
Product Labels for Mobile Application Markets

Position Paper

Devdatta Akhawe, Matthew Finifter
University of California, Berkeley
{devdatta, finifter}@cs.berkeley.edu

Abstract—Mobile application markets thrive, yet they are held
back from their full potential by the information asymmetry
between application developers and application consumers. A
consumer has no way to gauge the security or reliability of
an application, and a developer has no way to differentiate his
application from that of the competition based on these factors.
We argue that the centralized nature of mobile application
markets, such as Android Market and the iOS App Store, afford
them a unique opportunity to gather and present information. We
discuss a number of ideas to leverage this opportunity to elimi-
nate information asymmetry, including third-party certifications,
qualitative descriptions of attack surface, and aggregated usage
data.

I. INTRODUCTION

Modern mobile platforms rely on application markets for
distributing applications to end-users. An efficient market
requires information symmetry: an understanding amongst
both buyers and sellers regarding the quality of the goods on
offer [2]. Mobile application markets are patently asymmetric;
while the developer knows the real quality of the application,
the user has access only to noisy indicators such as reviews
and permissions.

The consequence of this scenario is that software developers
are unable to differentiate their offerings based on quality,
reliability, or security. The ability to differentiate and position
products drives innovation and enables targeting under-served
niches [15], [11]. In the absence of differentiation, there is no
incentive for developers to innovate and position their products
in terms of quality, reliability or security.

Markets thrive when they reduce or eliminate information
asymmetry [2]. In real-world markets, product labels such
as certifications or quantitative properties enable information
symmetry. For example, mandatory nutrition facts on packaged
food have enabled the massive health-food market by allowing
customers to understand exactly which products are more
nutritious than others, and in exactly which ways [5], [9].
Safety certification processes for electric products enabled
their consumerization by eliminating consumer fear that use of
a new gadget may cause injury. Services like CarFax prevent
the used car market from becoming a market for lemons by
providing car buyers with an accurate vehicle history. In short,
eliminating information asymmetries can actually expand the
size of a market, making it better for both buyers and sellers.

Taking our cue from real-world markets, we advocate for
product labels in mobile application markets as a mechanism

for mitigating information asymmetry. When we refer to
product labels, we mean an informational element that presents
the user with pertinent data about the application (product)
in a standard format. We observe that market owners (e.g.,
Apple or Google) are in a unique position to develop powerful
new product labels specific to mobile markets, and create the
opportunity for consumers to effectively utilize these labels as
part of their decision-making process.

For a given platform, the application market is (to a rea-
sonable approximation) the only source of application installs.
This puts the market owner in a unique position to collect data,
as well as design, develop and enforce labeling. In addition,
the market owner also controls the device (e.g., iPhone or
Android). Control over the device means that the market
owner is in a position to modify the device software to enable
even better data collection and labels, a point we will return
to in Section II-C. With both Android Market and the iOS
App Store witnessing over a billion application installs every
month [12], the sheer scale of mobile application markets
makes their singular data collection opportunity even more
potent.

It is not only the case that it is possible for market owners to
develop and enforce novel labeling requirements; we believe
they are also economically incentivized to do so. As we argued
before, labels increase market efficiency and grow the market.
Since market owners receive a percentage of the total market
revenue, it is in their interest to encourage effective labels.

In the rest of this work, we focus on product labels for
security, but the ideas we present are applicable to labels for
quality, reliability and privacy.

II. PROPOSED LABELS

In this section, we explore product labels for mobile ap-
plication markets guided by the design and efficacy of real
world product labels. While labels for software, particularly
software metrics, have been extensively studied by researchers,
we focus on the novel opportunities provided by centralized
application markets. These proposals are merely a starting
point; we hope they encourage a wider discussion around
strategies for reducing information asymmetry in mobile ap-
plication markets.

Mobile application markets provide a distinct opportunity
for effective labels. The market can insert labels right at the
decision point, where the user decides whether to install an
application. To encourage differentiation based on labels, the



marketplace can present alternative products that offer similar
functionality but have different security labels. Further, the
market can personalize the labels shown to a user according
to the user’s profile, administrator policies, and/or security
requirements. For example, a teenager could rely on crowd-
sourced labels while military employees could rely more on
certifications and compliance labels.

