
INTRODUCTION
Physi
s is an empiri
al s
ien
e. It is a popular belief that the ultimatejudge in physi
s is experiment and if for any reason a theory 
ontradi
tsan experiment, it is the theory that is to be blamed. However this is notexa
tly so. There are a lot of theories whi
h had ¾survived¿ although someexperiments testi�ed against them. Let us 
onsider an example.It is well known that Einstein's theory of Brownian motion had be
ome
ru
ial for developing atomi
 theory of matter sin
e it was later 
on�rmedby brilliant experiments of J. B. Perrin. However the same theory appearedto be refuted by no less brilliant experiments of V. Henri. Why did the
on�rmation by Perrin turn out to be more important than the refutationby Henri?A
tually, any theory undergoes non-empiri
al 
he
ks and 
ross
he
ksbefore being tested by an experiment. A theory must be 
onsistent, itmust not 
ontradi
t already established theories, and it must be in linewith a general wisdom of s
ien
e, i.e. be simple, elegant, et
. Einstein'stheory of Browinian motion was a

epted, in parti
ular, be
ause it wasin line with the kineti
 theory of gases and 
hemistry. As for the Henryexperiments, it was found later that they were in
orre
tly interpreted.Thus, an experimental 
on�rmation is ne
essary but not su�
ient 
ondi�tion for a

epting a theory. This is always taken into a

ount in 
onfrontinga new theory with real data.Physi
s is not only empiri
al but also a theoreti
al s
ien
e that em�ploys the language of mathemati
s. The purpose of the latter is two-fold:it supplies tools of 
al
ulation and provides a 
on
eptual framework. Math�emati
al 
on
epts represent the very essen
e of physi
al ideas. The 
on
eptof velo
ity is in
on
eivable without the 
on
ept of derivative. The laws ofme
hani
s 
annot be properly formulated without di�erential equations.Quantum laws require operator equations. Every formal symbol in a phys�i
al theory has mathemati
al meaning. However, despite the fa
t that alot of mathemati
al ideas stemmed from physi
s, mathemati
s is an inde�

INTRODUCTION 3pendent dis
ipline. If it so, why is it possible to use the ideas of puremathemati
s to des
ribe reality?The answer is that mathemati
s studies very general and 
lear-
ut mod�els of natural phenomena � a spe
ial way of understanding reality. Andso does physi
s.Tea
hing physi
s 
an be 
ompared to advan
ement of s
ienti�
 knowl�edge. This viewpoint helps to understand the role of experiment in ageneral physi
s 
ourse. A founder of experimental method was GalileoGalilei. However experiment per se was not his invention: people relied onexperimental eviden
e from an
ient times. We are indebted to Galileo fora method whi
h has be
ome an integral part of physi
s resear
h.
Fig. 1

A

ording to Galileo, a physi
istshould design an experiment, repeatit several times in order to eliminateor redu
e irrelevant fa
tors, 
onje
turemathemati
al relationships (laws) be�tween the quantities involved, developnew experimental tests for the 
onje
�tured laws using available te
hni
s, and,�nally, when the laws have been 
on�rmed, make new predi
tions basedon these laws whi
h, in turn, must be experimentally tested.A

ording to Galileo, observation, working hypothesis, mathemati
altreatment, and experimental veri�
ation are the four stages in a study ofnatural phenomena.
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Fig. 2

Consider a simple instru
tive exam�ple. Suppose we have several 
hunksof a metal sheet (
ardboard, plywood,et
.), whose shape is shown in Fig. 1.Assume also that we have tools for mea�suring weight, length, and angle. Bymeasuring the weight of several trian�gles 
ut from the same sheet, one �ndsa formula for the weight of a triangle(ABC):
MABC = c2f(α),where f(α) is a universal fun
tion plotted in Fig. 2.Now let us 
ut a triangle (ABC) in two pie
es as in 3 and verify that

∠BCD = ∠BAC. It is already found that

MCBD = a2f(α), MACD = b2f(α).



4 INTRODUCTIONUsing the s
ale one 
an 
he
k that the weights are additive:

MABC = MCBD + MACD.Then using the assumed universality of fun
tion f(α) one �nds that

c2 = a2 + b2.This equation 
ould be veri�ed by further experiments.

Fig. 3
Does our result 
ontradi
t Eu�
lidean geometry? Of 
ourse, not. In�deed, one 
an see that

MABC = ρhSABC ,where ρ is the metal density, h is thesheet thi
kness, and SABC is the areaof the triangle ABC. Obviously,

SABC =
1

2
ab =

1

2
c2 sin α cosα =

1

4
c2 sin 2α,i. e.

f(α) =
1

4
ρh sin 2α.This thought experiment, in our opinion, is an ex
ellent example ofGalileo's experimental method. It is amazing that using measurement in�struments and pro
edures, whi
h by themselves introdu
e large un
ertain�ties, and only a limited amount of the triangles it is possible to derive anexa
t mathemati
al relationship (Pythagoras' theorem). As Einstein said,the greatest mystery of the universe is that it is 
on
eivable.The main purpose of the laboratory 
ourse is to tea
h students a phys�i
al way of thinking. Firstly, they should learn how to reprodu
e andanalyze simple physi
al phenomena. Se
ondly, they should get a basi
hands-on experien
e in the laboratory and be
ome a
quainted with mod�ern s
ienti�
 instruments.A student working in the laboratory should know:- basi
 physi
al phenomena;- fundamental 
on
epts, laws and theories of 
lassi
al and modern physi
s;- orders of magnitude of the quantities spe
i�
 for various �elds of physi
s;- experimental methodsand know how to:- ignore irrelevant fa
tors, build working models of real physi
al situations;

INTRODUCTION 5- make 
orre
t 
on
lusions by 
omparing theory and experimental data;- �nd dimensionless parameters spe
i�
 for a phenomenon under study;- make numeri
al estimates;- 
onsider proper limiting 
ases;- make sure that obtained results are trustworthy;- see physi
al 
ontent behind te
hni
alities.A laboratory assignment should be regarded as a resear
h proje
t inminiature. An in
lination to doubt and 
ross-
he
king is invaluable forany resear
her. We hope that our pra
ti
um would help to develop thisquality.



Chapter IMEASUREMENTS IN PHYSICS
Measurements in Physi
sNumeri
al value of physi
al quantity. We say that a quantity x ismeasured if we know how many units the quantity 
ontains. A number ofthe units 
ontained is 
alled a numeri
al value {x} of the quantity x. If [x]is a unit of quantity x (e.g. a unit of time is 1 se
ond, a unit of ele
tri

urrent is 1 ampere, et
.), then

{x} =
x

[x]
. (1.1)For example, if a 
urrent i = 10 A, then {x} = 10 and [i] = 1 A.Equation (1.1) 
an be written as

x = {x}[x]. (1.2)If a unit is redu
ed by a fa
tor of α:

[x] → [X ] =
1

α
[x], {x} → {X} = α{x}.The physi
al quantity remains the same be
ause

x = {x}[x] = {X}[X ]. (1.3)Too large or too small numeri
al values are in
onvenient. Thereforenew units are often used by taking a standard unit with a pre�x, e.g.
1 mm3 = 1 · (10−3 m)3 = 10−9 m3. The de
imal pre�xes spe
i�ed by theInternational System of Units (SI) are listed in Table 1.It is essential to avoid double or multiple pre�xes, e.g. instead of 1 µµFone should write 1 pF .

Chapter I 7T a b l e 1SI pre�xesPre�x Symbol ExponentLatin Cyrilli
 of 10exa E Ý 18peta P Ï 15tera T Ò 12giga G � 9mega M Ì 6kilo k ê 3he
to h ã 2de
a da äà 1de
i d ä −1
enti 
 ñ −2milli m ì −3mi
ro µ ìê −6nano n í −9pi
o p ï −12femto f � −15atto a à −18Dimension. In prin
iple, any physi
al quantity 
an be measured usingits own units unrelated to the units of other quantities. In this 
ase theequations that express laws of physi
s would be obs
ured by many numer�i
al 
oe�
ients. The equations would be
ome 
ompli
ated and di�
ult tounderstand. To avoid this issue physi
ists have long ago abandoned a pra
�ti
e of introdu
ing independent units for all physi
al quantities. Insteadthey use systems of units organized a

ording to the following prin
iple.Some quantities are taken as the base ones and the 
orresponding units areindependently established. For instan
e, in me
hani
s the system (l, m, t)is used, the base units are length (l), mass (m), and time (t). A 
hoi
eof the base units (and their number) is 
onventional. In the internationalsystem of units (SI) nine quantities are taken as the base ones: length,mass, time, ele
tri
 
urrent, thermodynami
 temperature, luminous inten�sity, amount of substan
e, angle, and solid angle. The units whi
h are notbase are 
alled derived units. The latter are derived from the equations
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sused to de�ne them. It is assumed that numeri
al 
oe�
ients in the equa�tions are already �xed. For instan
e, the velo
ity v of a point-like obje
ttraveling at a 
onstant speed is dire
tly proportional to the distan
e s andinversely proportional to the time of travel t. If the units for s, t and v areindependent, then

v = k
s

t
,where k is a numeri
al 
oe�
ient whi
h parti
ular value depends on the
hoi
e of the units. For simpli
ity it is usually set k = 1, so that s = vt.If the base units are length s and time t, velo
ity be
omes a derived unit.In this 
ase the unit of velo
ity 
orresponds to uniform motion when theunit distan
e is traveled per the unit of time. It is said that the dimensionof velo
ity equals the dimension of length divided by dimension of time.Symboli
ally,

dim v = lt−1.Similarly, for a

eleration a and for
e F we have:

dim a = lt−2, dimF = mlt−2.Now, let physi
al quantities x and y be related as

y = f(x). (1.4)Together with equation (1.3) this equation gives

Y = f(X), (1.5)where X = αx and Y = βy. Let us �nd the value of β assuming that theargument x and parameter α 
an take any values. Di�erentiating Eqs. (1.4)and (1.5) at 
onstant α and β gives

dy

dx
= f ′(x),

dY

dX
= f ′(X).The se
ond equation 
an be rewritten as

β

α
· dy

dx
= f ′(X),i. e.

β

α
f ′(x) = f ′(X).Sin
e

β

α
=

xY

yX
,

Chapter I 9it follows that

xY

yX
f ′(x) = f ′(X)or

x
f ′(x)

f(x)
= X

f ′(X)

f(X)
. (1.6)The right-hand side of Eq. (1.6) depends only on X and the left-handside depends only on x. This is possible only if both sides are equal to a
onstant, say c. This observation allows one to write a di�erential equation:

x
f ′(x)

f(x)
= cor

df

f
= c

dx

x
.Then

f(x) = f0x
c,where f0 is a 
onstant of integration.Similarly,

Y = f0X
c,or

βy = f0 · (αx)c.Sin
e
y = f0x

c,This gives
β = αc. (1.7)Thus invarian
e of a physi
al quantity with respe
t to rede�nition of its unit(see Eq. (1.3)) results in Eq. (1.7). Let us dis
uss its physi
al meaning.Obviously, if quantity x is 
hosen as a base one, the dimension of quantity

y is
dim y = xc.The above reasoning 
an be extended to a 
ase when a quantity dependson several base units. Let, for instan
e, the number of the base units beequal to three and these are length (l), mass (m), and time (t). Then thedimension of any quantity y is

dim y = lpmqtr, (1.8)
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σFig. 1.1. De�nition of anglewhere p, q, and r are 
onstants. Equation (1.8) shows that if the units oflength, mass, and time are redu
ed by fa
tors of α, β, and γ, respe
tively,the unit of y will be redu
ed by a fa
tor of αpβqγr. Therefore its numeri
alvalue will be in
reased by the same fa
tor. This is a meaning of the 
on
eptof dimension. The values p, q, and r are a
tually rational numbers, whi
hfollows from the de�nition of physi
al quantities.Often the dimension of a physi
al quantity is identi�ed with its unit insome system of units. For example, it is usually said that the dimension ofvelo
ity is m/s and the dimension of for
e is kg ·m/s2. Although in
orre
tthis is not a bad mistake.Units of angles. Angular units require separate 
onsideration. An angleis measured in degrees or using an ar
 measure. The latter is de�ned as thelength of a segment of a unit 
ir
le (see Fig. 1.1). Both units are basi
allya ratio of ar
 length to radius:

ϕ =
l

1 m
= ϕ2 − ϕ1 =

l2
1ì − l1

1ì =
L2

R2

− L1

R1

.

R

O

S

Fig. 1.2. De�nition of solidangle
Here the angle ϕ is measured between two ra�dial ve
tors OO1 and OO2. Here l1 and l2 arethe ar
s of the unit 
ir
le and L1 and L2 arethe ar
s of the 
ir
les with radii R1 and R2,respe
tively. To emphasize the di�eren
e be�tween the ar
 and degree units, the numeri
alvalue ϕ is 
alled ¾rad¿ (radian). For example,if l = 1 m then ϕ = 1 m/1 m = 1 rad whi
h
orresponds to 57◦17′44,80625′′.Similarly for a solid angle we have (see

Chapter I 11T a b l e 2The base units of SIQuantity name Unit name Quantity symbolLength Meter mMass Kilogram kgTime Se
ond sEle
tri
 
urrent Ampere ATemperature Kelvin KLuminous inten�sity Candela 
dAmount ofsubstan
e Mole molAngle Radian radSolid angle Steradian srFig. 1.2):
Ω =

S0

1 m2
.Here S0 is an area on a sphere (in m2) whi
h radius is equal to 1 m. If S isan area on sphere of a radius R, then

Ω =
S0

1 m2
=

S

R2
.The unit of solid angle is determined in the following way. For S0 = 1 m2

Ω =
1 m2

1 m2
= 1 sr (steradian).Thus the total angle (360◦) is equal to ϕ = 2π rad and the total solidangle (S0 is the total area of a sphere) is equal to Ω = 4π sr. Often theabbreviations ¾rad¿ and ¾sr¿ are dropped whi
h sometimes is a sour
e of
onfusion.The base units of SI. The base units of the International System ofUnits are shown in Table 2. The units are de�ned as follows.Meter is the length of the path travelled by light in va
uum in1/299,792,458 of a se
ond.Kilogram is de�ned as being equal to the mass of the International Pro�totype Kilogram. The IPK is made of a platinum alloy known as �Pt?10Ir�,
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swhi
h is 90% platinum and 10% iridium (by mass) and is ma
hined into aright-
ir
ular 
ylinder (height = diameter) of 39.17 mm. The 
hosen alloyprovides durability, uniformity, and high polishing quality of the prototypesurfa
e (whi
h allows for easy 
leaning). The alloy density is 21,5 g/
m3.The prototype is stored at the International Bureau of Weights and Mea�sures in Sevres on the outskirts of Paris. The relative error of a 
omparisonpro
edure with the prototype does not ex
eed 2 · 10−9.Se
ond is the unit of time de�ned as the duration of 9 192 631 770 pe�riods of the radiation 
orresponding to the transition between the twohyper�ne levels of the ground state of 133Cs atom.Ampere is the unit of steady ele
tri
 
urrent that will produ
e an at�tra
tive for
e of 2 · 10−7 newton per metre of length between two straight,parallel 
ondu
tors of in�nite length and negligible 
ir
ular 
ross se
tionpla
ed one metre apart in a va
uum.Kelvin is the unit of temperature that is de�ned as the fra
tion 1/273.16of the thermodynami
 temperature of the triple point of water.Mole is the unit of amount of substan
e de�ned as an amount of asubstan
e that 
ontains as many elementary entities as there are atoms in12 grams of pure 
arbon 12C.Candela is the unit of luminous intensity that is equal to the luminousintensity, in a given dire
tion, of a sour
e that emits mono
hromati
 radi�ation of frequen
y 540 · 1012 Hz and that has a radiant intensity in thatdire
tion of 1/683 watt per steradian.The derivative units of SI are listed in Table 3. The base units listedabove together with the derived units 
onstitute the international systemof units SI. The units of angle and solid angle 
an be 
onsidered either likethe base or the derivative units. In physi
s radian and steradian are usuallyregarded as derivative units. However in some �elds of physi
s steradianis 
onsidered as the base unit. In that 
ase the symbol ¾sr¿ 
annot berepla
ed by 1.Measurements and data treatmentA goal of the majority of physi
al experiments is to determine a numer�i
al value of some physi
al quantity. A numeri
al value shows how manytimes a quantity 
ontains a unit. Measured values of di�erent quantities,e.g. time, length, velo
ity, et
, 
ould be related. Physi
s �nds the rela�tionships and interprets them as equations whi
h 
an be used to determinesome quantities in terms of others.Getting reliable numeri
al values is not an easy task be
ause of exper�imental errors. We 
onsider errors of di�erent types and introdu
e some
Chapter I 13T a b l e 3SI derived unitsQuantity name Unitname Symbol Expression interms of otherSI unitsFor
e Newton N 1 Í = 1 kg · m · s−2Pressure andstress Pas
al Pa 1 Pa = 1 N · m−2Energy andwork Joule J 1 J = 1 N · mPower Watt W 1 W = 1 J · s−1Charge Coulomb C 1 C = 1 A · sVoltage Volt V 1 V = 1 W · A−1Ele
tri

apa
itan
e Farad F 1 F = 1 C · V −1Ele
tri
resistan
e Ohm Ω 1 Ω = 1 V · A−1Ele
tri

ondu
tan
e Siemens S 1 S = 1 Ω−1Magneti
 �ux Weber Wb 1 Wb = 1 V · sMagneti
 �uxdensity Tesla T 1 T = 1 Wb · m−2Indu
tan
e Henry H 1 H = 1 Wb · A−1Luminous �ux Lumen lm 1 lm = 1 cd · srIlluminan
e Lux lx 1 lx = 1 lm · m−2Frequen
y Hertz Hz 1 Hz = 1 s−1Opti
al power Dioptre dpt 1 dpt = 1 m−1methods of data treatment. The methods allow one to derive the bestapproximation to the true values using experimental data, to spot in
on�sisten
ies and mistakes, to design a sensible measurement pro
edure, andto estimate 
orre
tly a

ura
y of a measurement.Measurements and errors. Measurements are divided into dire
t andindire
t ones.A dire
t measurement is performed with the aid of instruments whi
hdire
tly determine a quantity under study. For example, the mass of anobje
t 
an be found with a s
ale, the length 
an be measured with a ruler,and a time interval 
an be measured with a stopwat
h.
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sAn indire
t measurement is a measurement of a quantity determined viaits relation to the quantities measured dire
tly. For example, the volumeof an obje
t 
an be evaluated if the obje
t dimensions are known, theobje
t density 
an be found via the measured mass and the volume, andthe resistan
e 
an be determined via voltmeter and ammeter readings.A quality of measurement is spe
i�ed by its a

ura
y. A quality ofdire
t measurement is determined by the method used, the instrumenta

ura
y, and how reliably the results 
an be reprodu
ed. The a

ura
y ofindire
t measurement depends both on the data quality, and on equationswhi
h relate the desired quantity and the data.The a

ura
y of a measurement is spe
i�ed by its un
ertainty. Theabsolute error of a measurement is a di�eren
e between the measured andtrue values of a physi
al quantity. The absolute measurement error ∆x ofa quantity x is de�ned as

∆x = xmes − xtrue. (1.9)Besides the absolute error ∆x it is often ne
essary to know the relativemeasurement un
ertainty εx whi
h is equal to a ratio of the absolute errorto the value of a measured quantity:

εx =
∆x

xtrue
=

xmes − xtrue

xtrue
. (1.10)The quality of measurements is usually spe
i�ed by the relative errorrather than the absolute one. The same 1 mm un
ertainty does not matterwhen it refers to the length of a room but it is not negligible in the lengthof a table and it is 
ompletely intolerable as an un
ertainty of the boltdiameter. Indeed, the relative error is ∼2 · 10−4 in the �rst 
ase, in these
ond it is ∼10−3, and in the third 
ase the error is about 10 per
ent ormore. Absolute and relative errors are often 
alled absolute and relativeun
ertainties, respe
tively. The terms ¾error¿ and ¾un
ertainty¿ whenreferred to measurement are 
ompletely identi
al and we will use themboth.A

ording to Eqs. (1.9) and (1.10) the absolute and relative errors of ameasurement 
an be determined if the true value of a measured quantity isknown. However, if the true value is known no measurement is ne
essary.The real goal of a measurement is to determine a priory unknown true valueof a physi
al quantity, at least, a value whi
h does not deviate signi�
antlyfrom the true one. As for the errors, they are not 
al
ulated, rather theyare estimated. An estimate takes into a

ount the experimental pro
edure,the a

ura
y of a method, the instrument pre
ision, and other fa
tors.

Chapter I 15Systemati
 errors and random errors. First of all, we should mentionfaults whi
h take pla
e be
ause of a human error or instrument malfun
�tioning. Faults should be avoided. If a fault is dete
ted, the 
orrespondingmeasurement should be ignored.Experimental un
ertainties whi
h are not related to faults 
an be eithersystemati
 or random.Systemati
 errors retain their magnitude and sign during an experiment.They 
ould be due to instrument imperfe
tion (non-uniform s
ale gradu�ations, a varying spring 
onstant, a varying lead of a mi
rometer s
rew,unequal arms of a weighing s
ale, e t.
.) and to the experimental pro
e�dure itself. For example, a low density obje
t is being weighed withouttaking into a

ount the buoyant for
e that e�e
tively de
reases its weight.Systemati
 errors 
ould be studied and taken into a

ount by 
orre
tingthe measurement results. If a systemati
 error turns out to be too large,it is often simpler to use up-to-date instruments rather than to study un�
ertainties of the old ones.Random errors 
hange their magnitude and sign from one measurementto another. Repeating the same measurement many times, one 
ould noti
ethat often the results are not exa
tly equal but ¾dan
e¿ around someaverage value.Random errors 
ould be due to fri
tion (for example, the instrumenthand halts and does not point to a 
orre
t reading), due to ba
klash ofme
hani
al parts, due to vibration whi
h is not easy to eliminate in urbansettings, due to imperfe
tions of the obje
t under study (for example, whenmeasuring the diameter of a wire it is assumed that it has 
ir
ular 
ross-se
�tion, whi
h is an idealization), or �nally due to the nature of a measuredquantity itself (for example, the number of 
osmi
 parti
les dete
ted bya 
ounter per minute). In the last 
ase one 
an �nd that di�erent mea�surements produ
e 
lose values distributed randomly around some averagevalue.Random errors are studied by 
omparing results obtained in severalmeasurements under the same 
onditions. If the results obtained in two orthree equivalent measurements are identi
al, further measurements are notne
essary. If the results disagree, one should try to understand the reasonof the disagreement and eliminate it. If the reason 
annot be found, oneshould perform about 10-12 measurements and treat the results statisti�
ally.The di�eren
e between systemati
 and random errors is not absoluteand is related to the experimental pro
edure. For example, when ele
tri

urrent is measured by di�erent ammeters, the systemati
 error of the am�meter reading s
ale be
omes a random error whi
h magnitude and sign
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sdepend on the parti
ular ammeter. However, one should 
learly under�stand the di�eren
e between systemati
 and random errors for any givenexperiment.Systemati
 errors. It has been already mentioned that systemati
 errorsare due to some permanent fa
tors whi
h, in prin
iple, 
ould be alwaystaken into a

ount and therefore ex
luded. In pra
ti
e this task is di�
ultand requires a lot of skill on the part of an experimenter.Systemati
 errors are estimated by analyzing the experimental pro
e�dure, a

ounting for a

ura
y and pre
ision of the measuring instruments,and doing test experiments. In this pra
ti
um we usually a

ount only forthe systemati
 errors due to the instrument ina

ura
y. Let us 
onsidersome typi
al 
ases.A systemati
 error of an analog ele
troni
 instrument (ammeter, volt�meter, potentiometer, et
.) is determined by its a

ura
y 
lass whi
h de��nes the instrument absolute error as a per
entage of the maximal valueof the s
ale used. For instan
e, let a voltmeter s
ale have a range from0 to 10 V and a printed sign that shows the �gure 1 inside a 
ir
le. The�gure indi
ates that the voltmeter has the a

ura
y 
lass 1 and the al�lowed un
ertainty is 1% of the maximal value of the s
ale, i.e. in this 
asethe un
ertainty is ±0.1 V. Also one should take into a

ount that s
alereadings are 
ustomarily separated by an interval that does not ex
eed theinstrument a

ura
y by a fa
tor of two.An a

ura
y 
lass of analog ele
troni
 instruments (and one half ofthe s
ale reading as well) determines the maximal absolute un
ertaintywhi
h is the same along the s
ale. However a relative un
ertainty 
hangesdrasti
ally, so an analog instrument provides the best a

ura
y when thepointer is near the maximal value. Therefore an instrument or its s
aleshould be sele
ted so that the pointer remains on the se
ond half of thes
ale during the measurement.Nowadays digital multi-purpose ele
troni
 instruments are widely used,they have a high a

ura
y. Unlike analog devi
es, the systemati
 error ofa digital instrument is evaluated using the formulas listed in the manual.For example, the relative a

ura
y of the multi-purpose voltmeter B7-34with the 1 V s
ale, 
an be evaluated as
εx =

[

0.015 + 0.002

(

Ukx

Ux
− 1

)]

·
[

1 + 0.1 · |t − 20|
]

, (1.11)where Ukx is the maximal value, V,
Ux is a voltage measured, V,
t is the ambient temperature, ◦C.

Chapter I 17When the voltmeter is used to measure a 
onstant voltage of 0.5 V atthe ambient temperature of t = 30 ◦C the a

ura
y is
εx =

[

0.015 + 0.002

(

1

0,5
− 1

)]

·
[

1 + 0.1 · |30 − 20|
]

= 0.034%,that is ±0.00017 V of the measured 0.5 V.When the voltmeter range is 0-100 or 0-1000 V or it is swit
hed toanother kind of measurement (ele
tri
 
urrent or resistan
e) the formularemains the same but the numbers are di�erent. The voltmeter a

ura
y isreliable under the following 
onditions: an ambient temperature of 5-40 ◦C,a relative humidity below 95% at 30 ◦C, and a power supply of ∼220±22V.Some words should be said about the a

ura
y of rulers. Metal rulersare relatively pre
ise: the millimeter graduations are engraved with anerror less than ±0.05 mm, and the 
entimeter graduations with an errorless than 0.1 mm, so the measurement results 
an be read with the aid ofa hand lens. It is better not to use wooden or plasti
 rulers sin
e theirun
ertainties are not known and 
ould be large. A mi
rometer providesthe a

ura
y of 0.01 mm and the a

ura
y of a 
aliper is determined bythe a

ura
y of its vernier s
ale whi
h is usually 0.1 or 0.05 mm.Random errors. Random quantities (random error is an example) arestudied in the probability theory and mathemati
al statisti
s. Below wedes
ribe without giving a formal proof the basi
 properties of random quan�tities and the rules of statisti
al treatment of experimental data.It is not possible to eliminate random errors. However they obey thelaws of statisti
s, so one 
an always determine the limits in whi
h a mea�sured quantity 
an be found with a given probability.The theory that des
ribes the properties of random errors agrees withexperiment. The theory is based on the following properties of the normaldistribution:1. In a large pool of random errors, the errors of the same magnitude butof di�erent sign are equally probable.2. Large errors are less frequent than small. In other words, large errorsare less probable.3. Measurement errors 
an take 
ontinuous values.To study random errors it is ne
essary to introdu
e a 
on
ept of prob�ability.The statisti
al probability of an event is de�ned as the ratio of thenumber n of 
ases when the event happens, to the number N of all equallypossible 
ases:

P =
n

N
. (1.12)
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sLet 100 marbles be in a bin and assume that 7 marbles are bla
k andthe rest are white. The probability of randomly pi
king a bla
k marbleis 7/100 and the probability to pi
k a white one is 93/100.Now let us apply the probability 
on
ept to estimate the dispersion ofrandom errors.Suppose n measurements of some quantity (e.g. the diameter of arod) have been done and assume that faults and systemati
 errors areeliminated, so only random errors remain. The results of the measurementare numeri
al values x1, x2, ..., xn. If x0 is the most probable value ofthe measured quantity (we assume that it is known), the di�eren
e ∆xibetween a measured value xi and x0 is 
alled the absolute random error ofthe measurement. Then

x1 − x0 = ∆x1

x2 − x0 = ∆x2. . . . . . . . . . . . . . .

xn − x0 = ∆xnBy summing up the equations we obtain:

x0 =

n
∑

i=1

xi −
n
∑

i=1

∆xi

n
, (1.13)where ∆x 
an be either positive or negative. A

ording to the normaldistribution the errors of equal magnitude but of opposite sign are equallyprobable. Therefore the greater the number of measurements n, the moreprobable a mutual 
an
ellation of the errors under averaging, so

lim
n→∞

1

n

n
∑

i=1

∆xi = 0.Then

lim
n→∞

xav = lim
n→∞

1

n

n
∑

i=1

xi = x0. (1.14)Therefore the arithmeti
 mean xav of the results of di�erent measurementsfor a very large n (i.e. n → ∞) is the most probable value x0 of themeasured quantity. In pra
ti
e n is always �nite and xav is only approx�imately equal to the most probable value x0. The larger the number ofmeasurements n, the 
loser xav to x0.
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Fig. 1.3. The normal distributionThe arithmeti
 mean of the obtained results is usually taken as the bestapproximation to the value of a measured quantity:
xñð =

1

n

n
∑

i=1

xi =
x1 + x2 + . . . + xn

n
. (1.15)To estimate the reliability of a result it is ne
essary to examine a dis�tribution of random errors of di�erent measurements. The distribution oferrors often obeys the normal distribution (Gaussian distribution):

y =
1√
2πσ

e−
(x−x0)2

2σ2 , (1.16)where y is the probability distribution (probability density fun
tion) of theerrors:
y =

dn

n · dδ
,where dn/(n·dδ) is the fra
tion of the errors in a given in�nitesimal interval

dδ,
x0 is the most probable value of the measured quantity,

δ = (x − x0) is a random deviation,

σ is the mean of the squared deviation. The quantity σ2 is also 
alledstandard deviation.The normal distributions 
orresponding to di�erent σ are plotted inFig. 1.3.The points |δ| = |x − x0| = σ are in�e
tion points of the Gaussian
urves. Parameter σ spe
i�es the measure of dispersion of random errors
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δ. If the measurement results x are lo
ated 
lose to the most probablevalue x0 and the values of random deviations δ are small, the value of σis small as well (
urve 1, σ = σ1). If the random deviations are large andwidely dispersed, the 
urve be
omes more widespread (
urve 2, σ = σ2)and σ2 > σ1. The quantity σ is a measure of dispersion of the measuredquantity.A ratio of the area under a Gaussian 
urve between the values δ = ±σ(the area is shadowed in Fig. 1.3 for σ1 = 0.5) to the total area under the
urve is 0.68. Therefore the equation x = x0 ± σ says that the probabilityto obtain a result x in this interval is 0.68 (68%).If an equation reads x = x0 ± 2σ, the probability to obtain a resultwithin this interval is 0.95. For x = x0 ± 3σ the probability is 0.997.In dealing with experimental un
ertainties we always refer to Gaussiandistribution. There are serious reasons in favor of using the normal dis�tribution. The most signi�
ant one is the 
entral limit theorem: if a netun
ertainty is a result of several fa
tors 
ontributing independently to itthen the distribution of the net un
ertainty will be Gaussian regardless ofthe parti
ular distribution of ea
h of the fa
tors.For a �nite number of measurements n the deviation of the result fromthe most probable value x0 is estimated as the mean of the squared devia�tion σsep:

σsep =

√

√

√

√

1

n

n
∑

i=1

(xi − x0)2. (1.17)In pra
ti
e this equation is useless sin
e the most probable value of x0is unknown. However we get a reasonable estimate for σsep by repla
ing
x0 in (1.17) with arithmeti
 mean xav:

σsep =

√

√

√

√

1

n

n
∑

i=1

(xi − xav)2. (1.18)If n is small, xav 
an di�er signi�
antly from x0 and Eq. (1.18) gives arough estimate of σsep. A

ording to mathemati
al statisti
s the followingequation gives a better estimate:

σsep =

√

√

√

√

1

n − 1

n
∑

i=1

(xi − xñð)2. (1.19)Here σsep is the mean of the squared deviation of a measurement resultand/or the standard deviation derived from the experimental data. Thereliability of σsep improves for a greater number of measurements n.
Chapter I 21The un
ertainty of the arithmeti
 mean. In pra
ti
e we are notusually interested in how the result of any of n individual measurementsdeviates from the most probable value. Rather the question is what is anun
ertainty of the arithmeti
 mean. To �nd a reasonable estimate let usperform a series of measurement sets with n measurements of quantity xper set and �nd xav for every set. The obtained values xav are randomlydistributed around some 
entral value x0, their distribution approa
hingthe normal distribution. The standard deviation of xav from x0 
an beestimated as the mean of the squared deviation σav (in the same wayas we determined σsep for n values of x.) In the probability theory itis proven that the standard deviation σav is related to the mean of thesquared deviation σsep as

σav =
σsep√

n
=

√

√

√

√

1

n(n − 1)

n
∑

i=1

(xi − xav)2. (1.20)Therefore the measured quantity x 
an be presented as

x = xav ± σav. (1.21)This notation says that the probability to �nd the most probable value

x0 of the measured quantity in the interval xav ± σav is equal to 0.68 (68%)(assuming n is large).The un
ertainty σav (or its square) is usually 
alled the standard devi�ation.It 
an be shown that usually the deviation of a measurement ex
eeds

2σav only in 5% of all 
ases and it is almost always less than 3σav.One 
ould naively 
on
lude from above dis
ussion that even using low�quality instruments it is possible to obtain better results by simply in
reas�ing the number of measurements. Of 
ourse, this is not so. In
reasingthe number of measurements redu
es a random error. Systemati
 errorsrelated to imperfe
tions of the instruments persist, so one should better
hoose an optimal number of the measurements.If the number of experiments is small (less than 8) it is re
ommendedto use more sophisti
ated estimates. It should be noted that for n ≈ 10 thevalue of σav 
ould be determined with an a

ura
y of 20�30% Therefore theerrors should be 
al
ulated with an a

ura
y of no more than two digits.Addition of random and systemati
 errors. In real experiments bothsystemati
 and random errors o

ur. Let the 
orresponding errors be σsysand σran. The net error is given by

σ2
net = σ2

sys + σ2
ran. (1.22)
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sThis equation shows that the net error is greater than both the randomand systemati
 errors.An important feature of the equation should be mentioned. Let oneof the errors, say σran, be less than the other one (σsys) by a fa
tor of 2.Then

σnet =
√

σ2
sys + σ2

ran =

√

5

4
σsys ≈ 1,12σsys.In this example an equality σnet = σsys holds with 12% pre
ision. Thusa smaller error almost does not 
ontribute to the net error even if the latteris only twi
e as large as the former. This observation is very important. Ifa random error is only one half of the systemati
 error, it is not pra
ti
alto repeat the measurements anymore sin
e this will almost not redu
e thenet error. It would be enough to repeat the measurements two or threetimes in order to 
onvin
e yourself that the random error is indeed small.Treatment of the results of indire
t measurements. If a measuredquantity is a sum or di�eren
e of a 
ouple of measured quantities:

a = b ± c, (1.23)then the expe
ted value of the quantity a is equal to the sum (or thedi�eren
e) of the expe
ted values of ea
h term: aex = bex ± cex, or, as itwas already re
ommended

aex = 〈b〉 ± 〈c〉 . (1.24)Hereinafter the angular bra
kets (or the bar over a symbol) mean an aver�age: instead of writing aav, we will use the notation 〈a〉 (or ā).If the quantities a and b are independent the standard deviation σa isgiven by

σa =
√

σ2
b + σ2

c , (1.25)i. e. the squares of the errors or, in other words, the standard deviationsof the results are added.If the measured quantity is equal to produ
t or ratio of two errors
a = bc or a =

b

c
, (1.26)then

aex = 〈b〉 〈c〉 or aex =
〈b〉
〈c〉 . (1.27)

Chapter I 23The relative standard error for a produ
t or ratio of two independent quan�tities is given by

σa

a
=

√

(σb

b

)2

+
(σc

c

)2

. (1.28)Let us give expli
it formulae for the 
ase when
a = bβ · cγ · eε . . . (1.29)The expe
ted value of a is related to the expe
ted value of b, c and e,et
. by the same equation (1.29) in whi
h the spe
i�
 values are repla
edby their expe
ted values. The relative standard error of a is expressed interms of the relative errors of independent b, c, e, . . . as

(σa

a

)2

= β2
(σb

b

)2

+ γ2
(σc

c

)2

+ ε2
(σe

e

)2

+ . . . (1.30)For the referen
e let us give an expli
it general formula. Let

a = f(b, c, e, . . .), (1.31)where f is an arbitrary fun
tion of the quantities b, c, e et
. Then

aex = f(bex, cbest, eex, . . .). (1.32)Equation (1.32) is valid both for the dire
tly measured bex, cex et
. andfor the indire
tly measured quantities. In the �rst 
ase the values bex, cexet
. are equal to 〈b〉, 〈c〉 et
.The error of a is given by

σ2
a =

(

∂f

∂b

)2

· σ2
b +

(

∂f

∂c

)2

· σ2
c +

(

∂f

∂e

)2

· σ2
e + . . . (1.33)Here ∂f/∂b is a partial derivative of f with respe
t to b, i.e. the derivativewith respe
t to b is 
al
ulated provided the rest of the variables (c et
.) areheld �xed. The partial derivatives with respe
t to c, e et
. are de�ned inthe same way. The partial derivatives must be evaluated at the expe
tedvalues bex, cex, eex et
. Equations (1.25), (1.28) and (1.30) are the spe
i�

ases of Eq. (1.33).The analysis of the equations dis
ussed in this se
tion leads naturally toseveral re
ommendations. First of all one should avoid the measurementsin whi
h a desired quantity 
omes out as a di�eren
e of two large numbers.For example, it is better to measure dire
tly the thi
kness of a pipe wallrather than to determine it by subtra
ting the inner diameter from the
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souter one (and dividing the result by two). In the latter 
ase the relativeerror grows signi�
antly sin
e the measured quantity (the wall thi
kness)is small while its error is determined by adding up the diameter errorsand therefore in
reases. One should keep in mind that the measurementerror of 0.5% of the outer diameter 
ould be 5 or more per
ent of the wallthi
kness.The quantities whi
h are treated with the aid of Eq. (1.26) (e.g., whenthe density of an obje
t is evaluated using its weight and volume) shouldbe measured with approximately the same relative error. For instan
e, ifthe volume of an obje
t is determined with an error of 1% and the obje
tweight is known with an error of 0.5%, the obje
t density is determinedwith an error of 1.1%. Obviously it does not make sense to waste one'stime and e�ort on measuring the obje
t weight with an error of 0.01%.For measurements whi
h results are treated by means of Eq. (1.29)one should pay attention to the error of the quantity with the greatestexponent.When planning an experiment one should always remember about asubsequent treatment of the results and write down the expli
it expres�sions for the errors in advan
e. The equations help to understand whi
hquantities must be measured more 
arefully than others.Some laboratory guidelinesAny laboratory experiment should be regarded as a resear
h proje
t inminiature. A lab des
ription provides only a guideline of the experiment. Aspe
i�
 
ontent, skills, and knowledge whi
h a student would gain from theexperiment are mostly due to student' attitude rather than the lab des
rip�tion. The most valuable skills whi
h a student is able to develop during thelaboratory 
ourse are: thinking about an experiment, applying theoreti
alknowledge in the laboratory setting, 
areful planning of the experimentand avoiding mistakes, and noti
ing often insigni�
ant little things whi
h
ould potentially initiate an important resear
h proje
t.The experimental results are summarized in a lab report whi
h mustin
lude the following1) theoreti
al motivation of the experiment in
luding a brief derivation ofthe required equations;2) a diagram of the experimental setup;3) a plan of the experiment and tables with experimental data;4) data treatment: 
al
ulations of intermediate quantities, tables, plots,and diagrams of the results, 
al
ulations of the �nal result;

