write:“Another limit
of this work resides within the particular formula that is used
to evaluate the learning progress associated with a candidate
situation, which consists of making the difference betweenthe
error in the anticipation of this situation before it has been
experienced and the error in the anticipation of exactly the
same situation after it has been experienced. On the one hand,
this can only work for a learning machine with a low learning
rate, as pointed out by the author, and will not work with, for
example, one-shot learning of memory-based methods. On the
other hand, considering the state of the learning machine just
before and just after one single experience can possibly be
sensitive to stochastic fluctuations.”However, the 1991 AC
system of Section III-B is in fact precisely designed to deal
with stochastic fluctuations: in states where the next input
is random and unpredictable, the learning predictor’s targets
will fluctuate stochastically, and the system will notice this, as
there is no measurable learning progress (just small predictor
changes that cancel each other). And the general 2006 systems
[85] (Section II) do not have any problems of the criticized
type as long as the predictor’s performance is always measured
on the entire history so far. Oudeyeret al [53] also write:”The
question of whether hierarchical structures can simply self-
organize without being explicitly programmed remains open,”
apparently being unaware of previous work on hierarchical RL
systems that can discover their own subgoals [60], [102], [61],
[118], [79], [1].

Friston et al [19] (2010) also propose an approach which
in many ways seems similar to ours, based on free energy
minimization and predictive coding. Predictive coding is a

special case of compression, e. g., [101], and free energy isan-
other approximative measure of algorithmic compressibility /
algorithmic information [45]; the latter concept is more general
though. As Fristonet alwrite: “Under simplifying assumptions
free energy is just the amount of prediction error”,like in the
1991 paper [71] discussed in Section III-A. Under slightly less
simplifying assumptions it is the Kullback-Leibler divergence
between probabilistic world model and probabilistic world,
like in the 1995 paper [111] (which looks at the learning model
before and after new observations; see Section III-C). Despite
these similarities, however, what Fristonet al do is to select
actions thatminimizefree energy. In other words, their agents
like to visit highly predictable states. As the authors write:
“Perception tries to suppress prediction error by adjusting
expectations to furnish better predictions of signals, while ac-
tion tries to fulfil these predictions by changing those signals.
[...] In summary, under active inference, perception triesto
explain away prediction errors by changing predictions, while
action tries to explain them away by changing the signals
being predicted.”Hence, although Fristonet al’s approach
shares buzzwords with the methods of Sections III-A, III-B,
III-C, (active data selection, reinforcement learning, relative
entropy, Kullback-Leibler divergence), they donot describe
a system intrinsically motivated to learn new, previously
unknown things; instead their agents really want to stabilize
and make everything predictable. Fristonet al are well aware
of potential objections:“At this point, most (astute) people
say: but that means I should retire to a dark room and cover
my ears.”This pretty much sums up the expected criticism. In
contrast, the theory of creativity has no problem whatsoever
with dark rooms—the latter get boring as soon as they are
predictable; then there is no learning progress no more, that
is, the first derivative of predictability / compressibility is
zero, that is, the intrinsic reward is zero, that is, the reward-
maximizing agent is motivated to leave the room to find
or make additional rewarding, non-random, learnable, novel
patterns.

Recent related work in the field of evolutionary computation
aims at increasing diversity within populations of individuals
[40], [21], [23]. This can be done by measuring the “novelty”
of their behaviors [21], [23] using compression distance [11],
based on the idea that compressing the concatenation of similar
behaviors is cheaper than compressing them separately.

E. Previous, Less Formal Work in Aesthetics Theory and
Psychology

Two millennia ago, Cicero already called curiosity a “pas-
sion for learning.” In the recent millennium’s final century, art
theorists and developmental psychologists extended this view.
In its final decade, the concept eventually became sufficiently
formal to permit the computer implementations discussed in
Section III.

