
energies

Article

Stress-Testing MQTT Brokers: A Comparative Analysis of
Performance Measurements

Biswajeeban Mishra 1,*,† , Biswaranjan Mishra 2 and Attila Kertesz 1,†

����������
�������

Citation: Mishra, B.; Mishra, B.;

Kertesz, A. Stress-Testing MQTT

Brokers: A Comparative Analysis of

Performance Measurements. Energies

2021, 14, 5817.

https://doi.org/10.3390/en14185817

Academic Editors: Tihana Galinac

Grbac and Georgios Christoforidis

Received: 11 August 2021

Accepted: 10 September 2021

Published: 14 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Software Engineering, University of Szeged, 6720 Szeged, Hungary; keratt@inf.u-szeged.hu
2 Wind River Systems International, 19/1, Vittal Mallya Road, 1st Floor, Bengaluru 560001, India;

biswaranjan.mishra@live.com
* Correspondence: mishra@inf.u-szeged.hu
† These authors contributed equally to this work.

Abstract: Presently, Internet of Things (IoT) protocols are at the heart of Machine-to-Machine (M2M)
communication. Irrespective of the radio technologies used for deploying an IoT/M2M network,
all independent data generated by IoT devices (sensors and actuators) rely heavily on the special
messaging protocols used for M2M communication in IoT applications. As the demand for IoT
services is growing, the need for reduced power consumption of IoT devices and services is also
growing to ensure a sustainable environment for future generations. The Message-Queuing Telemetry
Transport or in short MQTT is a widely used IoT protocol. It is a low-resource-consuming messaging
solution based on the publish–subscribe type communication model. This paper aims to assess
the performance of several MQTT broker implementations (also known as MQTT servers) using
stress testing, and to analyze their relationship with system design. The evaluation of the brokers is
performed by a realistic test scenario, and the analysis of the test results is done with three different
metrics: CPU usage, latency, and message rate. As the main contribution of this work, we analyzed
six MQTT brokers (Mosquitto, Active-MQ, Hivemq, Bevywise, VerneMQ, and EMQ X) in detail, and
classified them using their main properties. Our results showed that Mosquitto outperforms the
other considered solutions in most metrics; however, ActiveMQ is the best performing one in terms
of scalability due to its multi-threaded implementation, while Bevywise has promising results for
resource-constrained scenarios.

Keywords: Internet of Things; messaging protocol; MQTT; MQTT brokers; performance evaluation;
stress testing

1. Introduction

In recent times, as the cost of sensors and actuators is continuing to fall, the number
of Internet of Things (IoT) devices is rapidly growing and becoming part of our lives.
As a result, the IoT footprint is significantly noticeable everywhere. It is hard to find any
industry that has not been revolutionized with the advent of this promising technology.
A recent report [1] states that there would be around 125 billion IoT devices connected
to the Internet by 2030. IoT networks use several radio technologies such as WLAN,
WPAN, etc., for communication at a lower layer. Regardless of the radio technology
used, to create an M2M network, the end device or machine (IoT device) must make their
data accessible through the Internet [2,3]. IoT devices are usually resource-constrained.
It means that they operate with limited computation, memory, storage, energy storage
(battery), and networking capabilities [4,5]. Hence, the efficiency of M2M communica-
tions largely depends on the underlying special messaging protocols designed for M2M
communication in IoT applications. MQTT (Message-Queuing Telemetry Transport) [6],
CoAP (Constrained Application Protocol), AMQP (Advanced Message-Queuing Protocol),
and HTTP (Hypertext Transfer Protocol) are the few to name in the M2M Communication
Protocol segment [4,5]. Among these IoT Protocols, MQTT is a free, simple to deploy,

Energies 2021, 14, 5817. https://doi.org/10.3390/en14185817 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-2624-1905
https://orcid.org/0000-0003-0833-5748
https://orcid.org/0000-0002-9457-2928
https://doi.org/10.3390/en14185817
https://doi.org/10.3390/en14185817
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14185817
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14185817?type=check_update&version=2

Energies 2021, 14, 5817 2 of 20

lightweight, and energy-efficient application layer protocol. These properties make MQTT
an ideal communication solution for IoT systems [7–10]. As Green Computing primarily
focuses on implementing energy-saving technologies that help reduce the greenhouse
impact on the environment [11], ideal design and implementation of MQTT-based solu-
tions can be immensely helpful in realizing the goals of a sustainable future. MQTT is a
topic-based publish/subscribe type protocol that runs on TCP/IP using ports 1883 and
8883 for non-encrypted and encrypted communication, respectively. There are two types of
network entities in the MQTT protocol: a message broker, also known as the server, and the
client, which actually play publisher and subscriber roles). A publisher sends messages
with a topic head to a server, then it delivers the messages to the subscribers listening that
topic [8]. Currently, we have many MQTT-based broker (server) distributions available in
the market from various vendors.

Our main goal in this research is to answer the following question: How does a
scalable or a non-scalable broker implementation perform in a single-core and multi-core
CPU testbed, when it is put under stress-conditions? The main contribution of this work
is analyzing and comparing the performance of considered scalable and non-scalable
brokers based on the following metrics: maximum message rate, average process CPU
usage in percentage at maximum message rate, normalized message rate at 100% CPU
usage, and average latency. This work is a revised and significantly extended version of
the short paper [12]. It highlights the relationship of a MQTT broker system design and its
performance under stress-testing. The MQTT protocol has many application areas such as
healthcare, logistics, smart city services etc. [13]. Each application area has a different set
of MQTT-based requirements. In this experiment, we are not evaluating MQTT brokers
against those specific set of requirements rather we are conducting a system test of MQTT
servers to analyze their message handling capability, the robustness of implementation,
and efficient resource use potential. To achieve this, we send a high volume of short
messages (low payload) with a limited set of publishers and subscribers.

The remainder of this paper is organized as follows. Section 2 introduces background
of this study. Section 3 summarizes some notable related works. Section 4 describes the
test environment, evaluation parameters and test results in detail. In Section 5, we discuss
the evaluation results, and finally, with Section 6 we conclude the paper.

2. Background
2.1. Basics of a Publish/Subscribe Messaging Service

These are the terms we often come across while working with a publish/subscribe or
Pub/Sub System. “Message” refers to the data that flows through the system. “Topic” is an
object that presents a message stream. “Publisher” creates messages and sends them to the
messaging service on a particular topic head. The act of sending messages to the messaging
service is called “Publishing”. A publisher is also referred to as a Producer. “Subscriber”,
otherwise known as “Consumer”, receives the messages on a specific subscription. “Sub-
scription” refers to an interest in receiving messages on a particular topic. In a Pub/Sub
system, producers of the event-driven data are usually decoupled from the consumers of
the data [14,15]: meaning publishers and subscribers are independent components that
share information by publishing event-driven messages and by subscribing to event-driven
messages of choice [14]. The central component of this system is called an event broker. It
keeps a record of all the subscriptions. A publisher usually sends a message to the event
broker on a specific topic head and then the event broker sends it to all the subscribers
that previously subscribed to that topic. The event broker basically acts as a postmaster to
match, notify, and deliver events to the corresponding subscribers. Figure 1 describes the
overall architecture of a Pub/Sub system [16].

