
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Unreproducible builds: Time to fix, causes, and
correlation with external ecosystem factors

Rahul Bajaj · Eduardo Fernandes · Bram
Adams · Ahmed E. Hassan

Received: date / Accepted: date

Abstract Context: A reproducible build occurs if, given the same source code,
build instructions, and build environment (i.e., installed build dependencies), com-
piling a software project repeatedly generates the same build artifacts. Repro-
ducible builds are essential to identify tampering attempts responsible for supply
chain attacks, with most of the research on reproducible builds considering build
reproducibility as a project-specific issue. In contrast, modern software projects
are part of a larger ecosystem and depend on dozens of other projects, which begs
the question of to what extent build reproducibility of a project is the responsi-
bility of that project or perhaps something forced on it. Objective: This empirical
study aims at analyzing reproducible and unreproducible builds in Linux Distri-
butions to systematically investigate the process of making builds reproducible
in open-source distributions. Our study targets build performed on 11,528 and
597,066 Arch Linux and Debian packages, respectively. Method: We compute the
likelihood of unreproducible packages becoming reproducible (and vice versa) and
identify the root causes behind unreproducible builds. Finally, we compute the
correlation between the reproducibility status of packages and three ecosystem
factors (i.e., factors outside the control of a given package). Results: Arch Linux
packages become reproducible a median of 30 days quicker when compared to De-
bian packages, while Debian packages remain reproducible for a median of 68 days
longer once fixed. We identified a taxonomy of 16 root causes of unreproducible
builds and found that the build reproducibility status of a package across different

R. Bajaj
School of Computing, Queen’s University, Kingston, ON, Canada
E-mail: r.bajaj@queensu.ca

E. Fernandes
School of Computing, Queen’s University, Kingston, ON, Canada
E-mail: eduardo.fernandes@queensu.ca

B. Adams
School of Computing, Queen’s University, Kingston, ON, Canada
E-mail: bram.adams@queensu.ca

A.E. Hassan
School of Computing, Queen’s University, Kingston, ON, Canada
E-mail: hassan@queensu.ca

2 Rahul Bajaj et al.

hardware architectures is statistically significantly different (strong effect size). At
the same time, the status also differs between versions of a package for different
distributions and depends on the build reproducibility of a package’s build de-
pendencies, albeit with weaker effect sizes. Conclusions: The ecosystem a project
belongs to, plays an important role w.r.t. the project’s build reproducibility. Since
these are outside a developer’s control, future work on (fixing) unreproducible
builds should consider these ecosystem influences.

Keywords Reproducible build · Supply chain attack · Build environment ·
Software package · Release management · Software security

1 Introduction

Most open-source software (OSS) projects are distributed as part of larger software
ecosystems, such as Linux distributions. Such distributions ship OSS projects in
the form of packages [19,45] that other developers can build on (reuse) [2]. Popular
Linux distributions such as Arch Linux and Debian [2] consist of thousands of
inter-dependent packages, thereby forming a software supply chain.

Despite its benefits, ensuring the security of a supply chain while reusing pack-
ages may be particularly challenging. Even with the best effort of developers in
following well-established security principles, just by accidentally updating to a
tampered version of a dependency (either manually or automatically), any soft-
ware project can be prone to supply chain attacks. For instance, recent supply
chain attacks such as SolarWinds [22] and Mimecast1 have affected thousands of
users and caused significant financial losses. Supply chain attacks have been ob-
served even in the context of significant software organizations, such as Apple,
PayPal, and Shopify.2

As a means to increase the integrity of supply chains in terms of security, the
software industry has been gradually adopting reproducible builds processes [17].
A reproducible build occurs if given the same source code, build instructions,
and build environment (i.e., installed build dependencies), compiling a software
project, bit-by-bit generates the same build artifacts. Reproducible builds are ex-
pected to prevent supply chain attacks by ensuring that the binaries provided to
the software customers are equivalent to the binaries of other customers and the
binaries provided by the developers.

The Reproducible Builds initiative is an initiative that promotes the impor-
tance and best practices of reproducible builds, as well as provides tools to auto-
matically scan a given project in terms of the reproducibility of its build process.
This initiative has been adopted by 33 OSS projects3 such as Arch Linux and
Debian. For example, in the case of Debian, builds are performed on each source
package4 in two distinct build environments5 with similar source code, build in-
structions, and build environment. Next, the build artifacts (i.e., software bina-
ries) generated from each independent build are compared bit by bit. If the build

1 https://www.mimecast.com/blog/important-update-from-mimecast/
2 https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
3 https://reproducible-builds.org/who/projects/
4 A source package like glibc, when built can produce multiple binary packages like libc6

and libc6-dev.
5 https://tests.reproducible-builds.org/debian/index_variations.html

https://www.mimecast.com/blog/important-update-from-mimecast/
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://reproducible-builds.org/who/projects/
https://tests.reproducible-builds.org/debian/index_variations.html

Title Suppressed Due to Excessive Length 3

artifacts are equivalent, the reproducibility status of the package is said to be re-
producible. Otherwise, the status is said to be unreproducible, and the package
might be prone to supply chain attacks.

Full reproducibility for a project is a challenging endeavor, possibly impacted
by many factors, such as the nature of release cycles [26]. In cases where release cy-
cles are longer, it becomes harder to publish patches and address issues promptly.
On the other hand, shorter release cycles, although facilitating faster development,
can potentially lead to regressions. The focus within such time-constrained scenar-
ios is primarily directed towards adding or enhancing software features, often at
the expense of ensuring reproducible builds [20]. It is evident that stakeholders pri-
oritize the swift development and expansion of functionalities, with reproducibility
taking a backseat.

Nevertheless, empirical knowledge on how much time it takes for an unrepro-
ducible package to become reproducible (and vice versa) is nonexistent. Addition-
ally, the current knowledge on possible root causes of unreproducible builds [17]
is based on anecdotal experience rather than empirical evidence. Finally, a central
unanswered question is the extent to which the build reproducibility of a package
is only the project’s “fault” or whether a build process can be forced to be un-
reproducible due to other projects in the ecosystem. For instance, if a project’s
build depends on another project whose build is unreproducible, could the former
build still be reproducible? We refer to this and other ecosystem factors as external
factors because they are external to the project’s own community.

In this paper, we introduce a mixed-methods empirical study [11] aimed at
analyzing reproducible and unreproducible builds in OSS projects. We carefully
conducted quantitative and qualitative analyses targeting the Arch Linux6 and
Debian7 distributions, which share a considerable number of common packages.
Overall, we analyze 11,528 Arch Linux packages and 597,066 Debian packages in
three phases. First, we perform survival analysis [3] to investigate the probabil-
ity of unreproducible packages becoming reproducible (and vice versa) over time.
Second, we build on an initial list of six root causes developed by Lamb et al. [17]
to perform a manual labeling [41] of 396 issues related to reproducible builds to
expand our current knowledge on possible root causes of unreproducible builds,
as well as to compute their frequency and impact across multiple packages. Our
goal is to assist developers in reasoning about the root causes before fixing un-
reproducible packages. Third, we compute the χ2 correlation [33] between three
external ecosystem factors and the reproducibility status of packages: architecture,
build dependencies, and distributions.

As a complement, we also re-execute our three analyses mentioned above per
package domain (sections)8 in Debian to understand if the survival analysis, root
causes, and correlations vary depending on the domain to which a package belongs,
e.g., devel (development utilities) vs. math (mathematical computations). Inspired
by previous work [1], we manually classify each package domain as either system-
level, i.e., when a package domain covers essential functionalities of Debian, or
application-level, i.e., when a package domain covers user-facing applications and
utilities. We summarize below our study results and their implications.

6 https://reproducible.archlinux.org/
7 https://wiki.debian.org/ReproducibleBuilds
8 https://www.debian.org/doc/debian-policy/ch-archive.html#s-subsections

https://reproducible.archlinux.org/
https://wiki.debian.org/ReproducibleBuilds
https://www.debian.org/doc/debian-policy/ch-archive.html#s-subsections

4 Rahul Bajaj et al.

– The survival analysis reveals that initially unreproducible Arch Linux pack-
ages are fixed a median of 30 days quicker than Debian packages. On the other
hand, once packages became reproducible, Debian packages remained repro-
ducible for a median of 68 days longer when compared to Arch Linux packages.
In summary, developers need assistance to act quicker in fixing unreproducible
packages, thereby preventing supply chain attacks that might occur after the
packages are built unreproducible.

– The manual analysis expands an initial list of six root causes of unrepro-
ducible packages developed by Lamb et al. [17] to a taxonomy of 16 root causes.
Build Timestamp has the highest number of issues reported (155), while Build
Path is the most influential one (5,008 packages affected) – five times more
influential than the second one, i.e., Randomness (837 packages affected). The
fact that Build Timestamp is less of an issue than in the past [17,23] shows that
resolutions for that issue have had a positive impact, and that a wider range
of (possibly unsolved) build reproducibility issues should be expected in prac-
tice. Our taxonomy results have garnered interest from the reproducible builds
community, leading to their inclusion on the official website for reproducible
builds documentation.910

– The correlation analysis reveals that the reproducibility status of packages
depends strongly on the hardware architecture supported by the distribution.
Therefore, all packages must be built differently to run on specific hardware
architectures. Additionally, build reproducibility varies with external factors
like the build reproducibility of a package’s build dependencies (weak effect
size). Finally, the distribution on which builds are performed has a negligible
correlation with the reproducibility status of packages. This indicates that
developers should build packages on all distributions taken into consideration
to determine whether or not the package will build reproducibly.

– The domain-oriented analysis suggests that initially unreproducible pack-
ages of application-level package domains have a survival probability 12.9%
higher than packages of the system-level domains. However, system-level pack-
ages usually become unreproducible again quicker than application-level ones,
implying that they are more likely to be affected by supply chain attacks for
longer. Additionally, 18.46% of Debian packages are impacted by multiple root
causes, which might make these packages harder to fix. Overall, we suggest
that developers must prioritize packages from system-level domains. Remark-
ably, the devel domain significantly impacts the package reproducibility based
on the weak to strong correlation with all three external factors – hardware
architecture (strong), distribution (moderate) and build dependencies (weak).
Since packages in the devel domain consist of compilers and libraries, these
packages implement core functionalities of the system.

We organized the remainder of this paper as follows. Section 2 provides case
study data information for our work. Section 3 introduces the study methodology,
including the research questions and study steps. Sections 4, 5, and 6 presents our
study results for each research question. Section 7 discusses threats to the study’s
validity. Section 8 emphasizes the novelty of our study compared to the existing
literature on the subject matter. Section 9 concludes this paper and suggests future

9 https://reproducible-builds.org/docs/plans/
10 https://reproducible-builds.org/docs/env-variations/

https://reproducible-builds.org/docs/plans/
https://reproducible-builds.org/docs/env-variations/

Title Suppressed Due to Excessive Length 5

work. Finally, we provide the supplementary material11 of our study, including the
data collection, data processing and filtering scripts, and data spreadsheets.

2 Case Study Data

2.1 Selected Linux Distributions

Six Linux distributions adopted the Reproducible Builds initiative at the time of
data collection in October 2021: Alpine, Arch Linux, Debian, Fedora, FreeBSD,
and OpenSUSE. The Reproducible Builds 12 initiative publishes build data for
each distribution package that constitutes a project. Builds are triggered by Jenk-
ins servers13 and the build results are logged into a publicly available database.14

These results serve as a valuable resource for tracking the reproducibility status,
enabling the assessment of whether it is improving, worsening, or remaining un-
changed for the given project.1516

We captured the database on October 11, 2021, and all data was stored in
comma-separated values (CSV) format. However, only three of the six projects’
build data is publicly available: Alpine, Arch Linux, and Debian. Considering
that we aimed at performing survival analysis (see Section 3.2) for a two-year
time frame, we discarded Alpine because it had less than two years of build data
available.

Arch Linux and Debian employ a software package-based distribution model,
whereby software packages are synchronized only when a verified official version
is released upstream, not with every new upstream commit. These packages are
versioned over time and organized into multiple suites. In the case of Debian,
packages are organized in suites based on their production-level stability assess-
ment, e.g., development-phase or stable. The Experimental and Unstable suites
serve as testing grounds for new packages before they are deemed fit for the Sta-
ble suite. Tested packages are promoted to become part of the next stable release
series, which typically occurs periodically, e.g., every two years.17 On the other
hand, Arch Linux package are closely tied to software repositories that serve as
categories, each with its own purpose, e.g., the Core repository contains essential
packages for booting the operating system.18 Table 1 introduces the four Arch
Linux suites, i.e., Core, Community, Extra, and Multilib, and four Debian suites
– i.e., Experimental, Stable, Testing, and Unstable.

In the particular case of Arch Linux, each suite corresponds to a software
repository, as Arch Linux is not versioned in terms of major releases. Instead, each
package in the software repository is upgraded over time to the latest available

11 https://github.com/SAILResearch/replication-21-rahul_bajaj-reproducible_
builds-code
12 https://reproducible-builds.org/
13 https://jenkins.debian.net/userContent/about.html#_reproducible_builds_jobs
14 https://tests.reproducible-builds.org/reproducible.sql.xz
15 https://tests.reproducible-builds.org/debian/reproducible.html
16 https://tests.reproducible-builds.org/archlinux/archlinux.html
17 https://wiki.debian.org/DebianReleases?action=show&redirect=DebianRelease#
Introduction
18 https://wiki.archlinux.org/title/official_repositories

https://github.com/SAILResearch/replication-21-rahul_bajaj-reproducible_builds-code
https://github.com/SAILResearch/replication-21-rahul_bajaj-reproducible_builds-code
https://reproducible-builds.org/
https://jenkins.debian.net/userContent/about.html##_reproducible_builds_jobs
https://tests.reproducible-builds.org/reproducible.sql.xz
https://tests.reproducible-builds.org/debian/reproducible.html
https://tests.reproducible-builds.org/archlinux/archlinux.html
https://wiki.debian.org/DebianReleases?action=show&redirect=DebianRelease#Introduction
https://wiki.debian.org/DebianReleases?action=show&redirect=DebianRelease#Introduction
https://wiki.archlinux.org/title/official_repositories

6 Rahul Bajaj et al.

Table 1: Debian Releases and Suites

Distribution Suite Description Releases

Arch Linux

Core

Packages required for performing es-
sential tasks, e.g. booting Arch Linux,
building packages, and repairing file
systems.

N/A

Community

Packages created and maintained by
trusted users of the Arch Linux com-
munity. These packages might be pro-
moted to the Core repository.

N/A

Extra

Akin to the Experimental suite in De-
bian, the Extra repository consists of
packages that are currently not suit-
able for being placed in the core repos-
itory.

N/A

Multilib

The Multilib repository consists of
packages built on 32 bit architecture
but are also compatible with 64-bit
architecture.

N/A

Arch Full

Refers to the entirety of the Arch
Linux distribution, encompassing all
its main software repositories, i.e.,
Core, Extra, and Community.

N/A

Debian

Experimental
Packages that are not fit to become
Unstable.

experimental

Stable
Packages distributed to users. Each
major release receives a codename,
e.g. bullseye for Debian 11

bookworm (Debian 12)
bullseye (Debian 11).
buster (Debian 10)
stretch (Debian 9)

Testing
Packages in the process of becoming
Stable.

testing

Unstable

Packages on which active upstream
development contributions have been
made. Before becoming Stable, these
packages are submitted to Testing.

sid or unstable

version while the old version is removed from the repository. This release strategy
allows Arch Linux users to use the latest versions of packages available in the
repository. Unlike Arch Linux, Debian is versioned in significant releases that are
released periodically, e.g., every two years.19

In Debian, all packages undergoing active development changes are a part of
the Unstable suite, which is thoroughly tested before being promoted to the Stable
suite. The Unstable suite consists of a large number of packages (37,858 packages).
Testing is the only suite not analyzed in this paper because, as a transition phase
between Unstable and Stable, we lack build data for analysis due to its purpose
of testing the packages.