1) Developmental Psychology:In the 1950s Berlyne and
other psychologists revisited the idea of curiosity as the
motivation for exploratory behavior [5], [6], emphasizingthe
importance of novelty [5] and nonhomeostatic drives [25].
Piaget [54] explained explorative learning behavior of children
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through his concepts of assimilation (new inputs are embedded
in old schemas—this may be viewed as a type of compression)
and accommodation (adapting an old schema to a new input—
this may be viewed as a type of compression improvement).
All those ideas were informal, without providing details nec-
essary to permit the construction of artificially curious agents.

2) Aesthetics Theory:The closely related field of aesthetics
theory [7], [48], [4], [16], [50], [18] emerged even earlier
in the 1930s. Why are some objects, such as works of art,
more interesting or aesthetically rewarding than others? Why
are humans somehow intrinsically motivated to observe them,
even when they seem totally unrelated to solving typical prob-
lems such as hunger, and even when the action of observation
requires a serious effort, such as spending hours to get to
the museum? Some of the previous attempts at explaining
aesthetic experience in the context of information theory [7],
[48], [4], [16], [50], [18] tried to quantify the intrinsic aesthetic
reward through the idea of an“ideal” ratio between expected
and unexpected information conveyed by some aesthetic object
(its “order” vs its “complexity”). For example, using certain
measures based on information theory [106], Bense [4] argued
for an ideal ratio of1/e ∼ 37%. Generally speaking, however,
these approaches also were not detailed and formal enough to
construct artificial, intrinsically motivated, creative agents.

The theory of fun & creativity does not have to postulate an
objective ideal ratio of this kind. Instead, and unlike someof
the previous works that already emphasized the significance
of the subjective observer [16], [18], [17], its dynamic formal
measure of interestingness reflects thechangein the number
of bits required to encode an object, and explicitly takes into
account the subjective observer’s prior knowledge as well as its
limited compressionimprovementalgorithm. Hence the value
of an aesthetic experience is not defined by the observed
object per se, but by the algorithmic compressionprogress
(or predictionprogress) of the subjective, learning observer.

Why didn’t early pioneers of aesthetic information theory
put forward similar views? Perhaps because back then the
fields of algorithmic information theory and adaptive com-
pression through machine learning were still in their infancy?

V. SIMPLE TYPOLOGY OF INTRINSIC MOTIVATION

After pointing out problems of a previous typology [52],
this section will provide a natural one without those problems,
addressing current confusion as to what exactly should be
called intrinsic reward, clarifying that this concept is orthog-
onal to (a) secondary reward in RL economies, (b) internal
reward for speeding up RL, (c) internal rewards for subgoals
in hierarchical RL, (d) evolution of reward functions, since all
of the above are driven by external reward.

A. Problems with a Previous Typology

A recently published classification of computational intrin-
sic motivation [52] mentions a fraction of the relevant literature
since 1990, and classifies it in a way that may introduce un-
necessary complexity, hiding the fact that the basic principles
of intrinsic motivation are general and simple. The proposed
classes of [52] are: 1 Knowledge-based models of intrinsic

motivation, 1a Information theoretic and distributional models,
1b Predictive models, 1c Learning progress, 2 Competence-
based models of intrinsic motivation, 2a Maximizing incompe-
tence, 2b Maximizing competence, 3 Morphological models of
intrinsic motivation, 3a Synchronicity motivation, 3b Stability
and Variance motivation.

Closer inspection reveals that 1a is a special case of 1b
(the probabilistic predictors/models of information theory are
special types of predictors), and many instances of 1a (suchas
maximizing information gain) are simultaneously special cases
of 1c (learning progress). So it does not seem to make sense
to have 1a 1b 1c on the same level. It should be mentioned,
however, that the authors originally intended to present at
least 1c as a special case of 1b—misleading section labels
were erroneously inserted by the editors (P. Oudeyer, personal
communication, 2010).