Energies 2021, 14, 5817 3 of 20

Figure 1. Overall architecture of a Pub/Sub system.

2.2. Overview of MQTT Architecture

MQTT is a simple, lightweight, TCP/IP-based Pub/Sub type messaging protocol [11].
MQTT supports one-to-many, two-way, asynchronous communication [7]. Having a binary
header makes MQTT a lightweight protocol to carry telemetry data transmission between
constraint devices [17] over unreliable networks [18]. It has three
constituent components:

• A Publisher or Producer (An MQTT client).
• A Broker (An MQTT server).
• A Consumer or Subscriber (An MQTT client).

In MQTT, a client that is responsible for opening a network connection, creating
and sending messages to the server is called a publisher. The subscriber is a client that
subscribes to a topic of interest in advance to receive messages. It can also unsubscribe
from a topic to delete a request for application messages and close network connection to
the server [19] as needed. The server, otherwise known as a broker, acts as a post office
between the publisher and the subscriber. It receives messages from the publishers and
forwards them to all the subscribers. Figure 2 presents a basic model of MQTT [20].

Figure 2. MQTT Components: Publisher, MQTT Broker, and Subscriber.

Any application message carried by the MQTT protocol across the network to its
destination contains a quality of service (QoS), payload data, a topic name [21], and a
collection of properties. An application message can carry a payload up to the max-
imum size of 256 MB [3]. A topic is usually a label attached to all messages. Topic
names are UTF-8 encoded strings and can be freely chosen [21]. Topic names can rep-
resent a multilevel hierarchy of information using a forward slash (/). For example,
this topic name can represent a humidity sensor in the kitchen room: “home/ sen-
sor/humidity/kitchen”. We can have other topic names for other sensors that are present in

Energies 2021, 14, 5817 4 of 20

other rooms: “home/sensor/temperature/livingroom”, and
“home/ sensor/temperature/kitchen” etc. Figure 3 shows an example of a topic tree.

Figure 3. Topic tree hierarchy.

MQTT offers three types of QoS (Quality of Service) levels to send messages to an
MQTT broker or a client. It ranges from 0 to 2, see Figure 4. By using QoS level 0: the
sender does not store the message, and the received does not acknowledge its receiving.
This method requires only one message and once the message is sent to the broker by
the client it is deleted from the message queue. Therefore QoS 0 nullifies the chances of
duplicate messages, which is why it is also known as the “fire and forget” method. It
provides a minimal and most unreliable message transmission level that offers the fastest
delivery effort. Using QoS 1, the delivery of a message is guaranteed (at least once, but the
message may be sent more than once , if necessary). This method needs two messages.
Here, the sender sends a message and waits to receive an acknowledgment (PUBACK
message) to receive. If it receives an acknowledgment from the client then it deletes the
message from the outward-bound queue. In case, it does not receive a PUBACK message,
it resends the message with the duplicate flag (DUP flag) enabled. The QoS 2 level setting
guarantees exactly-once delivery of a message. This is the slowest of all the levels and needs
four messages. In this level, the sender sends a message and waits for an acknowledgment
(PUBREC message). The receiver also sends a PUBREC message. If the sender of the
message fails to receive an acknowledgment (PUBREC), it sends the message again with
the DUP flag enabled. Upon receiving the acknowledgment message PUBREC, the sender
transmits the message release message (PUBREL). If the receiver does not receive the
PUBREL message it resends the PUBREC message. Once the receiver receives the PUBREL
message, It forwards the message to all the subscribing clients. Thereafter the receiver
sends a publish complete (PUBCOMP) message. In case the sender does not receive the
PUBCOMP message, it resends the PUBREL message. Once the sending client receives the
PUBCOMP message, the transmission process is marked as completed and the message
can be deleted from the outbound queue [13].

2.3. Scalability and Types of MQTT Broker Implementations

System scalability can be defined as the ability to expand to meet increasing work-
load [22]. Scalability enhancement of any message broker depends on two prime factors;
the first one is to enhance a single system performance, while the second one is to use
clustering. In case of an MQTT message broker deployment, the performance of an MQTT
broker using a single system can be improved using event-driven I/O mechanism for the
CPU cores during dispatching TCP connections from MQTT clients [21]. The other way
of achieving better scalability is clustering, when an MQTT broker cluster is used in a
distributed fashion. In this case it seems to be a single logical broker for the user, but in
reality, multiple physical MQTT brokers share the same workload [23].

Energies 2021, 14, 5817 5 of 20

Figure 4. Different QoS levels.

There are two types of message broker implementations: single or fixed number of
threads non-scalable broker implementations and multi-thread or multi-process scalable
broker implementations that can efficiently use all available resources in a system [16].
For example, Mosquitto and Bevywise MQTT Route are non-scalable broker implementa-
tions that cannot use all system resources, and broker implementations such as ActiveMQ,
HiveMQ, VerneMQ, and EMQ X are scalable [23]. It is be noted that Mosquitto provides
a “bridge mode” that can be used to form a cluster of message brokers. In this mode,
multiple cores are used according to the number of Mosquitto processes running in the
cluster. However, the drawback of this mode is the communication overhead between the
processes inside the cluster results in the poorer overall performance of the system [16].

2.4. Evaluating the Performance of a Messaging Service

Google in its “Cloud Pub/Sub” product guide [14] nicely narrates the parameters to
judge the performance of any publish/subscribe type messaging service. The performance
of a publish/subscribe type messaging services can be measured in three factors “latency”,
“scalability”, and “availability”. However, these three aspects frequently contradict each
other and involve compromises on one to boost the other two. The following paragraphs
put some light on these terms in a pub/sub type messaging service prospective.

Energies 2021, 14, 5817 6 of 20

2.4.1. Latency

Latency is a time-based metric for evaluating the performance of a system. A good
messaging service must optimize and reduce latency, wherever it is possible. The latency
metric can be defined for a publish/subscribe service in the following: it denotes the time
the service takes to acknowledge a sent message, or the time the service takes to send a
published message to its subscriber. Latency can also be defined as the time taken by a
messaging service to send a message from the publisher to the subscriber [14].

2.4.2. Scalability

Scalability usually refers to the ability to scale up with the increase in load. A robust
scalable service can handle the increased load without an observable change in latency or
availability. One can define load in a publish/subscribe type service by referring to the
number of topics, publishers, subscribers, subscriptions or messages, as well as to the size
of messages or the payload, and to the rate of sent messages, called throughput [14].

