Лекция № 11 Электромагнитная индукция. Энергия магнитного поля

Алексей Викторович Гуденко

19/11/2012

План лекции

- Закон электромагнитной индукции Фарадея. Правило Ленца.
- 2. Бетатрон
- з. Соленоид. Магнитная энергия и её локализация в пространстве
- 4. Энергия и силы

Граничные условия для векторов В и Н

теорема Гаусса:

$$\oint \vec{B}d\vec{S} = 0 \quad \Rightarrow \quad$$

$$\oint \vec{B}d\vec{S} = 0 \quad \Rightarrow \qquad B_{1n} = B_{2n}$$

теорема о циркуляции:

$$\oint_{C} \vec{H} d\vec{l} = \frac{4\pi}{c} I$$

$$\oint_{L} \vec{H} d\vec{l} = \frac{4\pi}{c} I \qquad \Rightarrow \qquad H_{2t} - H_{1t} = \frac{4\pi}{c} i_{n}$$

Как измерить Н и В

- Поле, измеренное в узком цилиндрическом канале, параллельном магнитному полю, будет равно напряжённости поля Н в магнетике

Магнитная восприимчивость и магнитная проницаемость

- Линейные изотропные магнетики:
 Р_m = кН, к магнитная восприимчивость
- $\mathbf{B} = \mathbf{H} + 4\pi\kappa\mathbf{H} = (1 + 4\pi\kappa)\mathbf{H} = \mu\mathbf{H}$
- µ = 1 + 4πк − магнитная проницаемость
 - Парамагнетики: $\kappa > 0$, $\mu > 1$, $\kappa \sim 10^{-7} 10^{-5}$ (Al, Pt, FeCl₂, O₂)
 - Диамагнетики: $\kappa < 0$, $\mu < 1$, $\kappa \sim -(10^{-7} 10^{-5})$ (Bi, Sb, Si, H₂O, H₂, N₂)
 - ферромагнетики

Преломление силовых линий

• На границе раздела двух магнетиков:

$$H_{2t} = H_{1t} \Rightarrow B_{2t}/\mu_2 = B_{1t}/\mu_1$$

 $B_{2n} = B_{1n} \Rightarrow$

 $tg\alpha_2/tg\alpha_1 = \mu_2/\mu_1 - происходит сгущение линий в более сильных магнетиках.$

Намагничивание цилиндра и шара во внешнем поле

• Длинный цилиндр:

$$p_{m} = \kappa H = \kappa B_{0} = B_{0}(\mu - 1)/4\pi$$

• Короткий цилиндр:

$$p_{m} = \kappa H = (\kappa/\mu) B_{0} = B_{0}(\mu - 1)/4\pi\mu$$

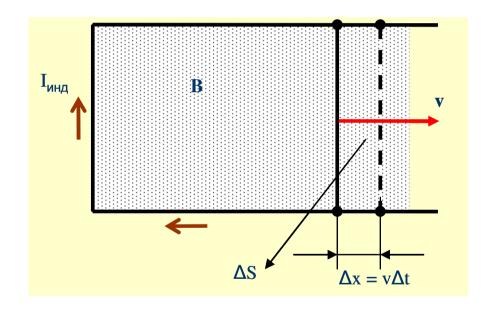
- Для шара: $p_m = B_0 3(\mu 1)/4\pi(\mu + 2)$
- Для сверхпроводящего шара считаем µ = 0 ⇒ p_m = 3B₀/8 полный момент сверхпроводящего шара:

$$P = 4/3 \pi R^3 p_m = -\frac{1}{2} B_0 R^3$$

Намагничивание шара в постоянном магнитном поле

• Сверхпроводящий шар в магнитном поле индукцией В₀ приобретает дипольный момент:

$$P_{\rm m} = -\frac{1}{2} B_0 R^3$$


Магнитная проницаемость газа сверхпроводящих шариков (Овчинкин, 6.26)

- $p_m = np_i = -nr^3H/2$
- $B = H + 4\pi p_m = (1 2\pi nr^3)H \Rightarrow$ $\mu = (1 - 2\pi nr^3) < 1 - диамагнетик$

Закон электромагнитной индукции Фарадея. Правило Ленца.