In their section on “Morphological models”, the authors
seem to make again a conceptual distinction between statistical
/ information-theoretic predictors and other predictors of the
earlier section “Knowledge-based models.” Statistical knowl-
edge, however, predicts probability distributions on possible
events, instead of single, deterministic events, which area
special case. Likewise, synchronicity and stability (3a, 3b) are
special cases of predictability (and therefore compressibility).
For example, given two synchronous event streams, one can
trivially predict the timing of the first from the timing of the
second.

The authors of [52] originally intended to present 2a and
2b as examples of 2, not as sub-categories (P. Oudeyer, per-
sonal communication, 2010). Nevertheless, there is no obvious
essential difference between 2 and 1, as most instances of 2
and 1 are again special cases of models that try to improve
prediction mismatches (or, more generally, compressibility).
To see this, note that a general predictor or compressor will
try to predict / compress all accessible data including sensory
inputs, reinforcement signals, executed action sequences, e.g.,
Section II [85]. To test behavioral competence, one must
somehow compare predicted and actual outcome of some
action sequence (e.g., execute robot behavior - does the
final state match a predicted subgoal representation?). To test
knowledge, one must do the same (e.g., move eyes here -
do the properties of the resulting sensory input match the
prediction?). Here is a quote from [52]:“A second major
computational approach to intrinsic motivation is based on
measures of competence that an agent has for achieving self-
determined results or goals. Interestingly, this approachhas
not yet been studied in the computational literature.”However,
this is precisely what was done in several implementations
of the 1990s discussed in Sections III-B, III-C, III-D ([70],
[111], [77], [79]). These systems had goals that included self-
determined goals, namely, to execute action sequences yielding
data that allowed their predictive models to improve; theirRL
methods simply measured competence by the amount of intrin-
sic reward they obtained. In particular, the system of Section
III-D ([77], [79]) could design general algorithmic experiments
(programs) including all kinds of computable predictions.This
encompasses all kinds of computable competence tests and
knowledge tests.
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B. Alternative Natural Typology

Here a conceptually simpler typology is proposed. It essen-
tially just reflects the scheme from the introduction, and does
not suffer from the problems above.

By definition, intrinsic reward is something that is
independent of external reward,although it may sometimes
help to accelerate the latter as discussed in Section III-E ([70],
[111], [79]). So far, most if not all intrinsically motivated
computational systems had:

(1) A more or less limited adaptive predictor / compressor
/ model of the history of sensory inputs, internal states,
reinforcement signals, actions;

(2) Some sort of real-valued intrinsic reward indicative of
the learning progress of(1),

(3) A more or less limited reinforcement learner able to
maximize future expected reward.

Hence the typology just needs to classify previous systems
with respect to properties and limitations of their specific
instances of(1-3). In the spirit of MDL we describe a compact
model (in this case: a typology) of the data (in this case:
various approaches to IM) by identifying what the majority
of the previous IM approaches have in common.
(1) includes many subtypes characterized by the answers
to the following questions:

A) What exactly can the predictor predict (or the compressor
compress)?

a) All sensory inputs as in Section III-A [71]? A pre-
processed subset of the sensory inputs? For example, fea-
tures indicating synchronicity of certain processes [52]?
The latter may be of interest for certain limited types of
IM-based learning.

b) Reinforcement signals as in Section III-A [71]? (Even
traditional RL agents without IM do this.)

c) Controller actions as in Section II [79], [85], [92], [97],
[96]? Then even in absence of sensory feedback, curious
& creative agents will be motivated to learn new motor
patterns, such as previously unknown dances.

d) Results of internal computations through sequences of
internal actions as in Section III-D [79]? This will mo-
tivate a curious agent to create novel patterns not only
in the space of sensory inputs but also in the space
of abstract input transformations, such as earlier learnt
mappings from images of cars to an internal symbol
“car”. The agent will also be motivated to create purely
“mental” novel patterns independent of external inputs,
such as number sequences obeying previously unknown
mathematical laws (corresponding to mathematical dis-
coveries).

e) Some combination of the above? All of the above as in
Section III-D [79]? The latter should be the default for
AGIs.