Chapter I 255) 
omparison of the obtained results with referen
e data (in handbooksand manuals), dis
ussion of possible mistakes, suggestions of future exper�iments.Preparation to experiment. Firstly, it is ne
essary to read an experi�ment des
ription and the 
orresponding theoreti
al material. It is ne
es�sary to have a 
lear a

ount of the phenomena, physi
al laws, and ordersof magnitude of the quantities under study, as well as the experimentalmethod, instruments, and a measurement pro
edure.The lab reports should be written in a su�
iently large workbook so it
an be used, at least, during one semester. A report should start with anumber and the title followed by a theoreti
al introdu
tion, a diagram ofthe experimental setup, and a des
ription of the experiment pro
edure.Before an experiment it is ne
essary to think over the pro
edure sug�gested in the lab des
ription and determine a required number of measure�ments. This will help to prepare the tables for the experimental data.It is desirable to �gure out in advan
e the range in whi
h the measuredquantities will reside and to 
hoose the appropriate units. At least, thismust be done at the beginning of the experiment. Also it is ne
essaryto estimate measurement a

ura
y. If a quantity is expressed in termsof powers of quantities measured dire
tly one should make sure that therelative errors of the quantities with greater exponents are small, i.e. thesequantities should be measured with a better a

ura
y. When possible oneshould avoid measuring a quantity as a di�eren
e between two numeri
ally
lose quantities . As it was already mentioned, the thi
kness of a pipe wallshould be measured dire
tly rather than 
al
ulated as a di�eren
e betweenthe outer and inner diameters.Beginning. At the beginning of the experiment one should 
arefully ex�amine the experimental setup, �gure out how to swit
h the instruments onand o�, how to handle them, and 
he
k that the equipment is in order.Measurement instruments must be handled with 
are. It it is not agood idea to uns
rew the 
asing of a sensitive instrument and 
hange thesettings.It is ne
essary to write in the workbook the spe
i�
ations of the instru�ments (�rst of all, an a

ura
y 
lass, the maximal value on the s
ale, andthe s
ale graduation) sin
e they are used for data treatment.When assembling ele
tri
 
ir
uits a power supply must be 
onne
tedno sooner than the 
ir
uit is 
ompletely assembled.Operation of the experimental setup must be 
he
ked before the mainmeasurements. The �rst measurements are done to make sure that ev�erything is in order and the range and a

ura
y of the measurements are
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orre
tly 
hosen. If the dispersion of the �rst results does not ex
eed asystemati
 error, multiple measurements are not ne
essary.The malfun
tions of instruments or the installation must be do
u�mented in the workbook and reported to the instru
tor.Measurements. The results of the measurements should be written indetail with ne
essary explanations.It is useful to plot the measured quantities during the experiment. Ithelps to see the regions where the values 
hange rapidly. In these regionsthe quantity must be measured with a better pre
ision (more measurementpoints) than in the regions where the 
urve is smooth. If the quantityis assumed to exhibit a priori dependen
e (e.g. linear) in some interval,the measurements should 
over a wider range in order to determine theboundaries of the interval where the dependen
e holds.Signi�
ant dispersion of the results at the beginning of an experimentshould alert the experimenter. Often it is better to interrupt the exper�iment and try to eliminate the sour
e of the dispersion rather than todo a large number of measurements in order to rea
h the required a

u�ra
y. If a quantity measured depends on some parameter or another quan�tity that 
hanges gradually, one must make sure that the 
onditions havenot 
hanged during the experiment. To this end the initial measurementsshould be repeated at the end of experiment or the whole measurementrepeated in reversed order.Before ea
h table one should write down the unit of s
ale graduationsand a

ura
y 
lass of every measurement instrument. It is better to writedown the graduations of an instrument rather than the 
orresponding valueof the measured quantity, e.g. 
urrent or voltage. This will spare you somemistakes when writing down the readings. At the end of the day, the datatreatment is always possible while repeating the experiment is sometimesdi�
ult or even impossible.The units should be 
hosen appropriately so that the results be rep�resented by values in the range from 0.1 to 1000. In this 
ase the tableswould be readable and the plots would be 
onvenient to use. For instan
e,Young' moduli (E) of metals are represented by very large numbers in theSI, so it is 
onvenient to use the unit 1010 N/m2. (For aluminum the nu�meri
al value is 7.05.) The 
orresponding 
olumn in the table or a plot axiswill be labeled as E, 1010 N·m−2. The 
omma is important: it separatesthe quantity from its unit. Numeri
al fa
tors in front of the units 
an berepla
ed by words or their abbreviations.Sometimes another 
onvention is used. A quantity to be displayed in atable or next to a plot axis is measured in ordinary units and representedas a produ
t of the quantity multiplied by some numeri
al 
oe�
ient. For
Chapter I 27Young' modulus this 
onvention reads: E · 10−10, N·m−2. Although thenumeri
al value listed in the table remains the same (7.05 for aluminum)this 
onvention is less 
ommon sin
e the 
oe�
ient 
ould be in
orre
tlyreferred to the measurement unit.Evaluation, analysis, and presentation of the results. The resultsof dire
t measurements presented as tables and plots are then used for eval�uating the desired quantities and their errors and for �nding relationshipsbetween the quantities. It is 
onvenient to use the same workbook for the
al
ulations and write the results in blank 
olumns of the tables togetherwith raw experimental data. This would help to 
he
k and analyze theresults of 
al
ulations and 
ompare them with the data.Finally a measured quantity must be presented in the following form:the average, the error, and the number of measurements. The �nal resultof indire
t measurements is determined via their fun
tional dependen
e onthe dire
tly measured quantities whi
h are used for evaluating the averagesand the errors.Sin
e an error itself is seldom known with a better a

ura
y than 20%the numeri
al value of the error in the �nal result should be rounded to oneor two signi�
ant digits. For example, it would be 
orre
t to write errors as

±3, ±0.2, ±0.08, and ±0.14; and in
orre
t ±3.2, ±0.23, and ±0.084. It isnot 
orre
t to round the value ±0.14 to ±0.1 sin
e the rounding de
reasesthe error by 40%. The last digit of the average value of a quantity and thelast digit of the error must be in the same position. For example, a resultwritten as 1.243± 0.012 for the error of ±0.012 takes the form 1.24± 0.03for a larger error of ±0.03 and 1.2 ± 0.2 for 0.2. Extra signi�
ant digits
ould be kept in intermediate 
al
ulations for better rounding of the result.Depending on the 
hosen units the error 
ould be tens, hundreds, thousandsof the units or more. For example, if the weight of an obje
t is 58.3±0.5 kgits expression in grams must be (583 ± 5) · 102 g. It would be in
orre
t towrite 58300± 500 g.Finally the obtained results are 
ompared to the tabulated values fromreferen
e books in order to estimate their quality.Plotting graphs. Graphs should be plotted on a spe
ial graphing paper:regular graph paper, millimeter paper, or logarithmi
 paper. The plot size(and the paper size) should not be too large or too small. The optimal sizeis between a quarter and a full workbook page.Before starting to plot the graph it is ne
essary to 
hoose an appropriates
ale and the origin on the axes, so that the points are spread over the wholeplot area.Figure 1.4 shows two plots. The experimental points o

upy the lowerright 
orner of the plot on the left, whi
h is a poor 
hoi
e. On the right plot
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Fig. 1.4. Examples of 
orre
t and in
orre
t plotsa larger s
ale of the Y axis is 
hosen and the abs
issa origin is displa
ed,so the points are evenly spread over the whole plot area.The names and units of the plotted quantities should be 
learly written.Labeling all the graduations on the axes is not ne
essary, there should beenough labels to make the plot 
omprehensible and easy to use. It isbetter to pla
e the labels on the outer sides of axes. If a graph paper hasa network of lines of di�erent thi
kness, the solid lines should be used forround values. It is 
onvenient when the network square 
orresponds to 0.1,0.2, 0.5, 1, 2, 5, or 10 units of a quantity and it is usually in
onvenientwhen a square 
orresponds to 2, 5, 3, 4, 7, et
. units. An in
onvenient s
aleof axis graduations makes it di�
ult to determine 
oordinates of a point,whi
h leads to frequent mistakes. The name of a quantity on abs
issa isusually written below the axis at the right end and the name of quantity onthe ordinate is written at the top left to the axis. A unit of measurementis separated by 
omma.Points on a plot should be marked 
learly. The points should be drawnby pen
il, so that possible mistakes 
ould be 
orre
ted. Explanatory notesshould not obs
ure the plot; the 
oordinates of the points written next tothem are not ne
essary. If an explanation is in order the 
orrespondingpoint or the 
urve is labeled by a number explained in the text or inthe 
aptions. It is advisable to plot the points obtained under di�erent
onditions, e.g. heating/
ooling or in
reasing/de
reasing a load, by usingdi�erent marks or 
olors.The known errors of experimental points should be drawn as verti
al
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Fig. 1.5. Drawing line through experimental pointsand horizontal bars whi
h lengths are proportional to the 
orrespondingerrors. In this 
ase a point is represented by a 
ross. Half of the horizontalbar is equal to an error of abs
issa quantity and half of the verti
al baris equal to an ordinate quantity error. If an error is too small to be rep�resented graphi
ally, the 
orresponding points are drawn as bars ±σ longin the dire
tion where the error is not negligible. Su
h a representation ofexperimental points fa
ilitates the analysis of the results. In parti
ular, itwould be easier to �nd the best mathemati
al relation des
ribing the dataand to 
ompare the results with theoreti
al 
al
ulations and other results.Figures 1.5a, b show the same data points with di�erent errors. Theplot in Fig. 1.5a undoubtedly 
orresponds to a non-monotonous fun
tion.The fun
tion is shown by a solid 
urve. The same data set for a largerexperiment error (Fig. 1.5b) is well des
ribed by a straight line: only asingle point deviates from the line by more than one standard deviation(and less than two standard deviations). It is only when the points aredrawn with their errors shown expli
itly it be
omes 
lear that the datain 1.5a requires a 
urve to be drawn and the data in 1.5b does not.Often measurements are performed in order to obtain or 
on�rm a spe�
i�
 relation between the measured quantities. In this 
ase the 
orrespond�ing 
urve should be drawn through the experimental points. If ne
essary,the errors of the measured quantities are then found using deviations ofthe points from the 
urve. It is not di�
ult to draw a straight line throughthe data points. Therefore if a relation between the plotted quantities ishypothesized or already known from theory it is better to plot some fun
�tions of the quantities, so that the relation between the fun
tions be
omes
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s

 Fig. 1.6. Graphi
al method of data treatment. Estimatingrandom error of parameter alinear. For example, 
onsider an experiment that veri�es the relation be�tween a time interval it takes an obje
t to fall in the gravitational �eld andthe initial height from whi
h the fall starts. In this 
ase one should plotthe height versus the time squared be
ause these quantities are dire
tlyproportional to ea
h other if the �eld is uniform and the air drag is neg�ligible. It would be less 
onvenient to plot the time versus square root ofthe height although the relation between them is also linear. Noti
e thatlogarithms of the time and the height are also proportional in this 
ase butthe linearity is signi�
antly violated by relatively small errors of heightand time at the beginning of the fall. Logarithmi
 s
ale is 
onvenient forpower laws and large ranges of 
hanges of variables. In this 
ase a lineardependen
e allows one to determine the power law exponent.There are di�erent methods of drawing straight lines through experi�mental points. The most simple method, whi
h is useful for estimatingerrors although too rough for getting the �nal result, requires a transpar�ent ruler or a sheet with a straight line drawn on it. A transparent rulerallows one to determine how many points there are on both sides of theline. The latter should be drawn so that there is an equal number of thepoints on both sides. The line parameters (a slope and an inter
ept) aredetermined from the plot. This gives an analyti
 expression of the form:
y = a + bx, whi
h for a nonzero a, does not pass through the origin.Random errors of the parameters a and b 
ould be estimated from the
Chapter I 31

 Fig. 1.7. Graphi
al method of data treatment. Estimatingrandom error of parameter bplot as follows. To estimate the error of a one determines how mu
h theline is displa
ed so that the ratio of the numbers of points on both sidesbe
omes 1 : 2 (see Fig. 1.6). Expli
itly, the line is displa
ed upward by

∆a1, so that one third of the points is above the 
urve and two thirds isbelow. When the 
urve is displa
ed downward by ∆a2, two thirds of thepoints is above and one third is below. If there are n points, an estimateof the standard deviation a is
σa =

∆a1 + ∆a2√
n

.To estimate the error of the slope b one should divide the whole rangeof abs
issa values x into three equal parts (see Fig. 1.7). The line is thendrawn so that the ratio of the numbers of the points on both sides of theline in the external parts is 1 : 2. In other words, in
rease the slope untilthe number of points in the left part above the line is twi
e as large asthe number below it and the number of points in the right part below theline is twi
e the number above, let the 
orresponding slope be b1. Thende
rease the slope until the number of points below the line in the left partis twi
e as large as above and in the right part the number above is twi
e asbelow, let the 
orresponding slope be b2. Then the error of b is estimatedas

σb =
b1 − b2√

n
.
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sIf the relation is y = kx, so that the line goes through the origin, theerror of k is estimated as follows. The range of abs
issa values x is dividedinto three equal parts. The points 
lose to the origin are ignored. Oneshould determine the value k1, for whi
h the number of the points abovethe line is half the number of the points below (for all the points in the
entral and right parts), and k2 for the opposite ratio. The slope k isestimated as

σk =
k1 − k2√

n
.The method of least squares is a more pre
ise and better justi�edmethod of drawing a straight line through a set of points. The line isdrawn so that the sum of squares of the point deviations from the line isminimal. This means that the 
oe�
ients a and b of y = a + bx are foundby minimizing the sum

f(a, b) =

n
∑

i=1

[

yi − (a + bxi)
]2

. (1.34)Here xi and yi are the 
oordinates of experimental points.Now let us give the expli
it equations for a, b and their errors in termsof the arithmeti
 means of xi and yi:

b =
〈xy〉 − 〈x〉 〈y〉
〈x2〉 − 〈x〉2

, (1.35)
a = 〈y〉 − b 〈x〉 . (1.36)The 
orresponding errors are given by

σb ≈ 1√
n

√

〈y2〉 − 〈y〉2

〈x2〉 − 〈x〉2
− b2, (1.37)

σa = σb

√

〈x2〉 − 〈x〉2. (1.38)If it is known that the points are des
ribed by a linear dependen
e
y = kx, the slope k and its error are given by

k =
〈xy〉
〈x2〉 , (1.39)

σk ≈
√

〈x2〉 〈y2〉 − 〈xy〉2

n 〈x2〉2
=

1√
n

√

〈y2〉
〈x2〉 − k2. (1.40)

Chapter I 33T a b l e 4Some approximation formulaeEquation A

ura
y of 5% A

ura
y of 1% A

ura
y of 0.1%
|a| is less |a| is less |a| is less

1

1 + a
≈ 1 − a 0.22 0,1 0.032

√
1 + a ≈ 1 +

1

2
a 0.63 0.28 0.09

1√
1 + a

≈ 1 − 1

2
a 0.36 0,16 0.052

ea ≈ 1 + a 0.31 0.14 0.045
ln(1 + a) ≈ a 0.10 0.02 0.002

sina ≈ a 0.55 0.24 0.077

tana ≈ a 0.4 0.17 0.055

cos a ≈ 1 − a2

2

0.8 0.34 0.11

(1 + a)(1 + b) . . . ≈ 1 + a + b + . . .

sin(θ + a) = sin θ + a cos θ

cos(θ + a) = cos θ − a sin θThis method is the most time 
onsuming but if a 
al
ulator or 
omputeris available the method must be preferred.Sometimes one is not interested in a fun
tional dependen
e approximat�ing a data set, rather the experimental points are used to �nd numeri
alvalues between them. If so, interpolation methods are employed. In thesimplest 
ase a linear interpolation between two neighboring points is used.Interpolating by parabola requires three points.It should be emphasized that the plots provide a graphi
al representa�tion of the experimental data. They are very useful for 
omparing theoryand experiment, understanding qualitative features of relations, and for es�timating quantity dynami
s. However, the �nal results of any experimentare do
umented in a table.Usually the �nal results are obtained from experimental data by meansof 
al
ulation. An a

ura
y of the latter should not ex
eed an a

ura
y ofthe data. Often the 
al
ulations are simpli�ed by means of approximationformulae given in Table 4. The numeri
al entries are the values for whi
hthe approximations in the left 
olumn provide the a

ura
y 
laimed in thetable upper row.It should be noted that our re
ommendations on data treatment are
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sT a b l e 5Synopsis of basi
 equationsArithmeti
 mean ofmeasured quantity xav = 〈x〉 =
1

n

n
∑

i=1

xiStandard deviation ofarithmeti
 mean ofmeasured quantity σ =

√

√

√

√

1

n(n − 1)

n
∑

i=1

(xi − 〈x〉)2Propagation of(independent) errors σ2 = σ2

1
+ σ2

2
+ . . .

A = B ± C ⇒ σ2

A = σ2

B + σ2

CError of 
al
ulated result A = B · C

A = B/C

}

⇒
( σA

A

)2

=
( σB

B

)2

+
( σC

C

)2

A = Bβ · Cγ ⇒
( σA

A

)2

= β2

( σB

B

)2

+ γ2

( σC

C

)2Re
ommended s
ales 1:1; 1:2; 1:5; 1:10; 1:20 ... 2:1; 5:1; 10:1; 20:1 ...Drawing the best straightline y = a + bx
b =

〈xy〉 − 〈x〉 〈y〉

〈x2〉 − 〈x〉2

, a = 〈y〉 − b 〈x〉Drawing the best straightline y = kx
k =

〈xy〉

〈x2〉neither 
omplete nor stri
t sin
e they are designated for the freshmen whosemathemati
al ba
kground is not su�
ient to 
onsider the questions relatedto mathemati
al statisti
s in detail. More elaborated treatment will bepossible after �rst two years of study when enough experien
e in the labis gained and su�
ient mathemati
s is learned. Therefore some equationsused for data treatment were given without proof, some of them are shownin Table 5.Finally, several re
ommendations on the data treatment.When pro
essing the data it is ne
essary to 
onsider possible sour
esof mistakes. A

ura
y of intermediate 
al
ulations should ex
eed the dataa

ura
y to eliminate errors related to 
al
ulations. Usually it is enoughif the a

ura
y of intermediate 
al
ulations will ex
eed the a

ura
y of the�nal result by one signi�
ant digit.Literature1. Ëàáîðàòîðíûå çàíÿòèÿ ïî �èçèêå / Ïîä ðåä. Ë.Ë. �îëüäèíà. � Ì.: Íàóêà,1983.2. Ëàáîðàòîðíûé ïðàêòèêóì ïî îáùåé �èçèêå. Ò. 3 / Ïîä ðåä. Þ.Ì. Öèïåíþ�êà. � Ì.: Èçä-âî ÌÔÒÈ, 1998.3. Ñêâàéðñ Äæ. Ïðàêòè÷åñêàÿ �èçèêà. � Ì.: Ìèð, 1971.

1.1.1 35PSfrag repla
ements EE

RR

A

A

V V

RARA

Rwi

Rwi

RVRVFig. 1. Cir
uits for measuring resistan
e by means of ammeter andvoltmeterLab 1.1.1Determination of systemati
 and random errorsin measurement of spe
i�
 resistan
e ofni
hrome.Purpose of the lab: determination of spe
i�
 resistan
e of ni
hromewire and 
al
ulation of systemati
 and random errors.Tools and instruments: ruler, 
aliper, mi
rometer, ni
hrome wire,ammeter, voltmeter, power supply, Wheatstone bridge, rheostat, swit
h.The spe
i�
 resistan
e of the material of a uniform wire with a 
ir
ular
ross-se
tion 
an be determined a

ording to the following equation

ρ =
Rwi

l

πd2

4
, (1)where Rwi is the resistan
e, l is the length, and d is the diameter of thewire. Therefore to determine the spe
i�
 resistan
e of the wire materialone should measure the following parameters of the wire: the length, thediameter, and the ele
tri
al resistan
e.One should take into a

ount that the diameter of a real wire is not 
on�stant but varies slightly along the wire. The diameter variation is random.Therefore in equation (1) one should substitute a value of the diameteraveraged along the wire and take into a

ount its random error.The resistan
e Rwi is measured using one of the 
ir
uits shown in Fig. 1.In the �gure R is a variable resistan
e (rheostat), RA is the resistan
e of anammeter, RV is the resistan
e of voltmeter, and Rwi is the wire resistan
e.
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sLet V and I be the readings of voltmeter and ammeter, respe
tively.The values of the wire resistan
e 
al
ulated using these readings, namely,

Rwi1 = Va/Ia for the 
ir
uit (a) and Rwi2 = Vb/Ib for the 
ir
uit (b)will di�er from ea
h other and from the true value Rwi due to internalresistan
es of the instruments. However using Fig. 1 one 
an easily �ndthe relation between Rwi and the obtained values Rwi1 è Rwi2. In the �rst
ase the voltmeter measures a voltage a
ross the wire 
orre
tly, whereasthe ammeter does not measure the 
urrent through wire, rather it showsthe value of the total 
urrent �owing through the wire and the voltmeter.Therefore

Rwi1 =
Va

Ia
= Rwi

RV

Rwi + RV
. (2)In the se
ond 
ase the ammeter measures the 
urrent through the wirebut the voltmeter measures a total voltage a
ross the wire and the amme�ter. For this 
ase

Rwi2 =
Vb

Ib
= Rwi + RA. (3)It is 
onvenient to rewrite equations (2) and (3) as follows. For the
ir
uit (à):

Rwi = Rwi1
RV

RV − Rwi1
=

Rwi1

1 − (Rwi1/RV )
≈ Rwi1

(

1 +
Rwi1

RV

)

. (4)For the 
ir
uit (b):

Rwi = Rwi2

(

1 − RA

Rwi2

)

. (5)The bra
keted terms in Eqs. (4) and (5) de�ne 
orre
tions whi
h shouldbe taken into a

ount during the measurement. (Although the 
orre
tionsdue to internal resistan
e of the instruments 
an be 
al
ulated at any time,usually this is not done. In our 
ase the 
al
ulation of the 
orre
tions turnsout to be very simple but for real 
ir
uits an a

ounting for the 
orre
tionsis time 
onsuming and should be repeated every time the instrument isswit
hed, whi
h seems impossible in pra
ti
e.) The 
al
ulation provides anexample of a systemati
 error due to simpli�
ation of the exa
t equation.For the 
ir
uit (a) the resistan
eRwi turns out to be less than the 
al
ulatedvalue and for the 
ir
uit (b) it is greater.The 
lassi
al method of measuring a resistan
e with the aid of a d
bridge (Wheatstone bridge) is more pre
ise. The standard bridge �4833 isused for the 
ontrol measurement of the wire resistan
e.In the assembly the ni
hrome wire stret
hed between two �xed plane
lamping 
onta
ts is used as a resistan
e. The length of a wire se
tionwhi
h resistan
e is measured 
an be varied by means of a mobile 
onta
t.
1.1.1 37LABORATORY ASSIGNMENT1. Get familiar with the operation prin
iples of the measurement instruments.Pra
ti
e to measure dimensions of di�erent obje
ts with the aid of a 
aliperand a mi
rometer.2. Measure the wire diameter at 8�10 di�erent lo
ations and write down theresults in a table. Compare the results obtained by means a 
aliper anda mi
rometer. Average out the obtained diameter values. Cal
ulate the
ross-se
tional area of the wire and estimate an a

ura
y of the result.3. Write down into a new table the basi
 parameters of the ammeter and thevoltmeter: the type of an instrument, the a

ura
y 
lass, the maximal valueof the s
ale xn, the number of s
ale graduations n, the s
ale fa
tor xn/n,the sensitivity n/xn, the absolute error ∆xM , and the internal resistan
eof the instrument (for a given maximal value of the s
ale).4. Using the indi
ated internal resistan
es of the instruments and the knownapproximate value of the wire resistan
e, 5 Ohm, estimate the values of the
orre
tions to Rwi 
orresponding to the 
ir
uits shown in Fig. 1 with theaid of Eq. (4) and (5). Choose the 
ir
uit that provides a minimal value ofthe 
orre
tion.5. Using a ruler measure the length of a wire se
tion to be explored (between�xed and mobile 
lamping 
onta
ts) and assemble the 
hosen ele
tri
al
ir
uit. Turn on the 
urrent. Varying it by means of the rheostat writedown in a new table the readings of the ammeter and the voltmeter for5�6 di�erent values of the 
urrent (usually during a dire
t measurement thereadings of the instruments are written dire
tly as the s
ale graduations):

Nmeas 1 2 3 4 5 6

V , äåë

I, äåë

V , Â

I, ÀRepeat the measurement by in
reasing and de
reasing the 
urrent. Plotthe dependen
e V = f(I) and 
al
ulate the value of R using the plot. Then
al
ulate the resistan
e Rwi. Estimate the error of Rwi.6. Measure the wire resistan
e using the d
 bridge (Wheatstone brigde)�4833. How mu
h does the result di�er from the value measured previ�ously? Does the result lie in the error interval of the result obtained withthe aid of the ammeter and the voltmeter?7. Carry out the measurements pp. 5, 6 for three di�erent values of the wirelength.
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s8. Determine the resistivity of the wire material using Eq. (1). Estimate thea

ura
y of the obtained value. Whi
h a

ura
y of the wire resistan
e isrequired for the attained a

ura
y of the wire length and the 
ross-se
tion?9. Compare the results with the tabulated values.Literature1. Ëàáîðàòîðíûå çàíÿòèÿ ïî �èçèêå / Ïîä ðåä. Ë.Ë. �îëüäèíà. � Ì.: Íàóêà,1983. Ñ. 53�66.2. Ñêâàéðñ Äæ. Ïðàêòè÷åñêàÿ �èçèêà. � Ì.: Ìèð, 1971.3. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. III. � Ì.: Íàóêà, 1996. �� 40, 41, 42.Example of lab report 1.1.1The instruments used: ruler, 
aliper, mi
rometer, ni
hrome wire, ammeter,voltmeter, power supply, d
 bridge (Wheatstone bridge), rheostat, swit
h.1. A 
aliper a

ura
y is 0.1 mm. A mi
rometer a

ura
y is 0.01 mm.2. Measure a diameter of the wire with a 
aliper (d1) and a mi
rometer (d2)at 10 di�erent lo
ations (Table 1). T a b l e 1Wire diameter1 2 3 4 5 6 7 8 9 10

d1, mm 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4

d2, mm 0,36 0,36 0,37 0,36 0,37 0,37 0,36 0,35 0,36 0,37
d̄1 = 0,4 mm d̄2 = 0,363 mmThe table shows no random error in the 
aliper measurements. Therefore thea

ura
y of the result is due to the 
aliper a

ura
y (a systemati
 error):

d1 = (0.4 ± 0.1) mm.The measurement results obtained with the mi
rometer 
ontain both system�ati
 and random errors:

σsyst = 0.01 mm, σrand =
1

N

√

√

√

√

n
∑

i=1

(d − d̄)2 =
1

10

√
4.1 · 10−4 ≈ 2 · 10−3 mm,

σ =
√

σ2
syst + σ2

rand =
√

(0.01)2 + (0.002)2 ≈ 0.01 mm.Sin
e σ2

rand ≪ σ2

syst the wire diameter 
an be 
onsidered 
onstant along the wirewith an a

ura
y σd totally determined by σsyst of the mi
rometer:
d2 = d̄2 ± σd = (0.363 ± 0.010) mm = (3.63 ± 0.10) · 10−2 cm.

1.1.1 393. Determine the 
ross-se
tional area of the wire:
S =

πd2

2

4
=

3.14 · (3.63 · 10−2)2

4
≈ 1.03 · 10−3 cm2.The value of the error σS 
an be 
al
ulated as follows

σS = 2
σd

d
S = 2

0.01

0.36
· 1.03 · 10−3 ≈ 6 · 10−5 cm2.Thus S = (1,03 ± 0.06) · 10−3 cm2, i. e. the a

ura
y of the 
ross-se
tionalarea amounts to 6%.4. Write down the basi
 spe
i�
ations of the instruments in Table 2.T a b l e 2Basi
 spe
i�
ations of instrumentsVoltmeter AmmeterSystem Moving-
oil Ele
tromagneti
A

ura
y 
lass 0.5 0.5Maximal s
ale value xl 0.3 V 0.15 ANumber of s
ale gradua�tions n

150 75S
ale fa
tor xï/n 2 mV/grad 2 mA/gradSensitivity n/xï 500 grad/V 500 grad/ÀAbsolute error ∆xM 1.5 mV 0.75 mAInternal resistan
e (forgiven maximal s
ale value) 500 Ohm 1 Ohm5. It is known that Rwi ≈ 5 Ohm, RV = 500 Ohm, and RA = 1 Ohm. UsingEqs. (4) and (5) estimate the 
orre
tions for Rwi:for the 
ir
uit in Fig. 1a Rwi/RV = 5/500 = 0.01, i. e. 1%;for the 
ir
uit in Fig. 1b RA/Rwi = 1/5, i. e. 20%.Con
lusion: the 
ir
uit in Fig. 1à ensures the better a

ura
y in a measure�ment of a relatively small resistan
e.6. Assemble the 
ir
uit shown in Fig. 1a.7. Carry out the experiment for three values of the wire length written below:

l1 = (20.0 ± 0.1) 
m; l2 = (30.0 ± 0.1) 
m; l3 = (50.0 ± 0.1) 
m.Repeat the measurement for in
reasing and de
reasing 
urrent. Write downthe instrument readings in Table 3. Re
ord the results obtained by using the d
bridge (Wheatstone bridge) �4833 in Table 4.8. Plot the dependen
ies V = f(I) for all three values of the wire lengthby drawing straight lines through the experimental points (Fig. 2). From theplots one 
an 
on
lude that there is no di�eren
e between the values obtainedfor in
reasing and de
reasing 
urrent. One 
an also 
on
lude that the randoms
atter is negligible and 
ould be ignored.
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sT a b l e 3Readings of voltmeter and ammeter

l = 20 
m l = 30 
m l = 50 
m

V ,grad

2 mV
grad

I ,grad

2 mA
grad

V ,mV I ,mA V ,grad

2 mV
grad

I ,grad

2 mA
grad

V ,mV I ,mA V ,grad

2 mV
grad

I ,grad

0.5 mA
grad

V ,mV I ,mA26.0 12.5 52.0 25.0 26.0 8.5 52.0 17.0 34.5 28.0 69.0 14.032.5 15.5 65.0 31.0 35.0 11.5 70.0 23.0 44.1 35.6 88.2 17.863.2 31.1 126.4 62.2 62.5 20.4 125.0 40.8 67.1 54.5 134.2 27.382.8 40.5 165.6 81.0 91.1 30.1 182.2 60.2 98.0 79.6 196.0 39.8119.5 58.1 239.0 116.2 118.5 38.9 237.0 77.8 127.0 103.3 254.0 51.7137.8 67.0 275.6 134.0 150.0 49.5 300.0 99.0 147.3 120.0 294.6 60.0131.0 64.1 262.0 128.2 139.5 46.1 279.0 92.2 142.0 114.6 284.0 57.8101.5 49.5 203.0 99.0 130.0 42.9 260.0 85.8 116.2 94.0 232.4 47.088.1 43.0 176.2 86.0 103.1 34.0 206.0 68.0 85.0 69.2 170.0 34.678.2 38.1 156.4 76.2 74.2 24.5 148.4 49.0 61.1 49.5 133.2 24.851.0 24.9 102.0 49.8 42.5 14.1 85.0 28.2 41.3 33.2 82.6 16.629.1 13.9 58.2 27.8 23.0 7.5 46.0 15.0 31.0 25.2 62.0 12.6T a b l e 4Wire resistan
e

l = 20 
m l = 30 
m l = 50 
m

R0 = 2,080 Ohm R0 = 3,062 Ohm R0 = 5.010 Ohm(using �4833) (using �4833) (using �4833)
Rwi = 2.060 Ohm Rwi = 3.030 Ohm Rav = 4.92 Ohm
Rwi = 2.068 Ohm Rwi = 3.048 Ohm Rwi = 4.97 Ohm
σRwi

= 0.008 Ohm σRwi
= 0.014 Ohm σRwi

= 0.04 Ohm9. Using the plots �nd the average values of the resistan
es by 
al
ulatingthe slope of the 
orresponding straight line: Rav = V/I , where I and V are the
urrent and the voltage taken at some point of the line 
lose to its end. Writedown the results in Table 4.10. Estimate the a

ura
y of Rav as follows
σRav

Rav
=

√

(σV

V

)

2

+
(σI

I

)

2

,where I and V are the maximal values of 
urrent and voltage obtained in theexperiment, whereas σV and σI are the standard deviations of the measurementsby means of the voltmeter and the ammeter. The error σV equals half of the
1.1.1 41

Fig. 2absolute error of the voltmeter:

σV =
∆x

2
=

1,5

2
≈ 0.75 mV.For the ammeter the result 
an be similarly obtained: σI = 0.75/2 ≈ 0.4 mA.An example of the 
al
ulation of σRav for a wire of the length l = 30 
m;from Tables 3 and 4 Rav = 3.030 Ohm, V = 300 mV, I = 99 mA.

σRav = Rav

√

(σV

V

)2

+
(σI

I

)2

= 3.03 ·
√

(

0.75

300

)

2

+

(

0.4

99

)

2

≈ 1.4 · 10−2 Ohm.Re
ord the results of the 
al
ulations in Table 5.T a b l e 5

l, sm 20 30 50

ROhm, Ohm 2.060 3.030 4.92

σRav , Ohm 0.008 0.014 0.04
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s11. For all three values of the length l take into a

ount the measurement
orre
tion for the resistan
e as follows

Rwi = Rav +
R2

av

RV
.Due to a relatively small value of the 
orre
tion one 
an ignore it: σRwi

= σRav .The results are written down in Table 4.12. Compare the wire resistan
es measured by the voltmeter and the ammeterwith the values obtained by using the d
 bridge (Wheatstone bridge) �4833. Theresults 
oin
ide within the a

ura
y of the experiment.13. Determine the wire resistivity a

ording to equation (1) and �nd thea

ura
y σρ as follows

σρ

ρ
=

√

(σR

R

)

2

+
(

2
σd

d

)

2

+
(σl

l

)

2

.The results are written in Table 6. T a b l e 6

l, 
m ρ, 10−4 Ohm·
m σρ, 10−6 Ohm·
m20 1.06 630 1.05 650 1.02 6Finally: ρ = (1.04 ± 0.06) · 10−4 Ohm·
m.A major 
ontribution to the error σρ is due to an un
ertainty of the wirediameter; it amounts to ∼3%. This error doubles be
ause the diameter is squaredin the �nal formula, so it amounts to ∼6%. Therefore it is su�
ient to measurethe wire resistan
e with an a

ura
y about 3�4%.The obtained value of the resistivity is 
ompared with a tabulated value. Forthe resistivity of ni
hrome at 20 ◦C the referen
e book (Physi
al magnitudes.M.:Energypublish, 1991. P. 444) gives the values from 1.12·10−4 Ohm·
m to0.97·10−4 Ohm·
m depending on the mass ratios of the alloy 
omponents. The
losest value to that obtained in the lab is 1.06·10−4 Ohm·
m for the alloy:70÷80% Ni, 20% Cr, 0÷2% Mn (mass ratios).
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Fig. 1. Opti
al path in mi
ros
opeLab 1.1.2Measurement of linear expansion 
oe�
ient of arod with the aid of mi
ros
opePurpose of the lab: to measure the dependen
e of linear expansionof metal rod versus temperature and to determine its linear expansion
oe�
ient.Tools and instruments: a mi
ros
ope, an o
ular mi
rometer, a rulerwith millimeter graduations, a quartz tube, a metal rod, an ele
tri
heater, a variable transformer, a resistan
e thermometer, the Wheat�stone bridge �4833, a power supply, and a galvanometer.Mi
ros
ope. Mi
ros
ope is an opti
al instrument designed to magnifyimages of small obje
ts. The magnifying part of the mi
ros
ope 
onsists oftwo sets of lenses 
alled obje
tive and eyepie
e (o
ular) whi
h are mountedin a tubus about 160 mm apart. We do not intend to study a mi
ros
opedesign in detail, so we 
on
entrate on its operation prin
iple. For simpli
itywe repla
e the obje
tive and the eyepie
e with two equivalent thin lenses.Opti
al path in mi
ros
ope is shown in Fig. 1. The obje
t l is pla
ednext to the front fo
al point (just before it) of the short-fo
us obje
tive
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sË1 whi
h 
reates the large real image l1. The image is viewed through theeyepie
e Ë2 whi
h serves as a magnifying glass. The eyepie
e 
reates thevirtual image l2 at a 
onvenient distan
e from observer's eye. The positionof l2 
an be varied by 
hanging lo
ation of l1 relative to the front fo
us ofthe eyepie
e. This is a
hieved by a small displa
ement of the mi
ros
opewith respe
t to the obje
t.Mi
ros
ope magni�
ation is its most important parameter. There arelinear and angular magni�
ations. Linear magni�
ation equals the ratio ofa transverse size of the image l2 to that of the obje
t l:

Γ =
l2
l
. (1)Angular magni�
ation equals the ratio of the tangent of the angle α1 sub�tended by the image l2 in the mi
ros
ope to the tangent of the angle α2subtended by the obje
t at the 
onventional 
losest distan
e of distin
tvision D = 25 
m from unaided eye:

γ =
tan α1

tan α2

. (2)The notations l, l1, l2, α1, and α2 are those in Fig. 1.Consider �rst the linear magni�
ation Γ. Let us write it as

Γ =
l2
l

=
l2
l1

l1
l

= ΓocΓob. (3)The �rst fa
tor Γoc is 
alled o
ular magni�
ation and the se
ond one Γîáis 
alled obje
tive magni�
ation. It should be obvious from Fig. 1 that
Γîá =

l1
l

=
O1B

O1A
. (4)The distan
e O1A is approximately equal to the fo
al length of the obje
�tive and the point B is 
lose to the fo
al point of the eyepie
e, also f2 ≪ H ,whi
h gives

O1A ≈ f1, O1B ≈ H − f2 ≈ H. (5)The tubus length H is usually equal to 160 mm. Repla
ing the numeratorand denominator in (4) by their approximate values (5) one obtains:
Γîá ≈ H

f1

. (6)This value is not exa
tly equal to the obje
tive magni�
ation, however itis independent of the eyepie
e and the mi
ros
ope adjustment. It is thisvalue whi
h is engraved on the obje
tive 
asing.

1.1.2 45Now 
onsider the eyepie
e magni�
ation:
Γîê =

l2
l1

=
O2C

O2B
. (7)It was already mentioned that O2B ≈ f2. The value of O2C on the otherhand depends on the mi
ros
ope adjustment. Near-sighted observers set

O2C = 10 − 15 
m and far-sighted pla
e l2 at a distan
e of 40 
m, some�times even at in�nity. When 
al
ulating the eyepie
e magni�
ation it is
ustomary to set O2C = D = 25 
m, whi
h 
orresponds to the 
onventional
losest distan
e of distin
t vision for normal human eye. Substituting thesevalues in (7) we get:
Γoc =

D

f2

. (8)This value is 
alled o
ular magni�
ation and it is engraved on its 
asing.Now let us 
onsider the angular magni�
ation:
γ = tanα1 : tanα2 =

l2
O2C

:
l

D
. (9)For O2C = D the angular and linear magni�
ations are equal: Γ = γ.Equation (3) shows that to get a preliminary estimate of the mi
ro�s
ope magni�
ation it would su�
e to multiply the eyepie
e and obje
tivemagni�
ations. The value obtained is only approximate. A better estimateshould be determined experimentally.In pra
ti
al measurements the obje
t size is 
ompared to some s
ale.The s
ale 
an be pla
ed in the plane of the obje
t but this is not alwayspossible. More often the s
ale is lo
ated in the plane of the virtual image

l1. In this 
ase both the obje
t and the s
ale 
an be viewed simultaneouslyand therefore be more reliably 
ompared. However, in this setup the s
aleis 
ompared to the magni�ed image l1 rather than to the obje
t itself, soan additional 
alibration is ne
essary.
Fig. 2. S
ale of o
ularmi
rometer

O
ular mi
rometer. The mi
ros
ope usedin the lab is equipped with an o
ular mi
rome�ter. It 
onsists of an immobile glass plate withs
ale graduations and a mobile glass plate witha 
ross and two parallel marks lo
ated in theeyepie
e fo
al plane (see Fig. 2). The mobileplate 
an move relative to the immobile s
ale:one turn of the mi
rometer s
rew displa
es themarks and the 
ross by one s
ale graduation(1 graduation = 1 mm). The 
ir
umferen
e of
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sthe s
rew knob is divided by graduations into100 parts. Turning the knob by one gradua�tion displa
es the 
ross and the marks by 0.01 mm. Thus the s
ale in theimage plane l1 (the fo
al image of the eyepie
e) is the s
ale of the o
ularmi
rometer.To determine the size of the obje
t l itself it is ne
essary to 
alibratethe mi
rometer s
ale by using another s
ale (obje
t s
ale) pla
ed instead ofthe obje
t. In so doing the mi
ros
ope adjustments should not be altered.The obje
t s
ale is a glass plate with graduations several hundredths ofmillimeter apart.Calibration of o
ular s
ale. The o
ular s
ale should be 
alibrated be�fore using the mi
ros
ope for the measurements. First of all, the s
aleshould be 
learly visible, this is a
hieved by adjusting the outer lens ofthe eyepie
e. Then the obje
t s
ale is pla
ed on the mi
ros
ope stage. Toa
hieve better visibility the obje
t s
ale must be illuminated at some angleto the glass plane and perpendi
ular to the marks. Then the 
lear imageof the s
ale must be obtained. To this end one moves the mi
ros
ope tubusdown almost to the plate by using the fo
us wheel of 
oarse adjustment.One should 
ontrol the distan
e between the obje
t and the mi
ros
opeobje
tive by wat
hing from the mi
ros
ope side when moving the tubusdown1. Then one should slowly lift the tubus until the obje
t s
ale 
omesinto sight and obtain the sharp image of the s
ale by using the fo
us wheelof �ne adjustment. Then the s
ale should be moved to the 
enter of the�eld of vision. The obje
t s
ale must be illuminated so that both the obje
tand o
ular s
ale are 
learly visible.The alignment of the o
ular and obje
tive s
ales is 
he
ked by themethod of parallax. If both images are in the same plane, a small lateraldispla
ement of eye will not result in their mutual displa
ement. If thedispla
ement is dete
ted the tubus position is 
orre
ted by the fo
us wheeluntil the parallax is eliminated.The obje
t s
ale should be pla
ed on the stage so that the graduationson both s
ales are parallel. Then the 
enter of the 
ross is aligned with agraduation on the obje
t s
ale. The s
ale graduation and the graduation onthe mi
rometer knob are re
orded. Then one should move the 
ross alongthe obje
t s
ale by several millimeters and repeat the pro
edure for anothers
ale graduation. Using the results it is not di�
ult to 
alibrate the o
ulars
ale, i.e. to determine the a
tual size in the obje
t plane 
orrespondingto one graduation of the o
ular s
ale. The 
alibration pro
edure must berepeated three or four times, the results must be tabulated and averaged.1 It should be emphasized that moving the tubus down without 
ontrol is prohibited.
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Fig. 3. Experimental setup for measurement of linear expansion 
oe�
ientLaboratory setup. The experimental setup for the measurement of linearexpansion 
oe�
ient is shown in Fig. 3. The rod under study is pla
ed ina steel tube with ele
tri
 heater inside. The right end of the tube is �rmlyatta
hed to a support by a s
rew. The left end 
an freely move along thetube axis on the left support. The tube ends are sealed, the rod understudy is inserted inside the tube through the openings at the ends. Therod 
an freely move through the end 1 and it is �xed at the end 2 with thes
rew 3. A quartz tube T2 with a mark on it is pla
ed between the end ofthe rod 
oming out of the tube end 1 and the spring stopper 4 mountedon the support 5.The ele
tri
 heater power supply is 
ontrolled by means of the variabletransformer. The rod temperature is measured by the resistan
e ther�mometer made of 
opper wire whi
h is wound around the rod and extendsbetween the rod ends.Usually the rod (and the resistan
e thermometer as well) is heated fromroom temperature tr, the 
orresponding wire resistan
e is Rr. The wireresistan
e depends on temperature as

Rt ≈ Rr(1 + Θ(t − tr)), (10)where Θ is the temperature 
oe�
ient of resistan
e (for 
opper Θ =
= 4.3 · 10−3 ◦C −1 at 20 ◦C), whi
h gives

∆t = t − tr =
Rt − Rr

ΘRr
. (11)Otherwise the obje
tive 
ould press the obje
t and one of them 
an break down.2 Coe�
ient of thermal expansion of fused quartz is negligible 
ompared to that oneof metal.
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sThe rod length in
reases with temperature and the mark on the quartztube shifts. The displa
ement is measured with the aid of the mi
ros
opeequipped with the o
ular mi
rometer. The 
oe�
ient of linear expansionof the rod is determined by the equation:

α =
Lt − Lr

Lr(t − tr)
, (12)where Lt and Lr are the rod lengths at t and tr respe
tively. Substitutionof the temperature di�eren
e t − tr from eq. (11) �nally gives

α =
(Lt − Lr)Rr

Lr(Rt − Rr)
Θ =

Rr

Lr

∆L

∆R
Θ =

Rr

Lr

∆n

∆R
BΘ, (13)where B is the o
ular s
ale graduation in millimeters and ∆n is the dis�pla
ement measured in o
ular s
ale graduations.LABORATORY ASSIGNMENT1. Make sure that you understand the operation prin
iples of the mi
ros
opeand the o
ular mi
rometer.2. Using the obje
t s
ale 
alibrate the s
ale of the o
ular mi
rometer (expresso
ular graduation in millimeters).3. Repla
e the obje
t s
ale on the mi
ros
ope stage with the quartz tube Tatta
hed to the rod end.Obtain the 
lear image of the mark on T . The initial position of themark on the o
ular s
ale must be 
hosen so that the mark remained in the�eld of vision during the whole experiment. Re
ord the initial position ofthe mark on the o
ular s
ale at room temperature.4. Make sure that you understand the operation prin
iple of the Wheatstonebridge �4833 and get it ready for the experiment.5. Conne
t the resistan
e thermometer to the bridge and measure its resis�tan
e Rr at room temperature. Re
ord the room temperature tr.Choose the operation mode of the bridge 
orresponding to the maxi�mum sensitivity.6. Determine dependen
e of the rod length on temperature (a
tually thelength vs the wire resistan
e). To this end 
onne
t the ele
tri
 heaterto the transformer output. Set a moderate voltage and wait until the rodis uniformly heated. Measure the thermometer resistan
e using the bridge�4833 and re
ord the 
ross position on the o
ular s
ale.Gradually in
rease the output transformer voltage and re
ord the resis�tan
es and the 
orresponding positions of the 
ross.