In the remainder of this paper, unless explicitly stated otherwise, our compar-
ison primarily focuses on Arch Full – representing the entirety of the Arch Linux
distribution, which includes the Core, Extra, and Community suites – and Debian’s
Unstable suite. Note that Arch Full excludes the Multilib packages, which are tai-
lored for 32-bit architecture, as our study is dedicated to packages developed for
the x86 64 architecture, a 64-bit system. This choice of comparison stems from the
commonalities between the two: both represent the most current, rolling-release
versions of their respective distributions. This ensures that we are comparing the

19 https://wiki.debian.org/DebianReleases

https://wiki.debian.org/DebianReleases

Title Suppressed Due to Excessive Length 7

most up-to-date and actively developed packages of these two influential Linux
ecosystems.

2.2 Build

Table 2 presents the number of packages studied for the different suites and hard-
ware architectures for the Arch Linux and Debian distributions. In the case of
Arch Linux, all the suites are built on the x86 64 architecture, while for Debian,
all suites are built on four hardware architectures: amd64, arm64, armf64, and i386.

Table 2: Number of Packages by Suite of each Linux Distribution

Distribution Architecture Suite Number of Packages

Arch Linux x86 64

Community 8,529
Extra 2,510
Multilib 280
Core 209

Debian

amd64

Unstable 37,858
Bullseye 33,172
Buster 30,547
Stretch 27,003
Bookworm 16,036
Experimental 8,118

arm64

Unstable 36,304
Bullseye 32,971
Buster 30,551
Stretch 25,514
Bookworm 14,465
Experimental 5,802

armhf

Unstable 37,323
Bullseye 33,032
Buster 30,518
Stretch 26,194
Bookworm 19,857
Experimental 7,045

i386

Unstable 36,940
Bullseye 32,780
Buster 30,538
Stretch 26,062
Bookworm 11,669
Experimental 6,777

The downloaded CSV file with the Reproducible Builds database consists of
18,356,214 rows of build data. Each row in the dataset represents the build result of
a particular package. Architecture, build timestamp, package name, suite and status
are key columns in the dataset. The Architecture column specifies the supported
hardware architecture on which a package is compiled.

The package name and suite columns refer to the package name and the release
cycle from which the packages belong. The build timestamp column presents the
time on which the build was performed. Finally, the status column has either of
these values: reproducible, failed to build from source (FTBFS), dependency wait
(depwait), failed to build reproducible (FTBR), error 404 (E404), and timeout.
We considered all statuses other than reproducible as unreproducible since the
package as a whole has a reproducibility issue.

8 Rahul Bajaj et al.

2.3 Build Dependency Data

Performing builds on software repositories is far from trivial, as it involves iden-
tifying and installing all the necessary build dependencies, such as compilers, in-
terpreters, and libraries. When available and used correctly [27], these build de-
pendencies allow for turning a package’s source code into the required software
binaries, packaged in the distribution’s package format. Problems with build de-
pendencies (e.g., if one or more are missing) can lead to a defective binary [25]. In
Debian, these dependencies are labeled as Build-Depends: in the control files.20.

To investigate build dependencies, we make use of the build depends column
in the all sources table of the Ultimate Debian Database (UDD) [30], which
mirrors the Build Depends: in the control files found in Debian’s source packages.
The UDD contains comprehensive information pertaining to all Debian source
packages, encompassing vital details such as package domain, package name, build
dependencies, binary packages produced, and maintainer information.

2.4 Package Domain Data

The Debian community has categorized its source packages according to their
domain (purpose).21 For instance, the devel domain refers to development utili-
ties, including compilers and libraries, while the games domain refers to libraries
that enable playing games for users. We obtain the package domain data from
the section column in the all sources table of the Ultimate Debian Database
(UDD) [30]. The all sources table identifies 42,086 unique source packages, which
are mapped to 59 package domains (excluding the non-free package domains) at
the time of collecting the data. Out of the 38,064 unique source packages that
are built to test for reproducibility only 956 (2.5%) unique packages identified in
Debian, lack package domain information assigned to them.

Considering the functionality that packages in a domain perform, we manu-
ally classified the 59 package domains as either system-level (i.e., packages related
to programming languages, development tools, and build systems, all of which
play indispensable roles in software development and system maintenance) or
application-level (i.e., packages catering to a wide array of end-user applications).
We performed this manual classification to identify packages requiring prioritized
fixes compared to other packages.

Table 3 presents 14 of the 59 package domains discussed throughout the pa-
per. The first column categorizes the package domains as either system-level or
application-level, while the second column lists the ID for each package domain
as presented on the Debian website.22 The third and fourth columns list and de-
scribe the purpose behind each package domain. Finally, the fifth column presents
some examples of packages by domain. Examples of system-level packages include
grub-core-boot-bin (admin domain), i.e., a boot loader for choosing which oper-
ating system to boot when multiple options are available, and 2ping (net domain),
which identifies established connections and determines the directional packet loss

20 https://www.debian.org/doc/debian-policy/ch-relationships.html#
s-sourcebinarydeps
21 https://www.debian.org/doc/debian-policy/ch-archive.html#s-subsections
22 https://packages.debian.org/unstable/

https://www.debian.org/doc/debian-policy/ch-relationships.html#s-sourcebinarydeps
https://www.debian.org/doc/debian-policy/ch-relationships.html#s-sourcebinarydeps
https://www.debian.org/doc/debian-policy/ch-archive.html#s-subsections
https://packages.debian.org/unstable/

Title Suppressed Due to Excessive Length 9

from the connection initiated. Examples of application-level packages are calc and
gnuplot (both from math domain), which are essential to perform tasks such as
complex mathematical computations and graph plotting the results, respectively.
Note that we do not have package domain information for Arch Linux, only for
Debian.

Table 3: Package Domains in Debian

Type ID Purpose
#Source
Packages

Examples of
Packages

S
y
st
e
m
-l
e
v
e
l

admin
Manage system resources, user ac-
counts, deployments, configurations,
and maintenance

653
adduser
cron
puppet

devel
Software development support: build
systems, compilers, environments,
and libraries

670
automake
autotools-dev
cmake

interpreter
Runtime libraries for programming
languages such as Python, Ruby and
Perl

147
erlang
pycurl
pyopenssl

net
Daemon and client utilities that en-
able the system to communicate with
the Internet

947
2ping
netstat-nat
samba

perl
Perl software development support:
tools, libraries, etc.

2705
carton
dh-make-perl

ruby
Ruby software development support:
tools, libraries, etc.

307
bundler
cucumber
jruby

utils
General purpose: file or disk manipu-
lation, backup and archive tools, and
system monitoring

964
dracut
grep
sed

A
p
p
li
c
a
ti
o
n
-l
e
v
e
l

fonts Text font creation and editing 242
fonts-freefont
unifont

games
Gaming on the Debian distribution
support

613
0ad
3dchess
fortunes-mario

gnome
Desktop environment and utilities for
user-friendly interactions

270
gnome-bluetooth
gnome-menus
gnome-panel

graphics
Tools and libraries for image process-
ing, visualization, and graphical de-
sign

349
nip2
pixelize
pngtools

math Mathematical computations support 212
calc
euler
gnuplot

science
Basic scientific tasks support, such
as astronomical data processing and
performing bitwise operations

475
chemical-structures
morse-simulator
pyoptical

sound
Sound processing: mixers, players,
recorders, and CD players

531
audiolink
beep
easytag

3 Study Methodology

3.1 Research Questions

RQ1: What is the probability of an unreproducible package becoming a reproducible
package (and vice versa)? – Turning a package’s build reproducible can require

10 Rahul Bajaj et al.

many changes to its build system. Thus far, there is no empirical evidence of
the amount of maintenance effort required by the developers to fix an unrepro-
ducible package for future builds. However, once a package can be built repro-
ducibly, changes performed to the package source code or the build environment,
in principle, could render packages unreproducible again. Therefore, it is vital to
understand how likely build reproducibility can regress and how quickly repro-
ducible packages become unreproducible again. This analysis highlights the extent
to which developers must frequently monitor packages’ reproducibility status.

RQ2: What are the root causes of packages being unreproducible? – We iden-
tify two main objectives for RQ2. The first objective is to systematically expand
an initial list of possible root causes of unreproducible builds reported by previ-
ous literature [17]. The second objective is to understand the frequency of each
root cause leading to unreproducible builds by verifying whether the root causes
presented by previous literature (relying on an expert’s perspective) match the
empirical data. Finally, we compute the number of affected packages for each root
cause to reveal the overall impact of each root cause on the packages. This infor-
mation provides insights into the possibility of packages being affected by multiple
root causes, which might be the reason for introducing supply chain attacks.

RQ3: What external factors correlate with the reproducibility status of pack-
ages? – Thus far, the literature [14, 17, 23] considered build reproducibility spe-
cific to an individual project. However, in the ecosystem settings of open-source
distributions, there are strong socio-technical dependencies between packages [9].
Similar to how a package might “inherit” a vulnerability by depending on a vulner-
able library package [44], theoretically, a package’s build could be unreproducible
because a package it depends on at build time is not reproducible. In other words,
the reproducibility status of a package might not be fully controllable by an in-
dividual project; instead, it might be impacted by external software ecosystem
factors. This is an example of the three ecosystem-related external factors poten-
tially impacting a package’s build reproducibility that we analyze in this RQ. The
three external factors are inspired by previous work on software ecosystems [9]: the
distribution in which a package is released; the build dependencies of a package;
and the hardware architecture on which the package is compiled.

3.2 Survival Analysis Steps (RQ1)

We conducted survival analysis [3] to examine the duration until an unreproducible
package becomes reproducible (and vice versa). Consistent with the discussion in
Section 2.1, any reproducibility status other than “reproducible” was classified
as unreproducible. Survival analysis [3, 10] constitutes a statistical methodology
aimed at determining the time until the occurrence of a specific event while taking
into account so-called censoring, i.e., data points for which the event of interest did
not occur during the observed time window. By using this approach, we estimate
the duration until the event of interest takes place and investigate the factors
influencing its progression. In one of our scenarios, we define the event as the
build achieving reproducibility, while in the other scenario, we define the event as
a reproducible build reverting to an unreproducible state.

Survival analysis allows for the estimation of survival functions [10], including
the probability of a build remaining unreproducible over time, thereby providing

Title Suppressed Due to Excessive Length 11

valuable insights into the risk or rate of transitioning to reproducibility. The sur-
vival analysis provides the probability P (T > t) of a subject surviving beyond
time t. Notably, the survival probability of a subject at time t = 0 is 1; however,
at the limit of t = ∞, the subject’s probability of survival diminishes to zero. Sur-
vival analysis inherently accounts for censoring, which ensures that all data, even
if not fully observed, contributes meaningfully to the analysis, making the method
robust and comprehensive. In the subsequent sections, we describe the five-step
framework specifically designed to facilitate the analysis of Research Question 1
(RQ1).

3.2.1 Define the analysis

We propose two analyses to understand the time packages take to change their
reproducibility statuses at the granularity of various suites across (2) distributions
and (59) domains, respectively. To estimate the efforts required by the developers
to fix unreproducible packages in the short term and to determine the efficacy of
such efforts in the long term, for Analysis 1, we compute the survival probability
of packages at both 30 days (1 month) and 360 days (1 year). For Analysis 2,
we compute probability at 360 days to explore the reproducibility of packages in
a one-year time frame. We describe below the procedures followed for executing
each analysis.

Analysis 1: This analysis focuses on how quickly packages in different re-
leases change their reproducibility statuses within 30 and 360 days. With the help
of the survival probabilities obtained from all suites of both distributions (Arch
Linux and Debian), we track the change in reproducibility statuses across these
distributions. Our focus is predominantly on the Arch Full suite and the Debian
Unstable suite, with the intent to compare their respective survival probabilities.
This comparison, given the rolling release models adhered to by these suites, can be
deemed equitable (see Section 2.1). Afterward, we investigate why specific suites
have greater probabilities of becoming reproducible and remaining reproducible.

Analysis 2: Our aim for this analysis is to understand whether developers’
efforts to make builds reproducible differ between package domains. Furthermore,
this analysis focuses on how quickly packages from the system-level package do-
mains become reproducible and remain in the same state compared to the packages
of the application-level package domains.

3.2.2 Compute the reproducibility status of the packages

In our study, we define two such events of interest, i.e., E1 and E2, and any
packages not meeting E1 and E2 are considered censored for that corresponding
analysis. For event E1, the event of interest is met when an initially unreproducible
package becomes reproducible. For event E2, the event of interest is met when a
reproducible package (for whom event E1 has occurred) becomes unreproducible
again. As such, the set of packages for which event E2 occurred is a subset of the
set of packages for which event E1 occurred.

12 Rahul Bajaj et al.

3.2.3 Filter packages

Before performing survival analysis, we first need to filter and cluster the package
data.

Analysis 1: Table 4 presents the number of packages under analysis for each
Linux distribution for Analysis 1. The first column distinguishes the distribu-
tions, while the second column discriminates the events of interest - E1 (i.e., an
unreproducible package becomes reproducible for the first time) and E2 (i.e., a
reproducible package becomes unreproducible again for the first time). The third
column presents the total number of unique packages before filtering E1 and E2.
The fourth and fifth columns show the resulting packages after applying the two
filters discussed below. The sixth column shows the number of censored packages,
i.e., packages that do not perform the event in the given 720 days (2-year) time
frame.

Table 4: Filtered Packages for Analyses 1 to Perform Survival Analysis

Distribution (Suite) Event
#Unique
Packages

Filter 1 Filter 2
#Censored
Packages

Arch Linux E1 8,529 8,492 3,238 514
(Community suite) E2 3,238 N/A 2,724 131
Arch Linux E1 2,510 2,502 1,282 77
(Extra suite) E2 1,282 N/A 1,205 1
Arch Linux E1 280 280 171 9
(Miltilib suite) E2 171 N/A 162 35
Arch Linux E1 209 208 104 3
(Core suite) E2 104 N/A 101 1
Debian E1 37,858 37,515 9,856 2,311
(Unstable suite) E2 9,856 N/A 7,545 953
Debian E1 33,172 33,149 2,095 935
(Bullseye suite) E2 2,095 N/A 7,193 736
Debian E1 30,547 30,436 2,227 1,169
(Buster suite) E2 2,227 N/A 1,058 483
Debian E1 27,003 26,931 5,373 1,288
(Stretch suite) E2 5,373 N/A 4,085 1,703
Debian E1 16,036 16036 1,077 939
(Bookworm suite) E2 1,077 N/A 138 134
Debian E1 8,118 8,073 2,432 1265
(Experimental suite) E2 2,432 N/A 1,167 525

To understand the filtering of packages, let us consider the community suite of
Arch Linux from Table 4. The same filtering applies to all other suites from both
distributions. To study the event E1, let us consider 8,529 unique Arch Linux
packages from Table 4. Then, we use Filter 1 to discard packages with multiple
builds performed on the same day due to configuration errors, network latency, or
incorrectly set environment variables in the build system. After applying Filter 1,
we found 8,492 Arch Linux packages with a unique build status on the day build
is performed. Next, Filter 2 discards all packages that initially were reproducible.
After applying Filter 2, we found that 3,238 Arch Linux packages were initially
unreproducible, and were used to perform survival analysis of event E1.