B) Is the predictor deterministic as in Section III-A [71], or
does it predict probability distributions on possible events
as in Section III-C [111]?

C) How are the predictor and its learning algorithm imple-
mented?

a) Is the predictor actually a continually changing, growing
3D model or simulation of the agent in the environment,
used to predict future visual or tactile inputs, given agent
actions (Section II-B)?

b) Is it a traditional machine learning model? A feed-
forward neural network mapping pairs of actions and
observations to predictions of the next observation as in
Section III-B [70]? A recurrent neural network that is in
principle able to deal with event histories of arbitrary size
as in Section III-A [71]? A Gaussian Process? A Support
Vector Machine? A Hidden Markov Model? Etc.

(2) includes many subtypes characterized by the answers
to the following questions:

A) Is the entire history used to evaluate the predictor’s
performance as in Section II [85], [92], [97], [96] (in theory
the correct thing to do, but sometimes impractical)? Or only
recent data, e.g., the one acquired at the present time step as
in Section III-B [70], or in a limited time window of recent
inputs? (If so, a performance decline on earlier parts of the
history may go unnoticed.)

B) Which measure is used to indicate learning progress and
create intrinsic reward?

a) Mean squared prediction error or similar measures as
in Section III-A [71], [3], [107], [36]? This may fail
whenever high prediction errors do not imply expected
prediction progress, e. g., in noisy environments, but also
when the limitations of the predictor’s learning algorithm
prevent learning progress even in deterministic worlds.

b) Improvements (first derivatives) of prediction error as in
Section III-B [70], [52]? This properly deals with both
noisy / non-deterministic worlds and the computational
limitations of the predictor / compressor.

c) The information-theoretic Kullback-Leibler divergence
(a.k.a. relative entropy) [39] between belief distributions
before and after learning steps, as in Section III-C
[111], [34]? A well-founded approach, at least under
the assumption that all potential statistical dependencies
between inputs can indeed be modeled by the given
probabilistic model, which in previous implementations
(Section III-C) was limited to singular events [111], [34]
as opposed to arbitrary event sequences, for efficiency
reasons.

d) Minimum description length (MDL)-based measures
[109], [115], [110], [116], [62] comparing the number of
bits required to encode the observation history before and
after learning steps, as in Section II [85], [92], [97], [96]?
Unlike the methods above, this approach automatically
punishes unnecessarily complex predictors / compressors
that overfit the data, and can easily deal with long event
sequences instead of simple 1 step events. For example,
if the predictor uses a 3D world model or simulation,
the MDL approach will ask (Section II-B): how many
bits are currently needed to specify all polygons in the
simulation, and how many bits are needed to encode
deviations of the sensory history from the predictions
of the 3D simulation? Adding or removing polygons
may reduce the total number of bits (and decrease future
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prediction errors).

C) Is the computational effort of the predictor and its
learning algorithm taken into account when measuring its
performance, as in Section II-B [77], [79], [85]? The only
implementation of this (Section III-C; [77], [79]) still lacks
theoretical optimality guarantees.

D) Which are the relative weights of external and intrinsic
reward? This is of importance as long as the latter does not
vanish in environments where after some timenothing new
can be learnt any more.

(3) includes many subtypes characterized by the answers
to the following questions:

A) Which is the action repertoire of the controller?

a) Can it produce only external motor actions, as in Section
III-B [70], [111]?

b) Can it also manipulate an internal mental state through
internal actions as in Section III-D ([77], [79]), thus being
able to deal not only with raw sensory inputs but also with
internal abstractions thereof, and to create / discover novel
purely mathematical patterns, like certain theoreticians
who sometimes do not care much about the external
world?

c) Can it trigger learning processes by itself, by executing
appropriate actions as in Section III-D ([77], [79])? This
is important for learning when to learn and what to
learn, trading off the costs of learning versus the expected
benefits in terms of intrinsic and extrinsic rewards.