1.1.2 497. Plot the experimental points in 
oordinates n (the 
ross position) and R(the resistan
e). Draw the straight line through the points and determineits slope ∆n/∆R. Find the error δ(∆n/∆R) using the method of leastsquares (see p. 32).8. Substitute the value of the slope in Eq. (13) and evaluate the linear expan�sion 
oe�
ient α. The rod length is written on the setup.9. Evaluate the error of α.An example of the lab report is presented in the appendix.Questions1. For a given a

ura
y of ∆L determine the required a

ura
y of the rod lengthand the thermometer resistan
e.2. Determine the 
ontributions to the error of α: due to 
alibration of the o
ulars
ale, due to determination of the mark position, due to measurement of the roomtemperature, and due to the error of the temperature 
oe�
ient of resistan
e.3. Near-sighted and far-sighted observers adjust the mi
ros
ope so that the image

l2 is either at small or at large distan
e, respe
tively, from the observer's eye. Isit linear or angular magni�
ation that 
hanges less?Literature1. Ýëåìåíòàðíûé ó÷åáíèê �èçèêè. Ò. 1. Ìåõàíèêà. Òåïëîòà. Ìîëåêóëÿðíàÿ�èçèêà / Ïîä ðåä. �.Ñ. Ëàíäñáåðãà. � Ì.: Ôèçìàòëèò, 2000. �� 195, 197.Ò. III. Êîëåáàíèÿ, âîëíû, îïòèêà. Ñòðîåíèå àòîìà. �� 115, 116.2. Ëàíäñáåðã �.Ñ. Îïòèêà. � Ì.: Íàóêà, 1976. �ë. XIV, � 92.3. Êàëàøíèêîâ Ñ.�. Ýëåêòðè÷åñòâî. � Ì.: Íàóêà, 1977. �ë. VI, �� 59, 60.Example of lab report 1.1.21. Calibration of the o
ular mi
rometer s
ale using the obje
t s
ale. Theobje
t s
ale has a length of 1 mm=100 graduations. T a b l e 1

n (# of o
ular s
ale graduations)for l = 0 for l = 0.5 mm ∆ni ∆n1.44 6.12 4.681.35 6.08 4.73 4,701.52 6.21 4.69The length of the o
ular s
ale graduation is

B =
∆l

∆n
=

0.50 mm

4.70 grad
= 1.06 · 10−1 mm/grad.
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sThe relative error is

δB

B
=

√

(

δl

∆l

)

2

+

(

δn

∆n

)

2

,where δl ≈ 0.005 mm (one half of the obje
t s
ale graduation), and the overallerror of the o
ular s
ale,

δn =
√

(δn1)2 + (δn2)2,is determined by the systemati
 error δn1 = 0.005 (one half of the graduations
ale of the mi
rometer) and by the random error

δn2 =

√

√

√

√

1

m(m − 1)

m
∑

i=1

(

∆ni − ∆n
)2

= 1.2 · 10−2 grad.Thus

δn =
√

(1.2)2 + (0.5)2 · 10−2 ≈ 1.3 · 10−2 grad,

δB

B
=

√

(

0.005

0.5

)2

+

(

0.013

4.7

)2

≈ 0.01 = 1%.Finally the graduation length of the o
ular mi
rometer s
ale is

B = (1.06 ± 0.01) · 10−1 mm/grad.2. The thermometer resistan
e is measured at room temperature tr = 22 ◦C.The Wheatstone bridge �4833 operates at the ratio N = 1; Rr = 49.29±0.01 Ω.The position of the mark on the o
ular s
ale is nr = 1.88 grad.3. The positions of the mark vs the thermometer resistan
es are tabulatedin 2, the plot is shown in Fig. 4. T a b l e 2
R, Ω n, grad R, Ω n, grad R, Ω n, grad49.25 1.88 52.81 3.65 55.74 5.0549.85 2.17 53.11 3.73 56.06 5.1450.15 2.31 53.81 4.08 56.25 5.2450.93 2.75 54.51 4.46 56.58 5.4051.50 2.95 55.05 4.74 56.97 5.5852.18 3.28 55.29 4.82 57.11 5.67The slope of the 
urve is determined graphi
ally:

∆n

∆R
=

5.67 − 1.88

57.11 − 49.25
= 0.482 grad/Ω.
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Fig. 4. Position of the mark versus thermometer resistan
eThe linear expansion 
oe�
ient is found from Eq. (13). Sin
e Lr =
= (600 ± 1) mm, Θ = 4.30 · 10−3 ◦C−1 at tr = 20 ◦C, one gets

α =
Rr

Lr

∆L

∆R
Θ =

Rr

Lr

∆n

∆R
BΘ =

49.25 · 0.482 · 0.106 · 4.30 · 10−3

600
= 1.80·10−5 ◦C

−1
.It is impossible to estimate the error of ∆n/∆R using the plot be
ause thestraight line �ts the points well. Therefore one should use the method of leastsquares whi
h provides a better a

ura
y. The goal is to determine the best �tvalue b in the equation nt = a + bRt and the error δb of the 
oe�
ient b. The
al
ulation (see (1.35) and (1.37)) gives

b =
〈Rn〉 − 〈R〉 〈n〉
〈R2〉 − 〈R〉2

= 0.477 grad/Ω,

δb =
1√
m

√

〈n2〉 − 〈n〉2

〈R2〉 − 〈R〉2
− b2 = 0.011 grad/Ω.The linear expansion 
oe�
ient is determined by the Eq. (13):

α =
49.25 · 0.477 · 0.106 · 4.3 · 10−3

600
= 1.785 · 10−5 ◦C

−1
.
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sThe relative error is

δα

α
=

√

(

δRr

Rr

)2

+

(

δLr

Lr

)2

+

(

δΘ

Θ

)2

+

(

δB

B

)2

+

(

δb

b

)2

≈

≈
√

(

1

106

)2

+

(

105

4771

)2

≈ 0.024 = 2.4%.The absolute error is

δα = α · 0.024 = 1.785 · 0.024 · 10−5 = 0.043 · 10−5 ◦C
−1

.Finally

α = (1.79 ± 0.04) · 10−5 ◦C
−1

.The value of α found dire
tly from the plot agrees with this value.Lab 1.1.3Statisti
al treatment of measurements.Purpose of the lab: to apply methods of pro
essing experimental datato measurement of ele
tri
al resistan
e.Tools and instruments: a set of resistors (250�300) and the digitalvoltmeter V7-23 operating in the mode ¾Measurement of resistan
e todire
t 
urrent¿.Industrial produ
tion of resistors is a 
ompli
ated te
hnologi
al pro�
ess. An a
tual value of resistan
e di�ers from the nominal. The error
an be both systemati
 and random. Ina

urate adjustment of a resistormanufa
turing ma
hine results in systemati
 errors. Random errors aredue to non-uniformity of the wire (in width and 
hemi
al 
omposition)used in resistor produ
tion, random 
hanges of temperature, and ma
hineba
klashes.Measurement of resistan
e in this lab requires a pre
ise instrument be�
ause of relatively small di�eren
es from the nominal. An appropriate in�strument is ¾universal digital voltmeter V7-23¿ used in the ¾Measurementof resistan
e to dire
t 
urrent¿ mode whi
h provides a relative measure�ment a

ura
y of hundredths of per
ent. Exa
t values 
an be found in thedevi
e manual.Thus the error due to the measurement instrument is negligible in 
om�parison with the deviations from the nominal arising in the pro
ess ofresistor manufa
turing.

1.1.3 53The main part of the lab is measurement of all resistan
es of a givenset (about 250�300) and 
al
ulation of the mean value (1.15):
〈R〉 =

1

N

N
∑

i=0

Ri. (1)If the number of resistors is large enough one 
ould obtain a spe
i�
ationof the set that no longer depends on the number of resistors.To des
ribe random errors arising in resistor produ
tion one should plota histogram. To this end one should �nd the maximum Rmax and the min�imum Rmin values of the obtained results. The di�eren
e Rmax −Rmin isdivided into m parts. The obtained value is 
alled the interval of resistan
evariation:
∆R =

Rmax − Rmin

m
. (2)The histogram is plotted as follows. The intervals of resistan
e variation areplotted on the abs
issa. The number ∆n of the measurements whi
h belongto a given interval is plotted on the ordinate. However it is 
onvenient todivide ∆n by the total number of measurements N (whi
h is the absoluteprobability of o

urren
e in the 
orresponding interval) and by the intervalwidth ∆R (whi
h gives probability density). So the quantity plotted onthe ordinate is

y =
∆n

N∆R
.It is interesting to observe how the histogram 
hanges as the number ofpartitions m in
reases. In the pro
ess m must remain mu
h less than N .One should also plot the mean value of the resistan
e on the abs
issaand noti
e how it is lo
ated relative to the histogram.Standard deviation spe
i�es dispersion of a random quantity (1.18):

σ =

√

√

√

√

1

N

N
∑

i=1

(Ri − 〈R〉)2. (3)It is instru
tive to plot the points 〈R〉− σ and 〈R〉+ σ on the abs
issa andnoti
e how the histogram is lo
ated relative to these points.The value of σ de�nes the Gaussian (normal) distribution (1.16):

y =
1√
2πσ

e−
(R−〈R〉)2

2σ2 . (4)One should plot this fun
tion on the histogram.
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sLABORATORY ASSIGNMENT1. Read 
arefully the brief manual ¾universal digital voltmeter V7-23¿ andpay spe
ial attention to the se
tion ¾Measurement of resistan
e to dire
t
urrent¿.2. Turn on the voltmeter power supply and wait for 15�20 minutes until thevoltmeter warms up.3. Measure resistan
es of the given set of N = 250�300 resistors.4. Plot the histogram (follow instru
tions in the text) for m = 10 and m = 20.5. Cal
ulate 〈R〉 and 
ompare it with the nominal value. Plot the valueson the abs
issa and 
ompare them with the position of maximum of thehistogram. Plot the values 〈R〉 − σ and 〈R〉+ σ on the abs
issa. Comparethe histogram width with these values.6. Cal
ulate the number of the resistan
es whi
h belong to the interval be�tween 〈R〉 − σ and 〈R〉 + σ and between 〈R〉 − 2σ and 〈R〉 + 2σ.7. Plot the Gaussian distribution and 
ompare it with the histograms 
orre�sponding to di�erent numbers of partitions n.Literature1. Ñêâàéðñ Äæ. Ïðàêòè÷åñêàÿ �èçèêà. � Ì.: Ìèð, 1971.2. Çàéäåëü À.Í. Ýëåìåíòàðíûå îöåíêè îøèáîê èçìåðåíèé. � Ë.: Íàóêà, 1974.Example of lab report 1.1.3The following equipment is used: a set of 270 resistors with the nominalof 560 Ohm and the universal digital voltmeter V7-23 operating in the mode¾Measurement of resistan
e to dire
t 
urrent¿.The measured resistan
es of 270 resistors (in Ohm) are listed in Table 1 inas
ending order.Using the tabulated resistan
es we plot the histograms for m = 20 and m =
= 10. To 
ompare the histogram with the normal distribution we plot the numberof results ∆n in a given interval divided by the total number of results N and bythe interval width ∆R on the abs
issa, instead of plotting the number ∆n itself.The values of ∆n and w = ∆n/(N∆R) versus the group number k are listed inTables 2 and 3, respe
tively. The histograms are shown in Figs. 1 and 2. We
al
ulate the mean value of the resistan
e a

ording to Eq. (1):

〈R〉 =
1

N

N
∑

i=1

Ri = 560,7 Ohm.The standard deviation is determined a

ording to Eq. (3):
σ =

√

√

√

√

1

N

N
∑

i=1

(Ri − 〈R〉)2 ≈ 9 Ohm.

1.1.3 55T a b l e 1Measured resistan
es of 270 resistors539.7 540.7 541.5 542.3 542.8 543.4 543.9 544.3 545.0545.4 545.5 545.9 546.0 546.1 546.1 546.5 546.8 546.9547.6 547.9 548.0 548.4 548.7 548.9 549.0 549.1 549.2549.3 549.3 549.3 549.4 549.6 549.7 549.7 549.9 550.0550.1 550.8 551.8 552.0 552.1 552.3 552.3 552.7 553.0553.2 553.3 553.6 553.7 553.9 554.2 554.2 554.2 554.2554.3 554.3 554.5 554.7 554.8 555.0 555.1 555.1 555.1555.2 555.3 555.3 555.3 555.3 555.3 555.3 555.5 555.6555.7 555.7 555.7 555.7 556.0 556.1 556.1 556.4 556.4556.4 556.5 556.5 556.6 556.6 556.7 556.8 556.8 556.9557.0 557.0 557.0 557.1 557.1 557.1 557.2 557.2 557.3557.3 557.4 557.4 557.4 557.5 557.5 557.7 557.7 557.8557.8 557.9 558.0 558.0 558.0 558.1 558.1 558.4 558.4558.5 558.5 558.5 558.5 558.6 558.7 558.8 558.8 558.8558.8 558.9 558.9 559.0 559.0 559.1 559.1 559.3 559.3559.4 559.4 559.4 559.6 559.7 559.7 559.7 559.7 559.8559.8 559.8 559.8 559.9 560.0 560.0 560.0 560.0 560.0560.2 560.2 560.3 560.4 560.4 560.4 560.6 560.7 560.9561.0 561.1 561.1 561.1 561.4 561.5 561.5 561.6 561.9562.0 562.0 562.0 562.3 562.3 562.5 562.5 562.6 562.6562.6 562.7 562.7 562.7 562.8 562.8 563.0 563.1 563.1563.2 563.6 563.6 563.6 564.0 564.2 564.3 564.4 564.5564.5 564.5 564.8 565.0 565.1 565.1 565.2 565.3 565.3565.7 565.8 565.9 566.1 566.1 566.2 566.8 566.9 567.6567.8 568.0 568.1 568.3 568.7 568.9 569.1 569.7 569.8570.2 570.3 570.6 570.7 571.0 571.1 571.1 571.5 572.1572.3 572.4 572.6 572.9 573.0 573.1 573.2 573.3 573.5574.0 574.0 574.8 575.1 576.0 576.3 578.1 578.8 578.8579.0 579.2 579.7 579.8 580.0 580.5 580.6 581.1 581.4582.7 582.9 583.1 584.1 584.3 586.6 586.7 587.3 589.0
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sT a b l e 2

k 1 2 3 4 5 6 7 8 9 10

∆n 4 4 10 17 8 16 44 45 28 25

w · 1000 6 6 15 25 12 24 65 67 41 37

k 11 12 13 14 15 16 17 18 19 20

∆n 14 10 11 10 3 7 5 5 3 1

w · 1000 21 15 16 15 4 10 7 7 4 1T a b l e 3

k 1 2 3 4 5 6 7 8 9 10

∆n 8 27 24 89 53 24 21 10 10 4

w · 1000 6 20 18 66 39 18 16 7 7 3The intervals between 〈R〉−σ and 〈R〉+σ and between 〈R〉−2σ and 〈R〉+2σ
ontain 46% and 93% of the total number of the results, respe
tively. Normaldistribution is de�ned by Eq. (4):

y =
1√
2πσ

e
−

(R−〈R〉)2

2σ2 .This fun
tion is shown in Figs. 1 and 2. One 
an see that the histograms agreewell with the normal distribution. A

ording to the normal distribution a resis�tan
e belongs to the interval between 〈R〉 − σ and 〈R〉 + σ with the probabilityof 68% and to the interval between 〈R〉 − 2σ and 〈R〉 + 2σ with the probabilityof 95%.The experiment shows that the resistan
e of a resistor 
hosen randomly be�longs to the interval 560 ± 9 Ohm with the probability of 46%, to the interval
560 ± 18 Ohm with the probability of 93%, and to the interval 560 ± 27 Ohmwith the probability of 99%.Thus all the resistan
es belong to 5-per
ent interval (〈R〉 ± 3σ).

1.1.3 57

00,010,020,030,040,050,06
540 550 560 570 580 590 R

〈R〉 = 560,7 Îì
σ2 = 90 Îì2

σ = 9 Îìw y

Rñð − σ Rñð Rñð + σFig. 1. Histogram for m = 20

00,010,020,030,040,050,06
540 550 560 570 580 590 R

〈R〉 = 560,7 Îì

σ2 = 90 Îì2

σ = 9 Îìw y

Rñð − σ Rñð Rñð + σFig. 2. Histogram for m = 10
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sLab 1.1.4Measurement of radiation ba
kground intensity.Purpose of the lab: to apply methods of experimental data pro
essingand to study statisti
al laws in measurement of radiation ba
kgroundintensity.Tools and instruments: Geiger-M�uller 
ounter CTC-6, a power unit,and a 
omputer 
onne
ted to the 
ounter via the interfa
e.As it was stated in dis
ussion of random errors the random dispersionof experimental results 
ould be due to both systemati
 errors and randomvariations of the measured quantity. A �ux of 
osmi
 rays, whi
h 
onsid�erably 
ontribute to radiation ba
kground, randomly varies with time. Ifvariations take pla
e near a de�nite value one says that the �ux �u
tu�ates. In this 
ase the random variable 
an be 
hara
terized by the meanvalue and the standard deviation from this mean value. To determine themean value and standard deviation one employs the same methods whi
hare used in 
al
ulations of the mean values and random errors of measure�ments. Cosmi
 rays are divided into the primary ones rea
hing the Earthorbit from outer spa
e and the se
ondary rays arising due to intera
tionof the primary rays with the Earth atmosphere. The se
ondary rays 
on�stitute the major part of the rays at the sea level. The main part of theprimary rays 
omes to the Earth from the Galaxy; the rest arises due tosolar a
tivity and has lower energies. The origin of the gala
ti
 rays is asubje
t of debate. A part of 
osmi
 radiation is emitted by stars of theGalaxy during 
hromospheri
 �ares in the same way as on the Sun. Moreenergeti
 rays are apparently due to supernova outbursts and pulsars. Itis hypothesized that a

eleration of spa
e parti
les 
an be attributed tohigh-velo
ity 
louds of plasma originated in supernova explosions and togala
ti
 magneti
 �elds. The primary 
osmi
 rays form the �ux of stableparti
les with a high kineti
 energy whi
h in the appropriate units lies inthe range from 109 to 1021 ele
tron-volt (or shortly eV 1 ele
tron-volt =
= 1,6 ·10−12 erg = 1,6 ·10−19 J). It is found that in outer spa
e the parti
le�ux is independent of dire
tion (isotropi
). The basi
 quantity spe
ifyingthe amount of parti
les in the 
osmi
 rays is intensity I. By de�nitionintensity is the number of parti
les passing through the unit area perpen�di
ular to the dire
tion of observation per unit of spatial angle (steradian)and per unit of time. The unit of measurement is

number of particles

cm2 · sr · s .

1.1.4 59For the isotropi
 distribution of 
osmi
 rays that takes pla
e outsidethe Earth atmosphere the density F of parti
le �ux 
oming from the upperhemisphere equals

F = 2π

π/2∫

0

I cos θ sin θ dθ = πI

(

amount of particles

cm2 · s

)

.The density of parti
les with absolute velo
ity V equals:
n =

4πI

V

(

amount of particles

cm3

)

.Noti
e that the majority of parti
les outside the Earth atmosphere movesat speeds 
lose to the speed of light c, therefore to estimate n one 
ansubstitute c for V . Also note, that the intensity of the se
ondary 
osmi
rays near the ground is proportional to cos2 θ, where θ is the angle betweenthe velo
ity and the verti
al.Parti
le �ux density is equal to the number of parti
les 
rossing the areaof 1 
m2 per 1 se
ond. The density is 1 parti
le/(
m2·s) at the distan
eabout 50 km from the Earth surfa
e. The majority of the parti
les has theenergy of 10 GeV. Parti
les with energies less than 1 GeV are absent in the�ux, whi
h is apparently due to magneti
 �elds of the Earth and the Sun.Generally the primary 
osmi
 rays 
onsist of protons (92%) and heliumnu
lei (6.6%) also 
alled α-parti
les. Heavier nu
lei (up to ni
kel) arealso dete
ted, they 
onstitute about 0,8% of the net �ux. Ele
trons andpositrons 
onstitute about 1%, the positron �ux is ten times less than theele
tron one. γ-quanta with energies greater than 108 eV amount to only0,01%. Time variation of the �ux of primary 
osmi
 rays is not signi�
ant.The most variable part 
onsists of the parti
les with energies about 1 GeV;the variations are due to 
hanging magneti
 �elds of the Solar system,11-year 
y
les of solar a
tivity, the 27-day period of the Sun revolutionaround its axis, 
hromospheri
 bursts of the Sun (5�13 bursts during ana
tive year), and magneti
 storms in the Earth magnetosphere.When traversing the Earth atmosphere the primary 
osmi
 rays inter�a
t with the atomi
 nu
lei of atmosphere gases and produ
e the se
ondary
osmi
 rays. Only one of 100,000 protons of the primary rays rea
hesthe ground. However there are a lot of se
ondary protons; together withmuons (also 
alled µ-mesons) and neutrons they form the so 
alled hard(high-energy) 
omponent of the se
ondary 
osmi
 rays. A radiation is
alled hard if it passes through the lead plate of 10 
m thi
k. The soft(low-energy) 
omponent of 
osmi
 rays (shielded by a lead plate of 10 
m
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sthi
k) mostly 
onsists of ele
trons, positrons, and photons. The soft 
om�ponent in the atmosphere 
lose to the ground is produ
ed by the hard
omponent. The �ux density of soft 
omponent grows with height morerapidly than the hard 
omponent �ux. The density of verti
al �ux of thesoft 
omponent at the sea level is approximately half of the �ux densityof the hard 
omponent whi
h equals 1,7·10−2 parti
les/(
m2·s). Howeverthe �ux density of the soft 
omponent 15 km above the Earth is 4�5 timesgreater than that of the hard 
omponent. The net �ux density of 
osmi
rays is maximum at the height of 17 km. Overall, the �ux of 
osmi
 raysat the sea level is about 100 times less than at the upper boundary of theEarth atmosphere and two thirds of the �ux 
onsist of muons. Analysis ofsilt on the o
ean �oor has revealed that the average �ux density of 
osmi
rays remained approximately 
onstant during the last 35 thousand years.The �ux density of se
ondary rays 
lose to the ground strongly dependson dire
tion. It has its maximum in the verti
al dire
tion and minimum inthe horizontal one. The �ux is approximately proportional to the squareof the 
osine of the angle between the �ux and the verti
al, whi
h is due toin
reasing the length of the path of the rays in the Earth atmosphere. Smalltime variations of the �ux density of se
ondary rays are 
aused by variationsin pressure, temperature, and magneti
 �eld in the Earth atmosphere.Although the powerful parti
le a

elerators are in operation nowadays,the 
osmi
 rays remain the sole sour
e of parti
les of ultrahigh energies.However su
h parti
les do not 
ome frequently. A parti
le with the energyof 1019 eV 
rosses the area of one square meter only on
e in two thousandyears. Of 
ourse the area of 10 square kilometers redu
es the waiting periodto several days. High energy parti
les are dete
ted via the generated �uxesof se
ondary parti
les 
alled air showers. The total number of parti
les ina shower originating about 20�25 km above the ground 
an rea
h severalmillions and 
overs the area of several square kilometers. The simultaneousdete
tion of a large number of parti
les on a signi�
ant area proves their
ommon origin and makes it possible to determine the energy of the parentparti
le.Cosmi
 rays and natural radioa
tivity of the Earth and the atmosphereare primary sour
es of ions in the lower part of the Earth atmosphere (upto a height of 60 km). Ionization in the atmosphere initially de
reases withheight but higher than 1 km it starts to in
rease, the in
rease a

eleratesat the height of 3 km. The number of ions per unit volume is 3�4 timesgreater at the height of 5 km than at the sea level, but at the height of9 km it is already 30 times greater.Cosmi
 rays 
an be dete
ted and their intensity 
an be measured via ion�
1.1.4 61ization they produ
e. To this end a spe
ial devi
e, namely, Geiger-M�uller
ounter is used. The 
ounter 
onsists of a gas-�lled vessel with two ele
�trodes. Several types of su
h 
ounters exist. The 
ounter used in the lab(CTC-6) 
onsists of a thin-walled metal 
ylinder operating as an ele
trode(
athode). The other ele
trode (anode) is a thin wire stret
hed along the
ylinder axis. To use the 
ounter in the parti
le 
ount mode one shouldapply the voltage of 400 V on the ele
trodes. The parti
les of 
osmi
 raysionize the gas in the 
ounter and also kno
k out ele
trons from its walls.These ele
trons are a

elerated by the strong ele
tri
 �eld between the ele
�trodes and kno
k out se
ondary ele
trons in their 
ollisions with the gasmole
ules. The se
ondary ele
trons in turn are a

elerated and ionize gasmole
ules. This results in ele
tron avalan
he and the 
urrent through the
ounter sharply in
reases. The ele
tri
 
ir
uit of the 
ounter is shown inFig. 1.A dire
t voltage is supplied to the 
ounter by a power unit throughresistor R. In the initial state the ele
trodes of the 
ounter and 
apa
itor

C1 are 
harged to 400 V, whereas the resistan
e of R is mu
h less thanleakage resistan
es of the 
ounter and C1. The 
apa
itor C2 blo
ks thedire
t voltage from being applied to the 
omputer interfa
e.
Fig. 1. Ele
tri
 
ir
uit ofGeiger 
ounter

A small 
urrent through the 
ounter initiatesa rapid ele
tron avalan
he of the 
harge a

u�mulated in CTC-6 and 
apa
itor C1. The en�ergy of the dis
harge is supplied by the 
apa
�itor C1 whi
h is 
onne
ted in parallel with the
ounter. The dis
harge stops when the voltagea
ross the 
ounter be
omes low and does not sup�port the avalan
he anymore (the potential di�er�en
e a
ross the ele
tron free path is less than theionization potential). The 
ir
uit returns to ini�tial state in several RC1. During this pro
ess ashort pulse of 
urrent passes through the 
apa
i�tor C2 in the ele
troni
 
ir
uit of 
omputer inter�fa
e.Capa
itan
e C1 should be neither too highnor too small. The a

umulated energy shouldbe high enough to initiate the avalan
he but the
harging time of the 
apa
itor (τ ∼ RC1) 
alledthe dead time should not be too large be
ause dur�ing this time the 
ounter is not able to dete
t parti
les (usually the deadtime is about several mi
rose
onds). In CTC-6 
ounter the 
apa
itan
e ofthe Geiger tube serves as C1, so the extra 
apa
itor is not ne
essary.
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sThe resistan
e R should also be neither too great (it in
reases the
ounter dead time), nor too small, otherwise the 
apa
itor a

umulatesenough 
harge during the dis
harge and the avalan
he would not termi�nate. Usually R ∼ 1 MOhm.The number of dete
ted parti
les depends on the time of measurement,the 
ounter size, the gas 
omposition and its pressure, and also on thematerial of the 
ounter walls. The major portion of dete
ted parti
les isdue to the natural radiation ba
kground.Variations of parti
le �ux, whi
h are signi�
ant in the laboratory mea�surement, are related to short-time variations of physi
al 
onditions of theparti
le produ
tion and propagation in the Earth atmosphere. As it wasalready mentioned, the random variable measured in the lab is the parti
le�ux density 
hanging with time in a random way. The methods of datapro
essing are the same as those of random errors. An estimate showsthat the measurement error due to Geiger�M�uller 
ounter is negligible in
omparison with variations of the �ux itself (�ux �u
tuations). The mea�surement a

ura
y is mostly determined by the time required to restorethe initial state of the 
ounter after dete
tion of a parti
le. This period is
alled the resolution time. The size of the 
ounter must be 
hosen so thatthe time period between the parti
les passing through the 
ounter ex
eedsthe resolution time.The quantity measured in the lab is the number of parti
les passedthrough the 
ounter during time intervals of 10 and 40 se
onds. Di�erenttime intervals are 
hosen to demonstrate that the standard distributionworks better for larger time intervals and the histogram is more symmetri
.Random values obtained for smaller time intervals should be treated bymeans of the Poisson distribution (see the Appendix).The standard deviation of the number of 
ounts measured for someperiod of time is equal to the square root of the mean number of 
ounts forthe same period: σ =
√

n0 (see Eq. (10) of the Appendix). However thetrue value of the measured quantity is unknown (otherwise the experimentwould be unne
essary). Therefore when evaluating the error of a parti
ularmeasurement one has to substitute the measured value n rather than thetrue mean value n0:

σ =
√

n. (1)Equation (1) shows that usually (with the probability of 68%) the variationof the measured number of parti
les n from the mean value is less than√
n. The result of measurement is written as:

n0 = n ±√
n. (2)

1.1.4 63Now 
onsider the following important problem. Suppose one 
arries outa set of N measurements and obtains the number of parti
les n1, n2, ...,
nN . So far we used these numbers to determine how mu
h the result of aparti
ular measurement di�ers from the true mean value. As it was alreadymentioned this problem addresses reliability of the result obtained in asingle measurement. But if one 
arries out several measurements the results
an be used to solve another problem: they allow one to determine themean value of the measured quantity better than for a single measurement.If N measurements have been 
arried out the mean value of the numberof parti
les dete
ted in one measurement equals obviously

n̄ =
1

N

N
∑

i=1

ni, (3)whereas the standard error of the single measurement 
an be estimateda

ording to Eq. (1.18), i. e. by substitution n0 = n̄ in Eq. (1.17) :

σsep =

√

√

√

√

1

N

N
∑

i=1

(ni − n̄)2. (4)A

ording to Eq. (1) one expe
ts that this error is 
lose to √
ni, i. e.

σsep ≈ σi =
√

ni, where one 
ould substitute any measured value n for ni.Sin
e ni are di�erent, one obtains di�erent estimates of σsep. All of themdi�er from the more reliable estimation of σsep given by Eq. (4). Thisis to be expe
ted. When pro
essing measurement results, we always getapproximate values of the measured quantity and the errors whi
h 
ouldmore or less 
oin
ide with the true values. The value √n̄ is the 
losest oneto σsep de�ned by Eq. (4), i. e.

σsep ≈
√

n̄. (5)Of 
ourse, the value n̄ from Eq. (3), whi
h is obtained by averaging theresults of N measurements, does not exa
tly 
oin
ide with the true value

n0, it is essentially a random quantity. Probability theory shows that thestandard deviation of n̄ from n0 
an be determined by Eq. (1.20):

σn̄ =
1

N

√

√

√

√

N
∑

i=1

(ni − n̄)2 =
σsep√

N
. (6)Here Eq. (4) is used in the se
ond equation.
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sUsually it is not the absolute but the relative error of measurementwhi
h is of great interest. For the 
onsidered set of N measurements (10 sea
h) the relative error of a measurement (i. e. the expe
ted di�eren
ebetween ni and n0) is

εsep =
σsep

ni
≈ 1√

ni
.The relative error of the mean value n̄ is determined similarly:

εn̄ =
σn̄

n̄
=

σsep

n̄
√

N
≈ 1√

n̄N
. (7)The value σsep from Eq. (5) is substituted in the last equation of (7).Thus the relative error of n̄ is determined only by the total number of
ounts n̄N and it is independent of the set partitioning (10, 40 or 100 s).This is to be expe
ted, be
ause all the measurements 
onstitute the sin�gle measurement, whi
h registers ∑ni = n̄N 
ounts. As we 
an see therelative a

ura
y of a measurement gradually improves as the number of
ounts grows (and the time of the measurement in
reases).Using Eq. (7) we have found that to attain an a

ura
y up to 1% ofthe measurement of intensity of 
osmi
 rays one should obtain at least1002=10 000 
ounts, the a

ura
y of 3% requires only 1000 
ounts, thea

ura
y of 10% is rea
hed at 100 
ounts, et
. The a

ura
y is the sameregardless of the way the net number of 
ounts (1000 or 10 000) is obtained:in a single or several independent experiments.A spe
ially designed 
omputer 
ode is used to measure the intensityof 
osmi
 rays and treat the experimental data. Using this 
ode one 
anobtain the spe
i�
ations of the experimental assembly and 
arry out a nu�meri
al experiment whi
h simulates the real one. The simulated data aregenerated by a spe
ial 
ode (random-number generator). In real exper�iment the 
ode allows one to follow real-time variations of the quantityunder study, its mean value, the standard deviation, the histogram, and toverify the theoreti
al formulae 
on
erning measurements and errors. Dataanalysis 
an be performed for various durations of the interval and the num�ber of 
ounts. The 
ode also 
ontains the main de�nitions and formulaeused in data treatment.LABORATORY ASSIGNMENT1. Study the se
tions of the manual 
on
erning measurements before the ex�periment.2. Study the experimental setup.

1.1.4 653. Turn on the 
omputer and the assembly. After 
omputer booting the 
odeSTAT is loaded and the experiment begins. Study the manual of STAT whi
his available in the laboratory.4. Carry out the demonstration experiment in whi
h the data is produ
edby the random-number generator. Study how the following values varydepending on the number of measurements:1) the measured quantity,2) its mean value,3) the error of individual measurement,4) the error of the mean value.5. After the main experiment is 
ompleted 
opy the experimental data fromthe 
omputer monitor to the workbook.6. Using the data plot the histogram wn = f(n) of the distribution of thenumber of 
ounts for 10 s. To this end plot the integers n on the abs
issaand the fra
tion of the events 
orresponding to the number of 
ounts equalto n on the ordinate. The fra
tion of events wn whi
h is the probability ofgetting n 
ounts is determined a

ording to the obvious formula:

wn =
number of events with outcome n

total number of measurements(N)
.7. Combine the measurement results for τ = 20 s bins in pairs and plot thehistogram of the distribution of the number of 
ounts for 40 s bins. Thehistograms of the distributions of the number of 
ounts for 10 and 40 sbins should be plotted on the same graph; this makes visual 
omparisoneasier. The abs
issa graduations on the se
ond graph should be 
hosen sothat the positions of the mean values n̄ 
oin
ide. How does the histogram
hange when the period of the measurement in
reases? What determinesthe width of the histogram peak?8. Determine the mean number of parti
les for 10 and 40 se
ond bins andthe 
orresponding standard deviations for individual and the mean values.Verify that the standard deviation of individual measurement is related tothe mean number of parti
les as σ =

√
n̄.9. Determine the fra
tion of the events for whi
h a deviation from the meanvalue does not ex
eed σ, 2σ. Compare the results with theoreti
al esti�mates. Literature1. Ëàáîðàòîðíûå çàíÿòèÿ ïî �èçèêå / Ïîä ðåä. Ë.Ë. �îëüäèíà. � Ì.: Íàóêà,1983. Ñ. 40�52.2. Laboratory pra
ti
e on general physi
s. V. 3 / Edited by Yu.M. Tsipenjuk. �M.: MIPT edition, 1998. P. 159�166, 367�372.
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s3. Sivukhin D.V. Course of general physi
s. V. V. Part 2. P. 354�370.Example of lab report 1.1.4Lab equipment: Geiger-M�uller 
ounter (CTC-6), a power unit, and a 
om�puter.1. Turn on the 
omputer. (A

umulation of data for the main measurementbegins.)2. In the 
ourse of the demonstration experiment we verify that when thenumber of measurements in
reases1) the quantity to be measured �u
tuates;2) the �u
tuations of the mean value of the measured quantity de
rease andthe mean value tends to a 
onstant;3) the �u
tuations of the error of individual measurement de
rease and theerror of individual measurement (the systemati
 error) tends to a 
onstant;4) the �u
tuations of the error of the mean value and the value itself de
rease.3.Perform the main experiment: the measurement of the density of the 
osmi
rays �ux for 10 se
onds (the results have been a

umulated sin
e turning onthe 
omputer). Using the 
omputer 
ode pro
ess the results similarly to thedemonstration experiment. The results are re
orded in tables 1 and 2.4. Combine the measurement results from Table 1 in pairs, whi
h 
orrespondsto N2 = 100 measurements for the time interval of 40 s. The results are re
ordedin Table 3.5. Represent the results of the last measurement in a spe
ial form whi
h issuitable for plotting the histogram (Table 4). The histograms of distributions ofthe mean number of 
ounts for 10 and 40 s are plotted on the same graph (seeFig. 2). The abs
issa graduation is 4 times greater for the se
ond distribution tomake the maxima 
oin
ide.6. Using Eq. (3) 
al
ulate the mean number of 
ounts for 10 s:
n̄1 =

1

N1

N1
∑

i=1

ni =
2896

400
= 7.24.7. Find the standard deviation of individual measurement using Eq. (4):

σ1 =

√

√

√

√

1

N1

N1
∑

i=1

(ni − n̄1)2 =

√

2934

400
≈ 2.7.8. Verify Eq. (5):

σ1 ≈
√

n̄1; 2.7 ≈
√

7.24 = 2.69.9. Determine the fra
tion of the events for whi
h deviations from the meanvalue are less than σ1, 2σ1, and 
ompare them with the theoreti
al estimates (seeTable 5).