A. Certification

Certification is widely used today, from physical certifica-
tion of products (e.g., fireproofing) to professional certification
(e.g., a pilot). Certification influences a consumer’s belief
about a specific property of a product. Mobile operating
systems rely on permissions, which are a form of coarse
certifications provided by the platform. While all applications
are required to state the permissions they use, this list of
permissions provides little actionable information for users [7].

A broader set of certificates can verify a number of desirable
properties. For example, a useful certification would verify
that an application accesses the phone’s camera only when the
application is in the foreground. Another certification may be
that an application communicates with only a single domain.

Roesner et al. study properties of device and API access that
are intuitive to users [17]. They propose redesigning current
architectures to enforce these “user-driven access control”
properties. In our case, we argue for such properties as a
differentiator for the more trustworthy applications. Of course,
the certification mechanism is flexible and supports arbitrary
properties. We rely on the market to figure out the exact set
of properties to certify. Based on the supply and demand for
particular certificates, the properties certified can change over
time.

Certification can verify machine verifiable properties [3] as
well as complex properties provided by the developer [16].
We expect that the former will be cheaper and more scalable,
while high-assurance environments (e.g., military) can rely on
the latter.

B. Testing and Standards

In the physical world, testing determines suitability of a
product or compliance to a contract. For example, the tensile
test measures the tensile strength of a material, which is an
accepted standard for identifying material suitability. In the
software realm, the Payment Card Industry (PCI) standard
lays down a number of requirements for all software handling
payment data.

We envision the emergence of independent testing
providers, who test products for their fitness of purpose. That
is, the testers evaluate and report on the extent to which the
application does what it purports to do. The current user
comment and review system is a rudimentary version of
such a system, but it lacks a rigorous notion of reputation
or trustworthiness in user reviews. Because mobile market
owners control users’ complete experience in using the market
and act as the go-between for users and application developers,
they are in a unique position to formalize independent testing

and establish economic incentives for independent testing.
Techniques and standards for software testing already exist
in the literature [10], [4].

C. Qualitative Analysis
Qualitative analysis characterizes behavior that is hard to

measure via cardinal numbers. While lacking the rigor of
numbers, qualitative metrics are useful in the real world. For
example, consumers can differentiate between shoes that offer
“low”, “medium”, or “high” amounts of support. We envision
such qualitative metrics to be particularly useful in cases where
their quantitative versions may not be directly actionable.

For example, we believe a measure of attack surface can
be a useful product differentiator. While standard techniques
for quantitatively measuring the attack surface exist [13],
it is not clear that the numerical value of an application’s
attack surface is actionable information. Instead, we envision
bucketing attack surface metrics for similar applications. The
applications are then categorized as “high”, “medium”, or
“low” attack surface, as appropriate.

Another opportunity for qualitative metrics is application
permissions. As we noted earlier, current permission systems
are product certificates and provide limited actionable data.
We intend to investigate how best to assign a numerical score
to the extent of permissions. Similar to attack surface, we can
then provide qualitative metrics that compare the extent of
permissions across similar applications. A concerned user can
act upon this information, similar to how a concerned shopper
pays more for the (qualitatively) “light” version of a food
product.

As we noted earlier, the market owner (e.g., Apple) typically
also controls the software on the end-user’s device (e.g.,
iPhone). We believe this presents a unique opportunity for
powerful qualitative analysis of application behavior. The
application platform (e.g., iOS) can record and store data
indicative of the application’s behavior. Data collected might
include the domains contacted, GPS requests made, contact
requests made, and so on. A user who has already installed an
application may view visualizations of the data collected by
his instance of the installed application. For example, a user
may be able to view a histogram of domains contacted or a
graph showing the total number of contact requests over time.
A user can use this data as an audit mechanism and uninstall
applications that exhibit egregious behavior.