B) Which are the perceptive abilities of the controller?

a) Can it choose at any time to see any element of the
entire history [85] of all sensory inputs, rewards, executed
actions, internal states? Or only a subset thereof, possibly
a recent one, as in Section III-B [70]? The former should
be the default for AGIs.

b) Does it have access to the parameters and internal state
of the predictor, like in Section III-D [79]? Or just a
subset thereof? Such introspective abilities are important
to predict future intrinsic rewards which depend on the
already existing knowledge encoded in the predictor.

C) Which optimizer of expected intrinsic and extrinsic re-
ward is used?

a) A traditional Q-learner [117] able to deal with delayed
rewards as long as the environment is fully observable,
like in Section III-B? A more limited 1-step look-ahead
learner [52] that will break down in presence of delayed
intrinsic rewards? A more sophisticated RL algorithm
for delayed rewards in partially observable environments
[72], [35], like in Section III-A? A hierarchical, subgoal-
learning RL algorithm [60], [102], [61], [118], [1] or
perhaps other hierarchical methods that do not learn to
create subgoals by themselves [3], [107], [13]?

b) An action planner using a 3D simulation of the world
to generate reward-promising trajectories (see MDL ex-
ample in Section II-B)?

c) An evolutionary algorithm [59], [104], [29], [22] applied
to recurrent neural networks [22] or other devices that
compute action sequences?

d) One of the recent universal, mathematically optimal RL
algorithms [32], [98], like in Section II-G? Variants of
universal search [43] or its incremental extension, the
Optimal Ordered Problem Solver [82]?

e) Something else? Obviously lots of alternative search
methods can be plugged in here.

D) How does the system deal with problems of online
learning?

a) Action sequences producing patterns that used to be
novel don’t get rewarded any more once the patterns
are known. Can the practical reward optimizer reliably
deal with this problem of vanishing rewards, like the
theoretically optimal systems of Section II-G?

b) Can the reward optimizer actually use the continually
improving predictive world model to improve or speed
up the search for a better policy? This is automatically
done by the above-mentioned action planner using a con-
tinually improving 3D world simulation, and also by the
RNN-based world model of the system in Section III-A
[71]. Does the changing model cause problems of online
learning? Are those problems dealt with in a heuristic way
(e.g., small learning rates), or in a theoretically sound way
as in Section II-G?

Each node or leaf of the typology above can be further
expanded, thus becoming the root of additional straightforward
refinements. But let us now address some of the recent
confusion surrounding the concept of intrinsic motivation, and
clarify what it is not.

C. Secondary Reward as an Orthogonal Issue

Reward propagation procedures of traditional RL such as
Q-learning [117] or RL economies & bucket brigade systems
[30], [66], [65], [120] may be viewed as translatingrare
external rewards for achieving some goal intofrequentinternal
rewards for earlier actions setting the stage. Should one
call these internal “secondary” rewards intrinsic rewards? Of
course not. They are just internal by-products of the method
used to maximizeexternal reward, which remains the only
measure of overall success.

D. Speeding up RL as an Orthogonal Issue

Many methods have been proposed to speed up traditional
RL. Some Q-learning accelerators simply update pairs of
actions and states with currently quickly changing Q-values
more frequently than others (that is, Q-values with high first
derivatives are favored). Others postpone updates until needed
[119]. Again one should resist the temptation to confuse
such types of secondary reward modulation with intrinsic
reward, because the only thing important to such methods is
the external reward. (Otherwise one would also have to call
intrinsic reward many of the things that could be invented by
any (possibly universal [32], [98]) RL method whose only goal
is to maximize expectedexternalreward.)

E. Subgoal Learning as an Orthogonal Issue

Some goal-seeking RL systems search a space of possible
subgoal combinations, internally rewarding subsystems whose



14

policies learn to achieve those subgoals [102], [61], [118],
[1]. Essentially they seek useful reward functions for the
subsystems. External reward (for reaching a final goal) is used
to measure the quality of subgoal combinations: good subgoals
survive, others are discarded. Again the internal reward for the
subsystems should not be called intrinsic reward, as it is totally
driven and justified byexternalreward.