1.1.4 67T a b l e 1Number of 
ounts for 20 s# îïûòà 1 2 3 4 5 6 7 8 9 100 20 16 20 16 16 15 13 16 13 1410 17 22 14 12 15 17 20 16 16 1720 16 15 28 15 19 5 14 17 14 1530 11 6 14 11 16 12 18 14 14 2540 10 21 18 14 13 20 18 15 17 1150 10 7 6 21 23 19 10 13 14 1560 10 12 13 9 18 19 17 11 9 1670 16 15 12 16 12 20 6 11 13 1980 22 17 19 17 10 13 10 20 16 1090 12 10 19 16 14 15 5 14 13 13100 12 14 12 14 13 13 17 7 18 15110 13 13 22 12 15 14 10 16 15 10120 17 19 27 13 16 16 13 15 15 13130 6 18 8 14 16 17 13 15 19 16140 17 13 15 19 16 14 20 18 16 12150 16 12 14 12 11 8 12 10 13 20160 11 10 10 10 20 16 15 15 11 10170 13 12 15 14 15 13 12 17 15 11180 11 13 15 14 11 10 16 14 14 22190 10 16 20 18 11 11 10 22 15 11Footnote: Table is 
omposed so that, e.g. the result of the 123-rd event is on theinterse
tion of the 120-th row and the 3-rd 
olumn.10. Using Eq. (3) determine the mean number of 
ounts for 40 s:

n̄2 =
1

N2

N2
∑

i=1

ni =
2896

100
≈ 29.0.11. Find the standard deviation of individual measurement using Eq. (4):

σ2 =

√

√

√

√

1

N2

N2
∑

i=1

(ni − n̄2)2 =

√

3210

100
≈ 5.7.12. Verify Eq. (5):

σ2 ≈
√

n̄2; 5.7 ≈
√

29.0 = 5.4.
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00,020,040,060,080,1
0,120,140,16w

0 10 20 30 40 50 60 70 800 5 10 15 20 nFig. 2. Histograms for τ = 10 s and τ = 40 s

1.1.4 69T a b l e 2Data for histogram of distribution of number of 
ounts for 10 sNumber of pulses ni 0 1 2 3 4 5Number of events 0 3 9 15 30 59Fra
tion of events wn 0 0.007 0.023 0.037 0.075 0.147Number of pulses ni 6 7 8 9 10 11Number of events 49 53 62 45 28 20Fra
tion of events wn 0.123 0.132 0.155 0.113 0.070 0.050Number of pulses ni 12 13 14 15 16 17Number of events 14 7 2 3 0 1Fra
tion of events wn 0.035 0.017 0.005 0.007 0 0.003T a b l e 3Number of 
ounts for 40 s# of sample 1 2 3 4 5 6 7 8 9 100 36 36 31 29 27 39 26 32 36 3310 31 43 24 31 29 17 25 28 32 3920 31 32 33 33 28 17 27 42 23 2930 22 22 37 28 25 31 28 32 17 3240 39 36 23 30 26 22 35 29 19 2650 26 26 26 24 33 26 34 29 26 2560 36 40 32 28 28 24 22 33 28 3570 30 34 30 38 28 28 26 19 22 3380 21 20 36 30 21 25 29 28 29 2690 24 29 21 30 36 26 38 22 32 2613. Compare the standard deviations of individual measurements for twodistributions: n̄1 = 7.4; σ1 = 2.7 and n̄2 = 29; σ2 = 5,7. One 
an easily see thatalthough the absolute value σ of the se
ond distribution is greater (5.7 > 2.7),the relative half-width of the se
ond distribution is smaller:

σ1

n̄1

· 100% =
2.7

7.24
· 100% ≈ 37%,

σ2

n̄2

· 100% =
5.7

29
· 100% ≈ 20%.This 
an be also seen in Fig. 2.14. Determine the standard error of the quantity n̄1 and the relative error ofthe estimate n̄1 using N = 400 measurements for 10 s bins. A

ording to Eq. (6)

σn̄1 =
σ1√
N1

=
2.7√
400

≈ 0.13.
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sT a b l e 4Data for histogram of distribution of number of 
ounts for 40 sNumber of pulses n1 17 18 19 20 21 22 23 24 25Number of events 3 0 2 1 3 6 2 4 4Fra
tion of events wn 0.03 0 0.02 0.01 0.03 0.06 0.02 0.04 0.04Number of pulses n1 26 27 28 29 30 31 32 33 34Number of events 12 2 10 8 5 5 7 6 2Fra
tion of events wn 0.12 0.02 0.01 0.08 0.05 0.05 0.07 0.06 0.02Number of pulses n1 35 36 37 38 39 40 41 42 43Number of events 2 7 1 2 3 1 0 1 1Fra
tion of events wn 0.02 0.07 0.01 0.02 0.03 0.01 0 0.01 0.01T a b l e 5Error Numberofevents Fra
ton of events, % Theoreti
alestimate

±σ1 = ±2.7 268 67 68

±2σ1 = ±5.4 384 96 95Find the relative error a

ording to the �rst Eq. (7):

εn̄1 =
σn̄1

n̄1

· 100% =
0.13

7.24
· 100% ≈ 1.8%;and a

ording to the last Eq. (7):

εn̄1 =
100%√
n̄1N1

=
100%√

7.24 · 400
≈ 1.9%.Finally,

nt=10s = n̄1 ± σn̄1 = 7.24 ± 0.13.15. Determine the standard error of the quantity n̄2 and the relative errorof the estimate n̄2 using N2 = 100 measurements for 40 s bins. A

ording toEq. (6)

σn̄2 =
σ2√
N2

=
5.7√
100

= 0.57.The relative error a

ording to the �rst Eq. (7) is
εn̄2 =

σn̄2

n̄2

· 100% =
0,57

29
· 100% ≈ 2.0%;

1.1.4 71and a

ording to the se
ond Eq. (7):
εn̄2 =

100%√
n̄2N2

=
100%√
29 · 100

≈ 1.9% = εn̄1 .Finally,

nt=40s = n̄2 ± σn̄2 = 29.0 ± 0.6.AppendixThe Poisson distribution. In physi
s the measurement results are often rep�resented by integers. For example, a dis
rete (usually large) number of parti
lespasses through Geiger 
ounter during the time of measurement. A nu
leus un�dergoing �ssion splits into integer number of parts. Statisti
al patterns in these
ases possess some general features.Consider a 
ounter whi
h dete
ts 
osmi
 rays. Whereas the number of 
ountsfor any period of time is an integer, the �ux density ν (i. e. the average numberof 
ounts per one se
ond per unit area) is usually non-integer.Let's �nd the probability that for a given �ux density ν the 
ounter triggers

n times during a given time interval. For the sake of simpli
ity we will assumethat the 
ounter has unit area, whi
h does not in�uen
e the �nal result.Sin
e we 
al
ulate probabilities one should imagine a great number of similarsimultaneously operating 
ounters. Some of them trigger exa
tly n times. Theratio of the number of these 
ounters to the total number of 
ounters is theprobability of the event that a 
ounter triggers n times during the given timeinterval.Let the net number of 
ounters be N . On average Nν parti
les pass throughthem per se
ond and Nνdt parti
les pass for the time dt. If dt is small enoughnone of the 
ounters dete
ts more than one parti
le during this time, therefore the
ounters 
an be divided into two groups: those whi
h triggered and those whi
hdid not. The last group is, of 
ourse, the largest one. Obviously the number oftriggered 
ounters is equal to the number of 
ounted parti
les, i. e. approximately

Nνdt, so their ratio to the net number of 
ounters is Nνdt/N = νdt.Therefore the probability of a parti
le passing through a 
ounter for dt equals

νdt. This argument is valid only if dt is very small.Let us 
al
ulate now the probability P0(t) that no parti
le passes through a
ounter for t. By de�nition the number of su
h 
ounters at t equals NP0(t) andat t + dt it is equal to NP0(t + dt). The last number is less than NP0(t) be
auseduring dt the number of the 
ounters de
reases by NP0(t)νdt. Therefore

NP0(t + dt) = NP0(t) − NP0(t)νdt,or

P0(t + dt) − P0(t) = −P0(t)νdt.Dividing this equation by dt and taking the limit of in�nitesimal dt we obtain

dP0

dt
= −νP0.
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sIntegrating this equation we obtain

P0(t) = e−νt. (8)The 
onstant of integration is determined by the obvious 
ondition that initiallythe probability to �nd a 
ounter whi
h has not triggered equals unity.Now let us 
al
ulate the probability Pn(t + dt) of the event of exa
tly nparti
les passing through a 
ounter for the time t + dt. These 
ounters aredivided into two groups. The �rst group in
ludes the 
ounters whi
h triggeredexa
tly n times for the period t and not triggered for the period dt. The se
ondgroup in
ludes the 
ounters whi
h triggered exa
tly n−1 times for the time t andtriggered on
e during the period dt. The number of 
ounters in the �rst groupequals NPn(t)(1 − νdt) and the number of 
ounters in the se
ond group equals

NPn−1(t)νdt. (Ea
h expression 
onsists of two multipliers. The �rst determinesthe probability that a 
ounter triggers a given number of times during the time

t and the se
ond spe
i�es the probability to trigger or not to trigger during thetime dt.) Thus we obtain:

NPn(t + dt) = NPn(t)(1− νdt) + NPn−1(t)νdt.Now move NPn(t)(1 − νdt) into the left part of the equation and divide it by

Ndt:

dPn

dt
+ νPn = νPn−1.Applying the re
urren
e relation for n = 1, n = 2 et
., and using (8) we obtain

Pn =
(νt)n

n!
e−νt.Noti
e that νt denoted as n0 equals the mean number of parti
les passing througha 
ounter for the time t. Then our formula 
an be written as

Pn =
nn

0

n!
e−n0 . (9)It is the �nal formula whi
h is known as the Poisson distribution law. It deter�mines the probability that for a given mean number of 
ounts n0 (not ne
essarilyinteger) exa
tly n 
ounts take pla
e (n is integer).The Poisson distribution law is spe
i�ed by the single parameter: the meannumber of 
ounts. Neither the time of measurement nor the 
ounter area matters.Similarly the law is not limited by a Geiger 
ounter dete
ting 
osmi
 rays. Thelaw applies to the number of telephone 
alls passing through 
entral station or toany other problem in whi
h the number of 
ounts is an integer and independentof the number of 
ounts dete
ted previously (independent events).Consider some properties of Eq. (9). First of all let us 
al
ulate the proba�bility to �nd any number n:

∞
∑

n=0

Pn(n0) =
∞
∑

n=0

nn
0

n!
e−n0 = e−n0

∞
∑

n=0

nn
0

n!
= e−n0en0 = 1.

1.1.4 73Of 
ourse this result is evident be
ause any value of n 
ould be found in experi�ment, therefore we have 
al
ulated the probability of a 
ertain event.Now 
al
ulate the mean value of n:
〈n〉 =

∞
∑

n=0

nPn(n0) =
∞
∑

n=1

n
nn

0

n!
e−n0 = e−n0n0

∞
∑

n=1

nn−1

0

(n − 1)!
=

= n0e
−n0

∞
∑

n=0

nn
0

n!
= n0e

−n0en0 = n0.The obtained result is predi
table sin
e we started from the assumption that themean value of n equals n0.Now let us �nd the standard deviation of n. To this end we 
al
ulate thevarian
e of n (the mean value of the deviation squared):
〈

(n − n0)
2
〉

=
〈

n2 − 2nn0 + n2

0

〉

=
〈

n2
〉

− 2 〈n〉n0 + n2

0 =
〈

n2
〉

− n2

0.To 
al
ulate 〈n2
〉 it is 
onvenient to �nd 〈n(n − 1)〉 at �rst and then make useof the following expression 〈n(n − 1)〉 =

〈

n2
〉

− 〈n〉 =
〈

n2
〉

− n0:

〈n(n − 1)〉 =
∞
∑

n=0

n(n − 1)Pn(n0) =
∞
∑

n=2

n(n − 1)
nn

0

n!
e−n0 =

= e−n0n2

0

∞
∑

n=2

nn−2

0

(n − 2)!
= n2

0e
−n0

∞
∑

n=0

nn
0

n!
= n2

0e
−n0en0 = n2

0.Hen
e: 〈n2
〉

= n2

0 + n0 and
σ2 ≡

〈

(n − n0)
2
〉

=
〈

n2
〉

− n2

0 = (n2

0 + n0) − n2

0 = n0.Finally,
σ ≡

√

〈(n − n0)2〉 =
√

n0. (10)Gaussian distribution. When the parameter n0 tends to in�nity the Poissondistribution takes the form of Gaussian distribution. Many other distributionlaws have the same limit. This is explained by the 
entral limit theorem whi
hstates that a distribution of the sum of a large number of independent randomvalues tends to Gaussian distribution. For example, the number of parti
les pass�ing through a 
ounter for n se
onds (random quantity, the Poisson distribution)
ould be treated as the sum of n numbers of parti
les passing through the 
ounterper se
ond.Consider the Poisson distribution for large n0 and n. Dis
reteness of thedistribution is no longer signi�
ant in this limit be
ause n varies almost 
ontin�uously. We will spe
ify the deviation of n from n0 by ε de�ned by the followingrelation

n = n0(1 + ε) or ε =
n − n0

n0

.
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sUsing Stirling's formula

ln n! = ln
√

2πn + n ln n − nand Eq. (9) we obtain

ln Pn = n ln n0 − n0 − ln
√

2πn − n ln n + n =

= n ln
n0

n
+ (n − n0) − ln

√
2πn ≈ − ln

√
2πn0 − n0ε

2

2
,then

Pn =
1√

2πn0

e
−

(n−n0)2

2n0 . (11)The probability distribution Pn 
an be extended to 
ontinuous quantities.To this end noti
e that n − n0 is equal to the deviation of experimental value nfrom the mean value n0. Let us denote this deviation as x:

x = n − n0.Using Eq. (10) we substitute the standard deviation σ for n0. Finally, noti
ethat Pn 
ould be treated as the probability to �nd the value n in the intervalbetween n − 1/2 and n + 1/2. This interval 
orresponds to ∆x = 1. Making thesubstitutions and 
hanging the notation from Pn to P (x) we obtain

P (x) =
1√
2πσ

e
− x2

2σ2 . (12)Fun
tion P (x) is the probability that the value x belongs to the unit interval
∆x around the 
entral value x. Choosing the in�nitesimal interval dx instead we�nd

dP = ρ(x)dx =
1√
2πσ

e
− x2

2σ2 dx. (13)Equation (13) determines the probability that the random value is between
x − dx/2 and x + dx/2. The quantity ρ(x) is 
alled probability density. For therandom value whi
h has a non-zero mean value µ the probability density (13) is

ρ(x) =
1√
2πσ

e
−

(x−µ)2

2σ2 . (14)The distribution (14) is 
alled Gaussian distribution.Using Eq. (13) it is easy to �nd the probability that the random value liesbetween x1 and x2, where x1 and x2 are any numbers. Obviously,
P (x1 6 x 6 x2) =

x2∫

x1

1√
2πσ

e
− x2

2σ2 dx. (15)
1.1.5 75The integral (15) 
annot be expressed via primitive integrals. It is 
alled theerror fun
tion erf(x):

erf(x) =
2√
π

x∫

0

e−t2 dt. (16)One 
an easily show, that
P (x1 6 x 6 x2) =

1

2

[

erf

(

x2√
2σ

)

− erf

(

x1√
2σ

)]

. (17)The fun
tion erf(x) is antisymmetri
 relative to the origin x = 0:
erf(−x) = −erf(x). (18)Using the tables of erf(x) one 
an easily �nd the probability that a randomvalue lies between −σ and σ, between −2σ and 2σ, and between any other values:

P (−σ 6 x 6 σ) =
1

2

[

erf

(

1√
2

)

− erf

(

− 1√
2

)]

= erf

(

1√
2

)

≈ 0,68,

P (−2σ 6 x 6 2σ) ≈ 0,95,

P (−3σ 6 x 6 3σ) = 1 − 0,0044.The probability to �nd x between two values qui
kly approa
hes unity as thewidth of the interval in
reases.Indeed they are met not so rarely. It takes pla
e, be
ause real error distri�butions are various and never stri
tly obey Gauss law. Su
h distributions aretreated as Gauss for the la
k of better. In the area of small deviations from meanvalue Gauss law mostly 
orre
tly estimates probabilities of di�erent meeting inpra
ti
e deviations, but in the area of large deviations des
ribes them badly, andmore the deviations � worse the des
ription.Lab 1.1.5Study of elasti
 proton-ele
tron 
ollisionsPurpose of the lab: to 
al
ulate momenta and s
attering angles ofprotons and ele
trons using photographs of parti
le tra
ks; to treat theresults using non-relativisti
 and relativisti
 theory and to de
ide whi
htheory applies.Tools and instruments: slides with photographs of parti
le tra
ks ina hydrogen bubble 
hamber; a slide proje
tor with a 
oordinate grid forviewing the �lm.One of the most e�
ient methods of studying atomi
 nu
lei and ele�mentary parti
les is to investigate their 
ollisions with energeti
 parti
les
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sand register the parti
les originated in the 
ollisions. In these experimentsthe following te
hniques are used: 1) 
reating beams of parti
les used asproje
tiles, 2) preparing targets 
ontaining nu
lei or other parti
les, and3) dete
ting properties of the outgoing parti
les.Energies of outgoing parti
les originated in the most radioa
tive sour
esare limited by several MeV's1. Parti
les, whi
h 
arry ele
tri
 
harge, 
anbe a

elerated in spe
ial ma
hines 
alled parti
le a

elerators. Parti
leenergy of a 
ommer
ial a

elerator ranges from several MeV to tens ofGeV. All sour
es of nu
lei and elementary parti
les are divided into ra�dioa
tive sour
es (primary and se
ondary parti
les), a

elerators (primary,se
ondary, and tertiary beams), and nu
lear rea
tors and 
osmi
 rays.A list of available targets is also limited. It in
ludes all stable nu
leiand ele
tron.The major problem with parti
le dete
tion stems from the fa
t thatpossible ma
ros
opi
 e�e
t on matter due to a parti
le is very small. Themost prominent e�e
t of this kind is ionization of matter by an ele
tri�
ally 
harged parti
le. Some dete
tors employ ele
tromagneti
 radiation of
harged parti
les passing through matter. Neutral parti
les are registeredby se
ondary e�e
ts. The main part of a dete
tor is a physi
al system in un�stable state: superheated vapor or liquid, gas in a pre-dis
harge state, andso on. A mi
ro-parti
le entering su
h a system 
auses ma
ro-
atastrophe.PSfrag repla
ements

~p0

~pe

~pFig. 1. Elasti
 
ollision between protonand ele
tron at rest Elasti
 
ollisions between protonsand ele
trons is the subje
t of thislab; the experimental data are photo�graphi
 images of parti
le tra
ks in ahydrogen bubble 
hamber. Workingsubstan
e in the 
hamber is a super�heated liquid. A tra
k due to a 
harged parti
le is formed by vapor bubbles.The detailed me
hanism of bubble formation is still to be understood.Consider an elasti
 
ollision between a proton and an ele
tron at rest.Figure 1 shows: the proton momentum ~p0 before the 
ollision, the protonmomentum ~p after the 
ollision, the ele
tron momentum ~pe, and the s
at�tering angles ϕ and θ of the proton and the ele
tron with respe
t to thedire
tion of in
oming proton, respe
tively.The law of 
onservation of momentum reads (see Fig. 1):
p0 = p cosϕ + pe cos θ,
p sinϕ = pe sin θ.

(1)1 1 eV (ele
tron-volt) = 1.6 · 10−19 J.

1.1.5 77Ex
luding the angle ϕ we get

(p0 − pe cos θ)2 + p2
e sin2 θ = p2or

p2
0 − 2p0pe cos θ + p2

e = p2. (2)This relation follows from the law of 
onservation of momentum and itis valid both in relativisti
 and non-relativisti
 me
hani
s.Using the law of 
onservation of energy one must be 
areful sin
e rela�tivisti
 and non-relativisti
 expressions for parti
le energy are di�erent. In
lassi
al (non-relativisti
) me
hani
s kineti
 energy is expressed in termsof mass, velo
ity, and momentum:
Eê =

mv2

2
=

p2

2m
. (3)By introdu
ing the notations M and m for the mass of proton andele
tron, respe
tively, and using the notations for the momenta introdu
edabove (see Eq. 1)), the law of 
onservation of kineti
 energy in non-rela�tivisti
 approximation 
an be written as:

p2
0

2M
=

p2

2M
+

p2
e

2m
. (4)Ex
luding the proton momentum after the 
ollision from Eqs. (2)and (4) one obtains:

pe

(

1 +
m

M

)

= 2p0

m

M
cos θ (5)or

cos θ =
M + m

2m
· pe

p0

. (6)It is evident that the momentum of the ele
tron after the 
ollision isdire
tly proportional to the 
osine of its s
attering angle. The momentumin
reases as the angle de
reases. Taking into a

ount that M/m ≈ 2000,one gets

pe ≈ 2p0

m

M
cos θ. (7)This implies that the maximum ele
tron momentum is

pemax ≈ 0.001p0. (8)Then it follows from Eq. (1) that p ≈ p0 and θ ≫ ϕ.
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sRelativisti
 me
hani
s requires the modi�ed expression for energy andmomentum in order for the laws of 
onservation of momentum and energybe valid in di�erent referen
e frames.

p =
mv

√

1 − v2

c2

, (9)

E =
mc2

√

1 − v2

c2

. (10)Here v is the parti
le velo
ity, c is the speed of light, and m is the parti
lemass.Introdu
ing the notations

β =
v

c

(11)and

γ =
1

√

1 − β2
, (12)one 
an rewrite eqs. (9) and (10) as

E = γmc2, (13)
p =

E

c2
v = γβmc, (14)

E2 = p2c2 + m2c4. (15)In relativisti
 me
hani
s the total energy γmc2 of a free parti
le is thesum of the kineti
 energy (γ − 1)mc2 and the rest energy mc2.Let the proton energy before and after the 
ollision be E0 and E, re�spe
tively. The energy of the ele
tron after the 
ollision is Ee and beforethe 
ollision was equal to the ele
tron rest energy mc2. Conservation ofthe proton and ele
tron energy gives:

E0 + mc2 = E + Ee. (16)Noti
e that before and after any elasti
 
ollision the parti
les are thesame. Therefore, kineti
 energy of the system whi
h equals the di�eren
ebetween the total and the rest energy for ea
h parti
le is also 
onserved.For ele
tron

K = Ee − mc2. (17)
1.1.5 79Now take p from (2) and E from (16), substitute in (15):

(E0 + mc2 − Ee)
2 = (p2

0 − 2p0pe cos θ + p2
e)c

2 + M2c4and simplify this expression taking into a

ount that E2
0 = p2

0c
2 + M2c4and E2

e = p2
ec

2 + m2c4,
m2c4 + E0mc2 − E0Ee − mc2Ee = −p0pec

2 cos θ,whi
h gives the relation between the ele
tron momentum pe and the angle
θ:

cos θ =
E0Ee + mc2Ee − E0mc2 − m2c4

p0pec2
=

(E0 + mc2)(Ee − mc2)

p2
ec

2

pe

p0

=

=
(E0 + mc2)(Ee − mc2)

E2
e − (mc2)2

pe

p0

=

=
E0 + mc2

Ee + mc2

pe

p0

=
M + m + K0/c2

2m + Ke/c2
· pe

p0

. (18)Kineti
 energy is negligible 
ompared to rest energy for velo
ities small
ompared to the speed of light, then Eq. (18) be
omes Eq. (6).Using the relation (15) between ele
tron energy and momentum onegets the following relation between the s
attering angle of the ele
tron andits momentum:
cos θ =

E0 + mc2

p0

· pe
√

p2
ec

2 + m2c4 + mc2
. (19)It is evident that the relation between the momentum and the 
osineis nonlinear. The 
osine grows slower with the momentum than in thenon-relativisti
 
ase.It is 
onvenient to rewrite Eq. (19) using the dimensionless parameter

z =
pec

Ee + mc2
=

p0c

E0 + mc2
cos θ ≈ p0c

E0

cos θ = β cos θ. (20)This parameter is dire
tly proportional to cos θ. A plot of the fun
tion

z(cos θ) 
an be used to determine the initial momentum of the protons.It has already been mentioned that the elasti
 
ollisions between pro�tons and ele
trons were observed in the bubble 
hamber pla
ed in a uniformmagneti
 �eld. The bubble 
hamber is a 
ylinder �lled with a liquid whi
htemperature is 
lose to the boiling point. The liquid does not boil be
ause
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sit is pressurized by a piston or a membrane used as a 
ylinder base. Thepressure drops when the proton beam enters the 
hamber, the liquid be�
omes superheated and remains unstable for some time. If during this time(several millise
onds) a 
harged parti
le passes through the 
hamber, theliquid will boil along the parti
le tra
k whi
h be
omes visible as a 
hain ofvapor bubbles. The working liquid serves as the target and the dete
tor atthe same time. Liquid hydrogen is often used as the working liquid, whi
hallows one to observe intera
tion of energeti
 parti
les with protons (thehydrogen nu
lei) and with ele
trons (from the hydrogen ele
tron shells).The 
hamber operates at the temperature of liquid hydrogen of 29 K andat the pressure of 5 atm.Bubble 
hamber is superior 
ompared to the Wilson 
hamber in havinga greater density of the working medium, whi
h lessens parti
le free pathand enables to dete
t more intera
tion events in the same volume. Nowa�days bubble 
hambers are not used, they have been superseded by spark
hambers.The bubble 
hamber in whi
h the parti
le tra
ks have been pho�tographed was pla
ed in a uniform magneti
 �eld ~B perpendi
ular to thephotographi
 plane. Re
all that the parti
le with ele
tri
 
harge e whi
his moving with the velo
ity ~v in the magneti
 �eld ~B is subje
ted to theLorentz for
e:

~F = e~v × ~B. (21)In our 
ase it would be safe to assume that ~v and ~B are orthogonal.The Lorentz for
e is perpendi
ular to the velo
ity, so the parti
le exe
utes
ir
ular motion. The 
ir
le radius r and the parti
le momentum p arerelated as

mv2

r
= evB, (22)or

p = eBr. (23)This equation is valid both in 
lassi
al and relativisti
 me
hani
s.In what follows B = 2 T. If pc and r are measured in megaele
tronvolts(MeV) and 
entimeters, respe
tively, then
pc = 6r. (24)Work with the photographs begins with installing the �lm in the slideproje
tor and obtaining a sharp image on a s
reen. The dire
tion in whi
hthe �lm is moving is 
onsidered as the dire
tion of abs
issa of the 
oordinategrid. Then the �lm is examined and suitable images are sele
ted.

1.1.5 81The photograph shows tra
ks of protons passing through the 
hamber.The protons 
ollide both with atomi
 nu
lei (hydrogen nu
lei in our 
ase,i.e. protons) and with ele
trons. In the �rst 
ase either elasti
 s
atteringor a nu
lear rea
tion o

urs, the latter often results in pion 
reation. Thepath of in
oming proton has a sharp 
usp.
Fig. 2

In the 
ase of proton-ele
tron 
olli�sion a proton path is smooth sin
e pro�ton is mu
h heavier than ele
tron. Thetraje
tories of the re
oiled ele
trons,whi
h are usually 
alled δ-ele
trons, are
urved by the magneti
 �eld. As it fol�lows from Eq. (23) the 
urvature radiusof a traje
tory is proportional to theparti
le momentum and so it is mu
hsmaller for ele
trons than for protons.De
eleration of ele
tron due to its inter�a
tion with the environment results inde
reasing its momentum and thereforethe 
urvature radius of its path whi
hbe
omes a spiral (see Fig. 2).The 
rosses (in the squares) on the photographs are the labels pla
edon the bubble 
hamber window, through whi
h the shots are taken, todetermine the image s
ale.Besides the tra
ks of δ-ele
trons one 
an also see the tra
ks of theele
trons whi
h are not related to the proton traje
tories. Su
h ele
trons,whi
h seemingly appear out of nothing, are due to s
attering of γ-quanta(energeti
 ele
tromagneti
 radiation) on ele
trons. The photographs alsoshow the tra
ks of the pairs e+ and e− originated at the same point andbent in the opposite dire
tions. Su
h ele
tron-positron pairs are 
reatedby γ-quanta in the �eld of a nu
leus.Not all the photographs 
an be used for the measurements. One shouldsele
t the images on whi
h the 
enters of the 
onse
utive spiral revolutionsare not signi�
antly displa
ed with respe
t to ea
h other and the diame�ter of the �rst spiral revolution ex
eeds 8-10 mm. The photographs onwhi
h an ele
tron re
oils at the angle less than 2�3◦ must be dis
arded.The reason is that the angle visible on the photograph is not the wholestory, there is always a 
omponent perpendi
ular to the �lm. The error ofthe measurement arising due to the undete
table perpendi
ular 
omponentin
reases if the angle is small. Also one should take into a

ount that prob�ability for a δ-ele
tron to emerge is inversely proportional to the square ofits kineti
 energy, therefore the majority of δ-ele
trons have small energies
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sand their traje
tories have small radii. This 
ir
umstan
e 
ompli
ates themeasurements. It is advisable to sele
t both ¾narrow¿ and ¾wide¿ spirals.The measurements are performed with the aid of a magnifying glass(×28). The distan
e between the 
rosses on the bubble 
hamber window isknown and it is used to determine the size of a traje
tory. In our 
ase theradii R measured on the proje
tor s
reen must be multiplied by the 
oe��
ient K = 0.427 in order to obtain the 
orresponding radii r in the bubble
hamber. Figure 2 shows the whole photograph whi
h 
an be observed bymeans of a magnifying glass with a less magni�
ation.A photograph allows one to determine the angle between the protontraje
tory and the initial segment of ele
tron spiral. The ele
tron momen�tum is determined by the 
urvature radius of the spiral. In so doing theexperimental relation between ele
tron momentum and s
attering angle
an be found. Comparing the relation with Eqs. (6) and (18) one 
ouldinfer whether relativisti
 e�e
ts should be taken into a

ount.The 
urvature radius R of ele
tron traje
tory and the s
attering angle θare determined as follows. The sele
ted image of the 
ollision is 
entered onthe proje
tor s
reen (see Figs. 3 and 4). The 
oordinates are 
hosen so thatthe abs
issa is dire
ted along the proton traje
tory. The origin is pla
edat the initial point of δ-ele
tron traje
tory whi
h 
oordinates are (x1, y1).We assume that the initial segment of the spiral is well approximated bya 
ir
le:

(x − x0)
2 + (y − y0)

2 = R2. (25)Here x0 and y0 are the 
oordinates of the 
ir
le 
enter and R is its radius.Figures 3 and 4 show two possible dire
tions in whi
h an ele
tron 
anre
oil. One 
an see that the 
ir
le 
enter is lo
ated either on the left or onthe right of the ordinate. In both 
ases the angle α between the ordinateand the radius drawn from the 
enter (x0, y0) to the origin (x1, y1) equals
θ whi
h 
an be determined providing R and y0 are known. Then

cos θ =
y0

R
. (26)The radius of ele
tron traje
tory R measured on the s
reen is used to
al
ulate the radius in the bubble 
hamber, r = 0.427R. The ele
tronmomentum is then determined from Eq. (24).Radius and 
oordinates of the 
enter of a 
ir
le 
an be determinedfrom the 
oordinates of three points of the 
ir
le. One of the points isthe origin (x1, y1). Two more points are shown in Fig. 3: the point (x3,

y3) of the traje
tory interse
tion with the ordinate and some intermediatepoint (x2, y2). Substitution of the point 
oordinates in Eq. (25) gives three
1.1.5 83
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2 = R2,
x2

0 + (y3 − y0)
2 = R2.

(27)Then

y0 =
y3

2
, x0 =

x2
2 + y2

2 − y2y3

2x2

. (28)For the 
ase shown in Fig. 4 two additional points are: the point (x2,
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y2) of the traje
tory interse
tion with the abs
issa and an arbitrary point(x3, y3). This gives the following set of equations:

x2
0 + y2

0 = R2,
(x2 − x0)

2 + y2
0 = R2,

(x3 − x0)
2 + (y3 − y0)

2 = R2.

(29)Therefore

x0 =
x2

2
, y0 =

x2
3 + y2

3 − x2x3

2y3

. (30)It is 
onvenient to 
hoose the point of the traje
tory interse
tion withthe ordinate as the third point providing the traje
tory does not deviatesigni�
antly from a 
ir
le. Then

x0 =
x2

2
, y0 =

y3

2
. (31)The radius of a 
ir
le is always found as

R =
√

x2
0 + y2

0 . (32)For 
ross-
he
king it is advisable to measure dire
tly the distan
e be�tween the origin and the 
enter of δ-ele
tron traje
tory on the s
reen usingthe 
oordinate grid.In parti
le physi
s energy is usually measured in ele
tron-volts (eV) orthe derived units: kiloele
tron-volt (1 KeV = 103 eV), megaele
tron-volt(1 MeV = 106 eV), and gigaele
tron-volt (1 GeV = 109 eV). Momentumand mass are 
onveniently repla
ed by pc and mc2, respe
tively. Thesequantities have dimension of energy and expressed in ele
tron-volts, whi
hsimpli�es 
al
ulations. Using these units in the lab is mandatory. Themasses of ele
tron and proton are mc2 = 0,511 MeV and Mc2 = 938 MeV,respe
tively. LABORATORY ASSIGNMENT1. Make the table for re
ording the results of the measurements and 
al
ula�tions:

N x2, y2, y3, Rscr, R, cos θ pec, zmm mm mm mm mm MeV

1.1.5 85Here N is the tra
k number and Rscr is the radius measured on the s
reen.2. Using the magnifying glass proje
t the image of the tra
ks on the s
reen.3. Sele
t an appropriate ele
tron tra
k (the s
attering angle ex
eeds 2�3◦ andthe diameter of the �rst 
urve revolution is 8�80 mm).4. Pla
e the origin of referen
e frame at the initial point (x1, y1) of the
δ-ele
tron traje
tory. Choose the abs
issa dire
tion along the proton tra�je
tory (see Fig. 3).5. Measure and tabulate the 
oordinates x2, y2, y3 of the 
orresponding pointsfor a 
ase shown in Fig. 3 and x2, x3, y3 or x2, y3 for a 
ase shown in Fig. 4.6. Measure and tabulate the radius R of the �rst revolution of the tra
k.7. Repeat the measurements 3�6 for 40-50 tra
ks.8. Cal
ulate and tabulate the 
oordinates of the 
ir
le using Eqs. (28) and (30)or (31), the radius of the 
ir
le using Eq. (32), the 
osine of the s
atter�ing angle using Eq. (26), the ele
tron momentum multiplied by the speedof light using Eq. (24) and the relation r = 0.427R, and z(cos θ) usingEq. (20).9. Plot the points with 
oordinates (pec, cos θ). On the same graph plot thepoints cpe(cos θ) 
al
ulated using non-relativisti
 and relativisti
 Eqs. (7)and (19).10. Plot the points with 
oordinates (z, cos θ). Draw a straight line throughthe points and the origin (using the method of least squares is preferable).Using the value of the slope and Eqs. (20), (9), (10), and (15) 
al
ulate:the momentum of the in
oming proton, the proton energy, the protonvelo
ity divided by the speed of light β = v/c, and the quantity γ =

= 1/
√

1 − β2.11. Estimate the random error of the proton momentum and energy using thefollowing graphi
 method. Draw two additional straight lines through theorigin with the slopes β ±∆β (β is the slope of the line drawn previously)by 
hoosing ∆β so that two thirds of the points are between the lines.Cal
ulate the error of the momentum using

∆p ≈ p(β + ∆β) − p(β)√
nand 
ompare the obtained value with the error given by the method ofleast squares (1.40). Questions1. Derive equations relating ele
tron s
attering angle and its momentum in rela�tivisti
 and non-relativisti
 me
hani
s.2. Derive the formula relating velo
ity of a relativisti
 parti
le with its momentumand energy.
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s3. Derive the equation relating ele
tron momentum and the radius of its traje
�tory in magneti
 �eld. Show that this equation is valid both in relativisti
 andnon-relativisti
 me
hani
s. Literature1. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. � Ì.: Íàóêà, 1980. Ò. IV. � 111. Ò. V.×. 2. � 86.2. Êèòòåëü ×., Íàéò Ó., �óäåðìàí Ì. Ìåõàíèêà. � Ì.: Íàóêà, 1983. �ë. 11,12.3. Êîïûëîâ �.È. Âñåãî ëèøü êèíåìàòèêà. � Ì.: Íàóêà, 1981.4. Áåëîíó÷êèí Â.Å. Îòíîñèòåëüíî îòíîñèòåëüíîñòè: Ó÷åá. ïîñîáèå / ÌÔÒÈ.Ì., 1996.5. Êèíãñåï À.Ñ., Ëîêøèí �.�., Îëüõîâ Î.À. Îñíîâû �èçèêè. Ò. 1. Ìåõàíèêà,ýëåêòðè÷åñòâî è ìàãíåòèçì, êîëåáàíèÿ è âîëíû, âîëíîâàÿ îïòèêà. � Ì.:Ôèçìàòëèò, 2001. ×. 1. �ë. 10.Example of lab report 1.1.5The laboratory equipment: a �lm with photographs of events in a hydrogenbubble 
hamber and a slide proje
tor with 
oordinate grid for surveying the �lm.The momentum and the s
attering angle (the angle the re
oiled ele
tronmakes with the dire
tion of the in
oming proton) of an ele
tron are determinedby its (spiral) traje
tory in the magneti
 �eld. The initial part of the spiral is ap�proximated by a 
ir
ular ar
. The radius and the s
attering angle are 
al
ulatedfrom the 
oordinates of three points lying on the ar
: x2, y2, and y3 (see Fig. 3).The origin of the referen
e frame is at the 
ollision point. The 
orrespondingdata are tabulated in Table 1. The 
oordinates are measured on the s
reen withan error of 1 mm.The table also 
ontains the results of the 
al
ulation. The radius and the
osine of the s
attering angle are evaluated using Eqs. (32), (28) and (26).Ele
tron momentum is evaluated using Eq. (24) in whi
h r = 0.427R (R isin mm). The values of z are obtained from (20). The errors 
an be evaluatedusing (1.33).The points with 
oordinates (pec, cos θ) are plotted in Fig. 5. The larges
atter is due to a large measurement error.It is evident that ele
tron momentum in
reases together with cos θ (the anglede
reases).In a non-relativisti
 
ase and for a 
onstant energy of protons the ele
tronmomentum is determined by Eq. (7), so it is dire
tly proportional to cos θ.In a relativisti
 
ase the 
orresponding dependen
e is non-linear and it isgiven by Eq. (19). It is 
onvenient to introdu
e the fun
tion
z =

pec
√

p2
ec2 + m2c4 + mc2

=
p0c

E0 + mc2
cos θ ≈ p0c

E0

cos θ = β cos θ.
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tion depends linearly on cos θ, whi
h allows one to determine the velo
ityof in
oming protons using graphi
al methods.The 
al
ulated values of z are presented in Table 1.The �nal results are shown in Fig. 6, the straight line is drawn using themethod of least squares (Eqs. 1.39)and (1.40)).The line slope is β = 0.936 ± 0.014.The relative error of β found by the method of least squares is:
∆β

β
=

0.014

0.936
= 0.015 = 1.5%.Now let us evaluate the random error of β graphi
ally. To this end we drawtwo additional straight lines, so that approximately 40 · 1/3 · 1/2 ≈ 7 points lieoutside the lines. The slopes of the lines di�er from the slope of the 
entral lineby ±0.08. The random error of β is

∆β =
0.08√

40
≈ 0.013;

∆β

β
= 0.14 = 1.4%,whi
h agrees with the results of the method of least squares.Cal
ulate γ:

γ =
1√

1 − 0.9362
= 2.84.Equations (1.33) and (12) give the error of γ:

∆γ

γ
= γ2β2 ∆β

β
≈ γ2 ∆β

β
≈ 8 · 1,5% = 12%.Finally: γ = 2.8 ± 0.3.The initial proton momentum is found from Eq. (14):

p0c = γβmc2 = 2.8 · 0.936 · 938 MeV = 2.5 ± 0.3 GeV.The initial proton energy is

E0 = γmc2 = 2.8 · 938 MeV = 2.6 ± 0.3 GeV.The proton velo
ity is v = βc = 0.936 c. The dashed line in Fig. 5 
orrespondsto p(cos θ) 
al
ulated using the non-relativisti
 Eq. (7). The solid line on the sameplot 
orresponds to the relativisti
 dependen
e (19).It is obvious that the ele
tron momentum should be determined from rela�tivisti
 formulae.
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sT a b l e 1# x2 y2 y3 R Rscr cos θ pec ztra
k mm mm mm mm mm MeV1 7.5 10 24 13.2 13 0.91 3.4 0.8612 8 15 25 13.6 13 0.919 3.5 0.8643 3 3 8.5 4.4 4 0.95 1.1 0.644 2 5 10.5 8 8 0.66 2.0 0.785 11.5 20 33.5 17.8 18 0.94 4.6 0.8956 29 20 40.5 21.6 22 0.939 5.5 0.9117 11.5 20 40 23 23 0.87 5.8 0.9168 15 10 15.5 9.6 10 0.81 2.5 0.8169 18 23 45 23.1 23 0.97 5.9 0.91710 8 10 19.5 9.9 10 0.98 2.5 0.82211 6 3 6 3.8 4 0.8 0.97 0.6012 2.5 5 10.5 7 7 0.78 1.7 0.7513 6.5 8 13.5 6.8 7 0.99 1.74 0.7514 22.5 15 22 14.2 14 0.77 3.64 0.86915 24 30 57 28.9 29 0.98 7.4 0.93316 9.5 15 28.5 15.4 15 0.92 3.9 0.87917 37.5 47 94 48.1 48 0.97 12.32 0.95918 21.5 12.5 24.5 14.2 14 0.86 3.64 0.86919 30 23 47 24.2 24 0.97 6.2 0.92120 21 15 27 14.9 15 0.91 3.82 0.87521 5 10 19 12 12 0.82 2.9 0.8422 22 27 50.5 22.5 22 0.99 6.53 0.92523 6 10 19 10.5 10 0.9 2.7 0.82824 12.5 8 19 9.9 9 0.96 2.53 0.81825 2.5 7.5 12 8 8 0.7 2.1 0.7926 7.5 10 21 11.1 11 0.95 2.8 0.83627 19.5 15 30.5 15.7 16 0.97 4.02 0.88128 17 20 40.5 20.6 20 0.98 5.28 0.90829 16 24 47.5 25.6 25 0.93 6.6 0.92530 9 6 10.5 6.0 6 0.87 1.55 0.7231 5.5 9 17 9.3 9 0.9 2.4 0.8132 10 15 28.5 15.1 15 0.94 3.9 0.87733 35.5 26 51.5 28.2 28 0.96 7.22 0.93234 24.5 19 38 19.6 20 0.97 5.02 0.90335 12.5 12.5 22 11.1 11 0.99 2.84 0.83636 8 15 28.5 17 17 0.85 4.3 0.88837 33 40 81 41.4 41 0.98 10.61 0.95338 11 16 32.5 17.5 18 0.93 4.5 0.89239 12.5 17 35 18.5 18 0.95 4.7 0.89840 34.5 40 80 40.4 40 0.99 10.35 0.952
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sLab 1.1.6Study of ele
troni
 os
illos
opePurpose of the lab: to study operation prin
iples and design of ele
�troni
 os
illos
ope.Tools and instruments: an os
illos
ope, generators of ele
tri
 signals,and 
ables.Os
illos
ope is an instrument whi
h displays an ele
tri
 signal as time�dependent 
urve. Os
illos
opes are widely used in experiments. Any time�dependent physi
al quantity whi
h 
an be 
onverted to ele
tri
 signal 
anbe studied with the aid of an os
illos
ope.The os
illos
ope used in the lab is a modi�ed version of the modelsÑ1-94 and Ñ1-1.
Fig. 1. Cathode-ray tubeCathode-ray tube. The main part of os
illos
ope that determines itsmost important spe
i�
ations is a 
athode-ray tube (CRT). It is a glass va
�uum tube 
ontaining the following elements (see Fig. 1): 
athode heater 1,
athode 2, modulator 3 (an ele
trode whi
h 
ontrols image brightness),�rst (fo
using) anode 4, se
ond (a

elerating) anode 5, de�e
ting plates 6and 7, third (a

elerating) anode 8, and s
reen 9.An ele
tron beam is formed by a set of ele
trodes 
alled ¾ele
tron gun¿:the 
athode and the heater, the modulator, and the fo
using and a

eler�ating anodes. The ele
trodes are arranged to a

elerate ele
trons and tofo
us the beam on the s
reen. A voltage di�eren
e between the �rst (fo�
using) anode and the 
athode 
an be adjusted by knob ¾FOCUS¿. Thesize of the s
reen bright spot is determined by the quality of the fo
using
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Fig. 2. De�e
tion of ele
tron beam by ele
tri
 �eld of the platessystem, the size does usually not ex
eed 1 mm. Spot brightness is pro�portional to the ele
tron beam 
urrent whi
h 
an be adjusted by varyingthe modulator voltage (knob ¾BRIGHTNESS¿). The os
illos
ope s
reenis the tube front surfa
e 
overed with a phosphor layer.On its way to s
reen the beam of ele
trons passes two pairs of de�e
tingplates. Two verti
al plates are a 
apa
itor whi
h ele
tri
 �eld de�e
ts thebeam in the horizontal dire
tion. Two horizontal plates de�e
t the beam inthe verti
al dire
tion. By applying the appropriate voltage on the plates itis possible to ¾draw¿ a �gure on the s
reen using the beam as a ¾marker¿.Consider the motion of an ele
tron in a homogeneous ele
tri
 �eld ofde�e
ting plates (see Fig. 2). Let an ele
tron enter the �eld at the speed

v0 and go along z-axis, i.e. perpendi
ular to the �eld lines. The motion isfree along the z-axis and it is uniformly a

elerated along the y-axis:

z = v0t, y =
at2

2
. (1)The a

eleration 
an be found by using the se
ond law of Newton:

a =
eEy

m
. (2)Using Eqs. (1) and (2) one �nds:

y =
eEy

2mv2
0

z2. (3)
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sTherefore the ele
tron path between the de�e
ting plates is a parabola.The ele
tron is displa
ed by distan
e h1 from the point of entry at the �eldexit and its velo
ity is de�e
ted by the angle α from z-axis:

h1 =
eEy

2mv2
0

l21, tan α =
eEy

mv2
0

l1. (4)Here l1 is the length of the plates. After leaving the �eld the ele
tron goesalong a straight line. The displa
ement h from the 
enter of os
illos
opes
reen 
an be obtained from Fig. 2:

h = h1 + l2 tan α =
eEyl1
mv2

0

(

l1
2

+ l2

)