Furthermore, the market owner can sample across the be-
havioral data gathered by the installed base of an application
in order to aggregate data regarding application behavior. 1

Users who have not yet installed the application can view
visualizations of the aggregate data, a qualitative label shown
at install time.

D. Quantitative Analysis
Quantitative metrics are expressed as cardinal numbers.

Real-world markets have a long history of using numbers for

1Due to potential privacy concerns, we do not propose collecting any
personally identifiable data, and we support presenting only (1) a user’s own
data to himself, and (2) aggregate data over a large installed base to all users.



comparing product quality, e.g., sweetness index and tensile
strength. The wine industry provides an anecdote in favor of
numbers over qualitative values:

[Wine] critics found that when they attempted to
encapsulate wine quality with a system of stars or
simply descriptors such as good, bad, and maybe
ugly, their opinions were unconvincing. But when
they used numbers, shoppers worshipped their pro-
nouncements. [14]

The complete control over the install/uninstall experience
makes novel quantitative metrics possible. A simple metric is
the percentage of users who abort installation after looking
at the permissions of an application. Further, if a user’s
qualitative audit (Section II-C) of an application’s behavior
causes her to uninstall the application, this data is a useful
indicator of security issues. The market can alert new users to
the rate at which users uninstall an application after auditing
its usage. This feedback-based metric utilizes crowdsourcing
and the centralized nature of the application market to gather
data for a metric that would have been impossible in previous
(decentralized) software ecosystems. We believe there are
other such feedback-based metrics worth considering as well,
e.g., how often a user kills an application after viewing its
battery usage, or deletes an application’s locally-stored data
after viewing its disk usage.

III. CONCERNS

With metrics generated by the user network, we must be
careful to consider the potential for Sybil attacks [6]. A
developer may try to game the market to make his application
appear better than competing applications (e.g., by performing
numerous uninstalls of a competing application). As a first
line of defense, the market owner can include a clause in the
developers’ terms of service that stipulates that developers will
not engage in such behavior. The owner can also use anomaly
detection to flag suspicious activity. It is worth noting that
such attacks are already a concern today (e.g., for user ratings
of applications), and market operators are therefore actively
combating them [1]. Defenses against Sybil attacks are an
active area of research, with a number of recent successes [19],
[18], [20]. As we develop our proposal, we can adapt these
defenses for product labels.

Another natural concern is how and how well users will be
able to consume the additional information that we propose to
make available to them. Because a conglomeration of numbers
can confuse users, it might be necessary to combine multiple
metrics into a single cardinal number. We acknowledge that
the additional information may not, in fact, prove useful to the
average user, despite our best efforts.

We can address this problem by implementing prototypes of
some or all of these ideas and performing user tests with these
prototypes. Our belief is that we cannot know until we try, and
our hope is that even if the common user cannot effectively
consume the additional information, a small subset of tech-
savvy users can. Even in such a case, feedback mechanisms
like reviews allow advanced users to influence the behavior

of other users. Another possibility is pursuing research into
how to make the information more useful to a user based on
a profile of how security-conscious or tech-savvy she is.

Crowdsourced security labels make sense only in the context
of widespread malice, and they will therefore not be able to
protect against a targeted attack (i.e., an advanced persistent
threat (APT) attack). Users concerned about such attacks must
instead rely on non-crowdsourced labels, like certifications and
testing.

IV. FUTURE WORK

Future work includes modifying a mobile application market
to gather the necessary data and present the qualitative and
quantitative information we have described. In parallel, we can
conduct user studies to evaluate the effectiveness of the labels
in terms of the change in user behavior (similar to studies of
food product labels [8]).

For example, we may design A/B tests that present different
groups with different sets of labels. If the relative popularity
of similar applications differs amongst the different groups,
this may indicate that the additional information is a factor in
users’ decision-making process. Alternatively, user interviews
can reveal users’ understanding (or lack thereof) of the new
information available to them, and it can give insight into
how they are using the information to make decisions about
application security.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their helpful com-
ments. We are also grateful to Prateek Saxena and Emily
Kumpel for their feedback. This material is based upon work
supported by a NSF Graduate Research Fellowship and by
Intel through the ISTC for Secure Computing. Any opinions,
findings, conclusions, or recommendations expressed here are
those of the authors and do not necessarily reflect the views
of the NSF or Intel.

