
Using Custom Post Types to
Control Access

Building a collaborative web site by
segmenting a site into areas of

responsibility and control.

Custom Post Types - CPTs

• What
– Features and Attributes of CPTs

– How they can be used for access control

• Why
– The problem we a trying to solve

– Why CPTs meet our needs

• How
– Implementing CPTs

– Simple Case Study

Background

• A bit about the organization
– All about bicycle touring

– Tours are developed and run by volunteers

– Local groups in several various cities across
Canada

• What we used to have

• Where we wanted to go
– Modern web software

– Break the single person bottle neck

Breaking the Single Person Bottleneck

• Different approaches

– Make everyone an admin

– Multiple contributors – central publication

– Multiple restricted editors

• Restrict access for security purposes

• Restrict access to enhance simplicity

Simple Restricted Dashboard

Simple Restricted Post

Why use CPTs

• Alternative architectures

– Restricted categories

• Addresses only security requirements not simplicity

• Doesn’t fully solve security issues

• Much less elegant that capabilities

– Multi-site installation

• Would probably work

• Adds unnecessary complexity

Users, Roles and Capabilities

• Users
– Must have one or more roles

• Roles
– Standard System Roles

• Administrator, Editor, Author, Contributor, Subscriber

– Custom Roles
• Club Document Editor, Rides Director

• Capabilities
– read, delete_posts, edit_posts

What are Post Types

• Great Concept – bad name

• Default System Post Types (i.e. non-custom
post types)

– Post

– Page

– Attachment

– Revision

– Navigation Menu Item

Post Type Common Features

• A set of fields

• A set of capabilities

• A set of taxonomies

• A set of attributes

– Hierarchical ?

– Archive page ?

What are Taxonomies

• A list of terms

• Can have a parent (category) or not (tags)

• Associated to 0 or more CPTs (many-to-many)

• Capabilities

– Manage_terms

– Edit_terms

– Delete_terms

– Assign_terms

Case Study

• Local Editor
– Comox_editor, Victoria_Editor, Ottawa_editor

– CPT for each local editor restricts his area of authority

• Club Document Editor
– CPT to restrict area of authority

– Custom Taxonomy to categorise different document
types

• Ride Director
– CPT to restrict area AND add custom fields

– Uses built-in tax taxonomies

Plugins Employed

• Pods – Content Types and Fields
– “Custom Post Type UI” is a possible alternative

• Members
– “Roles & Capabilities” component of Pods is an

alternative

• Post Type Switcher
– Essential for converting an existing site

• User Switching
– Not strictly required, but very useful for testing

Setting up a Local Editor

• Create the CPT “Comox Posts”

– PODS plugin

• Create the “Comox Editor” role

– Members plugin

– Users | new Role

• Setup menus to Reference CPT’s

– Create a Custom Link menu item

– URL: site-url/?post_type=comox_post

Create the CPT

Create the CPT cont.

Create the CPT cont.

Create the CPT cont.

Create the CPT cont.

Create “Comox Editor” Role

More on Users and Role

• Add the new CPT capabilities to the
Administrator

• Create new user “Joe Comox”

– Optional user for testing

– Assign “Comox Editor” role

• Confirm Role and CPT are working

– Switch user to “Joe Comox”

– Create a new Comox Post

Creating a Comox Post

Menu Link to Comox Post Archive

What’s Next?

• Use Pods “duplicate” functionality to create
additional similar CPT’s

• Create a corresponding role for each CPT

• Add users to roles

• Add menu items for each CPT archive

• Deploy

Club Document Editor Case Study

• Slightly more complicated example than the
Local Editor

• Adds a custom taxonomy to categorize
different types of documents

• First we will Create the custom taxonomy
using Pods

• Then we will create our “Club Document” CPT
as in the previous example

Create a Custom Taxonomy

Create Taxonomy cont.

Create Taxonomy cont.

Create “Club Document” CPT

Create “Club Document” CPT cont.

Create Role and User

• Add new role: Club Document Editor
– Assign all Club Document capabilities

• Assign all Club Document capabilities to
administrator

• Create new user: Sally Secretary
– Assign Club Document Editor Role

• Populate our Document Types Taxonomy
– Add: “Board Minutes”, “General Meeting

Minutes” and “uncategorized”

Test: Add New Club Document

Why Can’t Sally Select a Document
Type?

• Hint: If I switch back to my administrator role
everything works fine.

• But we assigned Sally all Club Document
capabilities!

• Document Types is a taxonomy not a CPT

• Where do we set taxonomy capabilities?

Setting Taxonomy Capabilities

Taxonomy Capabilities

• Grant assign_document_type_terms to Club
Document Editor role

• Grant all 4 document_type taxonomy
capabilitites to administrator

• Flush the Pods cache:

– Pods Admin | Settings | Clear Pods Cache

Menu Links to Archives

Ride Director Case Study

• Our most complicated CPT

• Numerous custom field using table based
storage

– But that is a topic for another day

• Custom post type that uses the built-in
taxonomies category and tags

Create Rides CPT

Rides: Roles & Capabilities

• Create new “Rides Director” role

– Grant all Rides capabilities

• Grant all Rides capabilities to Administrator

• Create user “Ron Rider” with Ride Director
role.

Test: Add New Ride

We Have Been Here Before

• Why can’t Ron assign categories or tags?

• Again we have a capability problem

• Same problem (slightly) different solution
– Create custom capabilities

• assign_categories, assign_post_tags

– Grant both capabilities to Rides Director &
Administrator

– Bind the taxonomy using a filter in functions.php

– Flush the Pods cache

Creating Custom Capabilities

Binding Built-in Taxonomy Capabilities

/* In order to use a builtin taxonomy inside a CPT we need
 * to setup capabilities for the taxonomy that are enabled
 * in the role for that CPT
 */
add_action('init', 'set_builtin_tax_caps');
function set_builtin_tax_caps() {
 $tax = get_taxonomy('post_tag');
 $tax->cap->assign_terms = 'assign_post_tags';
 $tax = get_taxonomy('category');
 $tax->cap->assign_terms =
 'assign_categories';
}

Summary

• Post Types (built-in or custom) each have an
associated set of capabilities.

• By taking advantage of that functionality we
can segment our site into discreet areas of
responsibility

• Restrict access to only essential functionality

• Simplifies the interface by limiting to a specific
area

QUESTIONS?

Hopefully this discussion has provided a better understanding of how
Custom Post Type can provide the infrastructure for building a
collaborative web site.