. (5)Let the distan
e between the 
enter of a plate and the s
reen be L.Then

h =
eEyl1L

mv2
0

. (6)The speed v0 is determined by a

elerating voltage Ua on the se
ondanode:

mv2
0

2
= eUa. (7)The ele
tri
 �eld Ey between the de�e
ting plates is

Ey =
Uy

d
, (8)where Uy is the voltage between the plates and d is the distan
e betweenthem. Using Eqs. (6) �(8) one obtains:

h =
l1L

2dUa
Uy. (9)Therefore beam displa
ement is dire
tly proportional to the de�e
ting volt�age Uy. The proportionality 
oe�
ient k in Eq. (9) is 
alled tube voltagesensitivity:

k =
h

Uy
=

l1L

2dUa

[ cm

V

]

. (10)The tube sensitivity to voltage on the se
ond pair of plates is 
al
ulated inthe same way.Equation (9) also applies when de�e
ting voltage is time-dependent pro�viding the 
orresponding variation of time τ of ele
tron passage betweenthe plates is small. Typi
al time interval T , whi
h de�nes signal variation
1.1.6 93rate, 
an be the signal period, duration, build-up time, et
. Let us estimatethe minimum value Tmin whi
h satis�es Tmin ≫ τ . The speed of ele
tronleaving the ¾ele
tron gun¿ is approximately 2 · 107 m/s (for Ua ≈ 103 V).For l = 3 
m this gives τ = 1.5 · 10−9 s. Assuming that Eq. (9) appliesif Tmin/τ > 10 one obtains Tmin = 15 · 10−9 s. Therefore Eq. (9) 
or�re
tly determines the ele
tron 
oordinates on the s
reen if the frequen
y ofsinusoidal voltage on the de�e
ting plates is less than ∼108 Hz = 0.1 GHz.However, the a
tual maximum frequen
y is su�
iently less. Voltagesensitivity of the tube is a fra
tion of mm/V, so the input signal must beampli�ed before it is applied to os
illos
ope. Any ampli�er has a workingfrequen
y range in whi
h its 
oe�
ient of ampli�
ation is 
onstant, outsidethe range the 
oe�
ient falls sharply. The upper frequen
y is determinedby the time 
onstant of os
illos
ope 
ir
uit. Usually the working frequen
yrange of os
illos
ope is limited by that of the ampli�er.For the os
illos
ope used in this lab the working range is 0 −−1 MHz.In this range, a beam displa
ement on the s
reen in horizontal and verti
aldire
tions 
an be 
onsidered dire
tly proportional to the voltage on the
orresponding de�e
ting plates.Sweeps. A

ording to Eq. (9) x and y 
oordinates of the point where thebeam strikes the s
reen are proportional to instantaneous voltages Ux(t)and Uy(t).The signal amplitude varies between tens of mi
rovolts and several hun�dred volts whereas the sensitivity of the de�e
tion plates is a fra
tion ofmm/V. Therefore before the signal is applied to os
illos
ope it must beeither ampli�ed or diminished.Ampli�ers ¾Y¿ and ¾X¿ serve to amplify the signal applied to thehorizontal and verti
al plates, respe
tively. The attenuator (divider) atthe ¾Y¿ input allows one to redu
e the input signal by a required fa
tor.Two requirements must be met in order to obtain an ¾image¿ of periodi
ele
tri
 signal Uc(t) on the s
reen.1. The voltage Uy applied to the verti
ally de�e
ting plates must berelated to Uc as:

Uy(t) = U0y + kyuUc(t). (11)Here U0y is a 
onstant voltage whi
h determines image lo
ation on the Yaxis of the s
reen and kyu is the ampli�
ation 
oe�
ient of the input signalin the verti
al 
hannel.2. The voltage Ux applied to horizontally de�e
ting plates must belinearly proportional to time t:

Ux = U0x + kxut. (12)
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Fig. 3. Sweeps voltageHere U0x is a 
onstant voltage whi
h determines the image lo
ation on the

X axis of the s
reen and kxu is a 
oe�
ient whi
h depends on workingparameters of the sweep os
illator and the ¾X¿ 
hannel ampli�er.A sawtooth voltage generated by the sweep os
illator is also 
alledsweep voltage (see Fig. 3). During the forward sweep (Tfs) the voltagein
reases to maximum, so the beam 
rosses the s
reen from left to right ata 
onstant rate. When the forward sweep is 
ompleted, the voltage returnsto its initial value (Tbs), so the beam returns to its initial position on theleft side of the s
reen. The rate of forward sweep, i.e. the s
ale of X-axis,is 
ontrolled by knob ¾TIME/DIV¿ whi
h graduation 
orresponds to thetime of beam 
rossing a 
ell of the grati
ule. Waiting interval Tw allowsone to vary the s
ale of X axis regardless of the sweep period.A potential di�eren
e between the modulator of ¾ele
tron gun¿ and the
athode is positive during the forward sweep, so the bright tra
e on thes
reen is visible. During the ba
kward sweep (Tbs) the modulator voltage¾blo
ks¿ the beam, so there is no tra
e on the s
reen during the blo
kinginterval.Triggering. Observation of periodi
 and espe
ially fast pro
esses requiresthe period of sweeps be a multiple of the signal period. However eitherthe sweep os
illator or the signal is not stable. In pra
ti
e sweeps are
ontrolled by the studied periodi
 signal: the beginning of a forward sweepmust 
oin
ide with a sele
ted point of the signal. Pro
ess of syn
hronizingsweeps by means of a sele
ted point of the signal is 
alled triggering. Thismethod of syn
hronization is illustrated in Fig. 4.Signal Uy of an arbitrary shape (trapezoid in the �gure) rea
hes thethreshold voltage Ul (triggering level) from below that is 
ontrolled byknob ¾LEVEL¿ on the os
illos
ope front panel. At this moment the for�ward sweep of the ¾saw¿ starts provided the threshold is 
rossed duringthe waiting interval Tw (Figs. 3 and 4). The ¾saw¿ 
an start when thesignal Uy 
rosses threshold Ul either from below (like in Fig. 4) or fromabove a

ording to the 
hosen triggering mode (the swit
h ¾TRIGGER
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Fig. 4. Triggering of sweeps
+¿ or ¾TRIGGER −¿ on the front panel of os
illos
ope). Adjusting theknobs ¾TRIGGER¿ and ¾LEVEL¿ one 
ontrols a signal phase at the be�ginning of the sweep and a
hieve a desired image stability and observation
onvenien
e. Syn
hronization is impossible unless Uy 
rosses Ul.Sweep os
illator 
an work in automati
 or trigger mode that is 
on�trolled by swit
h ¾AUTO/TRIG¿. In automati
 mode the waiting time

Tw 
an not ex
eed some maximum Tw,max. If the signal Uy does not 
ross

Ul during Tw,max the forward sweep starts automati
ally at the momentwhi
h is not related to signal phase; the period Tauto of sawtooth voltageis determined by internal parameters of os
illos
ope. In this 
ase the im�age on the s
reen is ¾running¿; if there is no signal the horizontal line isdisplayed.If the signal Uy 
rosses Ul during the waiting interval, a forward sweepis triggered at the moment 
orresponding to a 
ertain phase of the signal.A stable image is then displayed.Syn
hronization in automati
 mode is possible only if the internalperiod of sweep os
illator is greater than the period of studied signal,

Tauto > Ts. Otherwise the �rst sweep 
y
le will be followed by anotherone or more forward sweeps of the ¾saw¿ triggered at the moments notrelated to a 
ertain phase of the signal, whi
h will result in several super�imposed images.In the waiting mode a forward sweep is triggered only if Uy 
rosses

Ul during the waiting time Tw. The time 
an be as long as ne
essary,so syn
hronization is realized for any period of the signal Us(t). A short
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sinterval of signal (e.g. the signal front or a short pulse whi
h duration ismu
h less than the time interval between pulses) 
an be observed only inthe waiting mode.Sweeps 
an also be syn
hronized by an external signal (instead of Uy)whi
h is syn
hronous to the signal under study. The external signal isapplied to the input 
onne
tor ¾EXT.TRIG.¿ on the os
illos
ope frontpanel. The swit
h ¾TRIGGER¿ must be in position ¾EXT.¿. Operationof the triggering 
ir
uit is similar to the one des
ribed above. The sweeprange (s
ale) is 
ontrolled by swit
h ¾TIME/DIV¿.The verti
al image dimension is 
ontrolled by swit
h ¾V/DIV¿ whi
hgraduation in volts 
orresponds to beam displa
ement by one 
ell of thegrati
ule (this quantity is 
alled de�e
tion 
oe�
ient). Knob ¾l¿ is usedto shift the image up and down by varying the 
onstant U0y (see Eq. (11)).Now 
onsider frequen
y response of verti
al and horizontal de�e
�tion 
hannels of os
illos
ope. Suppose that the sinusoidal signal Uy =
= U0 sin(2πft) is applied to the ¾Y¿ 
hannel. Beam position on the os
il�los
ope s
reen is then y = y0(f) sin(2πft + ∆Φy(f)), where y0(f) is theposition amplitude as a fun
tion of frequen
y f and ∆Φy(f) is the di�er�en
e between the phase of y and the phase of the signal Uy (phase shift)at the frequen
y f .Then the frequen
y response of the verti
al 
hannel is given by

Ky(f) =
y0(f)

U0

,and the phase response is the fun
tion ∆Φy(f). Frequen
y and phaseresponses of the horizontal de�e
tion 
hannel are de�ned in the same way.Usually the frequen
y response Ky(f) remains 
onstant, Ky = Ky,max,in the range from fmin to fmax and de
reases for f < fmin and f > fmax.The frequen
y range between fmin and fmax is 
alled bandwidth. Thevalues fmin and fmax are determined a

ording to
Ky(fmin)
Ky,max =

Ky(fmax)
Ky,max =

1√
2
≃ 0,7.Sin
e Ky(f) and ∆Φ(f) are not 
onstant in the whole frequen
y range,the shape of a high frequen
y pulse is distorted in the verti
al de�e
tion
hannel.The ¾Y¿ 
hannel 
an be used with an open and 
losed input. In the�rst 
ase both the variable U∼ and 
onstant U= 
omponents of a signalare transmitted, while in the se
ond 
ase it is only the variable one. Inthe 
losed input mode the 
onstant 
omponent is blo
ked by a dividing
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apa
itor 
onne
ted to the input. By swit
hing ¾∼/≃¿ on the front panelone 
an 
hoose a required input of the ¾Y¿ ampli�er. The horizontalde�e
tion 
hannel has the similar ¾X¿ ampli�er.To observe the dependen
e Uy = F (Ux) one applies signal Ux to the
losed input ¾→⊃X¿. The horizontal image size 
an not be adjusted in thelab os
illos
ope. To shift the image horizontally one uses the potentiometer¾↔¿ whi
h 
hanges the 
onstant U0x (see Eq. (12)).Lissajous 
urves. Two os
illations with equal or multiple frequen
iesapplied to the os
illos
ope inputs make the beam draw a stationary 
losed
urve 
alled Lissajous 
urve. The 
urve slowly rotates if the frequen
iesare not exa
t multiples; for arbitrary frequen
ies the pattern is smeared.Let us apply signal Ux = Ua cos(2πft + ϕ1) to the horizontally de��e
ting plates (the internal sweep os
illator must be swit
hed o�) andapply the signal of the same frequen
y but with the phase shifted, Uy =
= Ub cos(2πft + ϕ2), ϕ1 6= ϕ2, to the verti
ally de�e
ting plates.For sensitivities kx and ky the beam 
oordinates x, y on the s
reen are:

x = A cos(2πft + ϕ1), y = B cos(2πft + ϕ2), A = kxUa, B = kyUb.Ex
luding time t from these equations one readily obtains beam traje
tory:

x2

A2
+

y2

B2
− 2

xy

AB
cos(ϕ2 − ϕ1) = sin2(ϕ2 − ϕ1).Thus the 
urve obtained by superimposing two os
illations of the samefrequen
y is ellipse. The ellipse orientation depends on the phase shiftbetween the os
illations (ϕ2 − ϕ1).The parti
ular Lissajous 
urve depends on the relation between peri�ods, phases, and amplitudes of the os
illations. Some Lissajous 
urvesfor di�erent periods and phases are shown in Fig. 5. Parameters of anos
illation, e.g. fx, 
an be determined from the Lissajous 
urve providedthe parameters of the other os
illation, e.g. fy, are known. For example,one should imagine two straight lines, a verti
al and horizontal one, whi
h
ross the 
urve without 
rossing its nodes. The number of 
rossings withthe horizontal line nx and the verti
al line ny determines the ratio of thefrequen
ies a

ording to fy/fx = nx/ny.If either or both os
illations are not harmoni
 the 
urves are more
ompli
ated.Calibration signal. The os
illos
ope has internal generator of re
tangu�lar pulses of a �xed amplitude and the frequen
y of 50 Hz. The signalis used to 
he
k de�e
tion and sweep 
oe�
ients. When the signal is ap�plied to ¾Y¿ input (the swit
h ¾V/DIV¿ is in K position), a de�e
tion on
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Fig. 5. Lissajous 
urves for os
illations of the same amplitude

Y -axis must be 4.5�5.0 divisions and the os
illation period on X-axis mustbe 20 ms.Preparation of equipment1. Che
k that the devi
e 
asings are properly grounded. Swit
h on powersupplies of the os
illos
ope and the generators and let them warm up for3�5 min.2. Set the following knobs in intermediate positions (see Fig. 6): ¾BRIGHT�NESS¿, ¾FOCUS¿, ¾l¿, ¾↔¿, and ¾LEVEL¿.3. Set the swit
h ¾TRIGGER¿ in position ¾INT +¿ and the swit
h ¾AUTO/WAIT¿in position ¾AUTO¿. Swit
h ¾V/DIV¿ should be set to a low sensitivity,e.g. 5 V/div.4. Set the swit
h ¾TIME/DIV¿ in position 2 ms.5. A horizontal line appears on the s
reen in 1�2 min after the os
illos
ope isswit
hed on. If the line does not appear adjust the line position by knobs¾l¿ and ¾↔¿. Use the knobs ¾BRIGHTNESS¿ and ¾FOCUS¿ to obtaina 
lear sharp image.CAUTION!1. Do not in
rease brightness beyond the level at whi
h the image starts togrow.2. The beam on the os
illos
ope s
reen is visible only during the forwardsweep. In the waiting mode there is no image unless Ul and Uy 
ross (see
1.1.6 99

Fig. 6. Front panel of os
illos
ope
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sFig. 4). Therefore an experiment should begin in ¾AUTO¿ mode at thelowest sensitivity of the input ¾Y¿. In so doing the horizontal line is visibleeven if a signal is absent. By in
reasing the sensitivity with ¾V/DIV¿set the image amplitude of 2�6 divisions. Use the knob ¾LEVEL¿ tostabilize image. A 
onvenient horizontal dimension is adjusted by knob¾TIME/DIV¿. If this fails try again the syn
hronization attempt in the¾WAIT¿ mode.3. To apply a signal to the ¾X¿ input (to observe Uy = F (Ux) dependen
e)one should swit
h o� the internal sweep os
illator as follows:� set the beginning of sweep at the s
reen 
enter in ¾AUTO¿ mode;� swit
h the trigger to waiting mode (¾WAIT¿);� turn the knob ¾LEVEL¿ to the minimum, the image must vanish;� in
rease the s
reen brightness if ne
essary (¾BRIGHTNESS¿).LABORATORY ASSIGNMENTI. Observation of periodi
 signal of a
ousti
 frequen
y generator(AFG)1. Figure out how the signal image depends on syn
hronization modes. Tothis end 
onne
t the input ¾Y¿ to output of AFG. Set the followingswit
hes as: ¾TRIGGER¿ to ¾INT +¿, ¾WAIT�AUTO¿ to ¾AUTO¿,¾V/DIV¿ to 5, and ¾TIME/DIV¿ to 2 ms. Apply a signal of frequen
y100 Hz and arbitrary amplitude (e.g. set the attenuator of AFG at 0 dB)to the input ¾Y¿. The os
illos
ope must display a sinusoid. If the sinu�soid is ¾running¿, stabilize it by turning knob ¾LEVEL¿. Shift the imagehorizontally until the initial point of the sinusoid appears.2. Turn the knob ¾LEVEL¿ and observe how the 
urve 
hanges. Perform thesame observations at the modes ¾AUTO¿, ¾WAIT¿, and internal triggermodes ¾INT +¿ and ¾INT −¿. Figure out how the 
urve appearan
edepends on triggering mode.3. Obtain a stable image for three arbitrary sets of AFG 
ontrols (e.g. 100 Hz,0 dB; 1000 Hz, 10 dB; and 3 · 105 Hz, 30 dB). Adjust the image size usingknobs ¾TIME/DIV¿, ¾V/DIV¿.II. Measurement of amplitude of sinusoidal signal. Correspon�den
e between step-wise attenuator of AFG (the swit
h ¾⊳ dB¿)and the 
ontrol swit
h of verti
al image s
ale (¾V/DIV¿ on theos
illos
ope front panel).1. Set the swit
h ¾V/DIV¿ in position ¾5¿, the frequen
y of AFG at fafg =
= 1000 Hz, and the attenuator at ¾0 dB¿; by adjusting the AFG outputset the sinusoid amplitude at 2A = 4 divisions. Obtain a stable sinusoidon the s
reen. After that the output voltage of the generator should notbe altered.

1.1.6 1012. Set the step-wise attenuator of AFG in position ¾10 dB¿. Adjust the ver�ti
al image size by the knob ¾V/DIV¿ and measure the signal amplitude.Perform the measurement for all positions of the attenuator (they 
orre�spond to di�erent values of attenuation α, [dB℄) and tabulate the resultsin Table 1. T a b l e 1Settings of AFG attenuator and os
illos
ope divider
α, dB V/DIV 2A, DIV 2A, Â β, dB |α − β|, dB010. . . . . . . . . . . . . . . . . .70Parameter β is de�ned as β = −20 lg(2A[V ]/20[V ]), the measurementunit is 1 dB (1 de
ibel). Plot a graph in 
oordinates β, α. Find themaximum dis
repan
y between β and α.III. Measurement of frequen
y of sinusoidal signalSet the amplitude of sinusoidal signal at 6 divisions and the AFG fre�quen
y in a

ordan
e with Table 2. Obtain a stable image. Set a 
on�venient horizontal size of the image by using the swit
h ¾TIME/DIV¿.Measure the signal period, 
al
ulate the frequen
y and tabulate the resultsin Table 2. T a b l e 2Period and frequen
y of sinusoidal signal

fafg, TIME T , T , fmes, |fafg − fmes|, |fafg − fmes|Hz DIV DIV s Hz Hz fmes

2 · 10

2 · 102. . . . . . . . . . . . . . . . . . . . .

2 · 106IV. Measurement of frequen
y response of the ampli�ers of¾X¿ and ¾Y¿ 
hannels1. Conne
t the output of AFG to the ¾Y¿ input of os
illos
ope. Set theswit
h ¾V/DIV¿ in position ¾1¿. Set the amplitude of sinusoidal signalat 6 divisions at AFG frequen
y fafg = 103 Hz. Obtain a stable image.
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sMeasure the signal amplitude 2Ay (or 2Ax) in the whole working frequen
yrange of AFG a

ording to Table 3 both for open (≃) and 
losed (∼) input.Cal
ulate the values of parameter K using Eq. (13):

K(fafg) =
2A(fafg)[V ]

6[V ]
. (13)Tabulate the results in Table 3. T a b l e 3Frequen
y response of 
hannel ampli�ers

fafg, Hz 10 . . . 102 103 104 105 106 . . . 107

2Ay, div

Ky, ≃
2Ay, div

Ky, ∼
2Ax, div

KxOne should determine the frequen
ies at whi
h 
oe�
ients Kx and Kyare equal to approximately 0.7 of their maximum values. These frequen
iesde�ne the ampli�er bandwidth.2. Turn o� the internal sweep os
illator of X . To do this set the swit
hesin the following positions: ¾TRIGGER¿ to ¾EXT¿, ¾WAIT�AUTO¿ to¾WAIT¿, turn ¾LEVEL¿ 
lo
kwise to halt, and ¾BRIGHTNESS¿ to max�imum. Conne
t the output of AFG to the ¾X¿ input of os
illos
ope andset the signal amplitude at 6 divisions at AFG frequen
y fafg = 103 Hz.The image should be a segment of straight horizontal line at the s
reen
enter.3. Measure the signal amplitude 2Ax, 
al
ulate Kx(f) in the same way as
Ky(f), and tabulate the results in Table 3.4. Plot Ky,≃(f), Ky,∼(f), and Kx(f) on the same graph using logarithmi
s
ale for frequen
y f .5. Turn on the internal sweep os
illator. Consider (qualitatively) how thefrequen
y response of ¾Y¿ 
hannel a�e
ts a pulse signal. Set the swit
h ofsignal shape of AFG in position ¾⊓¿. Set the signal amplitude at 4 divisionson the os
illos
ope s
reen. Observe the signal at open (≃) and 
losed (∼)inputs at frequen
ies of 10 Hz, 103 Hz, 2 · 105 Hz, and 106 Hz. Sket
h the
urves.

1.1.6 103V. Measurement of phase shift between output signals of ¾Y¿ and¾X¿ 
hannels when input signal is the same for both 
hannels,i.e. measurement of the di�eren
e between phase responses of¾X¿ and ¾Y¿ 
hannels.
Fig. 7. Lissajous 
urve for

fx = fy and arbitrary phaseshift ∆Φxy

1. Turn o� the internal sweep os
illator asin IV.2. Apply a signal of frequen
y 104 Hzfrom the AFG output simultaneously to in�puts of ¾X¿ and <Y¿ 
hannels using a tee
onne
tor. By adjusting the AFG output setthe amplitude of X at 6 divisions. The s
aleon Y must be 0.5 V/DIV. The image mustbe a segment of straight line at the angle of30�60◦ to the verti
al (a degenerate ellipse).By varying frequen
y observe transformationof the segment to ellipse.2. Using the grati
ule measure the parameters A and B (see Fig. 7) in thewhole range of AFG frequen
ies and 
al
ulate the phase shift ∆Φxy as

∆Φxy =







± arcsin B
A , if the ellipse is tilted to the right,as in Fig. 7;

±π ∓ arcsin B
A , if the ellipse is tilted to the left.The sign ¾+¿ or ¾−¿ 
orresponds to 
lo
kwise or 
ounter
lo
kwise motionof the point tra
ing the ellipse. By in
reasing or de
reasing frequen
y onetransforms the ellipse to a straight line and the motion reverses.Tabulate the data in Table 4. Plot ∆Φxy(f) using a logarithmi
 s
alefor fafg. T a b l e 4Phase shift ∆Φ versus frequen
y

fafg, Hz 10 . . . 50 102 103 104 105 106 . . . 107

A, div
B, div

∆ΦxyVI. Observation of Lissajous 
urves obtained by superimposingorthogonal os
illationsTurn o� the internal sweep os
illator. Apply a sinusoidal signal offrequen
y fx to the input ¾X¿ from the �rst AFG, and a sinusoidal signal offrequen
y fy to the input ¾Y¿ from the se
ond AFG. Adjust the amplitudes
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sof the signals and the swit
h ¾V/DIV¿ so that the Lissajous 
urve o

upiesthe major part of os
illos
ope s
reen. Set fy at 1 kHz. By varying fx obtaina stable 
urve for the following values of the ratio fy/fx: 1:1, 2:1, 3:1, and3:2. Sket
h the 
urves and 
ompare them with the 
urves shown in Fig. 5.Literature1. Ëàáîðàòîðíûå çàíÿòèÿ ïî �èçèêå / Ïîä ðåä. Ë.Ë. �îëüäèíà. � Ì.: Íàóêà,1983.2. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. III. � Ì.: Íàóêà, 1996.3. Êàëàøíèêîâ Ñ.�. Ýëåêòðè÷åñòâî. � Ì.: Íàóêà, 1985.4. Äæîíñ Ì.Õ. Ýëåêòðîíèêà � ïðàêòè÷åñêèé êóðñ. � Ì.: Ïîñòìàðêåò, 1999.
Chapter IIDYNAMICS

Dynami
s of many parti
les. In 
lassi
al me
hani
s the state of motionof a parti
le is de�ned by the parti
le position ve
tor ~r and momentum ~p =
= m~v. A state evolves in time a

ording to equation of motion, (Newton'sse
ond law):

d~p

dt
= ~F (~r, ~p, t). (2.1)It is important that the right-hand side (the for
e) depends only on theparti
le state. Solution of Eq. (2.1) for some boundary 
onditions gives alaw of parti
le motion:
~r = ~r(t).Sin
e the equation of motion of a parti
le is linear, it be
omes for a setof parti
les

d

(

n
∑

i=1

~pi

)

dt
=

n
∑

i=1

~Fi. (2.2)Here only the external for
es are 
ounted be
ause the internal for
es a
tingbetween the parti
les 
an
el out.Any set of parti
les has a remarkable geometri
 point 
alled the 
enterof mass. The position ve
tor of the 
enter of mass is de�ned as

~R =

n
∑

i=1

mi~ri

n
∑

i=1

mi

.Obviously, the velo
ity of the 
enter of mass is

~v =
~P

m
,
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swhere ~P =
n
∑

i=1

~pi is the net momentum of the parti
les, and m =
n
∑

i=1

mi isits mass. A

ording to Eq. (2.2)

m
d~v

dt
=

n
∑

i=1

~Fi.Therefore the 
enter of mass behaves as the single parti
le whi
h mass isequal to the total mass of parti
les and the for
e exerted on this parti
leequals the sum of all the external for
es. The 
enter of mass velo
ity 
anbe regarded as the velo
ity of the set as a whole.If there are no for
es exerted on the set of parti
les, the set is 
alledisolated or 
losed. In this 
ase Eq. (2.2) predi
ts 
onservation of the netmomentum:

n
∑

i=1

~pi = const, (2.3)i. e.

~v = const.The 
enter of mass of an isolated set of parti
les serves as the origin of aspe
ial inertial frame of referen
e 
alled the 
enter of mass frame.The net momentum in the 
enter of mass frame is zero.The sum of momenta of two parti
les before and after an intera
tion,e.g. a 
ollision, is the same:

~p10 + ~p20 = ~p1 + ~p2 (2.4)or

m1~v10 + m2~v20 = m1~v1 + m2~v2. (2.5)Here the subs
ript ¾0¿ refers to the quantities before the intera
tion.Let ~p be the parti
le momentum and ~r be its position ve
tor withrespe
t to some point of origin O. Then the angular momentum ~L of theparti
le with respe
t to O is de�ned as the 
ross produ
t:
~L = ~r × ~p. (2.6)Similarly, if there is a for
e ~F exerted on the point, the torque due tothe for
e with respe
t to O is de�ned as the ve
tor produ
t
~M = ~r × ~F . (2.7)

Chapter II 107Multiplying Eq. (2.1) by ~r on the left and using ~p = md~r
dt one �nds:

d~L

dt
= ~M. (2.8)Equation (2.7) 
an be written in a more transparent form as

M = rF sin θ = Fh,where θ is the angle between the ve
tors ~r and ~F and h = r sin θ is thelength of the perpendi
ular drawn from the point O to the dire
tion of thefor
e, this distan
e is 
alled the lever arm with respe
t to O.On the other hand,
~M = ~r × ~F =

∣

∣

∣

∣

∣

∣

~i ~j ~k
x y z
Fx Fy Fz

∣

∣

∣

∣

∣

∣

=

=~i(yFz − zFy) +~j(zFx − xFz) + ~k(xFy − yFx).Here ~i, ~j, and ~k are the unit basis ve
tors 
orresponding to the axes Ox,

Oy, and Oz. Let us 
hoose the referen
e frame so that ve
tors ~r and ~F liein the same plane. In addition, let the axis Ox be dire
ted along ~r. Then

~r = (x, 0, 0), ~F = (Fx, Fy, 0),i.e.
Mx = 0, My = 0, Mz = xFy = xF sin θ = Fh.Sin
e the perpendi
ular drawn from the point O to the dire
tion of thefor
e ~F is perpendi
ular to Oz, its length h 
an be 
alled the lever arm withrespe
t to Oz. For this reason the proje
tions of ~M on the 
oordinate axesare 
alled moments of for
e with respe
t to these axes. Similar 
onsiderationapplies to angular momentum ~L.In an arbitrary frame ve
tors ~r and ~F 
an be written as follows:

~r = ~r⊥ + ~r‖, ~F = ~F⊥ + ~F‖.Here ~r⊥ is the 
omponent of ~r perpendi
ular to Oz and ~r‖ is the parallel
omponent. The ve
tors ~F⊥ and ~F‖ are similarly de�ned. One 
an showthat

~M‖ = ~r⊥ × ~F⊥,i.e.

Mz = r⊥ · F⊥ sinϕ,
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swhere ϕ is the angle between ~r⊥ and ~F⊥. For the 
omponent Lz of angularmomentum one has

Lz = r⊥ · p⊥ sin α,where α is the angle between ~r⊥ and ~p⊥.The net angular momentum of a set of parti
les is the sum of angularmomenta of all parti
les and the net torque is due to external for
es onlybe
ause the torques due to inter-parti
le for
es 
an
el out. Therefore

d

(

n
∑

i=1

~Li

)

dt
=

n
∑

i=1

~Mi. (2.9)If the set of parti
les is isolated, i.e. no external for
e a
ts on it, the nettorque is zero and the net angular momentum of the parti
les is 
onserved:

n
∑

i=1

~ri × ~pi = const. (2.10)Sometimes ve
tor quantities like momentum and angular momentumare not 
onserved but a 
ertain 
omponent is. For instan
e, the 
omponentof momentum perpendi
ular to the lines of for
e of uniform gravitational�eld and angular momentum with respe
t to an axis parallel to the �eldare 
onserved. In a 
entral �eld the angular momentum with respe
t tothe �eld 
enter is 
onserved.The work done by for
e ~F is de�ned as the dot produ
t

dA = ~F · d~r, (2.11)where d~r is the parti
le displa
ement due to the for
e.Using the se
ond Newton' law (2.1) one obtains
dA =

d~p

dt
d~r = ~vd~p =

1

m
~p d~p =

1

m
p dp = d

(

p2

2m

)

.Therefore the work 
hanges the quantity 
alled kineti
 energy of theparti
le:

K =
p2

2m
=

mv2

2
. (2.12)If the work done by a for
e on a parti
le whi
h travels in a 
losed pathis zero, the for
e is 
alled 
onservative. An equivalent de�nition is thatthe work done by a 
onservative for
e is path independent. Gravitational�eld is an example of 
onservative for
e. The �eld of a 
onservative for
e
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an be spe
i�ed by potential energy U . By de�nition the work done by a
onservative for
e equals the loss of the potential energy:
dU = −~F d~r. (2.13)Using the se
ond Newton's law one obtains:

dU = −d~p

dt
d~r = −~vd~p = − 1

m
~p d~p = − 1

m
pdp = −d

(

p2

2m

)

,i.e.

d

(

U +
p2

2m

)

= 0. (2.14)This is the law of 
onservation of me
hani
al energy.The net kineti
 energy of a set of parti
les is equal to the sum of kineti
energies of the parti
les. In an isolated set of parti
les, i.e. no externalfor
e a
ts on the set, the net kineti
 energy 
an 
hange (unlike the net mo�mentum and angular momentum) due to the work done by internal for
es.The net kineti
 energy is 
onserved provided the intera
tions between par�ti
les are elasti
, i.e. energy transforms only from kineti
 to potential andba
k. For two parti
les with an elasti
 intera
tion between them the lawof 
onservation of kineti
 energy is
p2
10

2m1

+
p2
20

2m2

=
p2
1

2m1

+
p2
2

2m2or
m1v

2
10

2
+

m2v
2
20

2
=

m1v
2
1

2
+

m2v
2
2

2
. (2.15)Here the subs
ript ¾0¿ stands for a quantity before the intera
tion.Using these relations in Eqs. (2.4) and (2.5) one 
an prove that in the
enter of mass frame the momentum of a parti
le 
hanges only its dire
tionwhile its magnitude remains the same.The net kineti
 energy of a set of parti
les in an arbitrary frame is thesum of the kineti
 energies of parti
les in the 
enter of mass frame and thekineti
 energy of the set whi
h speed equals that of the 
enter of mass.The laws of 
onservation of momentum, angular momentum, and en�ergy derived from equations of motion are, in fa
t, fundamental propertiesof an isolated system, whi
h follow from homogeneity and isotropy of spa
eand homogeneity of time.A parti
le whi
h speed is 
lose to the speed of light (v ∼ c, c =

= 3 · 1010 
m/s) is 
alled relativisti
. High energy physi
s experimentally
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s
on�rms the relation between the momentum of a relativisti
 parti
le andits velo
ity:

~p =
m~v

√

1 − v2

c2

, (2.16)where m is the parti
le mass. Equation (2.1) remains the same althoughthe relation between momentum and velo
ity is di�erent. Using Eq. (2.1)one 
an show that

d

dt





mc2

√

1 − v2

c2



 =
dA

dt
,where dA = ~F ·d~r is in�nitesimal work. The kineti
 energy K of a parti
le
an be de�ned as the work done by a for
e a

elerating the parti
le fromzero speed to v. Then

K =
mc2

√

1 − v2

c2

− mc2. (2.17)Sin
e

(

1 − v2

c2

)−1/2

= 1 +
1

2

v2

c2
+ . . . ,Eq. (2.17) be
omes for v ≪ c

K =
mv2

2
,whi
h is to be expe
ted.A

ording to 
ollider experiments the energy of a free parti
le does notvanish at v = 0 but tends to a 
onstant value of mc2. Therefore the parti
leenergy is a
tually the quantity

E = K + mc2,i.e.