2.4.3. Availability

Systems can fail. It has many reasons. It may occur due to a human error while
building or deploying software or configurations or it may be caused due to hardware
failures such as disk drives malfunctioning or network connectivity issues. Sometimes
a sudden increase in load results in resource shortage and thus causes a system failure.
When we say “sound availability of a system”—it usually refers to the ability of the
system to handle a different type of failure in such a manner that is unobservable at the
customer’s end [14].

3. Related Work

There have been numerous works around the performance evaluation of various IoT
communication protocols. In this section, we briefly summarize some of the notable works
published in recent years. Table 1 presents a comparison of related works according to
their main contributions.

Table 1. Comparison of related works according to their main contributions.

Paper Publication Year Aim

Thangavel, Dinesh, et al. [24] 2014 testing performance of MQTT and CoAP protocols
in terms of end-to-end delay and bandwidth consumption

Chen, Y., & Kunz, T. [25] 2016 evaluating performance of MQTT, CoAP, DDS and a
custom UDP-based protocol in a medical test environment

Mishra, B. [18] 2018 comparing performance of MQTT brokers under basic
domestic use condition

Pham, M. L., Nguyen, et al. [26] 2019 introduced an MQTT benchmarking tool named
MQTTBrokerBench.

Bertrand-Martinez, Eddas, et al. [27] 2020 proposed a methodology for the classification
and evaluation of IoT brokers.

Koziolek H, Grüner S, et al. [28] 2020 compared performance of three distributed MQTT brokers

Our work 2020
comparing and analyzing performance of
MQTT brokers by them under stress test, both scalable and
non-scalable brokers taken into consideration

In 2014, Thangavel, Dinesh, et al. [24], conducted multiple experiments using a com-
mon middleware, to test MQTT and CoAP protocols, bandwidth consumption and end-
to-end delay. Their results showed that using CoAP messages showed higher delay and
packet loss rates than using MQTT messages.

Energies 2021, 14, 5817 7 of 20

Chen, Y., and Kunz, T., in 2016 [25], evaluated in a medical test environment MQTT,
CoAP, and DDS (Data Distribution Service) performance, compared to a custom, UDP-
based protocol. They used a network emulator, and their findings showed that DDS
consumes higher bandwidth than MQTT, but it performs significantly better for data
latency and reliability. DDS and MQTT, being TCP-based protocols, produced zero packet
loss under degraded network conditions. The custom UDP and UDP-based CoAP showed
significant data loss under similar test conditions.

Mishra, B., in 2019 [18], investigated the performance of several public and locally
deployed MQTT brokers, in terms of subscription throughput. The performance of MQTT
brokers was analyzed under normal and stressed conditions. The test results showed that
there is an insignificant difference between the performance of several MQTT brokers in
normal deployment cases, but the performance of various MQTT brokers significantly
varied from each other under the stressed conditions.

Pham, M. L., Nguyen, et al. in 2019 [26], introduced an MQTT benchmarking tool
named MQTTBrokerBench. The tool is useful to analyze the performance of MQTT brokers
by manually specifying load saturation points for the brokers.

Bertrand-Martinez, Eddas, et al. [27], in 2020, proposed a method for the classification
and evaluation of IoT brokers. They performed qualitative evaluation using the ISO/IEC
25,000 (SQuaRE) set of standards and the Jain’s process for performance evaluation. The au-
thors have validated the feasibility of their methodological approach with a case study on
12 different open source brokers.

Koziolek H, Grüner S, et al. [28], in 2020 compared three distributed MQTT brokers in
terms of scalability, performance, extensibility, resilience, usability, and security. In their
edge gateway, the cluster-based test scenario showed that EMQX had the best perfor-
mance, while HiveMQ showed no message loss, while VerneMQ managed to deliver up to
10 K msg/s, respectively. The authors also proposed six decision points to be taken into
account by software architects for deploying MQTT brokers.

Referring back to this work of ours, we compare both scalable and non-scalable MQTT
brokers and analyze the performance of six MQTT brokers in terms of message processing
rate at 100% process/system CPU use, normalized message rate at unrestricted resource
(CPU) usage, and average latency. We also analyze how each broker performs in a single-
core and multi-core processor environment. For a better analysis of the performance of
MQTT brokers, we conducted this experiment in a low-end local testing environment as
well as in a comparatively high-end cloud-based testing environment. This experiment
deals with an important problem of the relation of MQTT broker system design and
its performance under stress testing. Although It is a well-known fact that modular
systems better perform on scalable and elastic requirements, but we lack experiment-based
information about that relationship. Therefore, results obtained in this study would be
immensely helpful to developers of real-time systems and services.

4. Local and Cloud Test Environment Settings and Benchmarking Results

This section presents the setup of our realistic testbed in detail. To conduct stress tests
on various MQTT brokers, we have built two emulated IoT environments:

• one is a local testing environment, and
• the other one is a cloud-based testing environment.

The local testbed was created using an Intel NUC (NUC7i5BNB), a Toshiba Satellite
B40-A laptop PC, and an Ideapad 330-15ARR laptop PC. To diminish network bottleneck is-
sues, the devices were connected through a Gigabit Ethernet switch. The Intel NUC7i5BNB
was configured as a server running an MQTT broker, the Ideapad 330-15ARR laptop was
used as a publisher machine, and the Toshiba, Satellite B40-A was used as a subscriber
machine. The Ideapad 330-15ARR (publisher machine), with 8 hardware threads, is capable
enough of firing messages at higher rates. Table 2 presents a summary of the specifications
of the hardware and software used to build our local evaluation environment.

Energies 2021, 14, 5817 8 of 20

Table 2. Hardware and software details of the local testing environment.

HW/SW Details Publisher MQTT Broker Subscriber

CPU 64 bit AMD Ryzen 5
2500 U @3.6 GHz

64 bit An Intel(R)
Core(TM) i5-7260 U
CPU @2.20 GHz

Intel(R) Pentium(R)
CPU 2020 M
@2.40 GHz

Memory

8 GB, SODIMM DDR4
Synchronous Unbuffered
(Unregistered)
2400 MHz (0.4 ns)

8 GB, SODIMM DDR4
Synchronous Unbuffered
(Unregistered)
2400 MHz (0.4 ns)

2 GB, SODIMM DDR3
Synchronous
1600 MHz (0.6 ns)

Network

1 Gbit/s,
RTL8111/8168/8411
PCI Express Gigabit
Ethernet Controller

1 Gbit/s,
Intel Ethernet
Connection (4) I219-V

AR8161
Gigabit Ethernet,
speed = 1 Gbit/s

HDD

WDC WD10SPZX-24Z
(5400 rpm), 1 TB,
connected over
SATA 6gbps interface

WDC WD5000LPCX-2
(5400 rpm),

500 TB,
connected over
SATA 6gbps interface

HGST HTS545050A7

OS, Kernel Elementary OS 5.1.4,
Kernel 4.15.0-74-generic

Elementary OS 5.1.4,
Kernel 4.15.0-74-generic

Linux Mint 19,
Kernel 4.15.0-20-generic

The cloud testbed was configured on Google Cloud Platform (GCP) [29]. We created
three c2-standard-8 virtual machine (VM) instances that have 8 vCPUs, 32 GB of memory,
and 30 GB local SSD each to act as publisher, subscriber, and server, respectively. All
the VM instances are placed within a Virtual Private Cloud (VPC) Network subnet using
Google’s high-performing premium tier network service [30]. Table 3 presents a summary
of the specifications of our cloud test environment [31].