- В замкнутом проводящем контуре при изменении магнитного потока вектора **B**, охватываемого этим контуром, возникает электрический ток. Этот ток называется *индукционным* током.
- Причина возникновения тока эдс индукции ε_{инд}
- Величина эдс индукции $\varepsilon_{\text{инд}}$ равна скорости изменения магнитного потока через контур: $\varepsilon_{\text{инд}} = -1/c \; d\Phi/dt$
- Правило Ленца: индукционный ток направлен так, чтобы противодействовать причине его вызвавшей индукционный ток создаёт поток, препятствующий изменению магнитного потока через виток.

Подвижная перемычка

- E = -1/c[vB]
- $\varepsilon_{\text{инд}} = \int \mathbf{E} d\mathbf{\ell} = -(v/c)B\ell = -(1/c)B dS/dt = --(1/c)d\Phi/dt$

Природа электромагнитной индукции

 Контур движется в постоянном магнитном поле.

Индукционный ток возникает под действием магнитной составляющей силы Лоренца:

$$\mathbf{E} = \mathbf{F}_{m}/\mathbf{q} = [\mathbf{v} \ \mathbf{B}]$$

• Контур покоится в переменном магнитном поле.

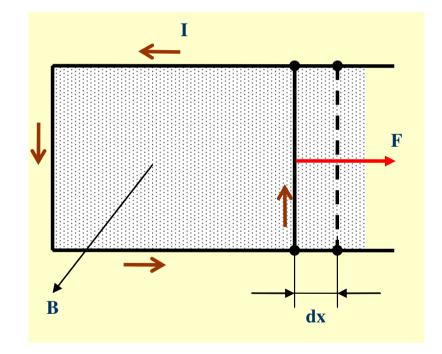
Индукционный ток возбуждается возникающим в проводнике электрическим полем.

Вихревое электрическое поле

- Закон электромагнитной индукции состоит в том, что всякое переменное магнитное поле порождает в пространстве вихревое электрическое поле. Циркуляция вектора Е по любому неподвижному замкнутому контуру пропорциональна скорости изменения магнитного потока через этот контур: ∫Edℓ = (1/c) (∂Ф/∂t)
- Дифференциальная форма закона электромагнитной индукции:
 rotE = (1/c)∂B/∂t скорость изменения поля В в данной точке определяет ротор поля Е в той же точке
- Индуцированное электрическое поле поле вихревое (соленоидальное)

Закон сохранения магнитного потока

В проводнике с нулевым сопротивлением сохраняется:
 ε_{инд} = - 1/c dΦ/dt = IR = 0 ⇒
 Φ = Φ_e + Φ_i = const – силовые линии «вморожены» в проводящий контур:


При движении идеально проводящего замкнутого провода в магнитном поле остаётся постоянным магнитный поток, пронизывающий контур провода.

Бетатрон (Овчинкин, 8.30)

- Бетатрон индукционный ускоритель электронов
- Бетатронное условие: магнитное поле B_0 на орбите равно половине среднего поля в зазоре: $B_0 = \frac{1}{2} B_{cp}$
- На орбите: $pw = q(v/c)B_0 \Rightarrow p = qrB_0/c$
- Электрон разгоняется до импульса:
 dp = qEdt = q/2πr (E2πr)dt = q/2πcr (dΦ/dt) dt = q/2πcr dΦ
 ⇒ p = qΦ/2πcr = qrB_{cp}/2c ⇒B₀ = ½ B_{cp}
- Оценка энергии электрона: $B_{cp} \sim 2$ Тл, r = 100 см \Rightarrow pc = $qrB_{cp}/2 = 4,8 \ 10^{-10} \ 10^2 \ 10^4 = 4,8 \ 10^{-4}$ эрг = 4,8 10^{-11} Дж = 4,8 $10^{-11}/1,6 \ 10^{-19}$ эВ = 300 МэВ >> $E_0 = 0,5$ МэВ \Rightarrow $\beta \approx 1 \frac{1}{2} (E_0/E)^2 \approx 1 \frac{1}{2} (E_0/pc)^2 = 0.9999986$ (!!!)