E =
mc2

√

1 − v2

c2

. (2.18)The 
onstant mc2 is 
alled the parti
le rest energy. By 
omparingEqs. (2.16) and (2.18) one 
an see that the parti
le momentum is
~p =

E
c2

~v. (2.19)
Chapter II 111At v = c both momentum and energy of a massive parti
le tend to in�nity.Therefore a massive parti
le 
annot move faster than light. However rel�ativisti
 me
hani
s admits existen
e of massless parti
les whi
h travel atthe speed of light (e.g. photons and neutrinos). Equation (2.19) for theseparti
les be
omes

p =
E
c
. (2.20)We use the term ¾parti
le¿ although its ¾elementariness¿ is never used.Therefore Eqs. (2.16), (2.18), and (2.19) 
an be equally applied to any body
omprised of many parti
les. The mass m is then the total body mass and vshould be understood as the body velo
ity as a whole.The energy of a body at rest 
onsists of the rest energy of the 
onstituentparti
les, their kineti
 energies and the intera
tion energy of the parti
les.Therefore

mc2 6=
∑

i

mi · c2,where mi is the mass of i-th parti
le.Thus mass is not 
onserved in relativisti
 me
hani
s, there is only thelaw of 
onservation of energy whi
h also in
ludes rest energy.By taking the squares of Eqs. (2.16) and (2.18) one 
an see that

E2 − (pc)2 = m2c4, (2.21)i.e.
E =

√

(mc2)2 + (pc)2. (2.22)Equation (2.21) is often 
alled the main kinemati
 identity of relativisti
me
hani
s.Noti
e that a parti
le for whi
h

p ≫ mc,is 
alled ultrarelativisti
. For su
h a parti
le Eq. (2.20) holds approxi�mately.When des
ribing 
ollisions of relativisti
 parti
les it is 
onvenient towrite the main kinemati
 identity as

(

∑

i

Ei

)2

−
(

∑

i

~pic

)2

= invariant. (2.23)The term ¾invariant¿ means that the right-hand side of Eq. (2.23)remains the same in another inertial frame of referen
e.
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sRigid body dynami
s. One of the most important me
hani
al 
on
eptsis that of absolutely rigid body. Absolutely rigid body is a set of parti
les inwhi
h the distan
e between any pair of parti
les remains the same duringthe body motion.Consider rotation of a rigid body around some axis. In this 
ase all thebody parti
les move around the 
ir
les whi
h 
enters belong to the samestraight line 
alled rotation axis. The axis 
an be either inside or outsidethe body. Let us 
hoose a point O on the rotation axis. The positionof the parti
le A of the rigid body 
an be spe
i�ed by the radius-ve
tor−−→
OA = ~r. If the body rotates by the angle dϕ for the time interval dt, thedispla
ement of A is then

|d~r| = r⊥ · dϕ, (2.24)where r⊥ is the distan
e between A and the rotation axis.The rate of 
hange of the angular displa
ement is 
alled angular velo
ity

ω. Sin
e the linear displa
ement dl = rdϕ for the same time interval equals

vdt,

v = ω · r. (2.25)This relation 
an be also written in ve
tor form by introdu
ing theve
tor of rotation angle ~ϕ and the ve
tor of angular velo
ity ~ω. Thesequantities together with torque and angular momentum are ve
tors albeitunusual. Unlike ordinary ve
tors (e.g. position ve
tor, velo
ity, and for
e)whi
h are 
alled polar ve
tors, these ve
tors have opposite dire
tions in theright-handed (the z-axis is along the motion of a right s
rew when turningthe s
rew from x to y) and left-handed 
oordinate frames. Ve
tors whi
hpossess this property are 
alled axial ve
tors. As long as one employs thesame 
oordinate frame (usually it is the right-handed) the axial and polarve
tors 
an be treated on the same footing. In ve
tor form Eq. (2.25)be
omes:

~v = ~ω × ~r. (2.26)The rotation angle is related to the angular velo
ity as
~ω =

d~ϕ

dt
. (2.27)Any body 
an be treated as a set of n parti
les (in
luding n → ∞). Inthis 
ase the torque and the angular momentum are de�ned as the sums:

~M =
n
∑

i=1

~ri × ~Fi, (2.28)
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~L =

n
∑

i=1

~ri × mi~vi. (2.29)As it was already mentioned a set of parti
les in whi
h the distan
ebetween any two parti
les remains 
onstant during a motion is 
alled rigidbody. Consider rotation of a rigid body around immobile axis Oz. Theangular velo
ity ve
tor ~ω is the same for all parti
les of the body and it isparallel to the axis. The parti
le velo
ity is
~vi = ~ω × ~ri,where ~ri is the position ve
tor of the parti
le drawn from the origin O.Any parti
le moves around the 
ir
le whi
h radius is ri⊥. The ve
tors ~ri⊥and ~vi⊥ are perpendi
ular, i.e. the angular momentum of i-th parti
le is

Li⊥ = miri⊥vi⊥ = mir
2
i⊥ω.The net angular momentum of the body is

Lz =

n
∑

i=1

mir
2
i⊥ω = Izω.The quantity Iz introdu
ed here spe
i�es the body's rotational inertia,it is 
alled the moment of inertia around z axis. It is determined not onlyby the body mass but also the mass distribution with respe
t to the axisof rotation:

Iz =

n
∑

i=1

mir
2
i⊥. (2.30)The moment of inertia I around an axis of rotation 
an be expressed viathe moment of inertia I0 around the parallel axis whi
h passes through the
enter of mass of the body, the mass of body m, and the distan
e betweenthe axes a0:

I = I0 + ma2
0. (2.31)This relation is 
alled Huygens-Steiner theorem.The distan
e of mass mi from the axis of rotation in Eq. (2.30) 
anbe expressed via its 
oordinates as r2

i⊥ = x2
i + y2

i . Similar equations 
anbe written for moments of inertia around x and y axes:

Ix =
n
∑

i=1

mi(y
2
i +z2

i ), Iy =
n
∑

i=1

mi(z
2
i +x2

i ), Iz =
n
∑

i=1

mi(x
2
i +y2

i ). (2.32)
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sAdding the moments of inertia and taking into a

ount that r2
i =

= x2
i + y2

i + z2
i one obtains the relation:

Ix + Iy + Iz = 2
n
∑

i=1

mir
2
i = 2I⊙. (2.33)Here the moment of inertia around the point I⊙ is introdu
ed.Equation (2.33) turns out to be very useful in 
al
ulating the momentsof inertia. For example, by pla
ing the origin at the 
enter of a thin spher�i
al shell of radius R one obtains:

Ix = Iy = Iz =
2

3
I⊙ =

2

3
mR2. (2.34)Equation of motion of a rigid body rotating around a �xed axis Oz is

Iz
dω

dt
= Mz. (2.35)Comparing this equation with Newton's se
ond law (2.1) one 
an see thattwo equations are identi
al up to repla
ement of the for
e with the torque,the a

eleration with the angular a

eleration, and the mass with the mo�ment of inertia (the latter depends on the mass and its distribution relativeto the axis). Similar 
orresponden
e exists in the expression of kineti
 en�ergy K:

K =
1

2

n
∑

i=1

miv
2
i =

1

2

n
∑

i=1

mir
2
i⊥ω2

z =
1

2
Izω

2
z =

L2
z

2Iz
. (2.36)Noti
e that the linear displa
ement in the expression for work is similarto the rotation angle. In the simplest 
ase of the for
e tangential to the
ir
ular path of a parti
le one obtains:

dA = F dr = Fr dϕ = M dϕ. (2.37)Equation (2.30) also applies to 
ontinuous mass distribution if the sumover the parti
les is repla
ed by the integral over in�nitesimal body ele�ments:

Iz =

∫
r2
⊥ dm. (2.38)Ve
tors and tensors. Many problems of physi
s require the 
on
ept oftensor to be properly formulated. Often a ve
tor is de�ned as an orderedtriplet of numbers. However one 
an see that not any ordered triplet forms
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A

O

~rA

xA x

x′
A

x′

y′
A

y′
yA

y

ϕ

ϕFig. 2.2. Rotation of 
oordinate framea ve
tor. For instan
e, pressure, volume, and temperature (P , V , T ) ofany mass of gas form the ordered triplet whi
h is not ve
tor. On the otherhand, the triplet (x, y, z), where x, y, and z are 
oordinates of some pointin a Cartesian frame form the ve
tor 
alled radius ve
tor. What is thedi�eren
e?Ve
tor is a 
on
ept originated from experien
e. The latter tea
hes thatparti
le displa
ements (arrows) are added a

ording to the parallelogramrule (see Fig. 2.1):
~r13 = ~r12 + ~r23. 1 23~r12

~r23

~r13Fig. 2.1. Ve
tor addition:

~r13 = ~r12 + ~r23

This is one of the de�ning properties ofve
tor that is independent of the 
oordinateframe. However the de�nition of the radiusve
tor as a triplet of numbers (x, y, z) dependson the 
oordinate frame. This de�nition 
anbe made invariant by spe
ifying the rule re�lating the 
oordinates of a point in di�erentframes.Let a 
oordinate frame be rotated around z axis by the angle ϕ (seeFig. 2.2).Coordinates of the point A transform as:

x′
A = xA cosϕ + yA sin ϕ,

y′
A = −xA sin ϕ + yA cosϕ,

z′A = zA.These equations de�ne the law of transformation of the 
omponents of
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tor be
ause ~rA ≡ (xA, yA, zA). The same transformation lawholds for 
omponents of any ve
tor. For instan
e, the ve
tor of for
e

~F ≡ (Fx, Fy , Fz) transforms as:

F ′
x = Fx cosϕ + Fy sinϕ,

F ′
y = −Fx sin ϕ + Fy cosϕ,

F ′
z = Fz.Thus the transformation law of the 
omponents of radius ve
tor de�nesve
tor of any kind. The triplet of numbers (P , V , T ) does not satisfy thislaw sin
e it is independent of the 
oordinate frame.Let us give a general de�nition of a ve
tor. Suppose there are two
oordinate frames, Ox1x2x3 and Ox′

1x
′
2x

′
3, with the 
ommon origin O.Ve
tor ~A is an ordered triplet of numbers (A1, A2, A3) whi
h transformsunder rotation of the 
oordinate frame as the triplet of 
oordinates (x1,

x2, x3) of a radius-ve
tor:

A′
i =

3
∑

k=1

αikAk, i = 1, 2, 3. (2.39)Here αik is the 
osine of the angle between the axes Ox′
i and Oxk.This de�nition 
an be generalized. A se
ond-rank tensor is a triplet ofve
tors (~T1, ~T2, ~T3) whi
h under rotation of the frame transforms a

ordingto the same law:

~T ′
i =

3
∑

k=1

αik
~Tk, i = 1, 2, 3. (2.40)Ve
tors ~T1, ~T2, and ~T3 
an be 
alled 
omponents of tensor T on the axes

Ox1, Ox2, and Ox3, respe
tively, and ve
tors ~T ′
1, ~T ′

2, and ~T ′
3 are the 
om�ponents on the axes Ox′

1, Ox′
2, and Ox′

3. Obviously,
~T1 =~iT11 +~jT12 + ~kT13,
~T2 =~iT21 +~jT22 + ~kT23,
~T3 =~iT31 +~jT32 + ~kT33,

(2.41)where ~i, ~j, and ~k are unit ve
tors of the 
oordinate frame. Thus tensor
T 
an be spe
i�ed by the matrix Tik whi
h elements are 
alled tensor
omponents.The set of Eqs. (2.41) 
an be written in a 
ompa
t form:

~Tk =
∑

l

~elTkl, k = 1, 2, 3, (2.42)
Chapter II 117where ~e1 =~i, ~e2 = ~j, and ~e3 = ~k. Similarly,

~T ′
i =

∑

m

~e′mT ′
im, i = 1, 2, 3, (2.43)where ~e′1 =~i′, ~e′2 = ~j′, and ~e′3 = ~k′. Substituting Eqs. (2.42) and (2.43) inEq. (2.40) one �nds

∑

m

~e′mT ′
im =

∑

k,l

αik ~el Tkl. (2.44)S
alar multipli
ation of Eq. (2.44) by ~e′n gives the transformation law forthe tensor 
omponents:
T ′

in =
∑

k,l

αik αnl Tkl. (2.45)Here one uses the relation (~e′n, ~el) = αnl, (~e′m, ~e′n) = δmn, where δmn isidentity matrix, i.e.
δmn =

{

1, åñëè m = n,
0, åñëè m 6= n.

O

A

dm

~r~s

~r‖

~r⊥

Fig. 2.3. Cal
ulation ofmoment of inertia aroundarbitrary axis

Equation (2.45) de�nes the transformationlaw of a se
ond-rank tensor under rotationsof 
oordinate frame. One 
an see that it isreasonable to 
lassify ve
tors and s
alars astensors of the �rst-rank and zero-rank, respe
�tively. Components of a third-rank tensortransform as
T ′

ikl =
∑

m,n,p

αim αkn αlp Tmnp.As an example, 
onsider tensor of inertiaof a rigid body. Let us 
al
ulate the momentof inertia I of the body around arbitrary axis OA passing through theorigin O (see Fig. 2.3).Let us write the radius ve
tor ~r of a body element of mass dm as thesum of the ve
tor 
omponents along OA and perpendi
ular to it:

~r = ~r‖ + ~r⊥.By de�nition the moment of inertia is

I =

∫
r2
⊥dm =

∫
(r2 − r2

‖)dm.
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sIf ~s is a unit ve
tor along the axis OA, then

r‖ = (~r,~s) = x1s1 + x2s2 + x3s3.Also

r2 = x2
1 + x2

2 + x2
3, s2

1 + s2
2 + s2

3 = 1.Combining the above relations one obtains:

I = I11s
2
1 + I22s

2
2 + I33s

2
3 + 2I12s1s2 + 2I23s2s3 + 2I31s3s1, (2.46)where

I11 =
∫
(x2

2 + x2
3)dm,

I22 =
∫
(x2

3 + x2
1)dm,

I33 =
∫
(x2

1 + x2
2)dm,

I12 = I21 = −
∫

x1x2 dm,

I23 = I32 = −
∫

x2x3 dm,

I31 = I13 = −
∫

x3x1 dm.

(2.47)Equation (2.46) shows how the moment of inertia around axis OA de�pends on the 
osines of the axis. The equation has a geometri
 interpreta�tion. Let us draw straight lines through the origin O in various dire
tionsand plot the points on them at the distan
e 1/
√

I from the origin. Thepoints form a surfa
e. Let us �nd the equation of the surfa
e. Radius-ve
�tor of a point on the surfa
e is

~r =
~s√
I
,i.e.

si = xi

√
I, i = 1, 2, 3. (2.48)Substitution of Eq. (2.48) in Eq. (2.46) gives

I11x
2
1 + I22x

2
2 + I33x

2
3 + 2I12x1x2 + 2I23x2x3 + 2I31x3x1 = 1. (2.49)This surfa
e of the se
ond order is an ellipsoid sin
e it does not have pointsat in�nity (I 6= 0). The ellipsoid is 
alled inertia ellipsoid of the body
onstru
ted around the point O. Inertia ellipsoid depends on the pointof 
onstru
tion. The 
entral inertia ellipsoid is the ellipsoid 
onstru
tedaround the 
enter-of-mass. One 
an show that the moment of inertia of arigid body has all the features of a se
ond-rank tensor: it is in one-to-one
orresponden
e with matrix Iik and its ve
tor 
omponents are
~I1 = ~e1I11 + ~e2I12 + ~e3I13,
~I2 = ~e1I21 + ~e2I22 + ~e3I23,
~I3 = ~e1I31 + ~e2I32 + ~e3I33.

(2.50)
Chapter II 119There is a theorem in algebra that Eq. (2.49) 
an be redu
ed to themain axes Ox, Oy, and Oz:

Ixx2 + Iyy2 + Izz
2 = 1. (2.51)The origin O of 
oordinate frame is usually pla
ed at the 
enter-of-mass.The quantities Ix, Iy, and Iz are 
alled the main moments of inertia of thebody. Ve
tor 
omponents of the tensor on the main axes Ox, Oy, and Ozare

~Ix =~iIx, ~Iy = ~jIy , ~Iz = ~kIz . (2.52)If the 
osines of a given axis with respe
t to the main axes are known,

sx = cosα, sy = cosβ, sz = cos γ,then taking into a

ount that
Ixy = 0, Iyz = 0, Izx = 0,and using Eq. (2.46) one obtains:

I = Ix cos2 α + Iy cos2 β + Iz cos2 γ. (2.53)Otherwise, if the moments of inertia I1, I2, and I3 around three arbi�trary axes are known, one 
an solve the set of linear equations

I1 = Ix cos2 α1 + Iy cos2 β1 + Iz cos2 γ1,
I2 = Ix cos2 α2 + Iy cos2 β2 + Iz cos2 γ2,
I3 = Ix cos2 α3 + Iy cos2 β3 + Iz cos2 γ3,

(2.54)and determine the main moments of inertia: Ix, Iy, and Iz .The main axes of a body 
an be found from its symmetry. The mainaxes of a homogeneous re
tangular parallelepiped are parallel to its edges.If a body is rotationally symmetri
 its inertia ellipsoid has the same symme�try. A 
ylinder is an example. In this 
ase the moments of inertia aroundthe axes perpendi
ular to the symmetry axis are the same. The symmetryaxis is one of the main axes. Any axis whi
h is perpendi
ular to it is alsothe main one. For a spheri
al body any axis passing through its 
enter isthe main axis.For example, 
onsider a homogeneous re
tangular parallelepiped whi
hedges are a, b and c (see Fig. 3 on p. 139).Let us pla
e the origin O of the 
oordinate frame Oxyz at the 
enter ofmass of the parallelepiped. It is not di�
ult to 
al
ulate the main momentsof inertia:

Ix =
m

12
(b2 + c2), Iy =

m

12
(a2 + c2), Iz =

m

12
(a2 + b2).
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sNow let us �nd the moment of inertia with respe
t to the diagonal OO′.For this purpose we use Eq. (2.53). One 
an see that the 
osines of theaxis OO′ are

cosα =
a√

a2 + b2 + c2
, cosβ =

b√
a2 + b2 + c2

, cos γ =
c√

a2 + b2 + c2
.Thus the desired moment of inertia is

Id =
m

6
· a2b2 + a2c2 + b2c2

a2 + b2 + c2
. (2.55)For a 
ube

Ix =
ma2

6
, Iy =

ma2

6
, Iz =

ma2

6
, Id =

ma2

6
.The latter is 
lear be
ause the inertia ellipsoid of a 
ube is sphere.Noti
e that the angular momentum ~L of a rigid body 
an be writtenas the dot produ
t of inertia tensor I and angular velo
ity ve
tor ~ω:

L1 = I11ω1 + I12ω2 + I13ω3,
L2 = I21ω1 + I22ω2 + I23ω3,
L3 = I31ω1 + I32ω2 + I33ω3.

(2.56)These equations are simpli�ed when written in the 
oordinate frame of themain axes:

Lx = Ixωx, Ly = Iyωy, Lz = Izωz. (2.57)Literature1. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. I. � Ì.: Íàóêà, 1996. �ë. I�V, VII.2. Êèíãñåï À.Ñ., Ëîêøèí �.�., Îëüõîâ Î.À. Îñíîâû �èçèêè. Ò. 1. Ìåõàíèêà,ýëåêòðè÷åñòâî è ìàãíåòèçì, êîëåáàíèÿ è âîëíû, âîëíîâàÿ îïòèêà. � Ì.:Ôèçìàòëèò, 2001. ×. 1. �ë. 1�7, 10.Lab 1.2.1Determination of pellet velo
ity by means ofballisti
 pendulumPurpose of the lab: determination of pellet velo
ity using 
onservationlaws and employing ballisti
 pendulums.Tools and instruments: an air-ri�e on a support, a spotlight, anopti
al system to measure pendulum displa
ement, a ruler, pellets and abalan
e to weigh them, and ballisti
 pendulums.Muzzle velo
ity of an air ri�e is in the range from 150 to 200 m/s, andthat of a ri�e is ∼1000 m/s.

1.2.1 121These velo
ities are large in 
omparison with a pedestrian speed(∼2 m/s) or even with the speed of an automobile (∼20 m/s). A labo�ratory ben
h is usually about a few meters long, so the time of pellet �ightis about 10−2�10−3 s. Measurement of su
h time interval requires an ex�pensive equipment 
apable of registering fast pro
esses. It is 
heaper todetermine pellet velo
ity by measuring the momentum transferred by thepellet to some body in an inelasti
 
ollision. Net pellet-body momentumis 
onserved providing external for
es are negligible or the 
ollision timeis small. If the body mass ex
eeds 
onsiderably the pellet mass the speedof the body (with the pellet stu
k in it) is signi�
antly less than the ini�tial pellet velo
ity and 
an be easily measured. Duration of the inelasti

ollision, whi
h lasts from the initial 
onta
t between the pellet and thebody until the pellet gets stu
k, depends on resistan
e of the body mate�rial. The time 
an be estimated using the pellet penetration depth andassuming that the resistan
e for
e is 
onstant. A velo
ity of 200 m/s anda penetration depth of ∼1 
m allows one to estimate the 
ollision time as

∼10−4 s. Within that period even a body one hundred times heavier thana pellet will 
hange its position by 0.1 mm only. For small 
ollision timesa momentum transferred by external for
es is far smaller than the pelletmomentum.The momentum transferred by the pellet and therefore its velo
ity 
anbe measured by a ballisti
 pendulum. The latter is a pendulum whi
h is setin motion by a short initial impa
t. The impa
t 
an be 
onsidered shortif the 
ollision time is mu
h shorter than the pendulum period. In this
ase the pendulum displa
ement during the 
ollision time is mu
h smallerthan the amplitude of the pendulum swing. For harmoni
 os
illations
ollision time τ , pendulum period T , angular deviation ∆ϕ developed forthe 
ollision time, and the maximum swing ϕm (amplitude) are related bya simple equation:
∆ϕ

ϕm
≈ 2πτ

T
.Thus, if the 
ollision time equals 0.01 of the period, the deviation is 0.06of the amplitude.Maximum swing of pendulum and initial velo
ity resulting from pulseimpa
t 
an be determined from the law of of 
onservation of me
hani
alenergy providing energy loss for os
illation period is mu
h smaller thanenergy of os
illation. We 
onsider an attenuation as small if the amplitudede
reases less than by half after ten swings. Pellet momentum and velo
ity
an be found from the initial maximum swing.While 
arrying out the experiment one should ensure that the pendulum
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Fig. 1. Pellet-velo
ity measurement setupswings in a plane and do not allow a transverse motion after the pelletstrikes. This 
an be a
hieved by installing the ri�e 
arefully. Also oneshould be aware that the pellet is followed by air jet whi
h may a�e
tpendulum motion thereby deteriorating the results. Therefore the ri�emust be positioned at a distan
e su�
ient for jet dispersion. The in�uen
eof the gas jet on the pendulum 
an be estimated by means of a blank shot.The ri�e is mounted on a spe
ial support. To load the ri�e one shouldloosen the lo
k s
rew of the support and tilt the ri�e to one side in theholder then bend the barrel in the trigger dire
tion as far as it 
an go. Theinitial ri�e position should be restored after it is loaded.I. Pellet-velo
ity measurement setupThe ballisti
 pendulum used in this part of the lab is a heavy 
ylindersuspended on four threads of the same length. It is shown in Fig. 1 asa part of the measurement setup. When the pendulum is swinging anypoint of the 
ylinder exe
utes 
ir
ular motion with the radius equal to thesuspension length. The motion is illustrated in Fig. 2 (side view of theswing plane). All the points of the 
ylinder move round 
ir
ular ar
s of thesame radius L. In parti
ular the 
enter of mass M0 moves to M1 alongthe ar
 whi
h 
enter is at the point O.
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Fig. 2. Pellet-velo
ity measurement setupWe have already mentioned that the ri�e must be appropriately in�stalled. The ri�e should be mounted so that the pellet velo
ity before 
olli�sion would be dire
ted along the 
ylinder axis (at least 
lose enough). Theexternal for
es for the pellet-
ylinder system are gravity for
e whi
h hasno horizontal 
omponent and the thread tension for
es whi
h develop hor�izontal 
omponents when the pendulum swings. However if the deviationis small these 
omponents are also small and their momentum transferredduring the 
ollision is negligible 
ompared to the momentum of the pellet.Thus the law of 
onservation of momentum applied to the 
ollision looksas follows:
mu = (M + m)V. (1)Here m is the pellet mass, M is the 
ylinder mass, u is the pellet velo
itybefore 
ollision, and V is the 
ylinder velo
ity after 
ollision.Taking into a

ount that the pendulum mass ex
eeds 
onsiderably thatof a pellet we 
an write

u =
M

m
V. (2)
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sHaving gained some kineti
 energy during 
ollision the pendulum willrise until its kineti
 energy is 
onverted into potential energy in the grav�itational �eld (losses negle
ted). A

ording to the law of 
onservation ofme
hani
al energy the pendulum elevation h above its equilibrium positionis related to the initial pendulum velo
ity V as

V 2 = 2gh. (3)Here g is the gravitational a

eleration.Pendulum elevation 
an be expressed via the angle ϕ of pendulum de�viation from the verti
al:

h = L(1 − cosϕ) = 2L sin2 ϕ

2
, ï¨Ǒï¨Ǒï¨Ǒ ϕ ≈ ∆x

L
. (4)From Eqs. (2), (3) and (4) we obtain the �nal formula for pellet velo
�ity:

u =
M

m

√ g

L
∆x. (5)The pendulum deviation ∆x is measured by means of an opti
al systemshown in Fig. 1. Enlarged image of the s
ale atta
hed to the 
ylindermakes it possible to determine its horizontal displa
ement. This allowsone to measure su

essive amplitudes of pendulum swing and determinethe attenuation.Equation (3) and therefore the �nal formula (5) are valid as long as anenergy loss during pendulum motion 
an be negle
ted.The most important sour
es of swing attenuation are air drug and aloose pivot.The energy lost during a swing quarter-period 
ould be omitted fromthe 
onservation law (3) if it is small 
ompared to the maximum potentialenergy. As it was already mentioned the attenuation 
an be negle
ted ifthe swing magnitude de
reases less than by half for ten periods.LABORATORY ASSIGNMENT1. Examine the ballisti
 pendulum and the measurement setup, learn how tohandle the air-ri�e.2. Using the pre
ision balan
e weigh the pellets and pla
e them into box
ompartments with appropriate numbers so that not to mix them up. Donot forget to reset the balan
e before 
hanging pellets.3. Measure the distan
e L (see Fig. 1) with a two-meter ruler.4. Assemble the opti
al system designed for measuring pendulum displa
e�ment. Swit
h on the spotlight and obtain a 
lear image of the s
ale on thes
reen.

1.2.1 1255. Fire a few blank shots at the pendulum to make sure that it does notrespond to the impa
t of the air jet from the ri�e.6. Make sure that the swing attenuation is small: the amplitude de
reasesless than by half after ten swings.7. Fire a few shots and determine pellet velo
ity for ea
h shot using Eq. (5).8. For ea
h shot estimate an a

ura
y of determination of pellet velo
ity.9. Find the average pellet velo
ity and a s
atter near the average. What is thereason for the observed s
atter? Is it due to the measurement ina

ura
yor to di�erent shot velo
ities? Questions1. Give a de�nition of ballisti
 pendulum and des
ribe where it 
an be used.2. When is initial momentum of ballisti
 pendulum equal to pellet momentum?3. Why is it ne
essary to use inelasti
 
ollision between pellet and pendulum?4. Estimate the time of pellet-pendulum 
ollision in the experiment.5. What fa
tors are responsible for non-
onservation of momentum during the 
ol�lision?6. What are the spe
i�
 requirements for ri�e installation?7. What fa
tors 
ontribute to swing attenuation?8. Whi
h assumptions made in derivation of eq. (5) 
an be 
he
ked experimentally?9. Why are the suspension threads not parallel (see Fig. 1)?II. Method of torsion ballisti
 pendulumThe measurement setup is shown in Fig. 3. A pellet of mass m hits atarget �xed on the rod aa whi
h together with weights M and the wire Π isa torsion ballisti
 pendulum. To determine the pellet velo
ity we assume apellet-target 
ollision to be inelasti
 and use the law of angular momentum
onservation
mur = IΩ. (6)Here r is the distan
e between the pellet path and the pendulum axis ofrotation (the wire Π), I is the pendulum moment of inertia, and Ω is itsangular velo
ity right after the 
ollision.The law of angular momentum 
onservation 
an be used if the timeof pellet-target 
ollision is mu
h less than the period of small os
illationsof the pendulum. An angle of pendulum rotation during the 
ollision issmall 
ompared to the amplitude of pendulum swing. Consequently thetorque in the wire right after the 
ollision is small 
ompared to the torqueat the maximum swing whi
h is always �nite. What matters is that theprodu
t of the torque and the 
ollision time is small 
ompared to theangular momentum of the pellet before the 
ollision.
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Fig. 3. Measurement of pellet velo
ity using a torsion ballisti
pendulumInitial kineti
 energy of the pendulum 
onverts to potential energy, i.e.elasti
 energy of the wire torsion, and a part of it is irreversibly lost, �rstof all, due to air fri
tion. The loss 
an be estimated by measuring thede
rement of swing amplitude in 10 periods. The swing attenuation is
onsidered small if the amplitude de
reases by half or less. This meansthat the energy loss during os
illation period is 
onsiderably less than theswing energy. Negle
ting the losses we 
an write the energy balan
e as
k

ϕ2

2
= I

Ω2

2
. (7)Here k is the torsion modulus of the wire Π and ϕ is the maximum swingangle.From Eqs. (6) and (7) we obtain

u = ϕ

√
kI

mr
. (8)

1.2.1 127The maximum angle in the experiment is always small. It 
an be easilydetermined from a displa
ement x of the image of the �lament spotlighton the measurement s
ale. It follows from Fig. 3 that
ϕ ≈ x

2d
. (9)Here d is the distan
e from the s
ale III to the pendulum rotation axis.Equation (8) in
ludes the produ
t kI whi
h 
an be found by measuringthe period of the pendulum with the weights M and without them. In theformer 
ase the pendulum period is equal to

T1 = 2π

√

I

k
. (10)In the latter 
ase

T2 = 2π

√

I − 2MR2

k
. (11)It follows from Eqs. (10) and (11) that

√
kI =

4πMR2T1

T 2
1 − T 2

2

. (12)Here R is the distan
e from the 
enters of mass of the weights M to thewire. LABORATORY ASSIGNMENT1. Examine the experimental setup and learn how to handle the air-ri�e.2. Using the pre
ision balan
e weigh the pellets and pla
e them into box
ompartments with the appropriate numbers so that not to mix them up.Do not forget to reset the balan
e before 
hanging pellets.3. Measure the distan
es r, R and d (see Fig. 3) with a ruler.4. Adjust the opti
al system designed for measuring pendulum rotation angle.Swit
h on the spotlight, dire
t the light to the mirror and obtain a 
learimage of the spotlight �lament on the s
ale.5. Fire a few blank shots at the pendulum to make sure that it does notrespond to the impa
t of the air jet from the ri�e.6. Make sure that the swing attenuation is small: the amplitude must de
reaseby half or less after ten swings.7. By measuring the time of 10�15 full swings of the pendulum determine T1and T2. Using Eq. (12) �nd the value of √kI and estimate its error.8. Fire a few shots and determine the pellet velo
ity for ea
h shot usingEqs. (9) and (8).
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s9. Estimate the pellet velo
ity error for ea
h shot.10. Find the average pellet velo
ity and a s
atter near the average. What is thereason for the observed s
atter? Is it due to the measurement ina

ura
yor to di�erent shot velo
ities? Questions1. How does a deviation of the pellet-target impa
t angle from 90 degrees a�e
t thevalidity of the method employed in the experiment?2. At whi
h amplitudes of pendulum swing should the periods be measured?3. How does pellet momentum a�e
t pendulum swing?Literature1. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. I. � Ì.: Íàóêà, 1996. �� 26, 30, 33,34, 41.2. Ñòðåëêîâ Ñ.Ï. Ìåõàíèêà. � Ì.: Íàóêà, 1975. �� 53, 124, 126.3. Õàéêèí Ñ.Ý. Ôèçè÷åñêèå îñíîâû ìåõàíèêè. � Ì.: Íàóêà, 1971. �� 22, 26, 67,68, 89, 95.Lab 1.2.2Experimental veri�
ation of the dynami
al law ofrotational motion using the Oberbe
k pendulumPurpose of the lab: 1) to verify that angular a

eleration of the pen�dulum is dire
tly proportional to the torque exerted on the pendulum, todetermine the moment of inertia of the pendulum; 2) to a

ess fri
tionfor
es applied to the axis of rotation.Tools and instruments: the Oberbe
k pendulum, weights, a stop�wat
h, a ruler, and a 
aliper.The purpose of the lab is to verify experimentally the dynami
al law ofrotational motion:

I
dω

dt
= M. (1)To this end the Oberbe
k pendulum is used, its design is shown in Fig. 1.The pendulum 
onsists of four thin rods whi
h are rigidly atta
hed tothe hub at right angles. The hub and two wheels of di�erent radii (r1 and

r2) are atta
hed to the same horizontal shaft whi
h is �xed between twospindle bearings. The moment of inertia of the pendulum 
an be varied bypla
ing the weights m1 along the rods. A thin thread is winded around oneof the pendulum wheels. The light platform of a known mass is atta
hed
1.2.2 129to the thread, it is used for pla
ing the weights. The torque exerted on thependulum is due to the thread tension T :

Mí = rT, (2)where r is the wheel radius (r1 or r2). The for
e T 
an be easily foundfrom the equation of motion of the platform with a weight on it:
mg − T = ma. (3)Here m is the mass of the platform and the weight.If the torque Mfr due to the fri
tion in the bearings is small 
omparedto the torque MT due to the tension in the thread, then the a

eleration

a is 
onstant a

ording to Eqs. (1), (2), and (3). The a

eleration 
an befound by measuring the time t that takes the platform to des
end throughthe distan
e h:
a =

2h

t2
. (4)This a

eleration is related to the angular a

eleration β = dω/dt by:

a = r
dω

dt
= rβ. (5)Equations (2) � (5) spe
ify the pendulum motion.In real experiment the torque Mfr is often large, whi
h signi�
antly af�fe
ts the results. At �rst sight, the e�e
t due to fri
tion 
ould be mitigatedby in
reasing the mass m. However this is not so be
ause:1) greater mass m in
reases the pressure exerted on the shaft by the pen�dulum thereby enhan
ing the fri
tion;2) large m redu
es the time t and therefore deteriorates the a

ura
y oftime measurement.In our installation the fri
tion in the spindle bearings (see Fig. 1) issmall, so the fri
tion torque is not large. However it is not negligible andshould be taken into a

ount in data treatment.It is 
onvenient to separate the fri
tion torque in Eq. (1) expli
itly:

MT − Mfr = I
dω

dt
. (6)Before pro
eeding to the measurement the weights m1 should be installedat some distan
e R from the rotation axis, so that the pendulum be inneutral equilibrium. To 
he
k the latter set the pendulum in motion andlet it stop several times. (What is the use of the pro
edure? How 
an one
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Fig. 1. Oberbe
k penduluminfer from the observations that the pendulum is well balan
ed?) Thenwind one layer of the thread around a wheel and set the height h of theplatform des
ent. The re
ommended height is 70-100 
m. It is 
onvenientto perform measurements for the same height h using 3-5 di�erent weightson the platform.The experiment 
onsists of two parts. In the �rst part the pendulumrotation is studied for di�erent weights and the same moment of inertia(the positions of the weightsm1 are �xed). The results are used to 
al
ulatethe moment of inertia I and the torque Mfr due to fri
tion in the bearings.In the se
ond part the rotational motion is studied for di�erent (5�6)values of the moment of inertia. The latter is varied by 
hanging thedistan
e R of the weights from the shaft. The measured value of themoment of inertia is 
ompared to the 
al
ulated one. The weights m1 are
ylinders of radius r and height l. The moment of inertia of the pendulumis evaluated as

I = I0 + 4m1R
2 + 4

m1l
2

12
+ 4

m1r
2

4
, (7)

1.2.2 131where I0 is the moment of inertia without the weights m1. The derivationof the formula is left to the reader.LABORATORY ASSIGNMENT1. A
hieve the neutral equilibrium by varying the distan
e R between theweights m1 and the shaft. The distan
e R should be measured andre
orded.2. In
rease the tension T by loading the platform. Find the minimum mass
m0 of the weight for whi
h the pendulum starts spinning. Perform theexperiment for ea
h wheel. Estimate the torque due to fri
tion.3. Put an additional weight on the platform and measure the time of theplatform des
ent. Repeat the measurement 4-5 times and �nd the average

t. Using Eqs. (2) � (5) determine the angular a

eleration β = 2h
rt2 andthe torque MT . Tabulate the results using the table below.

Wheeldiamete
r Weight Massofplatfor
m withweights Des
ent time t̄ ± σt̄ β ± σβ MT ± σM
m g g t1 t2 t3 t4 t5 se
 se
−2 N·m4. Repeat the experiment for 3�4 di�erent values of m for ea
h wheel (6�8measurements overall). Tabulate the results.5. Plot the experimental results for two wheels. Plot the values of MT on theabs
issa and the angular a

eleration β on the ordinate. Determine graph�i
ally the moment of inertia l and the fri
tion torque Mfr (the x-inter
eptof the fun
tion β(MT )). Estimate the errors.6. Repeat the measurements of 3�5 for two di�erent values of the moments ofinertia 
orresponding to maximum and minimum distan
e of the weights

m1 from the shaft.7. Compare the values of Mfr obtained in the experiments. Does the valueof Mfr depend on the moment of inertia of the pendulum?8. Repeat the experiments des
ribed in 3 for three di�erent moments of inertiaof the pendulum using only one weight and the large wheel. In ea
h 
asedetermine I using Eq. (6). Take the value Mfr from 5.9. Plot the values of I obtained for di�erent R's as a fun
tion I = f(R2).Using the plot determine the moment inertia of the pendulum I0 withoutthe weights.
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sDo the experimental results agree with Eq. (7)? How does the relative
ontribution of two last terms in Eq. (7) depend on R? Is the 
orrespond�ing 
orre
tion 
omparable to the measurement errors? To answer thesequestions plot the value ∆I/I versus R2, where

∆I = 4
ml2

12
+ 4

mr2

4
.10. What are possible sour
es of the experimental error?Questions1. Why must the torque due to fri
tion in the shaft bearings be redu
ed as mu
has possible? It appears that Eq. (6) is valid for any value of Mfr.2. What is the role of the thread thi
kness and elasti
ity?3. Whi
h quantity has to be measured with the greatest a

ura
y in this experi�ment?4. State and prove Huygens-Steiner theorem.Literature1. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. I. � Ì.: Íàóêà, 1996. �� 30, 32, 35,36.2. Ñòðåëêîâ Ñ.Ï. Ìåõàíèêà. � Ì.: Íàóêà, 1975. �ë. VII, �� 52, 53, 59; ãë. V,�� 41, 42.Lab 1.2.3Determination of prin
ipal moments of inertia ofrigid bodies by means of tri�lar torsionsuspensionPurpose of the lab: to determine the moments of inertia of rigidbodies and to 
ompare the results with theoreti
al 
al
ulations; to verifyadditivity of the moments of inertia and the Huygens-Steiner theorem.Tools and instruments: a tri�lar suspension, a stopwat
h, an os
illa�tion 
ounter, and a set of rigid bodies (a disk, a rod, a hollow 
ylinderet
.).Rotational inertia is due to the moment of inertia with respe
t to the
orresponding axis of rotation (see the introdu
tion to this 
hapter). Themoment of inertia with respe
t to an immobile axis of rotation is de�nedas

I =

∫
r2 dm. (1)

1.2.3 133

Fig. 1. Tri�lar suspensionHere r is the distan
e of the body element dm from the axis. Integrationis performed over all elements.The moment of inertia 
an be 
al
ulated for uniform bodies of a simpleshape. Otherwise the moment of inertia 
an be determined from experi�ment. The tri�lar suspension shown in Fig. 1 is often used for this purpose.The devi
e 
onsists of the immobile platform P and the platform P ′ whi
his symmetri
ally suspended on three threads AA′, BB′, and CC′ and 
anexe
ute free os
illations.The platform P is mounted on a bra
ket and is equipped with a lever(not shown) used to initiate rotational os
illations by slightly turning theupper platform. It is better to turn the upper platform whi
h is atta
hedto the immobile shaft sin
e turning the lower platform would also 
ausependulum-like os
illations whi
h are di�
ult to a

ount for. The upperplatform remains at rest after the initial turn during the ensuing os
illa�
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stions. On
e the lower platform P ′ is turned by the angle ϕ with respe
tto the upper one, the restoring torque arises. It tends to return the lowerplatform to the equilibrium position that 
orresponds to zero rotation an�gle. However the platform does not remain in the equilibrium be
ause ofnon-zero angular velo
ity (kineti
 energy). This results in angular os
illa�tions.Negle
ting the energy losses due to fri
tion in air and at the points ofsuspension one 
an write the law of 
onservation of energy for the os
illa�tions:

Iϕ̇2

2
+ mg(z0 − z) = E. (2)Here I is the moment of inertia of the platform and the body, m is themass of the platform and the body, ϕ is the platform angle of rotation(the dot stands for time derivative, so it is the angular velo
ity), z0 is theverti
al 
oordinate of the 
enter O′ of the lower platform at ϕ = 0, and zis the 
oordinate of the 
enter that 
orresponds to the rotation angle ϕ.The �rst term on the left-hand side is the kineti
 energy of rotation, these
ond term is the potential energy in the gravitational �eld, and E is thetotal energy.It should be obvious from Eq. (2) that the restoring for
e is due togravity.Now let us 
hoose the 
oordinate frame x, y, z, whi
h is rigidly �xedto the upper platform (see Fig. 1). In this frame the 
oordinates of thesuspension point C are (r, 0, 0 ). The 
oordinates of the lower end C′ ofthe 
orresponding thread at equilibrium are (R, 0, z0). When the platformturns by the angle ϕ the lower end is at the point C′′ with 
oordinates(R cosϕ, R sinϕ, z). The distan
e between points C è C′′ is equal to thethread length L. Therefore

(R cosϕ − r)2 + R2 sin2 ϕ + z2 = L2. (3)Sin
e at small angles cosϕ ≈ 1 − ϕ2/2, we obtain
z2 = L2 − R2 − r2 + 2Rr cosϕ = z2

0 − 2Rr(1 − cosϕ) ≈ z2
0 − Rrϕ2. (4)Taking the square root of Eq. (4) we obtain for small ϕ:

z ≈
√

z2
0 − Rrϕ2 ≈ z0

√

1 − Rrϕ2

z2
0

≈ z0 −
Rrϕ2

2z0

. (5)Substituting this value for z in Eq. (2) we get
1

2
Iϕ̇2 + mg Rr

2z0

ϕ2 = E. (6)
1.2.3 135Di�erentiation of the last equation with respe
t to time yields the equa�tion for small angular os
illations of the platform:

Iϕ̈ + mg Rr

z0

ϕ = 0. (7)The time derivative of E is zero sin
e we negle
ted the energy losses dueto fri
tion.One 
an easily 
he
k by dire
t substitution that the solution of thisequation is
ϕ = ϕ0 sin

(

√

mgRr

Iz0

t + θ

)

. (8)The amplitude ϕ0 and the phase θ of os
illations are determined frominitial 
onditions. The os
illation period is
T = 2π

√

Iz0

mgRr
. (9)Noti
e that this is the period of the simple gravity pendulum for r = Rand I = mR2 (a thin ring).Equation (9) gives the formula for the moment of inertia:

I =
mgRrT 2

4π2z0

. (10)Now, the parameters R, r, and z0 do not 
hange during the experiment,whi
h allows one to rewrite the last equation as:

I = kmT 2. (11)Here k =

gRr

4π2z0

is a 
onstant quantity.Thus the equations derived allow one to determine the moment of in�ertia of the platform with or without a body by measuring the period ofangular os
illations. The moment of inertia of the body 
an then be 
al
u�lated using additivity of moments of inertia. The additivity 
an be veri�edby performing the measurements for two bodies together and separately.The derived equations are based on the assumption that irreversibleenergy losses due to fri
tion are negligible, i.e. the os
illations de
ay slowly.Os
illation damping 
an be evaluated by 
omparing the time τ , whi
h takesthe os
illation magnitude to de
rease by a fa
tor of 2�3, with the os
illationperiod T . The irreversible energy losses are negligible providing

τ ≫ T. (12)
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sIt is re
ommended to determine os
illation period with a relative errorof 0.5%. The number of os
illations required to measure the period isdetermined by this error and by a

ura
y of time measurement.Os
illations are registered by a 
ounter whi
h 
onsists of a light sour
e(2), a photovoltai
 
ell (3), and a digital 
ounter (1) (see Fig. 1). A leafshutter atta
hed to the platform 
rosses the beam twi
e a period. Thesignal from the 
ell is registered by the digital 
ounter.LABORATORY ASSIGNMENT1. Before loading the lower platform 
he
k the installation, i.e. make surethat os
illations 
an be properly initiated and that the pendulum-like os�
illations are not ex
ited. Che
k operation of the os
illation 
ounter.2. By ex
iting angular os
illations 
he
k how well relation (12) is satis�ed.This task does not require high a

ura
y of the 
orresponding time inter�vals. The measurements must be performed for the unloaded platform.Explain why.3. Find the working range of os
illation amplitudes. In this range the os
il�lation period determined by 20�30 full swings is independent of the initialamplitude. This means that os
illation period remains the same when theamplitude is halved.4. Measure parameters z0, R, and r (see Fig. 1). Cal
ulate the installation
onstant k in Eq. (11) and its error σk.5. Measure the moment of inertia of the unloaded platform (hereinafter theos
illation period should be measured with a relative error less than 0,5%))
 

 

 

Fig. 2. Position of bodies onplatform
6. Measure the moments of inertia of two bodiesfrom the set, separately at �rst and then to�gether. The bodies should be pla
ed on theplatform so that the 
enter of mass of the sys�tem lies on the axis of rotation, i.e. no noti
e�able tilt of the platform is dete
ted. For 
onve�nien
e a set of 
on
entri
 rings is engraved onthe platform. Che
k additivity of moments ofinertia, i.e. validity of the relation I = I1 +I2,where I1 and I2 are the moments of inertiaof the �rst and the se
ond body and I is thetotal moment of inertia. The a

ura
y of thisrelation 
an be taken as the a

ura
y of the lab measurement. Cal
ulatethe moments of inertia I of all the bodies used and 
ompare the resultswith the experimental values.7. Pla
e a disk whi
h is 
ut in two halves on the platform. Gradually movethe halves apart, so that their 
enter of mass remains on the rotation axis

1.2.4 137(see Fig. 2), measure the moment of inertia I of the system versus thedistan
e h between ea
h of the halves and the rotation axis (the platform
enter).Plot the dependen
e I(h2) and use it to determine the mass and themoment of inertia of the disk. Questions1. What are the assumptions used in the derivation of Eq. (10)?2. Can the method of measuring the moments of inertia suggested in the lab beused if the axis of rotation of the platform does not pass through the 
enter ofmass?3. Prove the Huygens-Steiner theorem. Literature1. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. I. � Ì.: Íàóêà, 1996. �� 35, 36, 42.2. Ñòðåëêîâ Ñ.Ï. Ìåõàíèêà. � Ì.: Íàóêà, 1975. �� 52, 55, 59.3. Õàéêèí Ñ.Ý. Ôèçè÷åñêèå îñíîâû ìåõàíèêè. � Ì.: Íàóêà, 1971. �� 67, 68, 89.Lab 1.2.4Determination of prin
ipal moments of inertia ofrigid bodies by means of torsional os
illationsPurpose of the lab: to measure periods of torsional os
illations of asuspension frame with a body atta
hed, to verify theoreti
al dependen
ebetween the periods of torsional os
illations with respe
t to di�erentrotation axes, to determine moments of inertia with respe
t to di�erentaxes and to use them to determine prin
ipal moments of inertia, and toplot inertia ellipsoid.Tools and instruments: a rigid frame suspended on a verti
al wire, inwhi
h a rigid body 
an be �xed, a set of rigid bodies, and a stopwat
h.Rotational inertia of a rigid body is determined not only by the bodymass but also by its spatial distribution. The latter is determined by thequantity 
alled inertia tensor whi
h 
an be represented by a symmetri
(3×3) matrix spe
i�ed by six elements. If all the matrix elements areknown in some 
oordinate system, the moment of inertia with respe
t toan arbitrary axis passing through the origin 
an be found from Eq. (2.46).Any inertia tensor 
an be redu
ed to diagonal form like any symmetri
matrix. The 
orresponding diagonal elements Ix, Iy, and Iz are 
alled
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Fig. 1. Inertial ellipsoids of parallelepiped, disk, and 
ubethe prin
ipal moments of inertia. Inertia tensor 
an be visualized as anellipsoid whi
h in prin
ipal axes of inertia is represented by Eq. (2.51):

Ixx2 + Iyy2 + Izz
2 = 1. (1)This ellipsoid is 
alled the inertia ellipsoid. It is rigidly �xed to the body.The 
oordinate axes Ox, Oy, and Oz 
oin
ide with the prin
ipal axes ofinertia of the body. If the system origin O 
oin
ides with the 
enter ofmass the inertia ellipsoid is 
alled 
entral.