Table 3. Hardware and software details of the cloud testing environment.

HW/SW Details Publisher/Subscriber/Server

Machine type c2-standard-8 [31]

CPU 8 vCPUs

Memory 32 GB

Disk size local 30 GB SSD

Disk type Standard persistent disk

Network Tier Premium

OS, Kernel 18.04.1-Ubuntu SMP x86_64 GNU/Linux, 5.4.0-1038-gcp

In this experiment we used a higher message publishing rate with multiple publishers,
and the overall CPU usage we experienced stayed below 70% on the publisher machine.
On the other hand, we also noticed that CPU usage on the subscriber side did not exceed
80%. We experienced no swap usage at the subscriber, broker or publisher machines during
the evaluation.

For this experiment, we have developed a Paho Python MQTT library [32]-based
benchmarking tool called MQTT Blaster [33] from scratch to send messages at very
high rates to the MQTT server from the publisher machine. The subscriber machine
used the “mosquitto_sub” command line subscribers, which is an MQTT client for sub-
scribing to topics and printing the received messages. During this empirical evaluation,
the “mosquitto_sub” output was redirected to the null device (/dev/null). In this way

Energies 2021, 14, 5817 9 of 20

we could ensure that resources are not consumed to write messages, and each subscriber
was configured to subscribe to the available published topics. In this way we made the
server reaching its threshold at reasonable message publishing rates. Figure 5 presents the
evaluation environment topology.

Figure 5. The evaluation environment topology.

4.1. Evaluation Scenario

This experiment was conducted on four widely used scalable and two non-scalable
MQTT broker implementations. The other criteria for the selection of brokers were ease of
availability and configurability. The tested brokers are: “Mosquitto 1.4.15” [34], “Bevywise
MQTT Route 2.0” [35], “ActiveMQ 5.15.8” [36], “HiveMQ CE 2020.2” [37], “VerneMQ
1.10.2” [38] and “EMQ X 4.0.8” [39]. Out of these MQTT brokers, Mosquitto and Bevywise
MQTT Route are non-scalable implementations, and the rest are scalable in nature. It is to
be mentioned that Mosquitto is a single-threaded implementation, and Bevywise MQTT
Route uses a dual thread approach, in which the first thread acts as an initiator of the
second that processes messages. Table 4 presents an overview of the brokers.

Table 4. A bird’s-eye view of the tested brokers.

MQTT Brokers Mosquitto Bevywise MQTT Route ActiveMQ HiveMQ CE VerneMQ EMQ X

OpenSource Yes No Yes Yes Yes Yes

Written in (prime
programming lan-
guage)

C C, Python Java Java Erlang Erlang

MQTT Version 3.1.1, 5.0 3.x, 5.0 3.1 3.x, 5.1 3.x, 5.0 3.1.1

QoS Support 0, 1, 2 0, 1, 2 0, 1, 2 0, 1, 2 0, 1, 2 0, 1, 2

Operating System
Support

Linux, Mac,
Windows

Windows, Windows
server, Linux, Mac and
Raspberry Pi

Windows, Unix/
Linux/Cygwin

Linux, Mac,
Windows

Linux,
Mac OS X

Linux, Mac,
Windows, BSD

4.1.1. Evaluation Conditions

All the brokers were configured to run on these test conditions, see Table 5, with-
out authentication method enabled and RETAIN flag set to true. It is to be noted that with
increase in the number of subscribers or the number of topics or message rate results in an
increased load on the broker. In our test environment, with the combination of 3 different
publishing threads (1 topic per thread) and 15 subscribers, we were able to push the broker
to 100% process usage and limit the CPU usage on publisher and subscriber machines
below 70% and 80% respectively.

Energies 2021, 14, 5817 10 of 20

Table 5. Test conditions for the experiment.

Number of topics: 3
(via 3 publisher threads)

Number of publishers: 3

Number of subscribers: 15 (subscribing to all 3 topics)

Payload: 64 bytes
Topic names used to publish large number of messages: ‘topic/0’, ‘topic/1’, ‘topic/2’

Topic used to calculate latency: ‘topic/latency’

4.1.2. Latency Calculations

Latency is defined as the time taken by a system to transmit a message from a publisher
to a subscriber [13]. This experiment tries to simulate a realistic scenario of a client trying to
publish a message, when the broker is overloaded with many messages on various topics
from different clients. To achieve this, a different topic was used to send messages for
latency calculations from the topics on which messages were fired to overload the system.
It is noteworthy that an ideal broker implementation should always be able to efficiently
process messages irrespective of the rate of messages fired to it.

4.1.3. Message Payload

Using the MQTT protocol, all messages are transferred using a single telemetry
parameter [9]. Baring this in mind, we used a small payload size not to overload the
server memory. Concerning the message payload size setting, we used 64 bytes for the
entire testing.

4.2. Benchmarking Results

We separate our experimental results into three distinct segments for better interpre-
tation and understanding. We had taken 3 samples for each QoS in each segment and
the best result with the maximum rate of message delivery, and zero message drop was
considered for comparison. The three different categories are:

1. Projected message processing rates of non-scalable brokers at 100% process CPU
usage. See Tables 6 and 7.

2. Projected message processing rates of scalable brokers at 100% system CPU usage.
See Tables 8 and 9.

3. Latency comparison of all the brokers (both scalable and non-scalable brokers)—see
Tables 10 and 11.

Energies 2021, 14, 5817 11 of 20

Table 6. Projected message processing rates of non-scalable brokers at 100% process CPU usage (local test results). Mosquitto and Bevywise are fixed thread/single thread broker
implementations. They cannot scale up to use all cores available in the system.

QoS QoS0 QoS1 QoS2

Observations/Broker (non-scalable) Mosquitto
1.4.15

Bevywise
MQTT Route 2.0

Mosquitto
1.4.15

Bevywise
MQTT Route 2.0

Mosquitto
1.4.15

Bevywise
MQTT Route 2.0

Peak message rate (msgs/sec) 32,016.00 32,839.00 9488.00 3542.49 6585.00 2649.00

Average process CPU usage(%)
at above message rate 84.29 97.93 89.00 95.79 96.73 98.20

Projected message processing rate
at 100% process CPU usage 37,983.15 33,533.14 10,660.67 3698.18 6807.61 2697.56

Average latency (in ms) 1.65 1.13 0.74 0.96 1.38 1.53

Table 7. Projected message processing rates of non-scalable brokers at 100% process CPU usage (cloud test results). Mosquitto and Bevywise are fixed thread/single thread broker
implementations. They cannot scale up to use all the cores available in the system.