To study the event E2, we want to consider only those packages for which event
E1 has occurred (third column). This is because we want to understand how much

Title Suppressed Due to Excessive Length 13

time packages would remain reproducible before becoming unreproducible again.
Considering that Filter 1, already filtered out packages for event E1 that had
multiple builds on the same day, there is no need for further filtration of such
packages in the context of E2, therefore we mark Filter 1 for event E2 as not
applicable. Next, Filter 2 discards those packages for which E1 does not occur.
For instance, in the case of Arch Linux, we consider the initially unreproducible
3,238 packages and subtract the 514 censored packages, i.e., packages that do not
perform the event in the given time frame. After applying Filter 2, we obtain 2,724
Arch Linux packages for which event E1 has taken place.

Analysis 2: We apply the same Filter 1 and 2 as described for Analysis 1.
Once filters are applied, we make use of UDD to extract the package domain in-
formation and associate each unique package with its domain information. The
domain information is used to categorize the packages in either system-level or
application-level domains based on their functionality (see Section 2.4). Consid-
ering only the Debian Unstable suite from Table 4, for event E1, after applying
Filer 2 out of 9,856 packages we found 7,549 (3,017 system-level; 4,532 application-
level) packages with domain information. On the other hand, for event E2, after
applying Filter 2, out of 7,545 packages we found 6,231 (2,595 system-level; 3636
application-level) packages with domain information from the UDD database.

3.2.4 Calculate time until event

For the survival analysis, besides defining the events of interest, we need to com-
pute the so-called time until event. This is the time (in #days) required for an
event E1 and E2 to occur for a given data point. Let us use the package dracut,
which is part of both Arch Linux and Debian distribution, to explain how we
compute time until event. Figure 1 depicts the timeline of builds performed on
dracut, where each node represents one single build. Within each node, we pro-
vide the reproducibility status computed for a build: r for reproducible and u for
unreproducible. Below the nodes, we depict the build times (ti, tj , and tk) sorted
in ascending order. We compute E1 as follows: E1 = tj − ti, where ti indicates the
time at which a package performs its first build (i.e., when reproducibility status
= u) from the start of the recorded build data. tj is the time of the first build
for which reproducibility status = r (i.e., when developers fixed the package). We
compute E2 as follows: E2 = tk − tj , where tj is the time of the first build for
which reproducibility status = r and tk is the time when the package becomes
unreproducible again.

3.2.5 Perform Survival Analysis

For each analysis, we estimate the survival probability using the non-parametric
Kaplan-Meier estimator [15]. The Kaplan-Meier estimation is computed following
Equation 1, where ti is the time duration up to event-occurrence point i, di is
the number of event occurrences up to ti, and ni is the number of subjects that
survive just before ti. Values of ni and di are obtained from the aforementioned
ordered data obtained from Section 3.2.4. We use the python package Lifelines23

for estimating the Kaplan-Meier Survival probabilities.

23 https://lifelines.readthedocs.io/

https://lifelines.readthedocs.io/

14 Rahul Bajaj et al.

u

ti

E1 = tj - ti

E2 = tk - tj

r r u

tj tk

…

Time

Legend:

Build

 ti < tj < tk ti = 2015-04-20

 r = reproducible build tj = 2015-06-22

 u = unreproducible build tk = 2015-11-11

r/u

…
u

…

Fig. 1: Process to Calculate Time Until Event

S(t) =
∏

i:ti≤t

[1− di
ni

] (1)

3.3 Manual Labeling Steps (RQ2)

As discussed in the introduction, the reproducible build process includes testing
each package to verify its binaries against the source code. When Debian develop-
ers perform package builds to determine whether a particular package is unrepro-
ducible, they create a bug report on the unreproducible package by using Debian’s
reportbug24 program. Developers then assess the bug report to identify the root
cause behind the package’s unreproducibility and figure out a fix.

To better understand the root causes of unreproducible packages, we consid-
ered performing a card sort on the 397 issues available on the Reproducible Builds
website25 at the time of collecting the data (November 11, 2021). The scraped
data consists of issue names and reports the number of affected packages, affected
package names, and the popcon score,26 which is a popularity contest that enables
identification of the issues that are relatively more popular amongst the Debian
community. Notably, each issue can be linked to multiple affected packages. For ex-
ample, the issue titled gcc captures build path27 was associated with 1,832 affected
packages at the time of our data collection.

24 https://packages.debian.org/stable/utils/reportbug
25 https://tests.reproducible-builds.org/debian/index_issues.html
26 https://popcon.debian.org/
27 https://tests.reproducible-builds.org/debian/issues/unstable/gcc_captures_
build_path_issue.html

https://packages.debian.org/stable/utils/reportbug
https://tests.reproducible-builds.org/debian/index_issues.html
https://popcon.debian.org/
https://tests.reproducible-builds.org/debian/issues/unstable/gcc_captures_build_path_issue.html
https://tests.reproducible-builds.org/debian/issues/unstable/gcc_captures_build_path_issue.html

Title Suppressed Due to Excessive Length 15

3.3.1 Data Collection

In order to support our study, we relied on the entire data set of 397 issues, with a
total of 8,179 affected packages posted by developers on the Reproducible Builds
website at the time of our analysis.

3.3.2 Identifying initial catalog of root causes

To prime our card sort analysis, we searched for references in the literature pro-
viding initial catalogs of root causes for build reproducibility issues. We found
one recent experience report [17] from the industry that reported six possible root
causes of unreproducible builds: Archive Metadata, Build Timestamp, Build Path,
Filesystem Ordering, Randomness, and Uninitialized Memory. However, no sys-
tematic empirical evidence of these root causes was provided. We used these six
categories as a foundation for our categorization.

3.3.3 Independent labeling

We started the manual categorization of the 397 issues. Initially, using the negoti-
ated agreement technique [28], we categorized the first 10% of the issues together
while the rest were categorized independently. The first two paper authors were
assigned to engage in the manual card sorting of issues. Each of the two paper
authors read the content of the issues and assigned a category without any ex-
ternal influences from the other author. To analyze each issue at a granular level,
first, we examined the title and description of each issue. Furthermore, we inspect
any external links, such as discussion forums and emails, attached to the issue by
developers. We assigned a question mark (“?”) when we could not assign any of
the six existing categories.

3.3.4 Compute agreement & solve conflicts

Once we concluded the independent classifications, we computed the Cohen’s
Kappa agreement coefficient [24] for the two rater’s classifications (Section 3.3.3).
We obtained 68% of agreement, i.e., moderate agreement according to the com-
mon interpretation guidelines [24]. This agreement seems reasonable, considering
that our study is the first to provide empirical evidence for the root causes of
unreproducible builds.

We then held a meeting to discuss the disagreement instances one by one, so
we could reach a consensus on the final labels for each issue. For each bug report
where both authors agreed on uncertainty (“?”), we classified such issues into a
new category. During this meeting, we also figured out that six issues involved
more than just one root cause, so we decided to assign multiple labels to them.
If we could not figure out the root cause associated with an issue, we assigned
the Unknown category. Moreover, if a consensus still needed to be reached, we
contacted experts via the Reproducible Builds mailing list.

This was the case for one issue affecting the Tomcat package.28 The first two
authors did not reach agreement on the classification of this issue, tentatively

28 https://tests.reproducible-builds.org/debian/issues/unstable/bundle_name_in_
java_manifest_mf_issue.html

https://tests.reproducible-builds.org/debian/issues/unstable/bundle_name_in_java_manifest_mf_issue.html
https://tests.reproducible-builds.org/debian/issues/unstable/bundle_name_in_java_manifest_mf_issue.html

16 Rahul Bajaj et al.

creating a new category “Package Name” for this issue. The experts replied to
us with a detailed explanation indicating that the unreproducible build results
were due to the unreproducible outcome of data stored in Java’s HashMap data
structure.29 Based on this, we could correctly re-categorize the issue under the
Randomness root cause. Additionally, in another instance, we classified the root
cause Locale as a subset of the Encoding branch. However, an expert reviewing our
taxonomy argued that Locale is not related to the Encoding branch and should
be its own standalone root cause category.

3.3.5 Build taxonomy

After our final decision about the categories assigned to all 397 issues under anal-
ysis, we held two meetings to build the taxonomy of root causes of unreproducible
builds. In the first meeting, the first two paper authors compare the individually
created taxonomies and resolve conflicts to generate a single taxonomy. In the
second meeting, we take inputs from the third author to finalize the taxonomy.
During the meeting, we discussed the hierarchical relationships between categories
to create the taxonomy with multiple abstraction levels, from major to minor cat-
egories.

3.3.6 Frequency Analysis of Root Causes

Since the previous literature is based on industrial experience (see Section 8), we
computed the frequency of issues for each root cause in order to validate the claims
made by previous literature [17,23]. Furthermore, the frequency determines which
underlying root causes are more widespread in real-world situations, so developers
can focus their efforts on these fundamental causes.

3.3.7 Impact Analysis of Root Causes

We computed the number of packages affected by each root cause. This determines
the intensity of a particular root cause’s impact on the packages of a distribution.
Additionally, we identified 3,566 packages out of the 8,179 packages affected by
at least one root cause for which a package domain is associated with them (Sec-
tion 2.4). After that, we computed the number of root causes affecting the pack-
ages for each package domain so that we could select the top-five package domains
affected by the most root causes. This aims to understand if system-level pack-
age domains are affected by more root causes when compared to application-level
package domains.

3.4 Correlation Analysis Steps (RQ3)

To examine external factors that may be related to unreproducible packages, we
perform Chi-Square (χ2) tests for independence [33]. The χ2 test for independence
evaluates the correlation between categorical variables having two (in our case) or
more values. For example, gender and education are categorical variables where

29 https://github.com/bndtools/bnd/issues/5183

https://github.com/bndtools/bnd/issues/5183

Title Suppressed Due to Excessive Length 17

male and female and levels of education, such as undergraduate and graduate,
are the possible values, respectively. For this research question, we examine the
correlation between three external factors (one at a time) and the reproducibility
status of packages. We describe below the steps necessary to perform the (χ2) test.

3.4.1 Collect data

Different packages are built at different instants; for each package, the reproducibil-
ity status of the most recent build is considered for computing the correlation. We
explain below the definition of the external factors we have considered. The fol-
lowing paragraphs explain how we collected the data necessary to investigate each
external factor, also showing the total number of packages available for analysis
in each case.

Table 5 lists, inspired by the work of Decan et al. [9] on the socio-technical
dependencies between packages, the external factors taken into consideration for
our study. Furthermore, the table describes the detailed steps (third column) per-
formed to collect data related to each external factor.

Table 5: External Factors Under Analysis

External
Factor

Definition Computation

Distribution

Collection of inter-
dependent software
constituting an oper-
ating system.

For Arch Linux’s Community suite and De-
bian’s Unstable suite, identify 4,108 unique
packages with the same name in both
suites, then obtain the reproducibility sta-
tus of the packages in both distributions for
the latest build performed.

Build
Dependencies

Dependencies such as com-
pilers, interpreters, and li-
braries that are essential to
build packages.

1) We utilize the Ultimate Debian Database
(UDD) as discussed in Section 2.2 to
retrieve 15,076 build dependencies. The
build depends column in the all sources
table of the UDD contains a list of pack-
ages that a particular source package de-
pends on during a build process. 3) Not
all build dependencies found (15,076) were
built to check reproducibility and, hence,
did not have a reproducibility status. Thus,
we identify 14,638 build dependencies with
reproducibility status.

Architecture
Hardware architecture on
which package builds are
performed.

For the Unstable suite, we identify 36,303
unique packages with the same name in
both architectures (armhf and arm64), then
obtain the reproducibility status of the
packages for both architectures.

3.4.2 Define null hypotheses

The null hypothesis for the χ2 test of independence is that the reproducibility
status of packages is independent from a given external factor. We define three
null hypotheses:

18 Rahul Bajaj et al.

1. HA0: There is no relation between reproducibility status of packages between
distributions.

2. HB0: Reproducibility status of a package does not depend on the reproducibil-
ity status of its build dependencies.

3. HC0: Reproducibility status of packages does not depend on the architecture
for which their build is performed.

3.4.3 Compute contingency tables

A contingency table is a cross tabulation of the frequency of unreproducible or
reproducible builds across two categorical variables (e.g., Arch Linux and Debian).
Table 6 illustrates a generic contingency table for our analysis. The values in the
contingency table are referred to as the observed values Ok = {01, 02, 03, 04}.

Table 6: Cross Tabulation for Hypothesis

External Factor

Categorical Variable 1

Unreproducible Reproducible

Categorical

Variable 2

Unreproducible 01 02

Reproducible 03 04

3.4.4 Perform χ2 test for independence

For each external factor, we use its corresponding contingency table (from Sec-
tion 3.4.3) as input to the function chi2 contingency from the SciPy library.30

Equation 2 computes the χ2 statistic value, from which we obtain the p-value

(p). In the equation, Ek = {e1, e2, e3, e4} represents the theoretical expected val-
ues (one for each observed value), k = 4 because there are four observed values
total for each analysis, and d = 1 the degree of freedom d equals to the number of
categorical variables minus one.

χ2 =
1

d

n∑
k=1

(Ok − Ek)
2

Ek
(2)

Regarding the interpretation of results, p < 0.01 means that the null hypothesis
is false and, therefore, there is a strong relationship between the two categorical
variables. As an alternative hypothesis, i.e., when the null hypothesis can not be
rejected, the categorical variables are independent of each other.

In case we reject the null hypothesis, we compute the Cramer’s V [35] estimator
to understand the strength of the statistical difference better. The Cramer’s V [35]
estimator is computed following equation 3, where χ2 is the calculated χ2 statistic

30 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi2_
contingency.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi2_contingency.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi2_contingency.html

Title Suppressed Due to Excessive Length 19

value, n is the sample size, and M is the minimum number of rows or columns.
We use SciPy’s statistical functions31 for computing the Cramer’s V estimator:

V =

√
χ2

n(M − 1)
(3)

As seen in Table 7, Cramer’s V [35] has a range of values from 0 to 1, with 0
denoting no connection and 1 denoting perfect association.

Table 7: Interpretation of Cramer’s V estimator

Strength of association Mimimum band Maximum band
Negligible >= 0 <0.1
Weak >=0.1 <0.2
Moderate >=0.2 <0.4
Relatively strong >=0.4 <0.6
Strong >=0.6 <0.8
Very strong >=0.8 <= 1

3.4.5 Perform domain-oriented analysis

While the analysis in Section 3.4.4 helps us to understand if changes in the re-
producibility status of packages are likely to depend on external factors, e.g., dis-
tribution, the obtained statistical difference might be biased to specific package
domains. It is vital to identify package domains with a stronger correlation since
they create a bias towards the reproducibility status of packages with respect to
the external factor into consideration.

To identify essential package domains for prioritization, we perform χ2 tests for
independence (Section 3.4.4) again on all packages belonging to the same package
domain for each external factor. Then we look at all package domains with a
p < 0.01, indicating that the null hypothesis is false and that the package domain
and the external factor have a significant correlation. After that, we compute the
Cramer’s V estimator, now for each package domain, to identify package domains
that have a stronger correlation when compared to other package domains.

4 Analysis of Reproducibility Status (RQ1)

Using the approach outlined in Section 3.2, we initially conduct survival analysis
using Analysis 1 concerning events E1 (becoming reproducible) and E2 (reverting
to unreproducibility) at the distribution level. Subsequently, we carry out a similar
analysis at the domain level with Analysis 2, addressing both system-level and
application-level packages.