REFERENCES

[1] Spamming of app comments : Google groups, 2010. http://bit.ly/Iw4xCj.
[2] G.A. Akerlof. The Market for “Lemons”: Quality Uncertainty and the

Market Mechanism. The Quarterly Journal of Economics, pages 488–
500, 1970.

[3] Identifying Malicious Behaviors in Android Applications using Permis-
sion Event Graphs, 2012. Under (anonymous) submission.

[4] A. Bertolino. Software testing research: Achievements, challenges,
dreams. In Future of Software Engineering, 2007. FOSE’07, pages 85–
103. IEEE, 2007.

[5] Julie A. Caswell and Eliza M. Mojduszka. Using informational labeling
to influence the market for quality in food products. Working Papers
25989, Regional Research Project NE-165 Private Strategies, Public
Policies, and Food System Performance, 1996.

[6] J. Douceur. The sybil attack. Peer-to-peer Systems, pages 251–260,
2002.

[7] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney,
Erika Chin, and David Wagner. Android Permissions: User Attention,
Comprehension, and Behavior. Technical Report UCB/EECS-2012-26,
University of California, Berkeley, 2012.

[8] G.I.J. Feunekes, I.A. Gortemaker, A.A. Willems, R. Lion, and M. Van
Den Kommer. Front-of-pack nutrition labelling: testing effectiveness
of different nutrition labelling formats front-of-pack in four european
countries. Appetite, 50(1):57–70, 2008.



[9] E. Golan, F. Kuchler, L. Mitchell, C. Greene, and A. Jessup. Economics
of food labeling. Journal of Consumer Policy, 24(2):117–184, 2001.

[10] Iso/iec 29119 software testing standard, Feb 2012. http://
softwaretestingstandard.org/.

[11] K.J. Kennedy and M. Moore. Going the distance: why some companies
dominate and others fail. Financial Times Prentice Hall books. Financial
Times/Prentice Hall, 2003.

[12] Jason Kincaid. Android Market: 10 Billion Apps Served So Far, And
Another 1 Billion Each Month, December 2011. http://is.gd/5a5rcn.

[13] P. Manadhata and J. Wing. An Attack Surface Metric. Software
Engineering, IEEE Transactions on, (99):1–1, 2010.

[14] Leonard Mlodinow. The Drunkard’s Walk: How Randomness Rules Our
Lives, pages 130–134. Pantheon, New York, New York, 2008.

[15] G.A. Moore. Dealing with Darwin: How Great Companies Innovate at
Every Phase of Their Evolution. Portfolio, 2008.

[16] G.C. Necula. Proof-carrying code. In Proceedings of the 24th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 106–119. ACM, 1997.

[17] Franziska Roesner, Tadayoshi Kohno, Alexander Moshchuk, Bryan
Parno, Helen J. Wang, and Crispin Cowan. User-driven access control:
Rethinking permission granting in modern operating systems. In Security
and Privacy (SP), 2011 IEEE Symposium on. IEEE, 2012.

[18] Haifeng Yu. Sybil defenses via social networks: a tutorial and survey.
SIGACT News, 42(3):80–101, October 2011.

[19] Haifeng Yu, Phillip B. Gibbons, Michael Kaminsky, and Feng Xiao.
Sybillimit: a near-optimal social network defense against sybil attacks.
IEEE/ACM Trans. Netw., 18(3):885–898, June 2010.

[20] Haifeng Yu, Chenwei Shi, Michael Kaminsky, Phillip B. Gibbons,
and Feng Xiao. Dsybil: Optimal sybil-resistance for recommendation
systems. In Proceedings of the 2009 30th IEEE Symposium on Security
and Privacy, SP ’09, pages 283–298, Washington, DC, USA, 2009. IEEE
Computer Society.