Fig. 2. Experimentalsetup
The inertia ellipsoid allows one to determine themoment of inertia with respe
t to any axis pass�ing through the ellipsoid 
enter. One should simplydraw the radius-ve
tor ~r along the rotation axis tothe point of interse
tion with the ellipsoid surfa
e.The length r spe
i�es the 
orresponding moment ofinertia a

ording to

I =
1

r2
. (2)The prin
ipal axes of a body 
an often be de�termined by its symmetry. For instan
e, symmetryaxes of 
ylinder and/or sphere are the prin
ipal axesof inertia be
ause the moment of inertia with respe
tto any axis passing through a plane perpendi
ular tothe symmetry axis is the same. Therefore the inertia

1.2.4 139ellipsoid being the ellipsoid of rotation with respe
t to the symmetry axishas the same symmetry as the body itself.Inertia ellipsoid turns out to be symmetri
 for some bodies whi
h donot possess axial symmetry. For example 
onsider a parallelepiped withsquare base or a 
ube. For 
ube the inertia ellipsoid is spheri
al, thereforethe moment of inertia is independent of the rotation axis, just like forsphere. Figure 1 shows (not to s
ale) the 
entral inertia ellipsoids forparallelepiped, disk, and 
ube.Figure 2 shows the setup used to observe torsional os
illations. Theframe 1 is rigidly atta
hed to the verti
al wire 2 �xed in the spe
ial 
lamps 3whi
h allow one to ex
ite torsional os
illations around the verti
al. Therigid body 7 is �xed in the frame by means of the plank 4, the nuts 5, andthe s
rew 6. The body has spe
ial holes used to �x the body in di�erentpositions, so that the rotation axis passes through the 
enter of mass atvarious angles.
Fig. 3. Rotation axes of parallelepiped

Torsional os
illations of theframe and the body are des
ribedby the equation
(I + Ið)d2ϕ

dt2
= −fϕ. (3)Here I and Ið are the momentsof inertia of the body and theframe, respe
tively, ϕ is the an�gle of rotation whi
h depends ontime t, and f is the torsion 
o�e�
ient of the wire. The periodof torsional os
illations is deter�mined by the equation

T = 2π

√

I + Ið

f
. (4)Figure 3 shows the positionsof rotation axes in parallelepiped. The prin
ipal axes are AA′, BB′, and

CC′. The moments of inertia with respe
t to these axes are Ix, Iy, and

Iz . The axis DD′, whi
h 
oin
ides with the main diagonal, makes thesame angles with the prin
ipal axes and with the edges a, b, and c whi
hare parallel to the axes. The 
osines of the angles are a/d, b/d, and c/d,respe
tively, where d =
√

a2 + b2 + c2 is the diagonal length.
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sThe moment of inertia Id with respe
t to the diagonal DD′ is expressedvia the prin
ipal moments of inertia as (2.53):

Id = Ix
a2

d2
+ Iy

b2

d2
+ Iz

c2

d2
. (5)This gives the equation:

(a2 + b2 + c2)Id = a2Ix + b2Iy + c2Iz. (6)Using the relation (4) between the moment of inertia and the period oftorsional os
illations one obtains the relation between the periods of os
il�lation:

(a2 + b2 + c2)T 2
d = a2T 2

x + b2T 2
y + c2T 2

z . (7)Experimental veri�
ation of this relation serves to verify Eq. (5) as well.This equation also allows one to derive the relations between the momentsof inertia 
orresponding to the axes EE′, MM ′, and PP ′ and the prin
ipalmoments of inertia. Using Eq. (4) one 
an �nd the 
orresponding os
illationperiods. The reader is suggested to 
al
ulate the 
osines of the angles whi
hthe above axes make with the prin
ipal axes and obtain the relations

(b2 + c2)T 2
E = b2T 2

y + c2T 2
z , (8)

(a2 + c2)T 2
P = a2T 2

x + c2T 2
z , (9)

(a2 + b2)T 2
M = a2T 2

x + b2T 2
y . (10)These relations should be experimentally veri�ed as well.LABORATORY ASSIGNMENT1. Learn how to handle the installation. Make sure that 1) the wire is tight,2) the frame is rigidly atta
hed to the wire, 3) the devi
e for ex
iting thetorsional os
illations is properly fun
tioning, and 4) verti
al vibrations arenot ex
ited together with the torsional os
illations.2. Learn how to atta
h bodies to the frame. A body has spe
ial holes whi
hmust �t with the s
rews on the frame. To �x the body (see Fig. 2) oneshould do the following. Uns
rew the nuts 5, pull up the plank 4 and insertthe body into the frame, so that the hole on the body �ts the jag on thelower side of the plank. Lower the plank and insert the s
rew 6 protrudingfrom the plank by 5�7 mm into the hole on the body. Tighten the nuts 5and then the s
rew 6. If the body gets loose in the frame tighten thes
rew 6 to �x it.

1.2.4 1413. Before ea
h set of measurements (the empty frame or the frame with thebody) one should 
hoose a proper amplitude of torsional os
illations (themaximum rotation angle of the frame). The amplitude is properly 
hosen ifthe os
illation period (determined by 10�15 os
illations) remains the samewhen the amplitude is redu
ed by half. One should de
rease the amplitudeuntil this 
ondition is ful�lled.4. Determine the os
illation periods for empty frame and for di�erent posi�tions of the bodies with respe
t to the rotation axis. A period should bemeasured by 10�15 os
illations, ea
h measurement should be repeated atleast 3 times.5. Measure the parallelepiped dimensions using the 
aliper. Cal
ulate theprin
ipal moments of inertia. Verify Eqs. (7) � (10) using the data obtained.6. Draw 
ross-se
tions of inertia ellipsoid by prin
ipal planes. For this pur�pose take the measured os
illation periods with respe
t to the axis in theprin
ipal plane and for ea
h axis 
al
ulate the quantity 1/
√

T 2 − T 2ð whi
his proportional to the distan
e from the 
enter of mass to the point of inter�se
tion of the ellipsoid with the axis. Here Tð is the os
illation period of theempty frame. Plot the values obtained along the dire
tions 
orrespondingto the axes and draw the ellipse through these points (8 points overall).The ellipse 
orresponds to the 
ross-se
tion of the inertia ellipsoid by theprin
ipal plane (not to s
ale). Find the ratio of the prin
ipal moments ofinertia.7. Perform the same measurements for the 
ube and draw the 
orresponding
ross-se
tions of the inertia ellipsoid. Verify that the 
entral moments ofinertia are equal. Questions1. What are the prin
ipal moments of inertia of a rigid body?2. What does the inertia ellipsoid of a 
ube look like?3. Des
ribe the state of free (torqueless) rotation of a rigid body.Literature1. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. I. � Ì.: Íàóêà, 1996. �� 53, 54.2. Ñòðåëêîâ Ñ.Ï. Ìåõàíèêà. � Ì.: Íàóêà, 1975. �� 63, 64.
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sLab 1.2.5Study of gyros
ope pre
essionPurpose of the lab: to study the for
ed pre
ession of gyros
ope; tospe
ify the dependen
e of pre
ession velo
ity on the torque on the gyro�s
ope axis; to 
al
ulate the rotational velo
ity of the gyros
ope rotor and
ompare the result with that one obtained from the pre
ession velo
ity.Tools and instruments: a gyros
ope in Cardan suspension, a stop�wat
h, a set of weights, unfastened rotor of a gyros
ope, a 
ylinder ofknown mass, a torsional pendulum, a 
aliper, and a ruler.The dynami
al equation of a rigid body 
an be presented as

d~P

dt
= ~F , (1)

d~L

dt
= ~M. (2)Here Eq. (1) represents dynami
s of the 
enter of inertia, and Eq. (2)is the angular momentum equation. A rigid body possesses six degrees offreedom, for this reason these two ve
tor equations provide the 
ompletedes
ription of its motion.If the for
e ~F does not depend on rotational velo
ity and the torque

~M is independent of translational velo
ity, Eqs. (1) and (2) 
an be treatedindependently. This assumption is invalid, for example, for proje
tile mo�tion in the atmosphere. But if the separation of the equations is possible,Eq. (1) des
ribes motion of a material point and Eq. (2) regards the prob�lem of rotation of a rigid body about a �xed point. The latter problem is
onsidered in the lab.The angular momentum of a rigid body written in proje
tions on itsprin
ipal axes x, y, z is

~L =~i Ixωx +~j Iyωy + ~k Izωz, (3)where Ix, Iy, Iz are prin
ipal moments of inertia, ωx, ωy, ωz are the 
om�ponents of the angular velo
ity ve
tor ~ω. A fast-rotating body with
Izωz ≫ Ixωx, Iyωy,is 
ommonly referred to as gyros
ope. If the gyros
ope 
enter of inertia isat rest, the gyros
ope is 
alled balan
ed.

1.2.5 143A

ording to Eq. (2), the in
rement of angular momentum is given bythe integral

∆~L =

∫
~M dt. (4)If the torque is applied for a short period of time, it follows from Eq. (4)that the in
rement of the angular momentum ∆~L is mu
h less than theangular momentum itself:

|∆~L| ≪ |~L|.This equation a

ounts for the remarkable dynami
 stability of a fast-rotat�ing gyros
ope.

Fig. 1. Flywheel

Let us �gure out what for
es shouldbe applied to a gyros
ope in order to
hange the dire
tion of its axis. Con�sider a �ywheel rotating about z-axiswhi
h is orthogonal to the wheel plane(Fig. 1). We assume that
ωz = ω0, ωx = 0, ωy = 0.Now assume that the axis of rota�tion turns by in�nitesimal angle dϕ in

zx-plane in the dire
tion of x-axis. Thisangular displa
ement represents an ad�ditional rotation of the �ywheel about

y-axis, su
h that
dϕ = Ω dt,where Ω is the angular velo
ity of the additional rotation. Let us assumethat
LΩ ≪ Lω0. (5)This means that the angular momentum of the �ywheel, whi
h is equal to

Izω0 prior to appli
ation of for
e, rotates in zx-plane and its magnituderemains 
onstant. Thus

|d~L| = Ldϕ = LΩ dt.The in
rement of the angular momentum is dire
ted along x-axis; for thisreason one 
an represent ve
tor d~L as 
ross produ
t of the angular velo
ityve
tor ~Ω (dire
ted along y-axis) and the ve
tor of angular momentum ofthe �ywheel (dire
ted along z-axis):

d~L = ~Ω × ~Ldt,
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d~L

dt
= ~Ω × ~L.Using Eq. (2) one obtains

~M = ~Ω × ~L. (6)Equation (6) is valid provided the 
ondition (5) is ful�lled. It allows oneto determine the torque ~M whi
h makes the �ywheel axis start rotatingwith velo
ity ~Ω. Thus, to turn the �ywheel axis toward x-axis one needsto apply the for
e dire
ted along y-axis rather than along x-axis. In this
ase the torque ~M is dire
ted along x-axis.The torque ~M on the gyros
ope axis results in its slow rotation around

y-axis with angular velo
ity Ω. This kind of motion is referred to as regularpre
ession of gyros
ope. In parti
ular, the torque 
an be 
aused by thegravitational for
e if the gyros
ope 
enter of inertia does not 
oin
ide withits point of suspension. Let the gyros
ope mass be mg and its axis ofrotation be de�e
ted by angle α from the verti
al. Then the velo
ity ofpre
ession 
aused by the gravitational for
e is

Ω =
M

Izω0 sin α
=

mgglc sin α

Izω0 sin α
=

mgglc
Izω0

, (7)where lc is the distan
e between the point of suspension and the 
enter ofinertia of the gyros
ope, i.e. the pre
ession velo
ity does not depend onthe angle α.To study the regular pre
ession of the gyros
ope one suspends addi�tional weights on its axis. This results in displa
ement of the 
enter ofinertia and produ
es the torque of gravitational for
e leading to pre
ession.The pre
ession velo
ity in this 
ase is given by the following equation:
Ω =

mgl

Izω0

, (8)where m is the mass of the weight and l is the distan
e between the 
enter ofthe Cardan suspension and the point of weight suspension on the gyros
opeaxis (see Fig. 3).In this lab regular pre
ession of the gyros
ope is studied. The outer ringA of the suspension 
an freely rotate about the verti
al axis aa. The innerring B is 
onne
ted to the ring A via horizontal axis bb. The gyros
opeitself is mounted in the ring B, its axis 

 is orthogonal to the axis bb. The
enter of inertia of the gyros
ope 
oin
ides with the interse
tion point ofthe three axes and its spatial position is 
onstant under arbitrary rotationsof the rings. E�e
tively the gyros
ope is suspended at the 
enter of inertia.
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Fig. 2. Gyros
ope in Cardan suspensionThe experimental setup for studying the gyros
ope pre
ession is shownin Fig. 3. The gyros
ope rotor is the rotor of high-speed ele
tri
 motor Msupplied with alternating 
urrent of the frequen
y of 400 Hz. The motor
asing (the stator with 
oils supplied with 400-Hz 
urrent) is atta
hed tothe ring B (see Figs. 2 and 3). The motor and the ring B 
an rotate aboutthe horizontal axis bb in the ring A whi
h, in turn, 
an rotate about theverti
al axis aa. The engine rotor is a massive steel 
ylinder with 
ooperveinlets like "squirrel 
ase". The lever (marked with letter C in Fig. 3)is dire
ted along the rotor symmetry axis, it is used for suspension of theweights W. One 
an alter the for
e F whi
h indu
es pre
ession by usingdi�erent weights. The torque due to this for
e is determined by the distan
e

l between the suspension point of the weights and the gyros
ope 
enter ofinertia; this distan
e is indi
ated in the setup.In the previous derivation of the equations governing gyros
ope pre�
ession we assumed that the ve
tors of for
es are 
oplanar to the ve
tors
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Fig. 3. Experimental setupof self-rotation angular velo
ity and pre
ession velo
ity (zy-plane). In this
ase the torque due to gravitational for
es 
hanges only the dire
tion of thegyros
ope angular momentum while the magnitude remains 
onstant. Fri
�tion for
es do not lie in the plane of axial rotation, so they 
an 
hange boththe magnitude and the dire
tion of the angular momentum. The for
e offri
tion exerted on the gyros
ope rotor is 
ompensated by the motor, whilethe fri
tion in the gimbal axes is not 
ompensated. As a result the gyro�s
ope axis will des
end in the dire
tion of gravitational for
e exerted onthe weights. The reader is en
ouraged to analyze the fri
tion for
es in de�tail and to estimate the errors in determination of the velo
ity ω0 of thegyros
ope rotation around its symmetry axis due to the fri
tion-indu
edlowering of the axis.In the �rst part of the lab the dependen
e of pre
ession velo
ity onthe torque on the gyros
ope rotation axis is studied. For this purposeone suspends the weights W on the lever C. The pre
ession velo
ity isdetermined by measuring the number of revolutions of the lever aroundthe verti
al and the time passed. During the measurements the lever does
1.2.5 147not only rotate but also slightly lowers, thus it should be raised by 5�6◦prior to the measurements. The measurement should be stopped when thelever is lowered by the same angle.Measurements of the gyros
ope pre
ession velo
ity allow one to 
al
u�late the angular velo
ity of its rotor. Equation (8) is used for this purpose.The moment of inertia of the rotor I0 is measured via the torsional os
illa�tions of the rotor repli
a whi
h is suspended on a sti� wire along the rotorsymmetry axis. The period of torsional os
illations T0 depends both onthe moment of inertia I0 and the wire torsion modulus f :

T0 = 2π

√

I0

f
. (9)To eliminate the unknown torsion modulus from Eq. (9) one measuresthe os
illation period of a 
ylinder of a given size and mass (and hen
e agiven moment of inertia Ic). The moment of inertia of the rotor is thendetermined by the equation:

I0 = Ic
T 2

0

T 2
c

, (10)where Tc is the period of torsional os
illations of the 
ylinder.One 
an also work out the angular velo
ity of the rotor without thestudy of pre
ession. The motor 
asing used in the lab has two 
oils whi
hare ne
essary for fast spin-up of the gyros
ope. In this lab the �rst 
oilis used for the spin-up while the se
ond one 
an be used to measure thenumber of revolutions. The rotor is always slightly magnetized, for thisreason its rotation leads to the indu
tion of alternating emf in the se
ond
oil. The emf frequen
y equals the rotor rotation frequen
y; it 
an bemeasured, e.g. by observing Lissajous �gures on os
illos
ope s
reen. Forthis purpose one should apply the emf-signal and the sinusoidal signal fromthe generator to the X- and Y-inputs of the os
illos
ope, respe
tively. Ifthe frequen
ies of two signals 
oin
ide the �gure on the s
reen is an ellipse.LABORATORY ASSIGNMENT1. Set the gyros
ope axis horizontally by turning the lever C 
arefully.2. Turn on the gyros
ope power supply and wait for 4�5 minutes until therotor motion be
omes stable.3. Make sure that the rotor rotation is fast: tapping on the lever C shouldnot 
hange its dire
tion. Explain why the gyros
ope axis is stable. "Play"with the gyros
ope: press on the lever C with the pen
il and observe the
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ope rea
tion. Determine the dire
tion of gyros
ope rotation fromthe observation.4. Suspend the weight W on the lever C, whi
h should result in gyros
opepre
ession. Fri
tion in the axis (in whi
h exa
tly?) leads to slow loweringof the lever.5. Lift the lever C by 5�6 degrees from the horizontal plane. Suspend theweight W and measure the pre
ession velo
ity Ω with a stopwat
h. Con�tinue the measurements until the lever goes down by 5-6 degrees below thehorizontal plane (the number of revolutions should be an integer). Alsomeasure the speed of lowering. Repeat the measurement at least 5 timesand average the results.6. Repeat the experiments des
ribed in 5 for various values of the torque

M (5-7 values) with respe
t to the gyros
ope 
enter of mass (the arm lis indi
ated on the setup). Plot the obtained dependen
e of pre
essionvelo
ity Ω on torque M .7. Measure the moment of inertia of the rotor with respe
t to its symmetryaxis I0: suspend the rotor repli
a by the wire so that the symmetry axis ofthe repli
a is verti
al and measure the os
illation period of the "pendulum".Repla
e the rotor with a 
ylinder of a given mass and radius and measureits os
illation period. Using Eq. (10) 
al
ulate the moment of inertia ofthe gyros
ope rotor I0.8. Estimate the errors of the obtained values of I0 and Ω.9. Cal
ulate the rotor rotation frequen
y using Eq. (8).10. Estimate the torque due to fri
tion using the known value of the speed oflowering.11. Determine the rotor speed using Lissajois �gures. Turn on the os
illo�s
ope and the generator and apply the signal from the se
ond 
oil of thegyros
ope (from two terminals on the gyros
ope base) to the os
illos
opeY-input. The signal from the generator should be applied to the X-input.The subsequent adjustment of the os
illos
ope depends on its model: if"GOS-620" devi
e is used, set the "Time/div" knob to "X-Y" mode byturning it 
ounter-
lo
kwise and adjust the horizontal and verti
al s
alesusing the "Volts/div" knobs. To obtain a Lissajois �gure (ellipse) oneshould set the generator frequen
y equal to the rotor frequen
y. Make theellipse stable by �ne tuning of the generator frequen
y. If this is not pos�sible turn the motor power o� for a while: then the 
urrent in the �rst
oil does not indu
e emf in the se
ond one and does not interfere with themeasurements. With the power o� the measurements should be performedqui
kly due to de
eleration of the rotor. Stability of the ellipse means thatthe generator frequen
y equals the rotor frequen
y.

1.2.5 14912. Estimate the errors of the results and 
ompare two values of the gyros
opeangular velo
ity determined by di�erent te
hniques.13. Find out if Eq. (5) is appli
able in the lab.Questions1. What is gyros
ope and what are its major properties?2. What fa
tors does the velo
ity of regular pre
ession depend on?3. What is the dimensionality of the torsion modulus in Eq. (9)?4. Derive Eq. (8) from Eq. (7).5. Can you explain that a rolling 
oin is turning in the dire
tion of tilt?Literature1. Ñèâóõèí Ä.Â.Îáùèé êóðñ �èçèêè. Ò. I. �Ì.: Íàóêà, 1996. Ch. VII, �� 49�51.2. Ñòðåëêîâ Ñ.Ï. Ìåõàíèêà. � Ì.: Íàóêà, 1975. �� 65�67.3. Õàéêèí Ñ.Ý. Ôèçè÷åñêèå îñíîâû ìåõàíèêè. � Ì.: Íàóêà, 1971. �� 99�104.



Chapter IIICONTINUOUS MECHANICS

The subje
t of 
ontinuous me
hani
s is a ma
ros
opi
 des
ription ofsolid obje
ts and �uids. In 
ontinuous me
hani
s any small volume ispresumably large enough to 
ontain a very large number of mole
ules. Su
hidealization justi�es the usage of e�
ient mathemati
al methods developedfor analyti
 fun
tions.Strain and stress of a deformable solid. Consider a solid obje
t at restwhi
h is not absolutely rigid, i.e. it 
an 
hange its shape and the volumeunder pressure. A deformation of the solid results in internal for
es whi
htry to restore its original shape. Su
h a for
e divided by the 
orrespondingarea is 
alled stress.Stress is due to mole
ular for
es, i.e. the for
es between mole
ules.The range of mole
ular for
es is of the order of intermole
ular distan
e. Asa ma
ros
opi
 theory the 
ontinuous me
hani
s deals only with distan
esgreater than distan
es between mole
ules. Therefore the ¾range¿ of inter�mole
ular for
es in 
ontinuous me
hani
s should be 
onsidered as negligibleand so an internal for
e 
an a
t only through a surfa
e.Let some point of a solid obje
t with 
oordinate x move at a distan
e
s. If the displa
ement is the same for all points, this would be equivalentto a parallel transport (translation) of the obje
t. Let us assume that thedispla
ement of a neighboring point with 
oordinate x+dx is di�erent from
s and it is a
tually s + ds. Strain is de�ned as

ε =
ds

dx
,i.e. strain is a relative displa
ement of two points divided by the initialdistan
e between them. If the distan
e between the points in
reases thestrain is 
alled tensile otherwise it is 
alled 
ompressive.Noti
e that the dire
tion of ds is not ne
essarily the same as that of dx.If the strain is su
h that ds is perpendi
ular to dx it is 
alled shear strain;the de�nition remains the same, ε = ds/dx (see Fig. 3.1).
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normal shearFig. 3.1. Normal and shear strainA
tually all intermediate strain dire
tions are possible, so in general d~sè d~x are ve
tors. The quantity ε relates the two ve
tors and therefore it isa se
ond-rank tensor whi
h 
an be represented as a (3 × 3) matrix εij .Consider Cartesian 
oordinates x, y, z and let the 
omponents of thedispla
ement ve
tor ~s be u, v, w:
~s =~i u +~j v + ~k w.It 
ould be shown that for small deformations the matrix εij takes theform:

εij =
1

2

(

∂si

∂xj
+

∂sj

∂xi

)

i,j = 1, 2, 3 (or x, y, z).One 
an see that
εxx = εx =

∂u

∂x
, εyy = εy =

∂v

∂y
, εzz = εz =

∂w

∂z
.The for
es responsible for stret
h (
ompression) and shear distortion (seeFig. 3.2) are 
alled tension (
ompression) and shear for
es, respe
tively.

tension shear stressFig. 3.2. Tension and shear stressThe 
orresponding stress is de�ned as the for
e divided by the area on
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swhi
h the for
e a
ts:

σ =
F

S
.Unlike for
e, stress is a lo
al quantity, i.e. it is de�ned at every point of anobje
t. Stress is de�ned as the lo
al for
e exerted on a unit area of someimaginary plane inside an obje
t (see Fig. 3.3).

tensile stress shearstressFig. 3.3. Tensile and shear stressIn general stress depends on the plane orientation; all intermediate 
asesbetween normal tension and shear stress are possible. Therefore stress isalso de�ned as the se
ond-rank tensor whi
h has nine 
omponents andrelates three for
e 
omponents and three 
omponents of the unit ve
tornormal to the plane the for
e a
ts upon. Figure 3.4 illustrates physi
almeaning of the 
omponents of stress tensor σij .

Fig. 3.4. Components of stress tensor
The �gure pi
tures an imaginary in��nitesimal parallelepiped in a solid ob�je
t and the for
es per unit area exertedon its fa
es.Noti
e that an obje
t under ten�sion for
e remains at rest (see Fig. 3.2)whereas under the shear stress an ob�je
t will be rotating 
ounter
lo
kwise.To prevent the obje
t from rotation an�other pair of for
es a
ting in the oppo�site dire
tion must be applied. This 
anbe done if the se
ond pair of shear stress for
es is exerted on the upper andlower fa
es of the parallelepiped in Fig. 3.2. Thus an obje
t will remain inequilibrium providing the shear stress for
es applied to the 
orrespondingperpendi
ular planes are equal. The inspe
tion of Fig. 3.4 shows that thefollowing equations must hold:

σzy = σyz, σxy = σyx, σxz = σzx,

Chapter III 153i.e. stress tensor is symmetri
. Be
ause of this requirement only six 
om�ponents out of nine of any stress tensor are independent. Note that straintensor is symmetri
 by de�nition. Overall, 12 independent variables arerequired to des
ribe an equilibrium state of a deformed solid obje
t.Elasti
 modulus. Equation of state of ideal gas gives the relation betweengas pressure P and its volume V at a given temperature. An equationsimilar to the equation of state relates the quantities σ and ε. The equationhas been established empiri
ally and it reads: for tension (
ompression),
σ = Eε, (3.1)and for shear stress,

σ = Gε = Gγ, (3.2)where γ is the deformation angle (see Fig. 3.1).The quantity E is 
alled Young's modulus and G is 
alled shear modu�lus. It is known from experiment that the moduli E and G are independentof stress in a wide range of the latter. The moduli E and G spe
ify elasti
properties of a material in the range where a linear relation between stressand strain holds.In general, a relation between stress and strain in a 
rystal is determinedvia a forth-rank tensor whi
h has 81 
omponents. The tensor relates nine
omponents of stress tensor and nine 
omponents of strain tensor, similarlyto Eqs. (3.1) and (3.2). Sin
e only six 
omponents of the stress and straintensors are independent, there are only 36 elasti
 moduli. The a
tual num�ber of the moduli is less due to a symmetry of the 
rystal and ranges from21 to 3. Of 
ourse, this is true for single 
rystals. Poly
rystalline bodies
omposed of small single 
rystals 
an be 
onsidered isotropi
. This approx�imation is valid as long as we are interested in a large s
ale deformationof a 
rystalline solid. An isotropi
 body is spe
i�ed by two independentelasti
 moduli.Strain and stress in parallelepiped. Let a homogeneous isotropi
 bodyhave a shape of a parallelepiped. Consider the for
es Fx, Fy, and Fz appliedto the opposite fa
es (see Fig. 3.5). Let the 
orresponding stresses be σx,

σy , and σz and let us �nd the strains 
aused by the for
es. We assumesmall strains, so superposition prin
iple applies.Let the 
oordinate axes be dire
ted along the parallelepiped edges whi
hlengths are lx, ly, and lz.If only the for
e Fx a
ts, the edge lx is in
reased by ∆1lx:

∆1lx
lx

=
σx

E
.
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Fig. 3.5. Strains in parallelepipedIf only the for
e Fy a
ts, the dimension of the slab perpendi
ular to the

y-axis de
reases. In parti
ular, the edge lx would re
eive the de
rement

∆2lx whi
h 
an be 
al
ulated as

∆2lx
lx

= −µ
σy

E
,where µ is 
alled Poisson's ratio. Young's modulus E and Poisson's ratio µspe
ify 
ompletely elasti
 properties of an isotropi
 material. Other elasti

oe�
ients 
an be expressed in terms of E and µ. The relative in
rementof the edge lx due to the single for
e Fz would be

∆3lx
lx

= −µ
σz

E
.If all the for
es a
t simultaneously, the resulting in
rement of the edge lxis the sum of all three in
rements a

ording to the superposition prin
iple:

∆lx = ∆1lx + ∆2lx + ∆3lx.The in
rements of the edges ly and lz 
an be found in a similar way. Finally:
εx =

σx

E
− µ

E
(σy + σz),
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εy =

σy

E
− µ

E
(σz + σx), (3.3)

εz =
σz

E
− µ

E
(σx + σy).These equations are 
alled generalized Hook's law.A quasistati
 stret
hing of the slab in the x dire
tion does the work

A1 = 1

2
Sxσx∆lx, where Sx = lylz is the area of the fa
e orthogonal to the

x-axis. The work 
an be written as
A1 =

1

2
lxlylzσx

∆lx
lx

=
1

2
V σxεx,where V = lxlylz is the slab volume. Similarly,

A2 =
1

2
V σyεy, A3 =

1

2
V σzεz.By adding all three 
ontributions we �nd the density of elasti
 energy ofthe slab:

wel =
1

2
(σxεx + σyεy + σzεz). (3.4)Using Eq. (3.3) allows one to rewrite Eq. (3.4) as

wel =
1

2E

[

σ2
x + σ2

y + σ2
z − 2µ(σxσy + σyσx + σzσx)

]

. (3.5)Noti
e that an absolutely rigid slab (E → ∞) does not a

umulate theelasti
 energy (w → 0) whatever for
es a
t on it.Strain due to uniform 
ompression. Consider a 
ase when all thestresses σx, σy, and σz are equal and negative. In this 
ase the slab isunder the uniform pressure applied to all its sides:

P = −σx = −σy = −σz.Then it follows from Eq. (3.3) that

εx = εy = εz = −P

E
(1 − 2µ). (3.6)Cal
ulating the logarithmi
 derivative of both sides of the equation

V = lxlylz,gives

∆V

V
=

∆lx
lx

+
∆ly
ly

+
∆ly
ly

,
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∆V

V
= εx + εy + εz.Therefore Eq. (3.6) 
an be written as

∆V

V
= − P

K
, (3.7)where

K =
E

3(1 − 2µ)
. (3.8)The 
onstant K is 
alled bulk modulus.Then Eq. (3.5) for the elasti
 energy density 
an be rewritten as

wel =
3(1 − 2µ)P 2

2E
=

P 2

2K
.Sin
e wel is positive de�nite, then

1 − 2µ > 0,or

µ <
1

2
.For ro
k Poisson's ratio µ is 
lose to 0.25 and for metals it is 0.3.Unilateral tension strain. Let a homogeneous rod be 
ompressible orstret
hable along its axis whi
h is along x dire
tion. Assume also that thetransverse dimensions of the rod do not 
hange due to the rod environment.The transversal shape of the rod is irrelevant. Then Eq. (3.3) 
an be used.Setting εy = εz = 0 gives:

σy − µ(σz + σx) = 0, σz − µ(σx + σy) = 0.Then

σy = σz =
µ

1 − µ
σx,

εx =
σx

E

(

1 − 2µ2

1 − µ

)

.Finally

∆lx
lx

=
σx

E′
, (3.9)where

E′ = E
1 − µ

(1 + µ)(1 − 2µ)
. (3.10)

Chapter III 157The quantity E′ is 
alled P-wave modulus.Relation between elasti
 moduli. As it is already mentioned a uni�form isotropi
 elasti
 body is spe
i�ed by two independent elasti
 moduli.Therefore the elasti
 
oe�
ients introdu
ed above must be related. It 
anbe shown that

K =
E

3(1 − 2µ)
,

E′ = E
1 − µ

(1 + µ)(1 − 2µ)
,

G =
E

2(1 + µ)
,

E′ = K +
4

3
G.Here K is bulk modulus, E′ is P-wave modulus, µ is Poisson's ratio, E isYoung's modulus, and G is shear modulus. Therefore all elasti
 
oe�
ients
an be expressed in terms of E and G.Pas
al's law. In 
ontinuous me
hani
s a �uid 
an be de�ned as a mediumin whi
h a shear stress is absent in equilibrium. Therefore only the diagonal(matrix) 
omponents of the stress tensor are non-zero:

σij = 0, if i 6= j; σii 6= 0 (i, j = 1, 2, 3).Moreover all the diagonal 
omponents must be equal due to the �uidisotropy. Therefore the stress tensor of a �uid takes the form

σij =





−P 0 0
0 −P 0
0 0 −P



 ,where P is the pressure at a given point of the �uid.In other words the normal stress (pressure) is independent of the ori�entation of a surfa
e on whi
h the pressure is exerted. This statement is
alled Pas
al's law.Pressure P in a �uid is 
aused by 
ompression of the �uid. Sin
e shearstress is absent the elasti
 properties of the �uid are spe
i�ed by the singleelasti
 
onstant 
alled 
ompressibility,

χ = − 1

V

dV

dP
,
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sor by the inverse quantity, bulk modulus:

K = −V
dP

dV
.It is assumed that the �uid temperature is maintained 
onstant.Bernoulli's equation. A �uid �ow is spe
i�ed if the position of any �uidpar
el is known at any given time. By taking time derivative of the positionit is possible to �nd the par
el velo
ity and the a

eleration. Suppose thatthe 
oordinates x0, y0, and z0 of a par
el at a time t0 are given. The
oordinates at a time t 
an be found from the following fun
tions:

x = F1(x0, y0, z0, t),

y = F2(x0, y0, z0, t),

z = F3(x0, y0, z0, t).This set of equations is 
alled the Lagrange equations and the fun
tionarguments are 
alled Lagrange variables. To spe
ify a �uid state 
ompletelyone must also know the pressure, the density, and the �uid temperature.These quantities are determined by the laws of 
onservation of energy andmomentum and by the equation of state.There is also another method to spe
ify a �ow that refers to whathappens at any point of spa
e at any given time. Usually three 
omponentsof the velo
ity as fun
tions of the 
oordinates and time are introdu
ed
u = f1(x, y, z, t),

v = f2(x, y, z, t),

w = f3(x, y, z, t).This set of equations is 
alled the Euler equations. To determine thepar
el path one integrates the following set of equations:
dx = udt, dy = vdt, dz = wdt.Sin
e three 
onstants of integration 
an be 
onsidered as the par
el 
oor�dinates at a given initial time the Lagrange equations are reprodu
ed.A pi
torial representation of a �uid �ow is given by the so 
alled lines ofthe �eld �ow. The tangent to a �eld �ow line at any given point 
oin
ideswith the dire
tion of the �uid velo
ity. For a stationary �ow, whi
h is timeindependent, the �eld �ow lines 
oin
ide with the par
el traje
tories.In a stationary �ow all par
els going through the same point in spa
ewill later go along the same �eld �ow line. A �ow region swiped by the
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el during its motion through the �uid is 
alled material line. To deriveequations whi
h des
ribe a �ow it is 
onvenient to 
onsider a materialline with small 
ross-se
tional area, so that the �uid parameters 
an be
onsidered 
onstant a
ross the line. Let ρ be the �uid density, v be the�uid velo
ity, and S be the 
ross-se
tional area of the material line. Thenthe volumetri
 �ow rate q, i.e. the �uid mass passing through a given
ross-se
tion per unit time, is
q = ρvS. (3.11)Conservation of the �uid mass �owing along the material line with a varying
ross-se
tion gives:

ρ1v1S1 = ρ2v2S2. (3.12)
Fig. 3.6. To derivation of Bernoulli'sequation

As to the law of 
onservation of en�ergy we take into a

ount 
hanges ofkineti
 and potential energy of a �uid
aused by work of pressure for
es butnegle
t 
hanges of internal energy ofthe �uid due to 
ompressibility, vis
os�ity, and thermal 
ondu
tivity. A �uidwhi
h vis
osity and thermal 
ondu
tiv�ity 
an be negle
ted is termed perfe
t�uid. Consider a material line whi
hverti
al 
ross-se
tion is shown in Fig. 3.6. The gravity for
e is dire
tedto the �gure bottom. The heights of the 
ross-se
tions 1 and 2 and the
orresponding parameters of the �ow are indi
ated. A �uid par
el tra�verses in�nitesimal distan
e vdt for an in�nitesimal time dt.The par
el atthe 
ross-se
tion S1 moves at the 
ross-se
tion S1
1 , and the par
el from S2moves to S1

2 . Sin
e the displa
ements are small, the 
orresponding 
hangesin the areas of the 
ross-se
tions are negligible. The work done by the pres�sure for
es to displa
e the mass of the liquid between the 
ross-se
tions S1and S2 is the sum of the positive work p1S1v1dt and the negative work

p2S2v2dt (the displa
ement is opposite to the for
e). To 
al
ulate a 
hangein the kineti
 and potential energy noti
e that the energy of the liquidbetween the 
ross-se
tions S1
1 and S2 remains the same. The 
hange is
ompletely due to a transition of the mass between the 
ross-se
tions S1 è

S1
1 , dm = ρ1S1v1dt = ρ2S2v2dt, to the position between the 
ross-se
tions

S2 è S1
2 . Using the law of 
onservation of mass in the expression for thework due to the pressure for
es and equating this work to the 
hange inpotential and kineti
 energy we obtain:

(

p1

ρ1

− p2

ρ2

)

dm = dm

(g(h2 − h1) +
v2
2 − v2

1

2

)

. (3.13)
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v2
1

2
+ gh1 +

p1

ρ1

=
v2
2

2
+ gh2 +

p2

ρ2

= const. (3.14)The 
ompressibility of a liquid under standard 
onditions is usuallysmall. For instan
e, in
reasing the density of water by 1% requires a pres�sure of 200 atm (su
h a pressure exists at the sea depth of 2km) andin
reasing by 10% requires more than 3000 atm. Therefore water is 
onsid�ered in
ompressible for small pressures. Then instead of (3.12) and (3.14)one 
an write

v1S1 = v2S2, (3.15)

p1 +
ρv2

1

2
+ ρgh1 = p2 +

ρv2
2

2
+ ρgh2. (3.16)Using Bernoulli's equation (3.16) for in
ompressible �uid one 
an deriveTorri
elli's equation for the velo
ity of a jet of liquid �owing from a vesselthrough an opening. The area of the opening is 
onsidered small 
omparedto the area of the free liquid surfa
e. Therefore the normal 
omponent ofthe velo
ity on the free surfa
e is negligible in 
omparison with the jetvelo
ity at the opening. The jet 
an be extended as a material line tothe surfa
e. The pressure in the jet is equal to the atmospheri
 pressurebe
ause the air-jet boundary is at rest, so there is no for
e exerted on theboundary. The pressure on the free surfa
e is also equal to the atmospheri
pressure. If the opening is below the free surfa
e by h, Eq. (3.16) gives forthe jet velo
ity:

v =
√

2gh. (3.17)Noti
e that the magnitude of the velo
ity is independent of its dire
tion(the normal to the opening area). The quantity ρv2/2 is 
alled dynami
pressure whi
h is equal to the spe
i�
 density of kineti
 energy. It followsfrom Eq. (3.17) that the dynami
 pressure equals the hydrostati
 pressure
ρgh. The total pressure in a liquid at rest at this depth follows after addingthe atmospheri
 pressure.The Poiseuille equation. A

ording to Bernoulli's equation the pressureof a stationary �ow of a �uid in a horizontal tube of 
onstant 
ross-se
tion isthe same along the tube. A
tually the pressure de
reases in the dire
tion ofthe �ow. To keep the �ow stationary it is ne
essary to maintain a pressuredi�eren
e at the ends of the tube that balan
es the for
es of internal fri
tionin the �uid.Consider two parallel plates and a layer of liquid between them. Tomaintain a 
onstant relative speed of the plates a pair of for
es ~F and
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−~F must be applied to the plates. Newton found experimentally that themagnitude of the for
e is

F = ηS
v2 − v1

h
, (3.18)where S is the plate area, h is the distan
e between the plates, v1 and

v2 are the plate velo
ities, and η is dynami
 vis
osity (vis
osity for short).The for
e between two layers of a vis
ous �uid depends on the velo
itygradient in the dire
tion perpendi
ular to the �ow (Newton's law for avis
ous �uid):
F = Sη

dvx

dy
. (3.19)Let an in
ompressible �uid �ow along a straight 
ylindri
al tube of aradius R. Let abs
issa be dire
ted along the tube axis in the �ow dire
tion.Consider a 
ylinder of the length dx and of the radius r (see Fig. 3.7).