31 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.contingency.
association.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.contingency.association.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.contingency.association.html

20 Rahul Bajaj et al.

4.1 Survival Analysis Across Both Distributions

The initially unreproducible Arch Linux packages become reproducible
a median of 30 days earlier than Debian packages.

Figure 2 presents a scatter plot for the survival probability of unreproducible
packages for all suites across distributions. The x-axis and y-axis represent the
survival probability at 30 and 360 days, respectively. Each dot represents a suite
belonging to a specific distribution – orange for Arch Linux and blue for Debian
(Section 2.1).

Considering the x-axis, all probabilities at the 30 days mark are consistently
lower for Arch Linux than those for Debian. Similarly, the y-axis indicates that
almost all probabilities at 360 days are lower in Arch Linux – except for the
Unstable suite (Debian; 18.3%), for which we have a tie with the Community
suite (Arch Linux; 18.78%).

We particularly observe that the packages within official Debian releases, in-
cluding Bookworm, Bullseye, Stretch, and Buster, strictly adhere to fixed release
cycles with scheduled release dates and planned updates (see Section 2.1), after
which no more (reproducibility) changes are performed. This observation explains
the relatively high survival probabilities of unreproducible packages for these men-
tioned suites. In contrast, the reproducibility of packages in Debian’s Unstable
suite tends to evolve more dynamically, given its rolling release approach, and is,
therefore, more similar to the Arch Full suite’s reproducibility behavior.

Studying specific suites in more detail gives a clearer understanding. We found
that half of all packages in Arch Linux become reproducible at least 92 days
earlier than their Debian counterparts (in a period up to 720 days). This trend
continues when comparing the Arch Full suite of Arch Linux to the Unstable suite
of Debian, where Arch Full packages become reproducible at least 30 days earlier
(again, observed over a 720-day period). These results strongly suggest that, on an
overall basis, the time it takes for reproducible fixes to become available to users
is more swift in Arch Linux when compared to Debian.

0.0 0.2 0.4 0.6 0.8 1.0
Survival Probability at 30 days

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 P
ro

ba
bi

lit
y

at
 3

60
 d

ay
s

Unstable

Bookworm

Bullseye

Buster
Stretch

Experimental

Community

CoreMultilib
Extra Arch Full

Debian Suites
Arch Linux Suites

Fig. 2: Survival of Unreproducible Packages across Suites

Title Suppressed Due to Excessive Length 21

We hypothesize three reasons for this result: (1) the type of release cycle fol-
lowed in Arch Full, (2) the number of packages that comprise the distribution, and
(3) the lower number of maintainers when compared to Debian. Regarding (1), as
mentioned in Section 2.1, Arch Linux does not have a fixed release cycle; instead,
package updates are made available to the distribution quickly after upstream
package releases have been made. In particular, the time taken for an Arch Linux
package to be released is between a few hours to a few weeks, which is less than
Debian.32 Debian’s Unstable suite, while also following a rolling-release model,
serves as a staging area for packages before they transition to the Testing suite.
In Debian’s Unstable suite, packages are subjected to rigorous checks, ensuring
they remain free of release-critical issues for a specified duration before advancing
to the Testing suite. In contrast, Arch Linux, while conducting tests on its pack-
ages, releases them at a notably accelerated pace, which might result in unforeseen
(reproducibility) issues. However, this hypothesis requires further investigation.

Regarding (2), Arch Linux is a light-weight open-source operating system dis-
tribution, which means that it has fewer pre-compiled packages (12,984).33 com-
pared to Debian (148,000).34 Having more binary packages in Debian indicates
a need for more thorough testing of packages that interact with other packages,
thereby leading to feature interactions. As a result, Debian packages may be prone
to more test failures, mainly when one feature relies on another to function effec-
tively. Consequently, we suspect that more dependence on such packages might
lead to a chain of unreproducible packages. This might increase the time required
by the developers to figure out the root causes and propose fixes.

Regarding (3), it is noteworthy to mention that Arch Linux presently relies
on 63 maintainers35 who undertake the crucial responsibilities of package release
and maintenance, while Debian, in contrast, boasts a considerably larger team
comprising 263 maintainers36 to carry out similar tasks. Empirical investigations
have consistently revealed that software development teams with a greater number
of members tend to encounter extended development cycles, knowledge transfer
intricacies, and overall project delays [12, 21]. One reason for these challenges
might be the exponentially increasing communication channels when the number
of developers increases [4]. Given the established fixed-release cycles of Debian, it
is possible that these potential delays contribute to longer periods during which
Debian packages continue to be unavailable in a reproducible manner to end users.

On the other hand, it is important to acknowledge that empirical studies [7]
also indicate that larger development teams have the capacity to deliver enhanced
software quality, cf. Linus’s Law [34]: “given enough eyeballs, all bugs are shallow”,
a notion that aligns with the following findings.

Once developers have fixed an unreproducible package, Debian pack-
ages remain reproducible for a median of 68 days longer than Arch
Linux packages.

Figure 3 presents a scatter plot for the survival probability of reproducible
packages for all suites across distributions. The x-axis represents the survival prob-

32 https://wiki.archlinux.org/title/arch_compared_to_other_distributions
33 https://archlinux.org/packages/
34 https://wiki.archlinux.org/title/arch_compared_to_other_distributions#Debian
35 https://archlinux.org/people/trusted-users/
36 https://nm.debian.org/public/people/dm_all/

https://wiki.archlinux.org/title/arch_compared_to_other_distributions
https://archlinux.org/packages/
https://wiki.archlinux.org/title/arch_compared_to_other_distributions#Debian
https://archlinux.org/people/trusted-users/
https://nm.debian.org/public/people/dm_all/

22 Rahul Bajaj et al.

ability at 30 days, while the y-axis corresponds to the probability at 360 days. Each
dot represents a suite belonging to a specific distribution (orange for Arch Linux
and blue for Debian). The dots are labeled according to the corresponding suites,
as previously discussed in Section 2.1.

0.0 0.2 0.4 0.6 0.8 1.0
Survival Probability at 30 days

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 P
ro

ba
bi

lit
y

at
 3

60
 d

ay
s

Unstable

Bookworm

Bullseye

Buster

Stretch

Experimental
Community

Core
Multilib

Extra

Arch Full

Debian Suites
Arch Linux Suites

Fig. 3: Survival of Reproducible Packages across Suites

The survival probabilities for 30 days are higher than 61.7% for all suites
regardless of the distribution. On the other hand, for 360 days, the survival prob-
ability drops drastically (more than 25.75%) for almost all suites in both distri-
butions, except for the Bookworm and Bullseye suites for Debian – they present
probabilities equal to 94.29% and 58.89%, respectively. This result is reasonable
because these suites belong to the stable suites (Table 1), which follow a fixed-
release model. As such, they undergo rigorous testing and are accessible freely
for customer use. Surprisingly, the Extra suite from Arch Linux has an 89.44%
probability of maintaining the reproducible state of its packages at the 30 days
mark. In terms of duration, in-depth analysis of the suites showed that half of the
packages from Debian’s Unstable suite survive at least 68 days longer than those
from the Arch Full suite in Arch Linux (up to 720 days).

One of the reasons why Arch Linux packages tend to become unreproducible
more quickly once they are reproducible is because of the design decisions taken
by the stakeholders of this distribution. For instance, the Arch Linux team opted
to support only the latest version of packages as an attempt to reduce the mainte-
nance effort associated with having multiple packages to deal with in the future.37

However, to support the latest version of packages, their build dependencies must
also be updated to support smooth build execution. Packages of interest might
yield unreproducible builds if their build dependencies are unreproducible. The
relation between factors like design decisions taken by the stakeholders of the dis-

37 https://wiki.archlinux.org/title/Frequently_asked_questions#Why_is_there_only_
a_single_version_of_each_shared_library_in_the_official_repositories?

https://wiki.archlinux.org/title/Frequently_asked_questions#Why_is_there_only_a_single_version_of_each_shared_library_in_the_official_repositories?
https://wiki.archlinux.org/title/Frequently_asked_questions#Why_is_there_only_a_single_version_of_each_shared_library_in_the_official_repositories?

Title Suppressed Due to Excessive Length 23

tributions or reproducibility of build dependencies build reproducibility are further
explored by RQ3 in Section 6.2 and Section 6.3.

We suspect that the maturity of a distribution and its packages might impact
the packages to remain reproducible. More traditional distributions, i.e., those
maintained for longer, are less likely to have unreproducible packages because
more testing iterations were performed on these packages. We further discuss this
assumption in Section 6.2.

4.2 Survival Analysis on Domain Clusters

Within a year, the survival probabilities in initially unreproducible
application-level package domains are 12.9% higher than for packages
in system-level package domains. The findings of Analysis 2 of Section 3.2
suggest that the packages from the system-level package domains are the ones that
stay unreproducible for the shortest time, which may be reasonable considering
that packages that belong to the system-level package domain are more essential
to the system’s functioning and hence might be fixed more quickly. Furthermore,
we found that initially unreproducible system-level packages become reproducible
a median of 37 days earlier than packages that belong to the application-level
domain.

Contradictory to the results of Figure 4, the survival probability of initially
unreproducible packages in some of the most system-level package domains such
as interpreters (28.57%), net (33.33%), and otherosfs (46.6%) is 2 to 30% greater
than probabilities for application-level package domains such as games (26.01%),
mail (31.8%) and video (17.39%). This is because the results of Figure 4 are skewed
by extremely low survival probabilities of a few system-level domains (at the one-
year mark) such as the perl (0.67%), ruby (0.0%) and javascript (2.3%) domains.
Additionally, another reason for skewness could be extremely high survival prob-
abilities of a few application-level packages domains (at the one-year mark) such
as education (50.0%), electronics (53.33%), and sound (44.04%). More work is
needed to analyze the reason for these outliers.

Once fixed, reproducible packages from the application-level package
domains have a 5.67% greater survival probability of remaining repro-
ducible when compared to system-level package domains. System-level
packages tend to become unreproducible again more quickly, implying that these
packages require more careful attention since they are more likely to be affected
by vulnerabilities for a prolonged (and undesired) time.

Data of Figure 5 suggests that, within a year, the packages in application-level
package domains like fonts (56.41%), games (25.0%), and maths (35.0%) have
a 2 to 50% greater probability to remain reproducible when compared with the
packages in the system-level package domains like perl (6.58%), ruby (4.0%), java
(12.54%), javascript (15.87%), admin (23.73%) and utils (15.78%). One would
expect the reproducibility status of system-level packages to be more stable over
time in comparison with the status of application-level packages. This is because
packages from the system-level package domain are more likely to be used by
different applications, e.g., by serving as dependencies for other packages that also
constitute the same distribution.

24 Rahul Bajaj et al.

0 100 200 300 400 500 600 700
Time in Days

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 p
ro

ba
bi

lit
y

System-level
Application-level
1 year

Fig. 4: Survival analysis for Unreproducible Packages of Domain Clusters

0 100 200 300 400 500 600 700
Time in Days

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 p
ro

ba
bi

lit
y

System-level
Application-level
1 year

Fig. 5: Survival analysis for Reproducible Packages of Domain Clusters

Contradicting this expectation, we found that, within one year, packages be-
longing to the system-level domains are more likely to become unreproducible
compared to the application-level package domains. We suspect that this could be
because of the heavy changes that packages in the system-level package domains
undergo, which might re-introduce reproducibility issues. For instance, the perl38

package from the perl domain that encapsulates many perl libraries performs a
new minor release every month. The perl package currently has 2.1k open issues
and more than 500 core contributors. With the help of contributors, perl releases
minor releases every month with more than 50 commits. Since code churn corre-
lates with higher risks of introducing bugs [29], these frequent changes, which may

38 https://github.com/Perl/perl5/tree/v5.35.8

https://github.com/Perl/perl5/tree/v5.35.8

Title Suppressed Due to Excessive Length 25

range from minor code refactoring to fixing potential security issues, could lead to
increased reproducibility concerns. Another example would be the ruby39 package,
which currently has 451 core contributors and 339 open issues. A minor release
for the ruby package is published every four months with more than 100 commits
per minor release. This might again correlate with a higher number of bugs due
to frequent updates by many contributors, making the package less consistent in
its reproducibility.

Summary of RQ1: Arch Linux packages become reproducible a median of
30 days quicker than Debian packages. However, after becoming reproducible,
Debian packages remain reproducible for a median of 68 days longer compared
to Arch Linux packages. Over the course of a year, initially unreproducible
packages in application-level domains demonstrate a 12.9% increased likeli-
hood of remaining unreproducible compared to those in system-level domains.
After becoming reproducible, packages from application-level domains exhibit
a 5.67% higher likelihood of maintaining their reproducibility in contrast to
those from system-level domains.

5 Root Causes of Unreproducible Packages (RQ2)

Using card sorting of 397 build reproducibility issues (see Section 3.3), this RQ
identifies a taxonomy of common root causes of build unreproducibility, then doc-
uments and discusses each cause, including its prevalence.

5.1 Taxonomy

Based on the manual labeling of 397 issues40 related to Reproducible
Builds, we derive a taxonomy of 16 root causes of unreproducible pack-
ages, grouped in 5 major groups, Figure 6 illustrates the derived taxonomy
in which each box represents a different root cause. Each box is annotated with
the number of categorized issues that belong to the root cause (top-right) and the
number of packages that are affected by the root cause (bottom-right).

There are five major groups, each representing a different root cause of packages
becoming unreproducible: Build, Filesystem, Locale, Memory, and System.
The taxonomy has 16 leaves, each representing a specific root cause for the un-
reproducibility of a package. In Figure 6 and the definitions described below, we
underline the six leading root causes identified by previous work [17]. We define
and exemplify below each major group.

– Build
1. Build ID

Definition: Unique identification hash code generated during the build that
is computed using parts of the software binary content. The purpose of

39 https://github.com/ruby/ruby
40 https://tests.reproducible-builds.org/debian/index_issues.html

https://github.com/ruby/ruby
https://tests.reproducible-builds.org/debian/index_issues.html

26 Rahul Bajaj et al.

Build

Filesystem

Memory

System

Root
Cause

Build ID

Build Path

Build Time-Stamp

2

77

155

54

628

5,008

Package Dependency

File

Filesystem Ordering
24

2

189

2

Reference to Memory
Address

Uninitialized Memory

1

2

12

2

Architecture
Information

System's DNS Name

User Information

10

11

1

102

60

122

Encoding

Archive
Metadata

14

66

Randomness

File Permission
3

57

60

837

Snippet
Encoding

File Encoding
3

4

29

16

Locale
7

3

Root
Cause

of categorized
Issues

of Packages
Affected

Hierarchical
Relationship

Key

Fig. 6: Taxonomy of Root Causes of Unreproducible Packages

Build ID is to provide identical hash codes for identical binaries, allow-
ing one to identify the latter uniquely based on their identity, not their

Title Suppressed Due to Excessive Length 27

contents. When distinct builds on the same code artifacts output distinct
Build IDs in the generated binaries, this indicates an unreproducible build
process. Typically, how the Build Id is generated might be impacted by
noise, preventing reproducible Build IDs.
Notable Instances: In one bug report,41 a 128bit UUID comprising random-
ized bits including the time and host-based data, is used to generate the
Build ID. Builds performed on different build systems would lead to differ-
ent Build IDs due to inconsistent UUIDs, thereby causing unreproducible
builds.42

2. Build Path
Definition: To perform a build, the compiler requires a build path to build
configurations such as required build dependencies. Different values of the
build path in distinct builds can lead to different dependencies being used
during compilation or to different path names recorded in binaries and
hence to differences in the resulting binaries, i.e., unreproducible builds.
Notable Instances: During the execution of builds for the autoconf package,
one build was performed using a relative build path while the other used
an absolute path.43 Differences between the build paths recorded in the
resulting binaries would cause unreproducible builds. To overcome such is-
sues, the developers associated with the unreproducible build and the GCC
community collaborated to introduce flags [17] that support the use of rel-
ative paths such that distinct builds are reproducible.