F. Evolution of Reward Functions as an Orthogonal Issue

Essentially the same argument holds for very similar meth-
ods that search a space of reward functions until they find one
that helps a given RL method to achieve more reward more
quickly, e.g., [46], [108]. Such methods are like the subgoal
evolvers [118] of Section V-E which also evolve or search for
useful reward functions. The results of this search should not
be called intrinsic reward functions, since once more the only
thing that counts here is theexternal reward; the rest is just
implementation details of the external reward maximizer.

But didn’t humans evolve to have such an intrinsic reward
function? Sure, they did, but now it is there, and now it
is independent of external reward, otherwise it wouldn’t be
intrinsic reward, by definition. Scientific papers on intrinsic
reward should start from there. It is a different issue to analyze
how and why evolution or another search processinvented
intrinsic rewards to facilitate satisfaction ofexternal goals
(such as survival).

VI. H OW THE THEORY EXPLAINS ART, SCIENCE, HUMOR

How does the prediction progress drive / compression
progress drive explainhumor? Consider the following state-
ment:Biological organisms are driven by the “Four Big F’s”:
Feeding, Fighting, Fleeing, Mating.Some subjective observers
who read this for the first time think it is funny. Why? As
the eyes are sequentially scanning the text the brain receives a
complex visual input stream. The latter is subjectively partially
compressible as it relates to the observer’s previous knowledge
about letters and words and their semantics. That is, given
the reader’s current knowledge and current compressor, the
raw data can be encoded by fewer bits than required to store
random data of the same size. But the punch line after the
last comma is unexpected for those who expected another
“F”. Initially this failed expectation results in sub-optimal
data compression—storage of expected events does not cost
anything, but deviations from predictions require extra bits
to encode them. The compressor, however, does not stay the
same forever: within a short time interval its learning algorithm
kicks in and improves the performance on the data seen so far,
by discovering the non-random, non-arbitrary and therefore
compressible pattern relating the punch line to previous text
and to the observer’s previous elaborate, predictive knowledge
about the “Four Big F’s.” This prior knowledge helps to
compress the whole history including the punch line a bit
better than before, which momentarily saves a few bits of
storage, that is, there is quick learning progress, that is,fun.
The number of saved bits (or a similar measure of learning
progress) becomes the observer’s intrinsic reward, possibly

strong enough to motivate him to read on in search for more
reward through additional yet unknown patterns.

While most previous attempts at explaining humor (e. g.,
[58]) also focus on the element of surprise, they lack the
essential concept ofnovel pattern detectionmeasured by
compressionprogressdue to learning. This progress is zero
whenever the unexpected is just random noise, and thus no
fun at all. Applications of the new theory of humor can be
found in recent videos [95].

How does the theory informally explain the motivation
to create or perceiveart and music [76], [75], [85], [92],
[97], [96], [94]? For example, why are some melodies more
interesting or aesthetically rewarding than others? Not the one
the listener (composer) just heard (played) twenty times ina
row. It became too subjectively predictable in the process.Nor
the weird one with completely unfamiliar rhythm and tonality.
It seems too irregular and contain too much arbitrariness
and subjective noise. The observer (creator) of the data is
interested in melodies that are unfamiliar enough to contain
somewhat unexpected harmonies or beats etc., but familiar
enough to allow for quickly recognizing the presence of
a new learnable regularity or compressibility in the sound
stream: a novel pattern! Sure, it will get boring over time,
but not yet. All of this perfectly fits the principle: The current
compressor of the observer or data creator tries to compress
his history of acoustic and other inputs where possible. The
action selector tries to find history-influencing actions such
that the continually growing historic data allows for improving
the compressor’s performance. The interesting or aesthetically
rewarding musical and other subsequences are precisely those
with previously unknown yet learnable types of regularities,
because they lead to compressor improvements. The boring
patterns are those that are either already perfectly known or
arbitrary or random, or whose structure seems too hard to
understand.