QoS QoS0 QoS1 QoS2

Observations/ Broker (non-scalable) Mosquitto 2.0.7
Bevywise MQTT Route
3.1- build 0221-017 Mosquitto 2.0.7

Bevywise MQTT Route
3.1- build 0221-017 Mosquitto 2.0.7

Bevywise MQTT Route
3.1- build 0221-017

Peak message rate (msgs/sec) 17,946.00 7815.00 8927.00 4861.00 4423.00 3688.00

Average process CPU usage(%)
at above message rate

85.12 100.31 84.70 100.34 83.24 97.91

Projected message processing rate
at 100% process CPU usage.

21083.18 7790.85 10539.55 4844.53 5313.55 3766.72

Average latency (in ms) 0.47 0.89 0.50 0.69 0.98 1.30

Energies 2021, 14, 5817 12 of 20

Table 8. Projected message processing rates of scalable brokers at 100% system CPU usage (local test results). All the brokers listed in this table are scalable in nature and can use all cores
available in the system.

QoS QoS0 QoS1 QoS2

Observations/Broker (scalable) ActiveMQ
5.15.8

HiveMQ
CE 2020.2

VerneMQ
1.10.2

EMQ X
4.0.8

ActiveMQ
5.15.8

HiveMQ
CE 2020.2

VerneMQ
1.10.2

EMQ X
4.0.8

ActiveMQ
5.15.8

HiveMQ
CE 2020.2

VerneMQ
1.10.2

EMQ X
4.0.8

Peak message rate (msgs/sec) 39,479.00 8748.00 11,760.00 18,034.00 12,873.00 708.00 4655.00 4633.41 10,508.00 579.00 2614.00 2627.31

Average system CPU usage(%)
at above message rate

91.78 97.93 96.51 98.71 92.56 63.44 97.34 96.82 90.91 64.28 96.79 95.54

Projected message processing rate
at 100% system CPU usage

43,014.82 8932.91 12,185.27 18,269.68 13,907.74 1116.02 4782.21 4785.59 11,558.68 900.75 2700.69 2749.96

Average latency (in ms) 2.33 7.69 1.53 1.34 1.38 58.48 1.98 0.87 2.14 3.66 2.89 3.68

Table 9. Projected message processing rates of scalable brokers at 100% system CPU usage (cloud test results). All the brokers listed in this table are scalable in nature and can use all cores
available in the system.

QoS QoS0 QoS1 QoS2

Observations/ Broker

(non-scalable) ActiveMQ 5.16.1 HiveMQ
CE 2020.2 VerneMQ 1.11.0 EMQX Broker

4.2.7 ActiveMQ 5.16.1 HiveMQ
CE 2020.2 VerneMQ 1.11.0 EMQX Broker

4.2.7 ActiveMQ 5.16.1 HiveMQ
CE 2020.2 VerneMQ 1.11.0 EMQX Broker

4.2.7

Peak message rate
(msgs/sec) 41,697.00 13,338.00 14,332.00 17,838.00 9663.00 8188.00 2622.00 11,054.00 6196.00 4887.00 2240.00 7342

Average process CPU usage
(%) at above message rate

82.77 80.09 88.29 76.83 60.73 70.43 82.16 79.28 59.97 68.32 72.70 76.84

Projected message rate
at 100% system CPU usage.

50,376.95 16,653.76 16,232.87 23,217.49 15,911.41 11,625.73 3191.33 13,942.99 10,331.83 7153.10 3081.16 9554.92

Average latency (in ms) 0.83 2.07 0.79 0.59 1.09 4.48 0.90 1.35 0.64 3.38 1.10 1.22

Energies 2021, 14, 5817 13 of 20

Table 10. Latency comparison of all the brokers in local test environment.

Brokers
Average Latency in ms.

QoS0 QoS1 QoS2

Mosquitto 1.4.15 1.65 0.74 1.38

Bevywise
MQTT Route 2.0 1.13 0.96 1.53

ActiveMQ 5.15.8 2.33 1.38 2.14

HiveMQ CE
2020.2 7.69 58.48 3.66

VerneMQ
1.10.2 1.53 1.98 2.89

EMQ X 4.0.8 1.34 0.87 3.68

Table 11. Latency comparison of all the brokers in the cloud evaluation environment.

Brokers
Average Latency in ms.

QoS0 QoS1 QoS2

Mosquitto 2.0.7 0.47 0.50 0.98

Bevywise MQTT Route
3.1- build 0221-017 0.89 0.69 1.30

ActiveMQ 5.16.1 0.83 1.09 0.64

HiveMQ CE 2020.2 2.07 4.48 3.38

VerneMQ 1.11.0 0.79 0.90 1.10

EMQ X 4.2.7 0.59 1.35 1.22

5. Discussion
5.1. Local Evaluation Results

In Table 6, we present a comparative performance analysis of non-scalable MQTT bro-
kers. For non-scalable brokers such as Mosquitto and Bevywise MQTT Route, the projected
message rate at 100% CPU usage (Rns) can be calculated with the below Equation (1):

Rns =
Peak Message rate

Average Process CPU Usage
∗ 100 (1)

Average Process CPU Usage: The CPU usage of a process (process CPU usage) is a
measure of how much (in percentage) of the CPU’s cycles are committed to the process
that is currently running. Average process CPU use indicates the observed average of CPU
use by the process during the experiment [40].

In this segment, Mosquitto 1.4.15 beats Bevywise MQTT Route 2.0 in terms of projected
message processing rate at approximately 100% process CPU usage across all the QoS
categories. See Figure 6.

Energies 2021, 14, 5817 14 of 20

Figure 6. Projected message rate (msgs/sec) of non-scalable brokers at 1̃00% process CPU usage in
the local evaluation environment.

It is to be mentioned that being non-scalable Mosquitto and Bevywise MQTT Route
cannot make use of all available cores on the system. In terms of average latency (round trip
time), we found that at QoS0 Bevywise MQTT Route 2.0 leads the race, while in all other
QoS categories (QoS1 and QoS2), Mosquitto 1.4.15 occupies the top spot. See Figure 7.

Figure 7. A comparison of average latency of all scalable and non-scalable brokers in the local
evaluation environment.

Table 8 shows the benchmarking results of scalable broker implementations. In this
comparison, ActiveMQ 5.15.8 beats all other broker implementations (HiveMQ CE 2020.2,
VerneMQ 1.10.2, EMQ X 4.0.8) in terms of “average latency” across all QoS categories. See
Figure 7.