3. Build Timestamp
Definition: Information that corresponds to the date and time at which
the build was performed. During the execution of a build, any newly gen-
erated, modified, or accessed files embed compile-time timestamps in the
form of logs into the binaries [16]. Due to changes in build time, both
builds produce binaries with different content when distinct builds are run.
In principle, timestamps tell us very little about the software build, as
builds can be performed on an older version of the software with a new
timestamp. Instead, the reproducible builds developers introduced the en-
vironment variable SOURCE DATE EPOCH,44 with the goal of replacing
the current timestamp. This variable contains the timestamp of the last
modification to the source code for that release, which is obtained from the
source changelog file [17].
Notable Instances: C pre-defined macros such as _Date_ and _Time_ out-
put the current time.45 When these macros are invoked by distinct build
systems, different timestamps become a part of the compiled code, which
leads to different binaries.

– File System

41 https://tests.reproducible-builds.org/debian/index_issues.html
42 https://fedoraproject.org/wiki/Releases/FeatureBuildId#Unique_build_ID
43 https://tests.reproducible-builds.org/debian/issues/unstable/captures_build_
path_issue.html
44 https://reproducible-builds.org/specs/source-date-epoch/
45 https://tests.reproducible-builds.org/debian/issues/unstable/timestamps_from_
cpp_macros_issue.html

https://tests.reproducible-builds.org/debian/index_issues.html
https://fedoraproject.org/wiki/Releases/FeatureBuildId#Unique_build_ID
https://tests.reproducible-builds.org/debian/issues/unstable/captures_build_path_issue.html
https://tests.reproducible-builds.org/debian/issues/unstable/captures_build_path_issue.html
https://reproducible-builds.org/specs/source-date-epoch/
https://tests.reproducible-builds.org/debian/issues/unstable/timestamps_from_cpp_macros_issue.html
https://tests.reproducible-builds.org/debian/issues/unstable/timestamps_from_cpp_macros_issue.html

28 Rahul Bajaj et al.

1. File
(a) Archive Metadata

Definition: Compressed file formats such as zip and tar store file meta-
data such as file owners, permissions, and timestamps. This metadata
is called Archive Metadata. Extracting these compressed files during a
build can cause the unreproducibility of packages because files can be
extracted at a location with a different file owner and permissions than
the original source. This leads to assigning different file owners and
permissions to the extracted files. Furthermore, when uncompressed,
these files generate a timestamp that is inconsistent with the originally
generated file timestamp.
Notable Instances: In case of libguestfs,46 the compressed files store
a modified timestamp (mtimes). This mtimes gets modified during the
execution of the build. When two distinct builds are run, the incon-
sistent timestamps from the compressed files are written in the re-
sulting executables causing unreproducible builds. Additionally, using
the cmake command with the tar option inherits the User ID (UID)
and Group ID (GID) on the build system during the execution of the
build.47 Inconsistent UID and GID in resulting binaries lead to unre-
producible builds.

(b) Encoding
i. File Encoding

Definition: File Encoding refers to the encoding of files. When
builds are performed on distinct build systems, using different en-
coding schemes (e.g., UTF-8 vs. non-UTF) can lead to different bi-
nary patterns. This can cause packages to become unreproducible.
Notable Instances: In the case of the r-base package, files on dis-
tinct machines were built using a different encoding, i.e., one of the
builds was using a non-UTF encoder while the other was using a
UTF-8 encoder. Since both represent different encoding strategies,
the resulting binaries containing the files have different content
leading to unreproducible builds.48

ii. Snippet Encoding
Definition: Encoding strings or parts of a file with random num-
bers is called Snippet Encoding. These random numbers serve as
security keys that encode data to prevent unauthorized use. During
the execution of a build, these randomized digits are included in
the resulting binary. Resulting binaries with different content are
produced as a result of distinct build systems producing different
randomized digits.
Notable Instances: The libtext-markdown-perl package makes
use of the srandom49 utility, which is used to provide a seed value
to the randomization function. During the execution of distinct

46 https://tests.reproducible-builds.org/debian/issues/unstable/varying_mtimes_
in_data_tar_gz_or_control_tar_gz_issue.html
47 https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=973845
48 https://tests.reproducible-builds.org/debian/issues/unstable/bundle_name_in_
java_manifest_mf_issue.html
49 https://linux.die.net/man/3/srandom

https://tests.reproducible-builds.org/debian/issues/unstable/varying_mtimes_in_data_tar_gz_or_control_tar_gz_issue.html
https://tests.reproducible-builds.org/debian/issues/unstable/varying_mtimes_in_data_tar_gz_or_control_tar_gz_issue.html
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=973845
https://tests.reproducible-builds.org/debian/issues/unstable/bundle_name_in_java_manifest_mf_issue.html
https://tests.reproducible-builds.org/debian/issues/unstable/bundle_name_in_java_manifest_mf_issue.html
https://linux.die.net/man/3/srandom

Title Suppressed Due to Excessive Length 29

builds, the seed value to the randomization function was stored in
the resulting binary, but was different for distinct builds, therefore
build becomes unreproducible.50

(c) File Permission
Definition: Enables specific users and groups to either read, write or
execute a file. During a build, new files created may inherit predefined
file permissions from the containing folder. These permissions can differ
for distinct build systems. Such inconsistent file permissions become a
part of the compiled binaries during the build process, causing unre-
producible builds.
Notable Instances: Packages such as pcp and live-manual have been
found to have files with different permissions across the distinct builds,
which have led to builds becoming unreproducible.51

(d) Randomness
Definition: Randomness leads to unpredictable outcomes for data stored
in data structures or tasks performed in parallel. While performing
builds on distinct build systems, the order in which parallel jobs exe-
cute might not be the same. The resulting logs of such parallel build
execution could then be recorded in the resulting binaries causing the
builds to be unreproducible.
Notable Instances: Python 2.7 data structures like tuples and dic-
tionaries render unordered output. For instance, the Python package
python-ply introduces a variable to store and retrieve data in the tuple
format. When distinct builds are performed, the values are to be out-
put into the binary; these outcomes are unordered. This randomness,
when recorded in the build logs, causes unreproducibility. To overcome
such issues, the developers need to sort data while retrieving them from
the data structures.52

2. Filesystem Ordering Definition: Order in which files are created and dis-
played. Different file orders could result in a different ordering of segments
inside generated binaries, causing unreproducible builds.
Notable Instances: ruby2.3 containsmkmf.rb, which is used to auto-generate
the Makefiles for multiple ruby applications. These generated Makefiles do
not sort the list of object files.53 Build logs of such unordered compilation
when recorded in the resulting binaries of distinct builds cause unrepro-
ducibility.

3. Package Dependency
Definition: Package dependencies of a package P are essential software
packages that are necessary for P to function effectively. They help elim-
inate code duplication within P ’s source package, and typically are devel-
oped by experts. However, when packages fail to specify the exact versions
of their dependencies, this can result in a range of problems related to build

50 https://tests.reproducible-builds.org/debian/issues/unstable/markdown_random_
email_address_html_entities_issue.html
51 https://tests.reproducible-builds.org/debian/issues/unstable/different_due_
to_umask_issue.html
52 https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=890620
53 https://tests.reproducible-builds.org/debian/issues/unstable/ruby_mkmf_
makefile_unsorted_objects_issue.html

https://tests.reproducible-builds.org/debian/issues/unstable/markdown_random_email_address_html_entities_issue.html
https://tests.reproducible-builds.org/debian/issues/unstable/markdown_random_email_address_html_entities_issue.html
https://tests.reproducible-builds.org/debian/issues/unstable/different_due_to_umask_issue.html
https://tests.reproducible-builds.org/debian/issues/unstable/different_due_to_umask_issue.html
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=890620
https://tests.reproducible-builds.org/debian/issues/unstable/ruby_mkmf_makefile_unsorted_objects_issue.html
https://tests.reproducible-builds.org/debian/issues/unstable/ruby_mkmf_makefile_unsorted_objects_issue.html

30 Rahul Bajaj et al.

dependencies. These issues include missing dependencies, conflicting de-
pendencies, and the utilization of incompatible or outdated dependencies.
Consequently, these challenges become the root cause of unreproducible
builds. Moreover, even the behavior or execution of a build dependency
can introduce inconsistencies in the build process.
Notable Instances: In the case of “ftbfs due to virtual dependencies”,54 cer-
tain packages experience build failures because they are unable to find or
fulfill the virtual dependencies they require. Virtual dependencies are ab-
stract dependencies that do not point to a particular package, but rather
describe a feature that can be provided by several packages. This failure
may stem from improperly defined virtual dependencies or a lack of avail-
able packages in the build environment that provide the necessary capabil-
ities or features expected by these virtual dependencies.

– Memory
1. Reference to Memory Address

Definition: Memory addresses consist of digits that represent specific mem-
ory locations in build environments. Data structures of multiple program-
ming languages, such as C and Python, can access these addresses. During
the execution of distinct builds, having different memory addresses allo-
cated for the same object causes dissimilar content stored in the resulting
binaries. This causes the build to become unreproducible.
Notable Instances: The ldaptor package makes use of a python module
called weakref.55 The weakref python modules uses the _repr_56 func-
tion. This function outputs the memory address of the instance passed to
it. Instances passed to this function yield distinct memory addresses that
become a part of the compiled binaries, causing unreproducible builds.57

2. Uninitialized Memory
Definition: Uninitialized memory is the unused memory assigned to a re-
source such as a data structure or file system. For instance, data structures
of multiple programming languages can be assigned a larger memory allo-
cation than required. For optimization purposes, this memory is filled with
randomized padding. During the execution of distinct builds, resources us-
ing the initialized memory are stored in files that could become linked into
the resulting binary, causing the builds to become unreproducible.
Notable Instances: During the execution of a build, the ipadic package
generates a .dat file that contains uninitialized memory. To fill this unini-
tialized memory, randomized padding is done. When distinct build systems
perform builds for the ipadic package, the generated .dat files in the re-
sulting binaries with randomized padding cause the package to become
unreproducible on Debian and openSUSE.58

– System

54 https://tests.reproducible-builds.org/debian/issues/unstable/ftbfs_
uninvestigated_unsatisfiable_dependencies_issue.html
55 https://docs.python.org/3/library/weakref.html
56 https://docs.python.org/3/library/functions.html#repr
57 https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=827416
58 https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=881231

https://tests.reproducible-builds.org/debian/issues/unstable/ftbfs_uninvestigated_unsatisfiable_dependencies_issue.html
https://tests.reproducible-builds.org/debian/issues/unstable/ftbfs_uninvestigated_unsatisfiable_dependencies_issue.html
https://docs.python.org/3/library/weakref.html
https://docs.python.org/3/library/functions.html#repr
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=827416
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=881231

Title Suppressed Due to Excessive Length 31

1. Architecture Information
Definition: This information reveals details related to architectural-level
information like the Linux kernel version and hardware architecture name
gathered from the uname59 utility. Having performed builds on distinct ma-
chines, calls to the uname utility may output different hardware architecture
and kernel versions that are compiled into different resulting binaries, caus-
ing unreproducible builds.
Notable Instances: During the execution of a build, the systemd60 package
initiates a call to the uname utility (for debugging purposes), which outputs
the build system’s hardware architecture. The builds were run on distinct
build systems, one using the i686 architecture while the other was x86 64.
When identified in the resulting binaries, the difference in architectural
information causes unreproducible builds.

2. System DNS Name
Definition: This name identifies a host computer in a specified network and
is called the hostname of the system. Different build systems obtain dis-
tinct DNS names, similar to the Build Path root cause, which could cause
unreproducibility for the resulting binaries.
Notable Instances: Packages like python-qtconsole and vlc output unique
hostnames of distinct build servers that end up in the resulting binaries.
During the execution of builds on distinct build servers, the resulting bina-
ries would not be bit-to-bit identical, causing unreproducible builds.

3. User Information
Definition: Information that reveals a user’s identity, such as username, and
that could end up inside the build logs. When captured by the resulting bi-
naries, divergent user information causes builds to become unreproducible.
Notable Instances: During a build, the gnustep-base package executes the
string ”generated by $USER”, where the $USER represents the name of
the system’s user executing the build.61 Since builds are performed on dis-
tinct build systems, the $USER outputs different usernames for each build
system, causing unreproducible builds.

– Locale
Definition: Locale provides users the ability to make use of user-specific lan-
guage settings that are then translated to the corresponding binary code.
Words in different locales correspond to different binary codes. Therefore, if
there is a difference in the locale used between the two build systems while per-
forming distinct builds, then the resulting binary will differ in content. This
will cause the builds to become unreproducible.
Notable Instances: In the case of the python-babel package, some of the de-
fault parameter values for functions were set to the user’s locale rather than
the build system’s locale during the execution of a build. When different users
performed builds on distinct machines, the difference in their locale led to the
builds becoming unreproducible.62

59 https://man7.org/linux/man-pages/man1/uname.1.html
60 https://tests.reproducible-builds.org/debian/issues/unstable/captures_build_
arch_issue.html
61 https://tests.reproducible-builds.org/debian/issues/unstable/user_in_
documentation_generated_by_gsdoc_issue.html
62 https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=795997

https://man7.org/linux/man-pages/man1/uname.1.html
https://tests.reproducible-builds.org/debian/issues/unstable/captures_build_arch_issue.html
https://tests.reproducible-builds.org/debian/issues/unstable/captures_build_arch_issue.html
https://tests.reproducible-builds.org/debian/issues/unstable/user_in_documentation_generated_by_gsdoc_issue.html
https://tests.reproducible-builds.org/debian/issues/unstable/user_in_documentation_generated_by_gsdoc_issue.html
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=795997

32 Rahul Bajaj et al.

Finally, we categorized 186 unreproducible packages (2.4%) as Unknown,
which means that it was not possible to assign a known category to the issues
reporting on the unreproducibility of these packages (Section 3.3). In certain in-
stances, developers did engage in discussions regarding potential root causes, but
provided only limited information, which hampers their definitive categorization.
Similarly, there are cases where no explicit descriptions are available for the pur-
pose of classifying the root cause. Since, at the time of analysis, these specific
issues were yet to be thoroughly explored by Debian’s reproducible build experts.

The openssl package, which provides secure communication over a computer
network, is an example of the latter case. The developers argue63 the following on
the root causes potentially affecting the package, thereby reflecting their uncer-
tainty on what should be done in order to fix a package.

Could be:
1) jobs that try to bind to localhost ports which are in use by something in the

jenkins machines. [...]
2) the build tries to access a debian archive over http, which is something allowed

but pbuilder doesn’t support this yet [...]
3) something else, the machine is heavily loaded all the time...

5.2 Prevalence of taxonomy categories

Build Path (5,008 affected packages) has the most significant influence
on unreproducible builds, with a five-fold increase in impact over the
second most influential root cause, Randomness (837 affected packages).
Table 8 lists the root causes (column 1) with corresponding frequency (column 2)
found in the issues and the number of packages (column 3) that are affected by
the root cause in consideration. We highlight the root causes from the previous
literature [17] with bold font.