Similar statements not only hold for other dynamic art
including film and dance (take into account the compressibility
of action sequences), but also for “static” art such as painting
and sculpture, created through action sequences of the artist,
and perceived as dynamic spatio-temporal patterns through
active attention shifts of the observer. When not occupied with
optimizingexternalreward, artists and observers of art are just
following their compression progress drive!

The previous computer programs discussed in Section III
already incorporated (approximations of) the basic creativity
principle. But do they really deserve to be viewed as rudi-
mentary artists and scientists? The patterns they create are
novel with respect to their own limited predictors and prior
knowledge, but not necessarily relative to the knowledge of
sophisticated adults. The main difference to human artists/
scientists, however, may be only quantitative by nature, not
qualitative:
• The unknown learning algorithms of human predictors /
compressors are presumably still better suited to real world
data. Recall, however, that there already existuniversal,
mathematically optimal (but not necessarily practically fea-
sible) prediction and compression algorithms (Section II-D;
[32], [98]), and that ongoing research is continually pro-
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ducing better and betterpractical prediction & compression
methods, waiting to be plugged into the creativity framework.

• Humans may have superior reinforcement learning algo-
rithms for maximizing rewards generated through compres-
sion improvements achieved by their predictors. Recall,
however, that there already existuniversal,mathematically
optimal(but not necessarily practically feasible) reward opti-
mizing algorithms (Section II-G; [32], [98]), and that ongoing
research is continually producing better and betterpractical
reinforcement learning methods, also waiting to be plugged
into the creativity principle.

• Renowned human artists and scientists have had decades
of training experiences involving a multitude of high-
dimensional sensory inputs and motoric outputs, while our
systems so far only had a few hours with very low-
dimensional experiences in limited artificial worlds. This
quantitative gap, however, will narrow as IM researchers are
scaling up their systems.

• Human brains still have vastly more raw computational
power and storage capacity than the best artificial computers.
Note, however, that this statement is unlikely to remain true
for more than a few decades - currently each decade brings
a hardware speed-up factor of roughly 100-1000.

Current computational limitations of artificial artists donot
prevent us from already using the basic principle in human-
computer interaction to create art appreciable by humans—see
example applications in references [76], [85], [92], [97],[96],
[94].

How does the theory explain the nature ofinductive sci-
ences such as physics? If the history of the entire uni-
verse were computable, and there is no evidence against
this possibility [88], then its simplest explanation wouldbe
the shortest program that computes it. Unfortunately thereis
no general way of finding the shortest program computing
any given data [45]. Therefore physicists have traditionally
proceeded incrementally, analyzing just a small aspect of the
world at any given time, trying to find simple laws that allow
for describing their limited observations better than the best
previously known law, essentially trying to find a program that
compresses the observed data better than the best previously
known program. An unusually large compression breakthrough
deserves the namediscovery. For example, Newton’s law of
gravity can be formulated as a short piece of code which
allows for substantially compressing many observation se-
quences involving falling apples and other objects. Although
its predictive power is limited—for example, it does not
explain quantum fluctuations of apple atoms—it still allows
for greatly reducing the number of bits required to encode
the data stream, by assigning short codes to events that are
predictable with high probability [31] under the assumption
that the law holds. Einstein’s general relativity theory yields
additional compression progress as it compactly explains many
previously unexplained deviations from Newton’s predictions.
Most physicists believe there is still room for further advances,
and this is what is driving them to invent new experiments
unveiling novel, previously unpublished patterns [97], [96],
[94]. When not occupied with optimizingexternal reward,

physicists are also just following their compression progress
drive!

VII. C ONCLUDING REMARKS & OUTLOOK

To build a creative agent that never stops generating non-
trivial & novel & surprising data, we need two learning
modules: (1) an adaptive predictor or compressor or model
of the growing data history as the agent is interacting with
its environment, and (2) a general reinforcement learner. The
learning progressof (1) is the fun or intrinsic reward of (2).
That is, (2) is motivated to invent things that (1) does not yet
know but can easily learn.