Energies 2021, 14, 5817 15 of 20

In a multi-core or distributed environment, a scalable broker implementation would
scale up to use the maximum system resources available. Hence, the CPU use data sum
up the CPU use by the process group consisting of all sub-processes/threads. The process
group CPU use for scalable brokers can reach up to 100 × n% (where n = the number
of cores available in the system). Here, in this test environment as n = 4, the CPU use
percent for the deployed brokers could go up to 400%. This comparison gives a fair idea of
how various brokers scale up and perform when they are deployed on a multi-core setup.
For scalable brokers, Equation (2) calculates the projected message rate at the unrestricted
resource (CPU) (Rs):

Rs =
Peak Message rate

Average System CPU Usage
∗ 100 (2)

Average System CPU Usage: The System CPU usage refers to how the available
processors whether real or virtual in a System are being used. Average System CPU usage
refers to the observed average system CPU use by the process during the experiment [41].

At QoS0, in terms of the projected message processing rate at 100% system CPU
usage, EMQ X leads the race, at QoS1 and QoS2 ActiveMQ seems to be showing the best
performance among all the brokers put to test; see Figure 8.

Figure 8. Projected message rate (msgs/sec) of scalable brokers at 1̃00% system CPU usage in the
local evaluation environment.

Sorting all the MQTT brokers according to the message processing capability with full
system resource use (from highest to lowest: left to right)—At QoS0: ActiveMQ, Mosquitto,
Bevywise MQTT Route, EMQ X, VerneMQ, HiveMQ CE. At QoS1: ActiveMQ, Mosquitto,
EMQ X, VerneMQ, Bevywise MQTT Route, HiveMQ CE. At QoS2: ActiveMQ, Mosquitto,
VerneMQ, Bevywise MQTT Route, HiveMQ CE.

Table 7 shows a side-by-side comparison of both scalable and non-scalable brokers in
terms of average latency recorded. Sorting all the tested brokers according to the average
latency recorded (from lowest to highest: left to right)—At QoS0: Bevywise MQTT Route,
EMQ X, VerneMQ, Mosquitto, ActiveMQ, HiveMQ CE. At QoS1: Mosquitto, EMQ X,
Bevywise MQTT Route, ActiveMQ, VerneMQ, HiveMQ CE. At QoS2: EMQ X, Mosquitto,
Bevywise MQTT Route, HiveMQ CE, VerneMQ, ActiveMQ.

Energies 2021, 14, 5817 16 of 20

5.2. Cloud-Based Evaluation Results

In this subsection, we discuss the performance of MQTT brokers on the Google Cloud
test environment. It is to be mentioned that the stress testing on MQTT brokers in the cloud
environment is done with the latest versions of the brokers available. Table 7 lists average
latency and projected message processing rates of non-scalable brokers at 100% CPU usage.
In terms of projected message processing rate and average latency recorded Mosquitto
2.0.7 beats Bevywise MQTT 3.1- build 0221-01; see Figures 9 and 10.

Figure 9. Projected message rate (msgs/sec) of non-scalable brokers at 1̃00% process CPU usage in
the cloud evaluation environment.

Figure 10. A comparison of average latency of all scalable and non-scalable brokers in the cloud
evaluation environment.

Table 9 shows the benchmarking results of scalable broker implementations. In this
comparison, ActiveMQ 5.16.1 beats all other broker implementations (HiiveMQ CE 2020.2,
VerneMQ 1.11.0, EMQX 4.2.7) in terms of the projected message processing rate at 100%

Energies 2021, 14, 5817 17 of 20

system CPU usage across all QoS categories. Concerning the average latency recorded,
EMQX 4.2.7 leads the race at QoS0, VerneMQ 1.11.0 tops at QoS1, and ActiveMQ 5.16.1
leads at QoS2 among all the scalable brokers put to test. See Figures 10 and 11.

Figure 11. Projected message rate (msgs/sec) of scalable brokers at 1̃00% system CPU usage in cloud
evaluation environment.

Sorting all the tested MQTT brokers according to the message processing capability
with full system resource use (from highest to lowest: left to right)—At QoS0: ActiveMQ,
EMQX, Mosquitto, HiveMQ, VerneMQ, Bevywise MQTT Route. At QoS1: ActiveMQ,
EMQX, HiveMQ, Mosquitto, Bevywise MQTT Route, VerneMQ. At QoS2: ActiveMQ,
EMQX, HiveMQ, Mosquitto, Bevywise MQTT Route, VerneMQ.

Table 10 shows a side-by-side comparison of both scalable and non-scalable brokers in
terms of average latency recorded. Sorting all the tested brokers according to the average
latency recorded (from lowest to highest: left to right)—At QoS0: Mosquitto, EMQ X,
VerneMQ, Bevywise MQTT Route, HiveMQ. At QoS1: Mosquitto, Bevywise MQTT Route,
VerneMQ, EMQX, HiveMQ. At QoS2: ActiveMQ, Mosquitto, VerneMQ, EMQ X, Bevywise
MQTT Route, HiveMQ.

To summarize our evaluation experiments, we can state that ActiveMQ scales well
to beat all other brokers’ performance on our local testbed (using a 4 core/8GB machine),
and cloud testbed (on an 8 vCPU/32GB machine). It is the best scalable broker imple-
mentation we have tested so far. EMQ X, VerneMQ, HiveMQ CE also perform reasonably
well in our test environment. On the other hand, if the hardware is resource-constrained
(CPU/Memory/IO/Performance) or has a lower specification, than the local testbed used
in this experiment, then Mosquitto or Bevywise MQTT Route can be taken as better choices
over other scalable brokers. Another important point to observe is that when we moved
from a local testing environment to a cloud testing environment with stronger hardware
specification in terms of number of cores and memory, significant improvement in latency
is shown by each of the brokers.

6. Conclusions

M2M protocols are the foundation of Internet of Things communication. There are
many M2M communication protocols such as MQTT, CoAP, AMQP, and HTTP, are avail-
able. In this work, we reviewed and evaluated the performance of six MQTT brokers in
terms of message processing rate at 100% process group CPU use, normalized message rate

Energies 2021, 14, 5817 18 of 20

at unrestricted resource (CPU) usage, and average latency by putting the brokers under
stress test.

Our results showed that broker implementations such as Mosquitto and Bevywise
could not scale up automatically to make use of the available resources, yet they performed
better than other scalable brokers on a resource-constrained environment. Mosquitto was
the best performing broker in the first evaluation scenario, followed by Bevywise. However,
in a distributed/multi-core environment, ActiveMQ performed the best. It scaled well,
and showed better results than all other scalable brokers we put to test. The findings of
this research highlight the significance of the relationship between MQTT broker system
design and its performance under stress testing. It aims to fill the gap of lack of test-driven
information on the topic, and helps real-time system developers to a great extent in building
and deploying smart IoT solutions.

In the future, we would like to continue our evaluations in a more heterogeneous
cloud deployment, and further study the scalability aspects of bridged MQTT broker im-
plementations.