Based on data from Table 8, we see that four of the six categories introduced
by the previous work are the most impactful in terms of how many unique pack-
ages they affect. Hence, our empirical study confirms the influence of those four
categories proposed by Chris Lamb et al. [17]. In contrast, Lamb et al.’s other two
root causes, i.e., Archive Metadata and Uninitialized Memory, are less common in
the studied distributions. Indeed, the former regards creating and managing com-
pressed files such as ZIP and RAR files, while the latter regards access to specific
memory regions with uninitialized data.

During our analysis, it was observed that Build Timestamp has a significant im-
pact on a relatively smaller number of packages (628 packages) when compared to
Build Path and Randomness. This does not indicate that Build Timestamp is a less
important root cause, but rather that the specification added to fix Timestamp-
related issues, i.e., SOURCE DATE EPOCH, performed very well to resolve the
issue. However, our findings have also revealed other valuable insights, highlight-
ing the need for additional fixes to achieve the desired level of reproducibility in
software projects, in contrast to existing literature [17, 23], which suggests that
rectifying timestamps could potentially resolve the majority of unreproducibility

63 https://tests.reproducible-builds.org/debian/issues/unstable/ftbfs_in_
jenkins_setup_issue.html

https://tests.reproducible-builds.org/debian/issues/unstable/ftbfs_in_jenkins_setup_issue.html
https://tests.reproducible-builds.org/debian/issues/unstable/ftbfs_in_jenkins_setup_issue.html

Title Suppressed Due to Excessive Length 33

Table 8: Frequency of Issues and Affected Packages

Root Cause Frequency of Issues Affected Packages

Build Path 77 5,008
Randomness 57 837
Build Timestamp 155 628
Filesystem Ordering 24 189
User Information 11 122
Architecture Information 10 102
Archive Metadata 14 66
File Permission 3 60
System’s DNS Name 1 60
Build ID 2 54
File Encoding 3 29
Snippet Encoding 4 16
Reference to Memory Address 1 12
Locale 7 3
Uninitialized Memory 2 2
Package Dependency 2 2

cases. Nonetheless, our results indicate that additional essential fixes are required
to accomplish the desired degree of reproducibility in software projects.

When considering frequency in terms of the number of affected issues, data of
Table 8 shows that five out of the six root causes elicited by Lamb et al. again
are amongst the most frequent ones, totaling 327 occurrences in the data set.
This result is reasonably expected if we consider the nature of the previous work,
which an expert proposed based on industry experience with reproducible builds.
On the other hand, Uninitialized Memory rarely appeared in our manual analysis
(two occurrences only), which may indicate that this root cause is specific to a
particular domain. The remaining 12 root causes are less frequent in our data set,
but they have their importance when it comes to unreproducible builds. These root
causes are related to problems that may not be trivial to cope with in practice,
such as Package Dependency and File Permission.

5.3 Package Domain-related Analysis

Because of the diverse nature of root causes impacting the packages, our
findings show that unreproducible packages from system-level package
domains are likely difficult to be fixed (made reproducible). Table 9
presents the number of packages of a domain impacted by each of the root causes.
Out of a total of 59 package domains, we decided to consider only the top five
domains whose packages are affected by most of the different root causes – namely,
devel, science, virtual, utils, and admin. We split the rows into two groups: the
first group (rows 3 to 8) corresponds to the root causes that appeared in the
literature [17]; the second group (rows 9 to 17) corresponds to root causes that
emerged from our manual labeling (see Section 5.1). For each group, we sorted the
rows considering the second column (i.e., the devel package domain) in decreasing
order because devel is affected by the majority of the root causes (13 in total).

We highlighted in bold font the root cause affecting the highest number of
packages for a given domain and root cause. When considering frequency in terms

34 Rahul Bajaj et al.

Table 9: Domain-wise packages affected by Root Causes

Root Cause
Number of Packages Affected by Domain
Devel Science Virtual Utils Admin

Build Path 190 190 64 260 102
Build Timestamp 58 45 15 27 10
Randomness 15 29 10 6 7
Archive Metadata 9 4 64 3 0
File System Ordering 5 8 64 9 8
Uninitialized Memory 0 0 1 0 0
Architecture Information 11 12 2 9 3
User Information 11 4 5 1 2
File Permission 11 2 2 2 0
Build ID 4 3 1 3 0
File Encoding 2 2 0 0 1
Encoding Information 1 1 0 0 3
System’s DNS 1 2 1 1 2
Locale 1 2 0 0 0
Package Dependency 0 0 0 0 1

of the number of affected packages across the domains, data of Table 9 shows
that the virtual package domain has the least packages affected by Build Path.
In contrast, it has the most packages affected by Archive Metadata and File Sys-
tem Ordering. Furthermore, among the newly discovered root causes, Architecture
Information affects the most packages across domains.

Except for science, all package domains are system-level package domains,
which suggests that unreproducible packages from the system-level domains tend
to suffer more from unreproducible build issues due to the varied nature of root
causes affecting them. This confirms, to some extent, our past assumptions drawn
while discussing RQ1 results. Those results suggested that packages belonging to
the system-level domains remain unreproducible for the longest time and might
be affected by vulnerabilities for a considerable time.

It is important to stress that each root cause is different: some are simple to
fix, e.g., Randomness, while others are more complex and require more effort to be
fixed, e.g., Package Dependency and Build ID. Thus, it is even more challenging
for developers of the system-level domain packages first to identify the varied root
cause, then provide an appropriate solution to fix the issue.

We noticed that a considerable number of packages (18.46%) are
affected by multiple root causes, which makes it even harder to prevent
them from becoming reproducible. Figure 7 demonstrates that while most
(81.54%) of the packages are affected by one root cause, there are 18.46% that are
affected by two or more root causes. For instance, packages such as odc are affected
by nine root causes, while php7.4, r-base, and gdb are affected by eight different
root causes. Fixing packages affected by different root causes can be tedious due
to the varied nature of root causes.

Because it is unfeasible to present and discuss all of them in the paper, we
cherry-picked five examples of packages to be discussed out of the three system-
level package domains (devel, admin, and utils) listed in Table 9. For a detailed
discussion, Table 10 presents all the root causes affecting the selected packages –
namely, gdb, autoconf, apt, pcp, and openssl. The legend provides identifiers for

Title Suppressed Due to Excessive Length 35

Affected Packages
1
2
3
4
5
6
7
8
9

Nu
m

be
r o

f R
oo

t C
au

se
s

Fig. 7: Number of Root Causes Affecting Packages

the issues related to reproducible builds64 from which we derived the root causes
as discussed in Section 5.1.

Table 10: Packages Affected by Multiple Root Causes

Root cause
Devel Admin Utils

gdb autoconf apt pcp openssl
Architecture Information 11
Archive Metadata 14
Build ID 09
Build Path 02 03 04, 07 02 01
Build Timestamp 11, 13 09 12
File Permission 05 05
Randomness 10 08
User Information 11
Unknown Issue 06
Legend: 08 - nondeterministic ordering in

documentation generated by doxygen01 - build path captured in assembly objects
02 - captures build path 09 - pdf created by ghostscript
03 - captures shell variable in autofoo script 10 - random id in pdf generated by dblatex
04 - cmake rpath contains build path 11 - test suite logs
05 - different due to umask 12 - timestamps in gzip headers
06 - ftbfs in jenkins setup 13 - timestamps in jar
07 - gcc captures build path 14 - users and groups in tarball

Proposing fixes to a package suffering from multiple reproducible build issues
can be challenging yet essential. This was the case for the gdb package (from the
devel package domain), which had problems associated with Architecture Informa-
tion, Build Timestamp, and User Information (cf. Issue 11). It is worth mentioning
that gdb is the official GNU project debugger and is an essential feature for the
debugging of C and C++ programs. Furthermore, gdb is a dependency for crucial
packages such as python and rust.65

64 https://tests.reproducible-builds.org/debian/index_issues.html
65 https://archlinux.org/packages/extra/x86_64/gdb/

https://tests.reproducible-builds.org/debian/index_issues.html
https://archlinux.org/packages/extra/x86_64/gdb/

36 Rahul Bajaj et al.

Multiple issues of the exact root cause might be reported for a given package.
This was the case for the apt package, which is reported to be affected by the
root cause of Build Path in multiple issues (cf. Issues 04 and 07). We note that
apt stands for Advanced Package Tool, and this is probably the most important
package of Debian because it is responsible for managing the installation and
upgrade process of packages for Debian. Furthermore, the fact that Build Path-
related issues appear from issues related to cmake (Issue 04), which is a build-
dependency of the apt package66 and gcc (Issue 07) which is a runtime dependency
of the cmake package, suggests that the unreproducibility is emerging from the
build environment that is being used to build the apt package. In other words,
external factors such as build dependencies and the runtime dependencies of their
build dependencies may be affecting the reproducibility status of the package –
which will be further investigated in RQ3 (see Section 6).

Summary of RQ2: Our qualitative analysis enabled us to considerably ex-
pand the current literature knowledge on the root causes of unreproducible
packages. We derived a taxonomy consisting of 16 root causes grouped into
five categories: Build, Filesystem, Memory, Locale, and System. While
Build Timestamp is the most frequent root cause found in the issues analyzed,
Build Path has the most significant impact on packages.

6 Correlation between External Factors and Reproducibility Status
(RQ3)

This final RQ uses statistical χ2 tests, as discussed in Section 3.4, to study the
impact of three ecosystem factors, external to a given package on that package’s
own build reproducibility.

6.1 Overview of Correlation Results

As discussed in Section 3.1, RQ3 aims to understand software ecosystem factors
outside the control of a given project that might correlate with its reproducibility
status. For this, we determine the correlation between the external factors defined
in Section 3.4 and the reproducibility status of packages across Arch Linux and
Debian. Table 11 provides the cross-tabulation for the reproducibility status of
packages in Arch Linux and Debian for each external factor. It also shows the
Chi-Square test score (χ2), which determines whether the impact of the external
factor is statistically significant (p − value < 0.01) or not. Moreover, the table
also provides insights into the effect size of the correlation by using Cramer’s V
estimator.

We also perform the analysis per domain for each factor, with results summa-
rized in Table 12. We could find at least one domain having significant findings for
each factor, except for runtime and build dependencies. In the latter case, no effect
size could be calculated. We discuss the results of the domain-oriented analysis in
detail for each external factor in the following sub-sections.

66 https://sources.debian.org/data/main/a/apt/2.5.4/debian/control

https://sources.debian.org/data/main/a/apt/2.5.4/debian/control

Title Suppressed Due to Excessive Length 37

Table 11: Cross-tabulation of reproducibility status of packages w.r.t their ecosys-
tem

Distribution

Arch Linux Packages

Unreproducible Reproducible

Debian

Packages

Unreproducible 189 480

Reproducible 688 2,751

χ2 = 22.1875; p < 0.01; V = 0.0743

Build Dependencies

Build Dependencies for Debian Packages

Unreproducible Reproducible

Debian

Packages

Unreproducible 11,030 2,632

Reproducible 15,929 8,206

χ2 = 925.4351; p < 0.01; V = 0.1565

Architectures

Debian Packages Built on ARM64 Architecture

Unreproducible Reproducible

Debian

Packages

Unreproducible 6,013 822

Reproducible 329 29,139

χ2 = 29024.896; p < 0.01; V = 0.8942

Table 12: Cramer’s V strength of statistically significant associations between Do-
mains and External Factors.

Correlation
Strength

External Factors
Distribution Build Dependencies Architecture

Negligible

Weak
admin, misc, web,
java, python,
science, utils.

Moderate devel, gnome.
graphics, devel, net,
mail, interpreters,
otherosfs, text.

Relatively Strong graphics comm, fonts.

Strong lisp
java, gnustep, ruby,
shells, metapackages.

Very Strong
All other domains except
the ones mentioned
in Strong correlation.

6.2 Distribution

Test results: The difference between the reproducibility status of packages across
the distributions these packages are part of is significant (p − value < 0.01), but
with negligible effect size (0.0 < V < 0.1).

Discussion: Despite a negligible effect size, determining the reproducibility
status of a package in a distribution does not guarantee similar reproducibility sta-
tus for that package in other distributions. This result can be justified by different
design decisions by stakeholders of various distributions. These design decisions
might include factors like the supported architectures (Section 2.2), file systems,
and release cycle management (Section 2.1). For instance, Arch Linux does not
have a default file system defined, allowing users to choose the file system at their

38 Rahul Bajaj et al.

convenience, whereas Debian uses the ext4 file system by default. Using different
file systems leads to different file permissions (Section 5.1) and sizes, which might
lead to unreproducibility.

To further understand this finding, our domain-oriented analysis revealed that
the gnome package domain and the graphics package domain are two of three
package domains that exhibit a significant difference in the reproducible build
ratio across distributions (p < 0.01). The effect size is moderate (V = 0.3987) for
the former and relatively strong (V = 0.5095) for the latter. Both the gnome and
graphics package domains are considered application-level package domains.

Packages within the graphics package domain are responsible for tasks like im-
age manipulation, processing of image and video content, and rendering graphical
content on various hardware to ensure optimal performance and compatibility.
These packages frequently interact with binary data formats, such as compiled
shaders, image files, or proprietary formats like the PSD file format for Photoshop
documents and Autodesk’s DWG format. Such formats might embed timestamps,
version information, or metadata related to data manipulations. When builds are
executed on different distributions, these factors can more easily influence the
change in reproducibility status of the graphics package across those distributions.

Packages in the gnome package domain pertain to applications, libraries, and
tools that support desktop environments on Linux-based systems. Desktop en-
vironments offer users a variety of desktop themes, the ability to use different
locales and other graphical elements. Graphical elements, such as icons, might
embed timestamps or vary based on the locale when compiled on different distri-
butions. This can also influence the change in reproducibility status of the gnome
packages across distributions.

Furthermore, the devel package domain demonstrates a significant difference in
the reproducible build ratio across distributions (p < 0.01), with a moderate effect
size (V = 0.2626). The devel package domain is regarded as a system-level package
domain, encompassing build systems, compilers, and header files from these shared
libraries. The paths to these header files might vary when compiled on different
distributions, which could also contribute to the change in reproducibility status
of the devel packages across distributions.

Implications: We saw in RQ1 that fixing unreproducible packages takes a long
time for developers; therefore, this does not appear to be a simple task. On the
other hand, the RQ3 results for distribution imply that a given package, especially
in the devel domain, should be tested separately in terms of build reproducibility
for all distributions since testing it for one distribution says little about what to
expect in terms of reproducibility status in other distributions. Package builds,
release cycles, file systems, and supported hardware architectures all differ across
distributions, which makes the parameters in the build process of packages consid-
erably different depending on the distribution. Considering the mentioned factors,
we suspect that developers might discover totally different root causes to deal with
while testing across distributions.

Considering the root causes elicited in RQ2 (Figure 6), we assume that specific
root causes such as Architecture Information, Build Path, Filesystem Ordering,
File Permissions, Locale, Reference to Memory Address, and Uninitialized Memory
are distribution sensitive – i.e., each of these attributes has varied characteristics
in different distributions. Since many packages are affected by either of the above-
mentioned root causes, it makes sense that the reproducibility status of a given

Title Suppressed Due to Excessive Length 39

package might be different between different distributions. However, we cannot
provide evidence for such scenarios since build logs of packages are not maintained
by the distributions; only the latest build results are stored on the aforementioned
Reproducible Builds website. Having logs of previous builds performed can be a
potential future work.