While purely curious & creative behaviors aim at maxi-
mizing expected fun or surprise through the creation of novel
patterns, the relevance of all behaviors with respect to pre-
wired or external goals is measured by (delayed) external
reward. Recent work has led to the first RL machines that
are universal and optimal in various very general senses [32],
[81], [98]—see Section II-G. Such machines can in theory
find out by themselves whether curiosity and creativity are
useful or useless in a given environment, and learn to behave
accordingly. In realistic settings, however, external rewards
are extremely rare, and one cannot expect quick progress of
this type, not even by optimal machines. But typically one
can learn lots of useful behaviors even in absence of external
rewards: unsupervised behaviors that just lead to predictable
or compressible results and thus reflect the regularities inthe
environment, e. g., repeatable patterns in the world’s reactions
to certain action sequences. In this paper the assumption isthat
a bias towards exploring previously unknown environmental
regularities isa priori good in the real world as we know
it, and should be inserted into practical Artificial General
Intelligences (AGIs), whose goal-directed learning will profit
from this bias, in the sense that behaviors leading to exter-
nal reward can often be quickly composed / derived from
previously learnt, purely curiosity-driven behaviors. Wedid
not worry about the undeniable possibility that curiosity and
creativity can actually be harmful and “kill the cat”, assuming
the environment is “benign enough.” Based on experience with
the real world it may be argued that this assumption is realistic.
The resulting explorative bias greatly facilitates the search for
goal-directed behaviors in environments where the acquisition
of external reward has indeed a lot to do with easily learnable
environmental regularities.

It may be possible to formally quantify this bias towards
novel patterns in form of a mixture-based prior [110], [45],
[81], [32], a weighted sum of probability distributions on
sequences of actions and resulting inputs, and derive precise
conditions for improved expected external reward intake. In-
trinsic reward may be viewed as analogous to aregularizer in
supervised learning, where the prior distribution on possible
hypotheses greatly influences the most probable interpretation
of the data in a Bayesian framework [8] (for example, the
well-known synapse decay term of neural networks is a
consequence of a Gaussian prior with zero mean for each
synapse). Note, however, that there is a difference to traditional
regularizers witha priori fixed relative weights (also known
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as hyper-parameters): intrinsic reward for learning progress
eventually vanishes in environments where after some time
nothing new can be learnt any more; that is, the intrinsic
reward eventually becomes negligible where the sources of
external reward don’t run dry as well (e.g., no daily food
no more). Following Section VI, some of the AGIs based
on the creativity principle will become scientists, artists, or
comedians.
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1(2):177–193, 2009.

[99] J. Schmidhuber. Artificial scientists & artists based on the formal theory
of creativity. In M. Hutter et al., editor,Artificial General Intelligence.
Springer, 2010.

[100] J. Schmidhuber, A. Graves, F. J. Gomez, and S. Hochreiter. How to
Learn Programs with Artificial Recurrent Neural Networks. Invited by
Cambridge University Press, 2010. In preparation.

[101] J. Schmidhuber and S. Heil. Sequential neural text compression.IEEE
Transactions on Neural Networks, 7(1):142–146, 1996.

[102] J. Schmidhuber and R. Wahnsiedler. Planning simple trajectories
using neural subgoal generators. In J. A. Meyer, H. L. Roitblat, and
S. W. Wilson, editors,Proc. of the 2nd International Conference on
Simulation of Adaptive Behavior, pages 196–202. MIT Press, 1992.

[103] J. Schmidhuber, J. Zhao, and M. Wiering. Shifting inductive bias with
success-story algorithm, adaptive Levin search, and incremental self-
improvement.Machine Learning, 28:105–130, 1997.

[104] H. P. Schwefel. Numerische Optimierung von Computer-Modellen.
Dissertation, 1974. Published 1977 by Birkhäuser, Basel.
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