Author Contributions: Conceptualization, A.K., B.M. (Biswajeeban Mishra) and B.M.
(Biswaranjan Mishra); methodology, A.K., B.M. (Biswajeeban Mishra) and B.M. (Biswaranjan Mishra);
software, B.M. (Biswajeeban Mishra) and B.M. (Biswaranjan Mishra); validation, A.K., B.M.
(Biswajeeban Mishra) and B.M. (Biswaranjan Mishra); formal analysis, A.K., B.M.
(Biswajeeban Mishra) and B.M. (Biswaranjan Mishra); investigation, B.M. (Biswajeeban Mishra)
and B.M. (Biswaranjan Mishra); resources, B.M. (Biswajeeban Mishra) and B.M. (Biswaranjan
Mishra); data curation, B.M. (Biswajeeban Mishra) and B.M. (Biswaranjan Mishra); writing—original
draft preparation, B.M. (Biswajeeban Mishra); writing—review and editing, A.K., B.M. (Biswajee-
ban Mishra); visualization, B.M. (Biswajeeban Mishra); supervision, A.K.; project administration,
A.K.; funding acquisition, A.K. All authors have read and agreed to the published version of
the manuscript.

Funding: The research leading to these results was supported by the Hungarian Government
and the European Regional Development Fund under the grant number GINOP-2.3.2-15-2016-
00037 (“Internet of Living Things”). The experiments presented in this paper are based upon work
supported by Google Cloud.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The source code of our benchmarking tool called MQTT Blaster we
used for the analysis is available on GitHub [29]. The measurement data we gathered during the
evaluation are shared in the tables and figures of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. IHS Markit, Number of Connected IoT Devices Will Surge to 125 Billion by 2030. Available online: https://technology.ihs.com/

596542/ (accessed on 6 August 2020).
2. Karagiannis, V.; Chatzimisios, P.; Vazquez-Gallego, F.; Alonso-Zarate, J. A survey on application layer protocols for the internetof

things. Trans. IoT Cloud Comput. 2015, 3, 11–17.
3. Naik, N. Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP. In Proceedings of the 2017

IEEE International Systems Engineering Symposium (ISSE), Vienna, Austria, 11–13 October 2017. [CrossRef]
4. Bandyopadhyay, S.; Bhattacharyya, A. Lightweight Internet protocols for web enablement of sensors using constrained gateway

devices. In Proceedings of the 2013 International Conference on Computing, Networking and Communications (ICNC), San
Diego, CA, USA, 28–31 January 2013. [CrossRef]

5. MQTT v5.0. Available online: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html (accessed on 6 August 2020).
6. Messaging Technologies for the Industrial Internet and the Internet Of Things. Available online: https://www.smartindustry.

com/assets/Uploads/SI-WP-Prismtech-Messaging-Tech.pdf (accessed on 6 August 2020).
7. Ngoc Son Han. Semantic Service Provisioning for 6LoWPAN: Powering Internet of Things Applications on Web. Other [cs.OH].

Institut National des Télécommunications, Paris. 2015. Available online: https://tel.archives-ouvertes.fr/tel-01217185/document
(accessed on 6 August 2020).

https://technology.ihs.com/596542/
https://technology.ihs.com/596542/
http://doi.org/10.1109/syseng.2017.8088251
http://dx.doi.org/10.1109/iccnc.2013.6504105
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://www.smartindustry.com/assets/Uploads/SI-WP-Prismtech-Messaging-Tech.pdf
https://www.smartindustry.com/assets/Uploads/SI-WP-Prismtech-Messaging-Tech.pdf
https://tel.archives-ouvertes.fr/tel-01217185/document

Energies 2021, 14, 5817 19 of 20

8. Kawaguchi, R.; Bandai, M. Edge Based MQTT Broker Architecture for Geographical IoT Applications. In Proceedings of the 2020
International Conference on Information Networking (ICOIN), Barcelona, Spain, 7–10 January 2020. [CrossRef]

9. Sasaki, Y.; Yokotani, T. Performance Evaluation of MQTT as a Communication Protocol for IoT and Prototyping. Adv. Technol.
Innov. 2019, 4, 21–29.

10. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications. IEEE Commun. Surv. Tutorials 2015, 17, 2347–2376. [CrossRef]

11. Farhan, L.; Kharel, R.; Kaiwartya, O.; Hammoudeh, M.; Adebisi, B. Towards green computing for Internet of things: Energy
oriented path and message scheduling approach. Sustain. Cities Soc. 2018, 38, 195–204. [CrossRef]

12. Mishra, B.; Mishra, B. Evaluating and Analyzing MQTT Brokers with stress testing. In Proceedings of the 12th Conference
of PHD Students in Computer Science, CSCS 2020, Szeged, Hungary, 24–26 June 2020; pp. 32–35. Available online: http:
//www.inf.u-szeged.hu/~cscs/pdf/cscs2020.pdf (accessed on 6 January 2021).

13. Mishra, B.; Kertesz, A. The use of MQTT in M2M and IoT systems: A survey. IEEE Access 2020, 8, 201071–201086. [CrossRef]
14. Pub/Sub: A Google-Scale Messaging Service|Google Cloud. Available online: https://cloud.google.com/pubsub/architecture

(accessed on 6 August 2020).
15. Liubai, C.W.; Zhenzhu, F. Bayesian Network Based Behavior Prediction Model for Intelligent Location Based Services.

In Proceedings of the 2006 2nd IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications,
Beijing, China, 13–16 August 2006; pp. 1–6. [CrossRef]

16. Jutadhamakorn, P.; Pillavas, T.; Visoottiviseth, V.; Takano, R.; Haga, J.; Kobayashi, D. A scalable and low-cost MQTT broker
clustering system. In Proceedings of the 2017 2nd International Conference on Information Technology (INCIT), Nakhonpathom,
Thailand, 2–3 November 2017. [CrossRef]

17. MQTT and CoAP, IoT Protocols|The Eclipse Foundation. Available online: https://www.eclipse.org/community/eclipse_
newsletter/2014/february/article2.php (accessed on 6 June 2020).

18. Mishra, B. Performance evaluation of MQTT broker servers. In Proceedings of the International Conference on Computational Science
and Its Applications; Springer: Cham, Switzerland, 2018; pp. 599–609.

19. Eugster, P.T.; Felber, P.A.; Guerraoui, R.; Kermarrec, A.-M. The Many Faces of Publish/Subscribe. ACM Comput. Surv. 2003, 35,
114–131. [CrossRef]

20. Lee, S.; Kim, H.; Hong, D.; Ju, H. Correlation analysis of MQTT loss and delay according to QoS level. In Proceedings of
the International Conference on Information Networking 2013 (ICOIN), Bangkok, Thailand, 28–30 January 2013; pp. 714–717.
[CrossRef]

21. Pipatsakulroj, W.; Visoottiviseth, V.; Takano, R. muMQ: A lightweight and scalable MQTT broker. In Proceedings of the 2017 IEEE
International Symposium on Local and Metropolitan Area Networks (LANMAN), Osaka, Japan, 12–14 June 2017. [CrossRef]

22. Bondi, A. B. Characteristics of scalability and their impact on performance. In Proceedings of the 2nd International Worksop on
Software and Performance, Ottawa, ON, Canada, 1 September 2000.