This also has another implication for distributions like Arch Linux, which do
not categorize reported reproducibility bugs based on their root causes (as Debian
is doing). Usually, when an issue is reported in the bug tracker for a distribution
like Debian, members of the Reproducible Builds project examine it, categorize
it according to pre-defined categorized issues,67 and try to replicate the issue on
their local instance. Subsequently, a patch is suggested by the members to fix
the issue. Lastly, the patch is submitted to the upstream project. Although Arch
Linux has a specific bug tracker68 to cope with bugs related to reproducible builds,
this bug tracker does not categorize the bug reports based on their root causes as
done in Debian. Instead, Arch Linux members may have to check the Debian bug
tracker to categorize the issues, helping them create patches for their distribution.
However, due to the impact of distributions on the reproducibility of a given
project, particularly for devel packages, causes of unreproducible builds might be
highly different between distributions. Hence, we recommend that the Arch Linux
community systematically categorizes the root causes independently.

6.3 Build Dependencies

Test results: The distribution of the reproducibility status of packages signifi-
cantly differs based on the reproducibility status of the packages’ build dependen-
cies (p− value < 0.01), with weak effect size (0.1 < V < 0.2).

Discussion: The results indicate that even if a given project has a reproducible
build, its own build dependency not being reproducible might render it unrepro-
ducible as well. In other words, this project’s developers rely on the developers of
the unreproducible build dependency to render their project build-reproducible.

Out of the top ten most influential build dependencies (i.e., packages that serve
as build dependencies to most other packages), three packages belong to the devel
package domain listed with their frequency of occurrences respectively – debhelper
(15,887), cmake (2,965), and cdbs (2,595). Figure 8 shows the reproducibility sta-
tus of different releases of the debhelper package, which has been the top most
influential build dependency for the past seven years.

We observe that the majority of the builds in the past seven years have had
a reproducible build. This result is reasonable since the debhelper package auto-
mates frequent tasks like assigning appropriate file permissions, installation, and
compression of required files during the build process of Debian packages. Further-
more, tasks performed by this package are crucial since they directly relate to the
root causes we found in RQ2, such as File Permission, Package Dependency, and
Achieve Metadata. Additionally, we found that 67.4% of the packages that depend
on debhelper as a build dependency are reproducible.

On the other hand, for at least 13 builds tested spread across six years (ex-
cluding 2020), the build was not reproducible, potentially impacting the build

67 https://salsa.debian.org/reproducible-builds/reproducible-notes
68 https://bugs.archlinux.org/

https://salsa.debian.org/reproducible-builds/reproducible-notes
https://bugs.archlinux.org/

40 Rahul Bajaj et al.

2015 2016 2017 2018 2019 2020 2021
Time (years)

0

5

10

15

20

25

30

35

40

Nu
m

be
r o

f B
ui

ld
s

Unreproducible
Reproducible

Fig. 8: Reproducibility Status of Debhelper Package

reproducibility of hundreds or thousands of packages depending on debhelper.
Similar patterns as in Figure 8 have been seen for the two other most influential
build dependencies that belong to the devel domain (cdbs and cmake). However,
Figure 9 shows that pkgconf has been built reproducibly only once for the past
three years. Furthermore, the latest build data performed in the year 2021 reveals
that 1,558 packages (38.31%) that have pkgconf as a build dependency are built
unreproducibly. This result illustrates our correlation results for how a package’s
reproducibility status depends on its build dependencies’ reproducibility status.

2015 2016 2017 2018 2019 2020 2021
Time (years)

0

5

10

15

20

25

Nu
m

be
r o

f B
ui

ld
s

Unreproducible
Reproducible

Fig. 9: Reproducibility Status of Pkgconf Package

Additionally, Table 12 shows that packages from seventeen package domains
show a significant difference in the likelihood of having an unreproducible build
depending on the build reproducibility of the packages’ build dependencies (p <
0.01). We found that at least one package in each of the seventeen domains relies

Title Suppressed Due to Excessive Length 41

on GNU Compiler Collection (GCC)69 for its compilation. Since GCC packages
are utilized as build dependencies by a wide range of packages, we found several
examples70 in which developers seem to be concerned about issues related to Build
Path, as illustrated by the quote below:71

We think it’s not appropriate to patch all (3k+) of these packages to strip out
-fdebug-prefix-map flags. This would involve adding quite complex logic to

everyone’s build scripts, and we have to adapt this logic every single time to that
particular package.

Also, in general CFLAGS is *supposed* to affect the compiler output, and saving
it unconditionally is quite a reasonable thing for packages to do. If we tried to
patch all of these packages, we would be turning ”reproducible builds” in to a

costly opt-in feature, rather than on-by-default that everyone can easily benefit
from. So, we believe it is better to patch GCC centrally.

Because GCC is an independent software project, proposals from the Repro-
ducible Builds maintainers for fixing Build Path related issues may or may not be
accepted by the GCC project maintainers; even if such patches are accepted, it
may take a long time for these patches to be propagated to the end-users since
GCC adopts feature-based releases that may take from a few months to years
for such patches to be merged into GCC-based projects and distributed for use.
In summary, the interdependence of various development teams, in this exam-
ple, GCC and Reproducible Builds, can also have a significant impact on package
reproducibility.

Implications We found in RQ1 that packages in the devel domain have a
significantly higher survival probability for unreproducible packages after 30 days
(74.45%) and 360 days (24.39%), implying that fixing packages from the devel
package domain takes a long time. On the other hand, once fixed, these packages
require the shortest time to become unreproducible again. A possible explana-
tion for these earlier findings is hinted at by our findings about the impact of
build reproducibility of a package’s build dependencies. At the same time, this
also provides an opportunity since the same build dependency might cause build
(un)reproducibility for multiple packages, implying that fixing the issue once could
solve many reproducibility problems.

In RQ2, we found that Package Dependency, probably the only root cause
closely related to build dependencies, is one of the least frequent root causes and
has the lowest impact in the entire distribution (Table 8). We observe that the re-
producible status for the most influential build dependencies, such as pkg-config,
has a significant impact on the reproducibility status of the package for which it
is a dependency.

69 https://gcc.gnu.org/
70 https://tests.reproducible-builds.org/debian/issues/unstable/captures_build_
path_via_assert_issue.html
71 https://gcc.gnu.org/legacy-ml/gcc-patches/2016-11/msg00182.html

https://gcc.gnu.org/
https://tests.reproducible-builds.org/debian/issues/unstable/captures_build_path_via_assert_issue.html
https://tests.reproducible-builds.org/debian/issues/unstable/captures_build_path_via_assert_issue.html
https://gcc.gnu.org/legacy-ml/gcc-patches/2016-11/msg00182.html

42 Rahul Bajaj et al.

6.4 Architecture

Test results: The reproducibility of a package statistically significantly differs
depending on the architecture for which the package is compiled (p−value < 0.01),
with a very strong effect size (0.8 < V < 0.9).

Discussion: Architecture defines the hardware environment in which the sys-
tem is compiled (Section 2). Different packages must be compiled differently to run
on a specific hardware architecture. As seen in Table 11, a considerable number
of the packages (7,167; 19.74%) are unreproducible on both the armhf and arm64

architectures. After computing the Cramer’s V estimator on the data, we found an
effect size of 0.8942. Because 0.8 < V < 0.9, this means a very strong correlation,
which suggests that package reproducibility strongly depends upon the underlying
hardware architecture.

Table 12 illustrates Cramer’s V estimator for all packages in each package
domain to understand the magnitude of the correlation between package repro-
ducibility and packages built on specific architectures. We found that packages
from 48 package domains show a significant difference (p < 0.01), with at least
a strong effect size for all package domains. This result suggests that the overall
observation of the role of architecture is also observed for all package domains
separately.

Implications: RQ3 results strongly suggest that if a build is performed for a
package in a given hardware architecture, it is not sure that the same package will
build reproducibly on another hardware architecture. As a result, we must build
each package across different hardware architectures to check for reproducibility,
similar to our findings about the distribution factor.

Based on the results obtained from RQ3, it is understood that achieving com-
plete build reproducibility fully within the control of a software package’s own
developers is often challenging. To comprehensively address this issue, the investi-
gation of external factors that impact build reproducibility should be directed by
researchers. Simultaneously, the refinement of tools and methodologies by practi-
tioners engaged in the reproducible builds initiative should be diligently pursued
to effectively differentiate between reproducibility issues that can be controlled by
developers of a project and those that arise from external factors.

Summary of RQ3: We found strong effect sizes between the reproducibility
status of packages and one external factor, i.e., hardware architecture. For
the other three external factors, we found either weak correlation (build and
their runtime dependencies) or negligible correlation (distribution), apart from
some domains, which raises awareness of the need to perform builds more
intensively.

7 Threats to Validity

Construct Validity: We opted for a time window of 720 days for performing the
survival analysis of RQ1 (Section 4). Due to the unequal build data size for Arch
Linux (5 years of build data) and Debian (10 years of build data), we decided to
compare the build data of the first 720 days. We discarded packages built multiple

Title Suppressed Due to Excessive Length 43

times on the same day, as mentioned in Section 3.2 since their reproducibility
status is likely to change multiple times in a short time. For instance, we initially
had 37,858 packages for Event E1 analysis but discarded 343 out of 37,858 (0.9%)
unreproducible Debian packages and 37 out of 8,529 (0.4%) unreproducible Arch
Linux packages. Nevertheless, the discarded packages represent less than 0.8% of
all packages, which suggests that discarding packages had little impact on our
study.

The RQ3 analysis (Section 6) required identifying packages appearing in both
Arch Linux and Debian distributions. We found 4,108 packages with the same
name in both distributions. However, not all matching names imply having the ex-
act package implementation. Remarkably, the package size, version, and function-
ality sometimes vary across distributions. Two examples of packages are python-

keyutils (version 0.6-2 in Debian’s Unstable suite vs. 0.6-6 in Arch Linux’s Com-
munity suite) and libvrt (version 7.6.0-1 in Debian’s Unstable suite vs. 7.8.0-1 in
Arch Linux’s Community suite). Variations are probably due to each distribution’s
different release mechanisms, though further investigation is required. Unfortu-
nately, computing all variation occurrences is unfeasible because it requires skills
to understand and identify whether each package performs similar functionality in
both distributions.

For RQ1, RQ2, and RQ3, we use the Debian Unstable suite. We decided to use
the Unstable suite for all our analysis since it consists of 37,858 (99.45%) of 38,064
packages tested for reproducibility. Furthermore, packages belonging to the Un-
stable suite undergo constant development by the Debian community. Changes in
the source code may lead to unreproducibility; therefore, we studied the Unstable
suite in all three experiments.

Internal Validity: We were inspired by the approach of previous studies [41]
to perform descriptive analysis on the RQ2 data. The first three paper authors
carefully revised the manual labeling procedures of RQ2 (Section 5) in at least
three meetings. The first two authors performed the manual labeling indepen-
dently based on procedures documented in recent work [41]. Additionally, the first
two paper authors built together the taxonomy of root causes of unreproducible
packages (details in Section 3.3). The third author has validated the taxonomy,
and his feedback helped us address questions regarding the most appropriate way
to group root causes into major categories. The taxonomy identified in our re-
search was not only discussed with the reproducible builds community, but was
also adopted by the official reproducible builds website,72 complete with our defi-
nitions and prominent examples.73

The first two authors double-checked the spreadsheet created to support man-
ual labeling and fix missing information problems. We computed agreement on
the independent labeling outputs to mitigate human biases regarding the root
causes identified by each author. We then had two meetings to discuss cases of
disagreement, i.e., whenever the authors disagreed about the root cause behind a
specific known issue related to reproducible builds. We expected to reach a con-
sensus on the final labeling and improve our study’s reliability. Following these
discussions, we also sought feedback from experts to further enhance the accuracy
and robustness of our findings.

72 https://reproducible-builds.org/docs/plans/
73 https://reproducible-builds.org/docs/env-variations/

https://reproducible-builds.org/docs/plans/
https://reproducible-builds.org/docs/env-variations/

44 Rahul Bajaj et al.

We extracted the issues for analysis from the Reproducible Builds database74

on October 11, 2021. Since issues change over time, our study targets a particular
data snapshot. Since only four issues were added three months after (data of
January 11, 2022), we assume that changes do not represent a significant threat
to validity.

External Validity: We are aware that our quantitative results regarding the
root causes may not generalize to all software projects. We stress that the Re-
producible Builds project has more than ten years of build data. Furthermore,
we see an increase in the projects participating in this initiative, indicating that
unprecedented issues regarding reproducible builds (and root causes) may appear
in the future. Still, it is worth mentioning that we manually labeled all 397 issues
reported until late 2021, thereby covering 100% of the data available at that time,
as described in Section 3.3.

Moreover, our quantitative results may not generalize to all of OSS. We dis-
cussed in Section 2.1 that the Reproducible Builds project comprises 33 OSSs of
different natures. Five of the 33 OSSs are Linux distributions: Alpine, Arch Linux,
Debian, OpenSUSE, and OpenWrt. However, RQ1 and RQ3 analyses target Arch
Linux and Debian only because these are the only ones whose communities per-
formed multiple build cycles for longer than one year. In addition, Debian packages
can be tested on multiple architectures such as amd64 and i386, while Arch Linux
only supports the x86 64 architecture. Finally, the two distributions analyzed vary
significantly in the number of packages: 8,529 for Arch Linux against 37,858 for
Debian. Hence, one could argue that our study results may not generalize even for
the specific context of Linux distributions and architectures.

Conclusion Validity: This threat is concerned with the degree to which other
research teams would reach a similar conclusion based on the given data and re-
sults. Our study is unlikely to be affected by the threat mentioned above, for
two reasons: (1) All quantitative analyses performed in this study are supported
with statistical tests that have been used previously with similar purposes. For
instance, the survival analysis is used to determine the survival probabilities for
open source projects [37], database framework usage in Java [13], and Debian
package incompatibilities [8]. Additionally, our conclusion on the correlation be-
tween the reproducibility status of packages and the external factors is based on
statistical significance and not incidental relationships. (2) Our qualitative analy-
sis, performed by the first two authors, involves categorizing unreproducible build
issues into root causes under the supervision of the third author. Furthermore, in
case of complete uncertainty during the categorization of issues, we asked relevant
questions to the industry experts about reproducible build issues via the mailing
list. Moreover, we also performed a quantitative impact analysis of our categorized
root causes focused on the #packages affected by these root causes. To ensure the
rigor and accuracy of our findings, we also incorporated feedback from experts in
the field after our initial analyses.

74 https://tests.reproducible-builds.org/debian/index_issues.html

https://tests.reproducible-builds.org/debian/index_issues.html

Title Suppressed Due to Excessive Length 45

8 Related Work

Previous work highlights the problems related to trusting software binaries [39,42].
On the one hand, there is a lack of verifiability of software binaries from their source
code. Previous studies [6,17,36,38,40] confirm that developers were not cognizant
of verifiability of the software binaries while developing their build systems. On
the other hand, there have been instances where malicious code has been injected
during software builds [31, 32, 43]. We discuss below the papers closely related to
our study, either related to the research questions, or related empirical studies
based on reproducible builds.

Butler et al. [5] performed qualitative analyses of the benefits and challenges
of the Reproducible Builds project in industry settings using interviews conducted
with employees of 12 companies, including managers and software practitioners.
The study revealed that reproducible builds are a good practice from a security
point of view. However, the interviews also reveal that reproducible builds have
a minimal business impact and are not very attractive from a customer’s point
of view. Additionally, the interviews reveal that the cost involved in maintaining
and performing reproducible builds is a challenge that might inhibit its adoption.
In our study, we not only provide empirical evidence on the maintenance cost
(in terms of #days) for developers to fix an unreproducible package, but we also
provide developers with 16 root causes of unreproducibility.