Работа сил Ампера при перемещении витка с током в магнитном поле

- F = (I/c) ℓВ сила Ампера
- dA = Fdx = (I/c) lBdx = (I/c)BdS = (I/c)dΦ

Индуктивность

- Ф = 1/с LI
 L индуктивность (коэффициент самоиндукции)
- Соленоид:
 B = μH = 4πμi/c = 4πμIN/ℓc
- $\Phi_1 = BS = (4\pi\mu NS/\ell c) I$
- $\Phi = N\Phi_1 = (1/c) (4\pi\mu N^2 S/\ell) I = 1/c LI$
- $L = (4\pi\mu N^2 S/\ell)$
- CГС: [L] = см
- СИ: [L] = Гн (Генри) = 10⁹ см

Энергия соленоида

- $I(0) = I_0$
- $\epsilon_{\text{инд}} = IR \Rightarrow -1/c^2 \text{ LdI/dt} = IR \Rightarrow \text{dI/I} = -c^2 \text{Rdt} \Rightarrow I = I_0 e^{-t/\tau}$, $\tau = L/c^2 R$ ([R] = c/cm)
- $W = \int I^2 R dt = LI^2/2c^2 = I\Phi/2c = \Phi^2/2L$
- W = IΦ/2c = 4πiℓ BS/8πc = (HB/8π) V ⇒
- w = HB/8π − плотность магнитной энергии
- $w = \mu H^2/8\pi = HB/8\pi = B^2/8\pi\mu$

Энергия и силы. Соленоид.

- $W = LI^2/2c^2 = \Phi^2/2L(\ell,R)$
- $F_{\ell} = -(\partial W/\partial \ell)_{\oplus} = \Phi^2/2L_0^2 (\partial L/\partial \ell) = -W_0/\ell_0$
- $F_r = -(\partial W/\partial r)_{\phi} = \Phi^2/2L_0^2 (\partial L/\partial r) = W_0 2\pi R/S_0$ = $W_0 2\pi R\ell_0/\ell_0 S_0 = W_0/V (2\pi R\ell_0) = wS_{60K}$
- давление на боковую стенку:

$$p = F_r/S_{60K} = w = B^2/8\pi = \{B = 10 \text{ Тл}\} = 10^{10}/8 \cdot 3,14 \approx 4 \cdot 10^8 \text{ дин/см}^2 = 4 \cdot 10^7 \text{ Па} = 400 \text{ атм} = 400 \text{ кГ/см}^2 \sim 0,5 \text{ Тонн/см}^2 (!!!)$$

Постоянный цилиндрический магнит Тороидальный магнит с зазором.

- Постоянный магнит это ферромагнитное вещество с постоянной намагниченностью
- Для цилиндрического магнита это поле соленоида с линейной плотностью i/c = P_m ⇒ поле в объёме B_i = 4πi/c = 4πP_m остаточная индукция; поле на торце B_t ≈ 1/2 B_i
- Тороидальный магнит с зазором: поле в зазоре В ≈ B₀ = 4πP_m

Магнитного поля соленоида и тороидальной катушки

Поле длинного соленоида:
 В = 4π(i/c); i = In = IN/ℓ - N —число витоков,
 ℓ - длина катушки, I — ток в соленоиде; i — линейная плотность тока; n = N/ℓ
 плотность намотки.
 I = 10 A, n = 10 см⁻¹ B = 4π(In/c)= 1,25 Тл

• Поле тонкой тороидальной катушки: B = 2NI/cR