23. Detti, A.; Funari, L.; Blefari-Melazzi, N. Sub-linear Scalability of MQTT Clusters in Topic-based Publish-subscribe Applications.
IEEE Trans. Netw. Serv. Manag. 2020, 17, 1954–1968. [CrossRef]

24. Thangavel, D.; Ma, X.; Valera, A.; Tan, H.X.; Tan, C.K. Performance evaluation of MQTT and CoAP via a common middleware.
In Proceedings of the 2014 IEEE Ninth International Conference on iNtelligent Sensors, Sensor Networks and Information
Processing (ISSNIP), Singapore, 21–24 April 2014; IEEE: Piscataway, NJ, USA, 2014

25. Chen, Y.; Kunz, T. Performance evaluation of IoT protocols under a constrained wireless access network. In Proceedings of the
2016 International Conference on Selected Topics in Mobile & Wireless Networking (MoWNeT), Cairo, Egypt, 11–13 April 2016;
IEEE: Piscataway, NJ, USA.2016

26. Pham, M.L.; Nguyen, T.T.; Tran, M.D. A Benchmarking Tool for Elastic MQTT Brokers in IoT Applications. Int. J. Inf. Commun.
Sci. 2019, 4, 70–78.

27. Bertr, -Martinez, E.; Dias, Feio, P.; Brito, Nascimento, V.D.; Kon, F.; Abelém, A. Classification and evaluation of IoT brokers: A
methodology. Int. J. Netw. Manag. 2020, 31, e2115.

28. Koziolek, H.; Grüner, S.; Rückert, J. A Comparison of MQTT Brokers for Distributed IoT Edge Computing; Lecture Notes in Computer
Science; Springer: Cham, Switzerland, 2020; Volume 12292.

29. Documentation|Google Cloud. Available online: https://cloud.google.com/docs (accessed on 24 March 2021).
30. Using Network Service Tiers|Google Cloud. Available online: https://cloud.google.com/network-tiers/docs/using-network-

service-tiers (accessed on 24 March 2021).
31. Machine Types|Compute Engine Documentation|Google Cloud. Available online: https://cloud.google.com/com\protect\

discretionary{\char\hyphenchar\font}{}{}pute/docs/machine-types (accessed on 24 March 2021).
32. paho-mqtt PyPI. Available online: https://pypi.org/project/paho-mqtt/ (accessed on 10 August 2020).
33. MQTT Blaster. Available online: https://github.com/MQTTBlaster/MQTTBlaster (accessed on 28 June 2021).
34. Mosquitto Man Page|Eclipse Mosquitto. Available online: https://mosquitto.org/man/mosquitto-8.html (accessed on 10

August 2020).
35. MQTT Broker Developer Documentation-MQTT Broker-Bevywise. Available online: https://www.bevywise.com/mqtt-broker/

developer-guide.html (accessed on 10 August 2020).
36. ActiveMQ Classic. Available online: https://activemq.apache.org/components/classic/ (accessed on 10 August 2020).

http://dx.doi.org/10.1109/icoin48656.2020.9016528
http://dx.doi.org/10.1109/COMST.2015.2444095
http://dx.doi.org/10.1016/j.scs.2017.12.018
http://www.inf.u-szeged.hu/~cscs/pdf/cscs2020.pdf
http://www.inf.u-szeged.hu/~cscs/pdf/cscs2020.pdf
http://dx.doi.org/10.1109/ACCESS.2020.3035849
https://cloud.google.com/pubsub/architecture
http://dx.doi.org/10.1109/MESA.2006.296936
http://dx.doi.org/10.1109/incit.2017.8257870
https://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php
https://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1109/ICOIN.2013.6496715
http://dx.doi.org/10.1109/lanman.2017.7972165
http://dx.doi.org/10.1109/TNSM.2020.3003535
https://cloud.google.com/docs
https://cloud.google.com/network-tiers/docs/using-network-service-tiers
https://cloud.google.com/network-tiers/docs/using-network-service-tiers
https://cloud.google.com/com\protect \discretionary {\char \hyphenchar \font }{}{}pute/docs/machine-types
https://cloud.google.com/com\protect \discretionary {\char \hyphenchar \font }{}{}pute/docs/machine-types
https://pypi.org/project/paho-mqtt/
https://github.com/MQTTBlaster/MQTTBlaster
https://mosquitto.org/man/mosquitto-8.html
https://www.bevywise.com/mqtt-broker/developer-guide.html
https://www.bevywise.com/mqtt-broker/developer-guide.html
https://activemq.apache.org/components/classic/

Energies 2021, 14, 5817 20 of 20

37. HiveMQ Community Edition 2020.3 Is Released. Available online: https://www.hivemq.com/blog/hivemq-ce-2020-3-released/
(accessed on 10 August 2020).

38. Getting Started—VerneMQ. Available online: https://docs.vernemq.com/getting-started (accessed on 10 August 2020).
39. MQTT Broker for IoT in 5G Era|EMQ. Available online: https://www.EMQX.io/ (accessed on 10 August 2020).
40. Understanding CPU Usage in Linux|OpsDash. Available online: https://www.opsdash.com/blog/cpu-usage-linux.html/

(accessed on 3 September 2021).
41. System CPU Utilization Workspace|IBM. Available online: https://www.ibm.com/docs/en/om-zos/5.6.0?topic=workspaces-

system-cpu-utilization-workspace/ (accessed on 3 September 2021).

https://www.hivemq.com/blog/hivemq-ce-2020-3-released/
https://docs.vernemq.com/getting-started
https://www.EMQX.io/
https://www.opsdash.com/blog/cpu-usage-linux.html/
https://www.ibm.com/docs/en/om-zos/5.6.0?topic=workspaces-system-cpu-utilization-workspace/
https://www.ibm.com/docs/en/om-zos/5.6.0?topic=workspaces-system-cpu-utilization-workspace/

	Introduction
	Background
	Basics of a Publish/Subscribe Messaging Service
	Overview of MQTT Architecture
	Scalability and Types of MQTT Broker Implementations
	Evaluating the Performance of a Messaging Service
	Latency
	Scalability
	Availability

	Related Work
	Local and Cloud Test Environment Settings and Benchmarking Results
	Evaluation Scenario
	Evaluation Conditions
	Latency Calculations
	Message Payload

	Benchmarking Results

	Discussion
	Local Evaluation Results
	Cloud-Based Evaluation Results

	Conclusions
	References