Maes-Bermejo et al. [18] performed and verified builds of 139,389 commits from
past snapshots of 79 Java software projects. The study reveals that 63.45% of the
errors that lead to the build failure are caused by build dependencies and external
artifacts that are required to perform builds, not being resolved. The study claims
that build compilation errors (2.92%) have a minor contribution for the builds
to fail compared to the non-resolution of the build dependencies. Congruently, we
emphasize in our study that modern software is part of a larger software ecosystem
where each project depends on another to function efficiently. Furthermore, our
study stresses that the reproducibility status of a project, is not wholly under the
control of the project members. Rather it depends on external factors like the
distribution in which a package is released, the build dependencies of a package,
the runtime dependencies of the build dependencies, and the hardware architecture
(RQ3, Section 6).

de Carné et al. [6] verify builds for a security-critical open source project –
TrueCrypt. They compare 16 versions of the official software binary, including
the major and minor versions, with the software binaries generated by performing
builds on the source code. The authors fix issues related to Architecture, Build
Path, and Build Timestamp to make the builds reproducible. However, there is
no information about the frequency of such issues concerning the different ver-
sions considered nor about the prevalence of said issues across larger open-source
projects. Furthermore, the efforts to fix the abovementioned issues introduce a
delay for builds to become reproducible. In comparison, our study on build data
from Linux distribution packages identifies a median delay of 104 days for Debian
and 12 days for Arch Linux to become reproducible. Furthermore, our analysis of
hundreds of releases for packages in both distributions expands the taxonomy of
6 root causes of build reproducibility to 16 root causes.

Goswami et al. [14] analyzed the reproducibility of the build of 3,390 ver-
sions of 226 NPM packages. The study signifies that 38% of the NPM packages

46 Rahul Bajaj et al.

are considered unreproducible and that end-users must not trust binaries from
the NPM repository. Furthermore, to examine the differences between builds for
unreproducible packages, the authors found that out of 19 randomly selected unre-
producible builds, eight were due to specifying deprecated package versions. This
result is interesting as Package Information is one of the root causes we discov-
ered in our manual study of RQ2 (Section 5.1). Furthermore, the paper’s authors
identify three root causes for the unreproducible builds – Package Dependency,
Filesystem Ordering, and Randomness. However, there is no mention of the fre-
quency of such issues; therefore, the impact of each of the aforementioned root
causes cannot be determined. In our study, we expand the taxonomy to 16 root
causes and calculate the frequency and impact of the specified root causes (RQ2,
Section 5.2).

Lamb et al. [17] broadly explain the reproducible build process through the
experience of making Debian project reproducible and identify six root causes
for unreproducible builds – Build Path, Build Timestamp, Filesystem Ordering,
Achieve Metadata, Randomness, and Uninitialized Memory. This study reveals the
fixes related to these six root causes. However, this study is an experience report
from an industry expert in the reproducible builds community without empirical
data. Additionally, the study confirmed that Build Timestamp is the most impact-
ful root cause. In contrast, our study confirmed that Build Timestamp is the most
frequent root cause. According to our study, Build Path (RQ2, Section 5.2) affects
the most packages, which makes it the most impactful root cause. Additionally,
in our study, we found that two root causes – User Information and Architecture
Information are more impactful in terms of the number of packages affected than
the ones mentioned in the recent study (RQ2, Table 8).

To fix an unreproducible build performed for a package, developers need to
inspect the differences between the two builds (Section 1). Once they identify the
files that are the cause for such differences, they perform fixes to those files in order
to achieve a reproducible build. Previous work [36] proposes a tool, RepLoc, that
ranks the source files responsible for unreproducible builds in Debian packages.
Using the RepLoc tool revealed that Makefiles typically cause unreproducible
builds (rank 1). A Makefile75 consists of build instructions specified to generate a
software binary. These files can be auto-generated by using packages like cmake and
automake, which, according to Table 3, belong to the devel package domain. This
domain shows a moderate to strong statistically significant difference in terms of
build reproducibility with two of the external factors (Architecture, Distribution)
taken into consideration (RQ3, Section 6.2, Section 6.4). This implies that packages
from the devel must be prioritized for fixing since they are significant for other
packages to become reproducible.

9 Conclusion

This paper introduces an empirical study that combines qualitative and quanti-
tative methods to systematically investigate unreproducible builds in ecosystem
settings, particularly the Arch Linux and Debian distributions. Our qualitative
analysis expanded the current knowledge on root causes of unreproducible builds

75 https://wiki.debian.org/Makefile

https://wiki.debian.org/Makefile

Title Suppressed Due to Excessive Length 47

to a taxonomy of 16 different causes, some impacting hundreds of packages si-
multaneously. The correlation analysis shows that the reproducibility of a package
strongly differs across the hardware architecture that packages are compiled on.
Survival analysis results suggest that reproducible packages are 25.75% likely to
survive over one year across both distributions.

Our quantitative analysis partially addresses David Wheeler’s 76 concerns
about how developers prioritize packages for fixing them into reproducible pack-
ages. We found that within a year, the survival probabilities in application-level
package domains to remain unreproducible are 12.9% higher than in system-level
package domains. Once fixed, reproducible packages from the application-level
package domains have a 5.67% greater survival probability of remaining repro-
ducible when compared to system-level package domains. However, several things
are still missing to fully address Wheeler’s concern about prioritization of repro-
ducibility checking and fixing of projects’ builds. For example: (1) surveys involving
qualitative and quantitative analysis to understand the characteristics of package
developers use to prioritize them and (2) mining issues reported by upstream de-
velopers to understand the decisions they made to identify essential packages to
fix.

10 Conflict of Interest

All authors declare that there is no conflict of interest.

11 Data Availability Statement

The datasets generated and analyzed during the study are available from the
corresponding author in a GitHub repository.77

References

1. Abdalkareem, R., Nourry, O., Wehaibi, S., Mujahid, S., Shihab, E.: Why do developers
use trivial packages? an empirical case study on npm. In: Proceedings of the 11th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE), p. 385–395 (2017)

2. Adams, B., Kavanagh, R., Hassan, A.E., German, D.M.: An empirical study of integration
activities in distributions of open source software. Empirical Software Engineering 21(3),
960–1001 (2016)

3. Allison, P.D.: Survival Analysis Using SAS: A Practical Guide, 2 edn. SAS Institute (2010)
4. Brooks, F.P.: The mythical man-month. Datamation 20(12), 44–52 (1974)
5. Butler, S., Gamalielsson, J., Lundell, B., Brax, C., Mattsson, A., Gustavsson, T., Feist,

J., Kvarnström, B., Lönroth, E.: On business adoption and use of reproducible builds for
open and closed source software. Software Quality Journal pp. 1–33 (2022)

6. de Carné de Carnavalet, X., Mannan, M.: Challenges and implications of verifiable builds
for security-critical open-source software. In: Proceedings of the 30th Annual Computer
Security Applications Conference (ACSAC), p. 16–25 (2014)

7. Chowdhury, M.A.R., Abdalkareem, R., Shihab, E., Adams, B.: On the untriviality of trivial
packages: An empirical study of npm javascript packages. IEEE Transactions on Software
Engineering pp. 1–15 (2021)

76 https://linuxfoundation.org/blog/preventing-supply-chain-attacks-like-solarwinds/
77 https://github.com/SAILResearch/replication-21-rahul_bajaj-reproducible_
builds-code

https://linuxfoundation.org/blog/preventing-supply-chain-attacks-like-solarwinds/
https://github.com/SAILResearch/replication-21-rahul_bajaj-reproducible_builds-code
https://github.com/SAILResearch/replication-21-rahul_bajaj-reproducible_builds-code

48 Rahul Bajaj et al.

8. Claes, M., Mens, T., Di Cosmo, R., Vouillon, J.: A historical analysis of debian package
incompatibilities. In: Proceedings of the 12th Working Conference on Mining Software
Repositories (MSR), pp. 212–223 (2015)

9. Decan, A., Mens, T., Claes, M.: On the topology of package dependency networks: A com-
parison of three programming language ecosystems. In: Proceedings of the 10th European
Conference on Software Architecture Workshops (ECSAW), pp. 21:1–21:4 (2016)

10. Decan, A., Mens, T., Constantinou, E.: On the impact of security vulnerabilities in the
npm package dependency network. In: Proceedings of the 15th international conference
on mining software repositories, pp. 181–191 (2018)

11. Easterbrook, S., Singer, J., Storey, M.A., Damian, D.: Selecting empirical methods for
software engineering research. In: Guide to Advanced Empirical Software Engineering,
pp. 285–311. Springer (2008)

12. Fried, L.: Team size and productivity in systems development bigger does not always mean
better. Journal of Information Systems Management 8(3), 27–35 (1991)

13. Goeminne, M., Mens, T.: Towards a survival analysis of database framework usage in
java projects. In: Proceedings of the 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp. 551–555 (2015)

14. Goswami, P., Gupta, S., Li, Z., Meng, N., Yao, D.: Investigating the reproducibility of npm
packages. In: Proceedings of the 2020 International Conference on Software Maintenance
and Evolution (ICSME), pp. 677–681 (2020)

15. Kaplan, E., Meier, P.: Nonparametric estimation from incomplete observations. Journal
of the American Statistical Association 53(282), 457–481 (1958)

16. Koen, R., Olivier, M.S.: The use of file timestamps in digital forensics. In: ISSA, pp. 1–16.
Citeseer (2008)

17. Lamb, C., Zacchiroli, S.: Reproducible builds: Increasing the integrity of software supply
chains. IEEE Software 39(2), 62–70 (2021)

18. Maes-Bermejo, M., Gallego, M., Gortázar, F., Robles, G., Gonzalez-Barahona, J.M.: Re-
visiting the building of past snapshots—a replication and reproduction study. Empirical
Software Engineering (EMSE) 27(3), 1–26 (2022)

19. Mancinelli, F., Boender, J., Di Cosmo, R., Vouillon, J., Durak, B., Leroy, X., Treinen,
R.: Managing the complexity of large free and open source package-based software dis-
tributions. In: Proceedings of the 21st International Conference on Automated Software
Engineering (ASE), pp. 199–208 (2006)

20. Mäntylä, M.V., Adams, B., Khomh, F., Engström, E., Petersen, K.: On rapid releases and
software testing: A case study and a semi-systematic literature review. Empirical Software
Engineering 20(5), 1384–1425 (2015)

21. Mao, A., Mason, W., Suri, S., Watts, D.J.: An experimental study of team size and per-
formance on a complex task. PloS one 11(4), e0153048 (2016)

22. Massacci, F., Jaeger, T., Peisert, S.: Solarwinds and the challenges of patching: Can we
ever stop dancing with the devil? IEEE Security & Privacy 19, 14–19 (2021)

23. Maste, E.: Reproducible builds in freebsd. In: Proceedings of 11th Asian Conference on
BSD Based Systems (AsiaBSDCon), pp. 1–8 (2017)

24. McHugh, M.: Interrater reliability: The Kappa statistic. Biochemia Medica 22(3), 276–282
(2012)

25. McIntosh, S., Adams, B., Nagappan, M., Hassan, A.E.: Mining co-change information to
understand when build changes are necessary. In: Proceedings of the 2014 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME), pp. 241–250 (2014)

26. Michlmayr, M., Hunt, F., Probert, D.: Release management in free software projects: Prac-
tices and problems. In: Proceedings of the 2007 International Federation for Information
Processing International Conference on Open Source Systems (IFIPAICT), vol. 234, pp.
295–300 (2007)

27. Miller, P.: Recursive make considered harmful. AUUGN Journal of AUUG Inc 19(1),
14–25 (1998)

28. Mirhosseini, S., Parnin, C.: Can automated pull requests encourage software developers
to upgrade out-of-date dependencies? In: 2017 32nd IEEE/ACM international conference
on automated software engineering (ASE), pp. 84–94 (2017)

29. Nagappan, N., Ball, T.: Use of relative code churn measures to predict system defect
density. In: Proceedings of the 27th international conference on Software engineering, pp.
284–292 (2005)

30. Nussbaum, L., Zacchiroli, S.: The ultimate debian database: Consolidating bazaar meta-
data for quality assurance and data mining. In: 2010 7th IEEE Working Conference on
Mining Software Repositories (MSR 2010), pp. 52–61 (2010)

Title Suppressed Due to Excessive Length 49

31. Ohm, M., Plate, H., Sykosch, A., Meier, M.: Backstabber’s knife collection: A review
of open source software supply chain attacks. In: Proceedings of the 2020 International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, vol.
12223, pp. 23–43 (2020)

32. Ohm, M., Sykosch, A., Meier, M.: Towards detection of software supply chain attacks by
forensic artifacts. In: Proceedings of the 15th International Conference on Availability,
Reliability and Security (ARES), pp. 1–6 (2020)

33. Plackett, R.: Karl Pearson and the Chi-Squared test. International Statistical Review
51(1), 59–72 (1983)

34. Raymond, E.: The cathedral and the bazaar. Knowledge, Technology & Policy 12(3),
23–49 (1999)

35. Rea, L.M., Parker, R.A.: Designing and conducting survey research: A comprehensive
guide, 1 edn. John Wiley & Sons (2014)

36. Ren, Z., Jiang, H., Xuan, J., Yang, Z.: Automated localization for unreproducible builds.
In: Proceedings of the 40th International Conference on Software Engineering (ICSE), p.
71–81 (2016)

37. Samoladas, I., Angelis, L., Stamelos, I.: Survival analysis on the duration of open source
projects. Information and Software Technology 52(9), 902–922 (2010)

38. Shi, Y., Wen, M., Cogo, F.R., Chen, B., Jiang, Z.M.J.: An experience report on produc-
ing verifiable builds for large-scale commercial systems. IEEE Transactions on Software
Engineering (2021)

39. Thompson, K.: Reflections on trusting trust. Communications of the ACM 27(8), 761–763
(1984)

40. Vu, D.L., Pashchenko, I., Massacci, F., Plate, H., Sabetta, A.: Towards using source code
repositories to identify software supply chain attacks, p. 2093–2095 (2020)

41. Wang, Z., Zhang, H., Chen, T.H., Wang, S.: Would you like a quick peek? Providing
logging support to monitor data processing in big data applications. In: Proceedings of
the 29th Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE), pp. 516–526 (2021)

42. Wheeler, D.A.: Countering trusting trust through diverse double-compiling. In: Proceed-
ings of the 21st Annual Computer Security Applications Conference (ACSAC), pp. 1–13
(2005)

43. Yan, D., Niu, Y., Liu, K., Liu, Z., Liu, Z., Bissyandé, T.F.: Estimating the attack surface
from residual vulnerabilities in open source software supply chain. In: Proceedings of the
21st International Conference on Software Quality, Reliability and Security (QRS), pp.
493–502 (2021)

44. Zerouali, A., Constantinou, E., Mens, T., Robles, G., González-Barahona, J.: An empirical
analysis of technical lag in npm package dependencies. In: International Conference on
Software Reuse, pp. 95–110 (2018)

45. Zerouali, A., Mens, T., Robles, G., Gonzalez-Barahona, J.M.: On the diversity of software
package popularity metrics: An empirical study of npm. In: Proceedings of the 26th
International Conference on Software Analysis, Evolution and Reengineering (SANER),
pp. 589–593 (2019)

	Introduction
	Case Study Data
	Study Methodology
	Analysis of Reproducibility Status (RQ1)
	Root Causes of Unreproducible Packages (RQ2)
	Correlation between External Factors and Reproducibility Status (RQ3)
	Threats to Validity
	Related Work
	Conclusion
	Conflict of Interest
	Data Availability Statement