Fig. 3.7. To derivation of thePoiseuille equation

The lateral surfa
e of the 
ylinder issubje
ted to the tangential for
e due tovis
ous fri
tion, the for
e is dire
ted op�posite to the 
ylinder velo
ity:
dF = 2πrη

dv

dr
dx.The for
e due to the di�eren
e in pres�sure a
ts on the 
ylinder bases in the di�re
tion of motion:

dF1 = πr2
(

P (x) − P (x + dx)
)

= −πr2 dP

dx
dx.The �eld �ow lines are parallel, the 
ross-se
tional area of a material lineremains 
onstant, so Eq. (3.15) shows that the a

eleration of the �uidpar
el under 
onsideration is zero. Therefore the sum of the for
es exertedon the par
el must vanish:

dF + dF1 = 0.It follows from the equation that

2η
dv

dr
= r

dP

dx
. (3.20)Sin
e the velo
ity v as well as dv/dr are independent of x, the derivative

dP/dx in Eq. (3.20) must be 
onstant and equal to

P2 − P1

l
,
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tively.This gives

dv

dr
= −P1 − P2

2ηl
r. (3.21)Integration of this equation yields

v = −P1 − P2

4ηl
r2 + C.The 
onstant of integration 
an be found by assuming that the �uid sti
ksto the tube walls:

v(R) = 0.Then

v =
P1 − P2

4ηl
(R2 − r2).The velo
ity v is maximum at the tube axis and equals

v0 =
P1 − P2

4ηl
R2.Away from the axis the velo
ity de
reases a

ording to quadrati
 depen�den
e.Now let us determine the �ow rate, i.e. the amount of the �uid passingthrough a tube 
ross-se
tion per unit of time. The mass of the �uid passingthrough a ring-like area of internal radius r and external radius r + drequals dQ = 2πrdr · ρv. Substituting the expression for the velo
ity andintegrating from 0 to R one �nds:

Q = πρ
P1 − P2

2ηl

R∫

0

(R2 − r2)r dr,or

Q = πρ
P1 − P2

8ηl
R4. (3.22)Thus the �ow rate is proportional to the pressure di�eren
e, to the fourthpower of the tube radius, and inversely proportional to the tube lengthand dynami
 vis
osity. This law was found experimentally and derived byPoiseuille although he was not the �rst to dis
over it. Equation (3.22) is
alled the Hagen�Poiseuille equation.

Chapter III 163In pra
ti
e the �ow rate is 
onveniently measured in terms of the volumeof �uid �owing through 
ross-se
tional area (volumetri
 �ow rate). ThenEq. (3.22) be
omes

QV =
πR4

8ηl
(P1 − P2). (3.23)This parti
ular form of the Poiseuille equation is used in the lab 1.3.3.A �ow of an in
ompressible vis
ous �uid is des
ribed by the Navier�Stokes equation:

∂~v

∂t
+ vx

∂~v

∂x
+ vy

∂~v

∂y
+ vz

∂~v

∂z
= −1

ρ
gradP +

η

ρ
∆~v. (3.24)Here

gradP =~i
∂P

∂x
+~j

∂P

∂y
+ ~k

∂P

∂z
, ∆~v =

∂2~v

∂x2
+

∂2~v

∂y2
+

∂2~v

∂z2
.The equation 
an be redu
ed to a dimensionless form by introdu
ing atypi
al size L and a typi
al velo
ity u of the �ow. The 
ontribution ofea
h term is then determined by its 
oe�
ient. The 
ontribution of thevis
ous term 
ompared to the inertia terms on the left is determined bythe Reynolds number: Re =

ρLu

η
.For the large Reynolds number the vis
ous term 
oe�
ient is small andvis
osity is negligible. The Reynolds number also determines transitionbetween the laminar and turbulent regimes of a vis
ous �uid �ow.Literature1. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. I. � Ì.: Íàóêà, 1996. �ë. Õ è ÕII.2. Êèíãñåï À.Ñ., Ëîêøèí �.�., Îëüõîâ Î.À. Îñíîâû �èçèêè. Ò. 1. Ìåõàíèêà,ýëåêòðè÷åñòâî è ìàãíåòèçì, êîëåáàíèÿ è âîëíû, âîëíîâàÿ îïòèêà. � Ì.:Ôèçìàòëèò, 2001. ×. 1. �ë. 8.
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sLab 1.3.1Determination of Young's modulus based onmeasurements of tensile and bending strainPurpose of the lab: to determine experimentally the dependen
e be�tween stress and strain (Hooke's law) for two simplest states of stress -normal stress and bending, and to determine Young's modulus from theresults.Tools and instruments: the �rst part: Lermantov' ma
hine, a wiremade of studied material, a teles
ope with a s
ale, a set of weights, ami
rometer, and a ruler; the se
ond part: a bra
ket for bending beams,an indi
ator for measuring strain, a set of beams, weights, a ruler, and a
aliper.The �rst part of the lab is devoted to studying normal stress des
ribedby eq. (3.1), the stress is observed in a stret
hed wire. Shear stress isstudied in the se
ond part, measurements are performed by bending abeam. The relation between the beam bending and the magnitude ofthe for
e applied between the points of support is expressed via Young'smodulus. Therefore the modulus 
an be determined by measuring thebending versus the for
e.I. Determination of Young's modulus by measurementof wire strainYoung's modulus is measured with the aid of Lermant's ma
hine whi
hdesign is shown in Fig. 1. The upper end of the wire Π made of materialunder study is atta
hed to the bra
ket K, and the lower one to the 
ylinderat the end of the pivoted bra
ket III. The 
ylinder supports the lever rto whi
h the mirror 3 is atta
hed. Thus elongation of the wire 
an bemeasured by the angle of mirror rotation.The wire strain is 
hanged by displa
ing weights from the platform Mto the platform O and vi
e versa. Under this arrangement the deformationof the bra
ket K remains the same and do not a�e
t the measurementa

ura
y.It should be taken into a

ount that the wire Π is always bent if nostress is applied, whi
h a�e
ts the results espe
ially for moderate stress.Under small load the wire is not just stret
hing, it is mostly straighteningup.
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Fig. 1. Lermant's ma
hine
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sLABORATORY ASSIGNMENT1. Determine the 
ross-se
tional area of the wire. For this purpose measurethe wire diameter at least at ten di�erent spots and in two perpendi
ulardire
tions at ea
h spot. Wat
h that the mi
rometer does not deform thewire. In the 
al
ulations that follow use the diameter averaged over allmeasurements.2. Measure the wire length.3. Train the teles
ope on the mirror 3. The s
ale re�e
tion should be 
learlyvisible. Derive the relation between the number n of s
ale graduations, thedistan
e h between the s
ale and the mirror, the length of lever r and theelongation ∆l of the mirror. The lever length is re
orded on the ma
hineand the distan
e h should be measured.4. Make sure that wire elongation remains dire
tly proportional to stress (elas�ti
 region) during experiment. To do so, estimate the maximum load byassuming the yield stress (at whi
h the material begins to deform plas�ti
ally) be 900 N/mm2. The working load should not ex
eed 30% of themaximum. Then verify the estimate. Put a weight on the platform, removeit, and 
he
k that the wire length remains the same. Repeat the experi�ment with two, three, and more weights until rea
hing the maximum load.As soon as irreversible deformations be
ome noti
eable in
reasing the loadmust be stopped. Ea
h time the load is 
hanged the arising os
illationsshould be damped (the damper is not shown in Fig. 1).5. Measure the dependen
e of wire elongation, i.e. the number n of s
alegraduations, on the mass m of weights by in
reasing and then de
reasingthe load. Repeat the experiment 2�3 times.6. Using the results plot elongation ∆l versus the load P . When no stret
hingfor
e is applied the wire is usually bent, so for small loads its ¾elongation¿is due to straightening rather than stret
hing. Therefore the elongationgrows rapidly at the initial part of the 
urve ∆l(P ) (small P ) and onlylater the points approa
h a straight line (whi
h does not pass through theorigin). The line slope 
an be used to �nd elasti
 
oe�
ient k of the wireand subsequently the Young's modulus. The initial part of the 
urve ∆l(P )should be ex
luded from the treatment.7. Using the plot determine the elasti
 
oe�
ient k and the Young's modulus
E. Estimate the a

ura
y of k and E.8. Determine the wire material by 
omparing the obtained value of Young'smodulus with tabulated values.

1.3.1 167II. Determination of Young's modulus bymeasurement of beam bendingThe installation 
onsists of a robust frame with two support prisms
A and B (see Fig. 2). The beam (plank) C lies on the prism edges. Theplatform Π with the weights on it is suspended on the prism D at the beam
enter. The beam de�e
tion is measured with the aid of the indi
ator
I whi
h is atta
hed to a support separate from the frame. A 
ompleterevolution of the big indi
ator hand 
orresponds to 1 mm or one graduationof the small dial.Young's modulus E of the beam material is related to de�e
tion ymax(the displa
ement of the beam 
enter) by Eq. (20) (see p. 172):

E =
Pl3

4ab3ymax .Here P is the load, l is the distan
e between the prisms A and B, and

a and b are the width and the height of re
tangular 
ross-se
tion of thebeam.To ex
lude the error due to table de�e
tion whi
h 
hanges under theload, the weights should be pla
ed on the plank above the lower shelf ofthe support frame before the experiment.Equation (20) is derived under the following 
onditions: �rstly, theedges of the support prisms A and B are at the same height and, se
ondly,the for
e P is applied pre
isely at the beam 
enter. The reader is re
�ommended to verify how signi�
antly this equation 
hanges if the above
onditions are not satis�ed within the a

ura
y of experiment.LABORATORY ASSIGNMENT1. Measure the distan
e between the prisms A and B.2. Determine width and thi
kness of the beam. To do so, measure theseparameters at least at ten di�erent spots. The averaged values should beused in 
al
ulations.3. Put the beam on the frame. Set the indi
ator at the beam 
enter andmeasure the de�e
tion ymax versus the load P . Perform the measurementsby in
reasing and then de
reasing the load. Che
k that the beam restoresits initial shape when the load is removed.4. Study how the result depends on the position of the point where the for
e

P is applied. Displa
e the prism D by 2�3 mm from the beam 
enterand measure the de�e
tion again. Compare the value obtained with theprevious result.
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Fig. 2. Installation for measurement of Young's modulus5. Overturn the beam upside down and repeat the measurements. Comparethe results with the previous ones.6. Perform the measurements for two or three wooden beams and for onemade of metal.7. For ea
h beam plot the dependen
e of ¾load¿ versus ¾de�e
tion¿ both forin
reasing and de
reasing loads. Determine the average Young's modulifrom the slopes of the 
urves.8. Estimate the measurement errors and 
ompare the Young's moduli ob�tained with the 
orresponding tabulated values.Questions1. What are the main sour
es of measurement errors? How 
an the errors be dimin�ished?2. Estimate the maximum a

ura
y of measurement of wire elongation and beamde�e
tion whi
h is reasonable in this experiment.3. What is the di�eren
e between the state of normal stress and the state of normaldeformation?4. For whi
h stress and strain does Hooke's law hold?5. Whi
h deviations from Hooke's law are possible in deformation of solids?
1.3.1 1696. What is Poisson's ratio?7. Whi
h assumptions are made to obtain the relation between the maximum beamde�e
tion and Young's modulus?8. What fun
tion y(x) des
ribes the shape of the middle line of beam under perfe
tbending?9. What is the use of platform M in Lermant's ma
hine?Literature1. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. I. � Ì.: Íàóêà, 1996. �� 75�80.2. Êèíãñåï À.Ñ., Ëîêøèí �.�., Îëüõîâ Î.À. Îñíîâû �èçèêè. Ò. 1. Ìåõàíèêà,ýëåêòðè÷åñòâî è ìàãíåòèçì, êîëåáàíèÿ è âîëíû, âîëíîâàÿ îïòèêà. � Ì.:Ôèçìàòëèò, 2001. ×. 1. �ë. 8. �� 8.1, 8.2.3. Ñòðåëêîâ Ñ.Ï. Ìåõàíèêà. � Ì.: Íàóêà, 1975. �� 81, 82, 87, 88.4. Õàéêèí Ñ.Ý. Ôèçè÷åñêèå îñíîâû ìåõàíèêè. � Ì.: Íàóêà, 1971. �� 105�108.AppendixFigure 3a shows the beam under the load P applied in the middle betweensupports A and B. Ea
h support exerts the for
e P/2 at points A and B. Thebeam is bent so that upper layers be
ome 
ompressed and lower ones stret
hed.It is reasonable to assume that the magnitude of stress in a layer is proportionalto the distan
e between the layer and the middle line of the beam, as it is shownby the arrows in Fig. 3b for some beam element. Sin
e the middle line of thebeam is not stressed, the length dl0 of the element middle line does not 
hangeunder deformation (whi
h is also true for the middle line of the beam). Thisstressed state of beam is 
alled pure bending. We assume that stresses in layersare related to their deformations by Hooke's law:

σ = E
dl − dl0

dl0
. (1)The slope of middle line of the beam element (see Fig. 3
) 
hanges from αto α− dα along the distan
e dl0. The 
orresponding ar
 length 
an be expressedvia 
urvature radius R:

dl0 = −Rdα. (2)Here the minus sign is taken be
ause R is 
onsidered positive and the slopeof middle line in the 
oordinates of Fig. 3a de
reases along the beam (as it isshown in Fig. 3
). Let y(x) be the equation of the middle line in the 
oordinates

x, y (noti
e that the ordinate points downward), then the slope of the middleline is determined by the expression:

dy(x)

dx
= tanα. (3)The length of the element middle line 
an be written as (see Fig. 3d):

dl0 =
√

(dx)2 + (dy)2 = dx

√

1 +

(

dy

dx

)2

. (4)
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Fig. 3. Beam bending

1.3.1 171From the same triangle it follows that
dx

dl0
= cos α. (5)Di�erentiating Eq. (3) with respe
t to x and using Eq. (2) one obtains:

d2y

dx2
=

1

cos2 α

dα

dx
=

(

dl0
dx

)

2
dα

dl0

dl0
dx

= −
(

dl0
dx

)

3
1

R
. (6)Together with Eq. (4) this gives:

1

R
= − y′′

(1 + y′2)3/2
. (7)The stress in the layer lo
ated at the distan
e ξ from the middle line of thebeam (see Fig. 3
) is given by Eq. (1) whi
h 
an be rewritten as

σ = E
dl − dl0

dl0
=

E

R
ξ. (8)This formula makes use of the relation following from similarity of the trianglesin Fig. 3
:

dl − dl0
ξ

=
dl0
R

. (9)The net elasti
 for
e a
ting in a beam 
ross-se
tion is zero, so the net torquedue to the for
es is independent of the point used to 
al
ulate the torque. Letus 
hoose the point at the beam middle line. This gives:

M =

b/2∫

−b/2

ξσ dS =
E

R

b/2∫

−b/2

ξ2 dS =
E

R
I, (10)where dS = adξ, a is the width, and b is the height of the beam 
ross-se
tion (seeFig. 3). I is 
alled moment of inertia of the beam 
ross-se
tion with respe
t tothe axis passing through the beam middle line. It follows from Fig. 3b that thebeam se
tion from x = 0 to x is in equilibrium provided the for
es applied at thepoint of support and at the 
ross-se
tion are equal as well as the 
orrespondingtorques and the torque determined by Eq. (10). Torque equality gives:

EI

R
=

xP

2
. (11)Now using Eq. (7) one 
an write the equation for the beam middle line:

y′′ = −(1 + y′2)3/2 P

2EI
x. (12)For small de�e
tion

y′2 ≪ 1. (13)
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ase it follows from Eq. (12) that

y′′ = − P

2EI
x. (14)Integrating this equation one gets:

y′ = − P

4EI
x2 + C. (15)Here C is the 
onstant determined by the 
ondition that the beam is symmetri�
ally bent, y′ = 0 at x = l/2. Then Eq. (15) gives

y′ = − P

4EI

(

x2 − l2

4

)

. (16)Integrating one more time and taking into a

ount that y = 0 at x = 0 oneobtains the equation for the beam middle line:

y =
Px

48EI
(3l2 − 4x2). (17)The maximum de�e
tion of the beam is determined by the value of y at

x = l/2:

ymax =
P l3

48EI
. (18)For beam of re
tangular 
ross-se
tion

I =

b/2∫

−b/2

ξ2 dS = a

b/2∫

−b/2

ξ2 dξ =
ab3

12
. (19)The value of Young's modulus follows from Eqs. (18) and (19):

E =
P l3

4ab3ymax . (20)
1.3.2 173Lab 1.3.2Determination of torsional rigidityPurpose of the lab: to measure the dependen
e of twist angle of anelasti
 rod on torque applied, to measure torsion and shear moduli of arod using stati
 method, and to measure the same moduli using torsionalos
illations.Tools and instruments: part 1: a rod, an eyeglass with a s
ale, a tapemeasure, a mi
rometer, and a set of weights; part 2: a wire made of thestudied material, weights, a stopwat
h, a mi
rometer, a tape measure,and a ruler.The distribution of deformations and stresses in a twisted 
ylindri
alrod of 
ir
ular 
ross se
tion is uniform along the rod only far from thepoints of for
e appli
ation. In these regions of uniform deformation one
an 
onsider every 
ross se
tion as absolutely rigid, i.e. rod parti
les arenot displa
ed from the radial lines on whi
h they are lo
ated prior to thedeformation; all radial lines in a given 
ross-se
tion are thus turned bythe same angle. This stressed state of the material is referred to as puretorsion. In what follows it will be shown that the tangential stresses in the
ross se
tion are dire
tly proportional to the distan
e to the rotation axis.Consider a part of length l of a twisted 
ylinder shown in Fig. 1a. Astraight line drawn parallel to the axis of an unstrained 
ylinder be
omesa helix after a twisting torque is applied. Cross se
tions separated by thedistan
e l are rotated by the angle ϕ.To derive equations des
ribing torsion it is 
onvenient to 
onsider apart of 
ylinder: a ring of arbitrary radius r, in�nitesimal thi
kness dr,and in�nitesimal height dl, as shown in Fig. 1b. The top of the ringunder torsion is rotated by the angle dϕ relative to the bottom while thegeneratrix of the ring 
ylindri
al surfa
e dl (an in�nitesimal part of thehelix mentioned above) is tilted by the angle aα from the verti
al.For small torsion angles α one 
an write down the relation

αdl = rdϕ. (1)One 
an readily see that α grows with the distan
e to the 
ylinder axis. Anin�nitesimal part of the deformed ring is shown in Fig. 1
. The tangentialstress τ is dire
tly proportional to the twist angle α, the proportionality
onstant is shear modulus G (see Eq. (3.2)):

τ = Gα. (2)
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Fig. 1. Twisted 
ylinderThe tangential stress τ is dire
tly proportional to α, hen
e it in
reases pro�portionally to the distan
e to the axis of the 
ylinder, as it was mentionedabove. Using Eq. (1) one obtains

τ = Gr
dϕ

dl
. (3)These tangential stresses provide the torque about the 
ylinder axis:

dM = 2πrdr · τ · r. (4)The total torque on the whole 
ross se
tion 
an be obtained by integratingEq. (4) over r from zero to the 
ylinder radius R:
M = 2πG

dϕ

dl

R∫

0

r3 dr = πG
dϕ

dl

R4

2
. (5)This torque is 
onstant over the 
ylinder length. Torques a
ting on the fa
eplanes of any given part of 
ylinder are balan
ed, thus there is no rotation.

1.3.2 175Then using Eq. (5) one readily obtains a linear relation between the relativetwist ϕ of two 
ross se
tions and the distan
e l between them. Thereforewe obtain the relation between the applied torque M , the relative twistangle ϕ of the 
ross se
tions, and the distan
e l between them:
M =

πR4G

2l
ϕ = fϕ. (6)Here the torsion modulus f is introdu
ed whi
h is related to shear modulus

G by the following equation:
f =

πR4G

2l
. (7)It is worth empathizing that Eq. (6) is valid only for the stresses mu
hless than the shear modulus, i.e. at small angles α.I. Stati
 method of determination of torsion modulusof a rodThe experimental setup for the study of stati
 torsion is shown in Fig. 2.The top end of the verti
al rod R is rigidly atta
hed to the bar while thebottom end is jointed to the dis
 D. The twisting moment is provided bytwo wires wound around the dis
 and passed over the blo
ks B; the wiresare loaded by identi
al weights W. The mirror M mounted on the dis
 isused to measure the twist angle. To determine the angle one should adjustthe eyeglass to observe a sharp re�e
tion of the s
ale in the mirror M. Thes
ale and the eyeglass are mounted on single support. Measurement ofdispla
ement of the s
ale image allows one to determine the twist angle ofthe rod. LABORATORY ASSIGNMENT1. By adjusting the eyeglass observe a 
lear image of the s
ale re�e
ted bythe mirror M. Measure the distan
e between the mirror and the s
ale andthe diameters of rod R and dis
 D.2. Gradually in
rease the load on the wires and obtain the dependen
e ϕ =

= ϕ(M). Carry out the measurements by de
reasing the torque. Repeatthe measurements at least three times.3. Plot the results in the (ϕ, M) � 
oordinates. Using the plot obtaineddetermine the torsion modulus f and estimate the error.4. Using Eq. (7) 
al
ulate the shear modulus G and 
ompare its value withthe tabulated one.
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Fig. 2. Experimental setupII. Dynami
 measurement of the shear modulus (usingtorsional os
illations)The experimental setup used in this part of the lab is shown in Fig. 3.The setup in
ludes the verti
al wire and the horizontal metal rod R at�ta
hed to its lower end. Two identi
al movable weights W are symmetri�
ally atta
hed to the rod. The upper end of the wire is se
urely 
lampedby a 
ollet; a spe
ial me
hanism allows 
onjoint rotation of the wire endand the 
ollet about the verti
al axis, thus it is possible to ex
ite torsionalos
illations of the system. Rotation of the rod R and the weights W is due
1.3.2 177to the elasti
 torque of the wire. The rotation is des
ribed by Eq. (2.35):

I
d2ϕ

dt2
= −M. (8)Here I is the moment of inertia of the rod and weights about the rotationaxis, ϕ is the rotation angle measured from the equilibrium, and M is thetorque whi
h at small angles ϕ is well des
ribed by Eq. (6). Introdu
ingthe notation

ω2 =
f

I
, (9)one obtains from Eqs. (6) and (8):

d2ϕ

dt2
+ ω2ϕ = 0. (10)This is the equation of harmoni
 os
illations (4.4). Its solution is

ϕ = ϕ0 sin(ωt + θ), (11)where amplitude ϕ0 and phase θ are determined by the initial 
onditions.The os
illation period T equals
T =

2π

ω
= 2π

√

I

f
. (12)Equation (10) together with Eqs. (11) and (12) des
ribe free os
illa�tions. In order to apply them to a real pro
ess one should as
ertain thatthe damping of os
illations is negligible. If the amplitude of os
illationsde
reases less than by half after 10 full swings one 
an use the equationsfor free os
illations. Also one should make sure that the os
illation perioddoes not depend on the initial amplitude, otherwise the amplitude shouldbe de
reased until this dependen
e vanishes.LABORATORY ASSIGNMENT1. Estimate experimentally the working range of amplitudes in whi
h the re�sults derived for free os
illations are valid. For this purpose �x the weightson the rod symmetri
ally and ex
ite torsional os
illations. Measure thetime of several full swings (at least ten) and 
al
ulate the period T1. Halvethe initial amplitude and determine the 
orresponding period T2. If T1 =

= T2 one 
an work with any amplitude not ex
eeding the �rst one. Other�wise de
rease the initial amplitude and repeat the measurements until theequality is obtained.
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Fig. 3. Experimental setup2. Make sure that after 10 full swings the amplitude is de
reased less than byhalf.3. Fix the weights on the rod at equal distan
es l from the rotation axis (wire)to the 
enters of inertia of the weights and measure the os
illation period T .Repeat the measurement for 4�6 di�erent values of l. The torsion modulus
an be obtained from the experimental data plotted in 
oordinates (l2, T 2).4. Measure the wire length and diameter. Using the obtained torsion modulus
f 
al
ulate the shear modulus G (see Eq. (7)), estimate the error, and
ompare the result with the tabulated value.Questions1. How does fri
tion in the axes of blo
ks B a�e
t the results of stati
 measurements?How 
an one minimize this in�uen
e?2. How does the os
illation period 
hange when damping is in
reased?3. Whi
h method of measurement of shear modulus is preferable in pra
ti
e: thestati
 or dynami
 one?

1.3.3 1794. How 
an one estimate the error of shear modulus from the plot in (l2,
T 2)-
oordinates? Literature1. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. I. � Ì.: Íàóêà, 1996. �� 78,79.2. Ñòðåëêîâ Ñ.Ï. Ìåõàíèêà. � Ì.: Íàóêà, 1975. �� 82, 84, 86.Lab 1.3.3Determination of air vis
osity by measuring arate of gas �ow in thin pipesPurpose of the lab: determine a domain of stationary �ow, regimesof laminar and turbulent �ows, air vis
osity, and the Reynolds number.Tools and instruments: metal pipes mounted on a horizontal sup�port, gas �ow meter, mi
rometer-type manometer, U-shaped glass pipe,stopwat
h.Consider a �ow of vis
ous �uid in a 
ir
ular pipe. At small velo
itiesof the �ow its motion is laminar (streamline), velo
ities of �ow par
elsare parallel to the pipe axis and their magnitude is a fun
tion of radius.In
reasing of the velo
ity makes the �ow turbulent, so layers of di�erentvelo
ities mix. In turbulent regime the velo
ity at any point of the �uid
haoti
ally 
hanges its magnitude and dire
tion while the average velo
ityremains 
onstant.Parti
ular regime of the �uid �ow through a pipe is determined by aspe
i�
 value of the dimensionless Reynolds number:Re =

vrρ

η
, (1)where v is the �ow velo
ity, r is the pipe radius, ρ is the �uid density,and η is its vis
osity. In 
ir
ular pipes with smooth walls transition fromlaminar to turbulent regime o

urs at Re ≈ 1000.In the laminar regime the volume of gas V �owing through a pipe oflength l during a time period t is given by Poiseuille equation (3.23):

QV =
πr4

8lη
(P1 − P2). (2)In this equation P1 − P2 is the pressure di�eren
e between 
ross se
tions1 and 2 of the pipe and l is the distan
e between the 
ross se
tions. The



180 Continuous me
hani
squantity Q is referred to as the volumetri
 �ow rate. Equation (2) allowsone to determine the gas vis
osity on
e the �ow rate is known.Let us spe
ify the 
onditions for Eq. (2) to be valid. First, the inequalityRe < 1000 should be satis�ed. Se
ond, the spe
i�
 volume (or density) ofthe gas should be almost 
onstant throughout the pipe (the spe
i�
 volumeis assumed to be 
onstant in (2)). For a liquid �ow this assumption isusually well satis�ed; for a gas �ow the pressure di�eren
e between the pipeends must be small 
ompared to the pressure itself. In the experimentalsetup the gas pressure equals the atmospheri
 pressure (103 
m of water)while the pressure di�eren
e does not ex
eed 10 
m of water, i.e. it is lessthan 1% of the atmospheri
 pressure. Third, Eq. (2) is valid for the piperegions in whi
h the radial distribution of gas velo
ities does not 
hangealong the pipe.Fig. 1. Formation of gas �ow in a 
ir
ular pipe When gas �ows into apipe from a bulk reservoirthe velo
ities of gas layers are
onstant throughout the pipe
ross se
tion (Fig. 1). The velo
ity distribution pattern gradually 
hangesalong the pipe as the wall fri
tion drags the adja
ent layers. The paraboli
velo
ity distribution typi
al for a laminar �ow is formed at a 
ertain dis�tan
e a from the pipe entry point. This distan
e depends on the piperadius r and the Reynolds number and 
an be estimated as

a ≈ 0,2r · Re. (3)The pressure gradient in the �ow formation domain is greater thanthat in the laminar �ow domain. This fa
t allows one to distinguish thesedomains experimentally.Laboratory setup. The measurements are performed by means of theexperimental setup shown in Fig. 2. Pressurized air (an extra pressureex
eeds the atmospheri
 one by 5-7 
m of water) �ows through the gasmeter GM into the reservoir A to whi
h two metal pipes are soldered.The approximate dimensions of the pipes are given in the �gure; the exa
tdimensions are marked on the setup. Both pipes are supplied with end 
apsblo
king the air �ow. During the measurements the end 
ap is removedonly from the working pipe while the other pipe should be tightly sealed.Previous to the gas meter a U-shaped pipe half-�lled with water isset up. It is used for two purposes: �rst, it measures the pressure of thein
oming gas; se
ond, it preserves the gas meter from a possible breakdown.The gas meter operates normally providing the input pressure does notex
eed 600 mm of water. The height of the U-shaped pipe is about 600
1.3.3 181

Fig. 2. Setup for measurement of air vis
ositymm, thus if the input pressure ex
eeds 600 mm the water spills out fromthe pipe into the tank T thereby attra
ting the experimenter's attention.Su
h situation 
an o

ur if gas is supplied to the system while the pipeends are sealed.There are several millimeter-wide openings in the pipe walls for mea�suring a pressure di�eren
e. To measure the di�eren
e, manometer inletsare 
onne
ted to two adja
ent openings while the other ones are sealed.Air supply is adjusted by the valve V.In the lab mi
rometer-type manometerMTM (Fig. 3) is used; it allowsone to measure the pressure di�eren
e up to 200 mm of water. To in
reasethe manometer sensitivity its pipe is slanted. The marks 0.2, 0.3, 0.4, 0.6,and 0.8 on the stan
hion 4 are the 
oe�
ients whi
h must be multipliedby the manometer readings to obtain the pressure in millimeters of water(at a given slope). The working liquid is ethanol. The manometer zero isadjusted by shifting ethanol level in the vessel 1 using the instrumentalityof 
ylinder 6. A driving depth of the 
ylinder is 
ontrolled by the s
rew 7.The manometer is supplied with two in
linometers 9 pla
ed on theplate 3 orthogonal to ea
h other. Level adjustment is performed by twolegs 10. The three-way 
o
k 8 is mounted on the gauge top; it has twooperating positions: ¾0¿ and ¾+¿ (see Fig. 3). Position ¾0¿ is used foradjusting the zero level of the menis
us. Position ¾+¿ is used for thepressure measurements. The rod 5 is used to swit
h between the positions(Fig. 3), this does not 
hange a level of the working liquid in the reservoir.The gas �ow meter (shown in Fig. 4) is used for measuring smallamounts of gas. Its 
asing is a 
ylinder with a me
hani
al 
ounter and
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Fig. 3. Mi
rometer-type manometer MTMa dial on its front fa
e. One revolution of the pointer 
orresponds to 5liters of gas passed through the meter.The gas �ow meter is �lled with water up to a level determined by thegauge 1. The gas inlet and outlet pipes 2 and 3 are lo
ated on the rear andtop sides of the meter, respe
tively. The U-shaped manometer is 
onne
tedto the pipe so
kets 4, the so
ket 5 is used for the thermometer. The valve6 is used as a drain. The meter has an in
linometer and retra
table legsfor level adjustment.The operating prin
iple of the gas �ow meter is illustrated in Fig. 5.Several light 
ups are atta
hed to the shaft on the 
ylinder axis line (forsimpli
ity only two 
ups are shown). In
oming air from the pipe 2 �lls a
up lo
ated above the pipe. The air-�lled 
up rises to the surfa
e whilethe next 
up takes its pla
e and so on. Shaft rotation is transmitted to the
ounter. LABORATORY ASSIGNMENT1. Che
k the setup and make ne
essary level adjustments, 
he
k water levelin the gas �ow meter and adjust the zero of the manometer menis
us.Choose one of the pipes for the 
omplete set of measurements (the pipe of
d = 4 mm is preferable).

1.3.3 183

Fig. 4. S
hemati
 view of thegas �ow meter Fig. 5. Interior of the gas �ow meter2. Using Eq. (3) estimate the length of the region of �ow formation. TakeRe = 1000.3. Conne
t the manometer inlets to a pair of adja
ent openings in the sele
tedpipe (in the region of the formed �ow). Un
ap the pipe outlet; all the otheroutlets should be sealed.4. Gradually open the valve V (Fig. 2) feeding the setup with air. Carefullytra
k the manometer readings sin
e at a high pressure di�eren
e the ethanol
an spill out from the manometer through the pipe 11.This undesirable situation often o

urs when working with thin pipes.In this 
ase ethanol not only �oods an elasti
 pipe whi
h 
onne
ts themanometer pipe 11 with the three-way 
o
k, but it 
an also leak into thepipe 
onne
ted with (�). Drops of liquid in the pipe result in in
orre
tmeasurements of ∆P = P1 − P2. For this reason before the measurements(or if the ethanol has �ooded the pipes) one should as
ertain that thereare no drops of liquid in the 
onne
ting pipes. The drops 
an be dete
tedby observing sudden leaps of manometer readings when slowly moving the
onne
ting pipes. If this is the 
ase the pipes should be removed and driedout.5. Determine the air vis
osity. For this purpose measure the dependen
eof the pressure di�eren
e ∆P on the air �ow rate Q = ∆V/∆t. Thegas volume ∆V is measured with the gas �ow meter and ∆t - with thestopwat
h. Set the slope 
oe�
ient on the manometer stan
hion equal to0.2. Start the measurements from small pressure di�eren
es (2�3 mm ofwater) and gradually in
rease the gas �ow rate Q.Within the range from 0 to 100 of the manometer dial (Fig. 3) oneshould perform not less than 5 measurements to survey the laminar regime.
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ould be sparse but they should 
over a widerpressure range to examine the turbulen
e regime. Using the data obtainedplot the dependen
e ∆P = f(Q) whi
h should be linear in the laminarregime (see Eq. 2). The dependen
e be
omes non-linear for a turbulent�ow sin
e the pressure di�eren
e grows faster than the gas �ow rate.6. Cal
ulate the slope of the 
urve ∆P = f(Q) in the linear domain anddetermine the air vis
osity η. Estimate the error of the slope and �nd theerror of the obtained value of the vis
osity.7. Cal
ulate the Reynolds number Re 
orresponding to transition betweenlaminar and turbulent regimes.8. Measure the pressure distribution along the pipe in the laminar regime.Conne
t the manometer to all pipe openings one by one (in
luding theopening ¾0¿, see Fig. 2). Plot the pressure vs. the distan
e from the pipeinlet (P = f(l)). Using the plot estimate the length of the �ow formationregion. Compare the result with Eq. (3).9. Measure the dependen
e Q = f(P ) for all pipes in the formed �ow region(at the end of a pipe) in the laminar regime (Re < 500). Using the data
al
ulate the following quantity:

8lηQ

π(P1 − P2)
= rn.Plot the obtained fun
tion on a log-log graph, i.e. plot the values of

ln
(

8lηQ/π(P1 − P2)
) on the Y-axis and ln r on the X-axis. Obviouslythe 
urve slope equals n and for the Poiseuille equation n = 4. Verify it.Estimate the error of the result. Questions1. Write the equation whi
h des
ribes the radial distribution of laminar �ow velo
ityin a 
ir
ular pipe. What is the ratio of the average and maximum velo
ities?2. How is the Reynolds number de�ned? How 
an it be determined experimentally?3. Des
ribe the method of graphi
al treatment of the experimental data (see 8) thatallows one to distinguish the regions of formed and non-formed �ow 
learly.Literature1. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. I. � Ì.: Íàóêà, 1996. �� 96, 97.2. Õàéêèí Ñ.Ý. Ôèçè÷åñêèå îñíîâû ìåõàíèêè. � Ì.: Íàóêà, 1971. Ch. XVI,� 125.3. L.D. Landau, A.L. A
hiser, E.M. Lifshitz Me
hani
s and mole
ular physi
s. �M.: Nauka 1969. Ch. XV, �� 117�119.

1.3.4 185Lab 1.3.4Study of stationary �ow of liquid through pipePurpose of the lab: to measure liquid �ow velo
ity using Venturi andPitot methods and to 
ompare the results with those obtained by dire
tmeasurement of volumetri
 �ow rate.Tools and instruments: a setup that in
ludes venturi and pitot tubesand a stopwat
h.A �ow of liquid through a pipe of 
onstant 
ross-se
tion is studied inthe lab.

Fig. 1. Venturi tube

The main purpose of experimental study of�uid �ow through a pipe is the measurement of�ow velo
ity and volumetri
 (mass) �ow rate. A
�
urate measurement of the �ow rate is importantin pra
ti
al appli
ations: operation of oil and gaspipelines, plumbing, and 
entral heating.A lot of di�erent methods have been devel�oped to measure �uid �ow rate and �ow velo
ity.The most simple and a

urate ones rely on mea�surement of the pressure di�eren
e due to dete
�tor positioning (toward or along the �ow in thepitot tube) or due to an obsta
le impeding the�ow (the narrowing of Venturi tube or a washer).A venturi tube (see Fig. 1) is a horizontal tubewhi
h 
ross-se
tional area gradually 
hanges along the tube. Wide (S1) andnarrow (S2) se
tions are 
onne
ted to water manometer M1. The pressurein a se
tion is determined by the height of the 
orresponding water 
olumn.
Fig. 2. Pitot tube

Sin
e water is in
ompressible (v1S1 = v2S2)and the tube is horizontal (z1 = z2) Bernoulli'equation (3.14) allows one to express the �ow ve�lo
ity in se
tion S1 in terms of the pressure inse
tions S1 and S2:

v1 =

√

2(p1 − p2)

ρ [(S1/S2)2 − 1]
. (1)A pitot tube is shown in Fig. 2. Tube T is
onne
ted to two tubes of water manometer M2.Tube 1 is 
onne
ted to the surfa
e of the tube T
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swhile the tip of the tube 2 is bent toward the �ow. Obviously the liquid isat rest, v2 = 0, at the opening of tube 2.Let the pressures measured by means of the tubes 1 and 2 be p1 and p2,respe
tively. Bernoulli' equation (3.14) gives p1 + ρv2
1/2 = p2, so

v1 =
√

2(p2 − p1)/ρ. (2)Equation (2) relates �ow velo
ity to the di�eren
e in liquid heights inthe tubes 1 and 2.The pitot tube allows one to measure the lo
al �ow velo
ity at the tubelo
ation. Using the venturi tube one 
an determine only the velo
ity aver�aged over tube 
ross-se
tion. Therefore the venturi tube is predominantlyused for �ow rate measurements. The pitot tube is used to measure �owvelo
ity; more often it is an open �ow rather than a �ow in pipe. The pitottube is used for velo
ities ranging from those of vis
ous boundary layers tosupersoni
 velo
ities.Operation of pipelines requires 
onstant monitoring of volumetri
 ormass �uid �ow rate. The measurements are 
ompli
ated by vis
osity whi
hresults in the �uid ¾sti
king¿ to pipe wall, so �uid velo
ity next to the wallvanishes. Therefore the velo
ity always in
reases along the pipe radiusfrom the wall to the 
enter. For stationary �ow and a low Reynolds numberone 
an apply the Poiseulle equation, so it would su�
e to measure the�ow velo
ity at any point, e.g. at the pipe axis. Otherwise an a

uratemeasurement of the �ow requires integrating the �ow velo
ity over a pipe
ross-se
tion, so the velo
ity must be measured at several points. In themonograph ¾Hydrodynami
s¿ by T. Ye. Faber it is re
ommended to use20 pitot tubes lo
ated at di�erent distan
es from the pipe axis in twoperpendi
ular dire
tions.One of physi
al methods of measurement of �uid �ow rate is realizedin an ultrasoni
 �ow meter. The method is based on the observation thatspeed of sound propagating in a �uid is 
onstant with respe
t to the �uid,so the speed of sound is greater in the dire
tion of �uid �ow and it is less ifthe sound propagates against the �ow. An ultrasound emitter and re
eiverare mounted on the opposite walls of the pipe although not fa
ing ea
hother, so the sound propagates at some angle with respe
t to the �ow.Therefore the speed of sound in the dire
tion of the �uid �ow ex
eeds thatin the �uid at rest and vi
e versa. A di�eren
e between the speeds allowsone to determine the �ow velo
ity even if the speed of sound itself is notknown. Operation of ultrasoni
 �ow meter is not a�e
ted by �uid vis
osity,whi
h is an advantage. However the meter measures some average velo
ityon the path of the sound, so for pre
ise measurements the devi
e has to
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Fig. 3. Experimental installation for studying stationary �ow of liquidthrough pipebe 
alibrated. The 
alibration depends on Reynolds number be
ause itdetermines a velo
ity pro�le of the �ow.There is also a turbine �ow meter in whi
h �ow rate is dire
tly pro�portional to the number of revolutions of a turbine. However the meterreadings depend on �uid vis
osity.Laboratory setup. An experimental installation for studying liquid �owis shown in Fig. 3. Water enters tube T from 
ylindri
 vessel I equippedwith glass tube B serving as a water meter. The vessel is �lled with tapwater via tube A, the in�ux is 
ontrolled by tap K. Water �owing out oftube T �lls re
eiver vessel II whi
h has siphon C mounted on the bottom.The siphon preserves the re
eiver from over�owing by emptying it assoon as water level rea
hes the height h. Tube T is equipped by venturiand pitot meters.The �ow rate averaged over the tube 
ross-se
tion 
an be determined bymeasuring the time required to �ll the re
eiver II whi
h volume is known.On the other hand the rate 
an be found using the readings of the manome�ters with the aid of Eqs. (1) and (2). Comparison of the rates found bydi�erent methods allows one to 
he
k whether Bernouilli' equation 
an be
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osity that 
hanges velo
ity pro�le a
rossthe �ow. It is 
onvenient to 
ompare the �ow rates by plotting the rate of�lling the re
eiver on abs
issa and the venturi and pitot rates on ordinate.For ideal liquid the plot would be a straight line at 45◦ to the abs
issa.Vis
osity 
an be estimated by observing the water levels in the reservoirand two manometer tubes. For ideal liquid the levels would be the same.Due to vis
osity the levels de
rease along the �ow.Up to this point we assumed that the liquid is ideal, so there is nofri
tion due to vis
osity in tube T and no asso
iated losses. The followingexperiment allows one to estimate vis
osity quantitatively. Fill the reser�voir I to some level z1, measure the �ow velo
ity in tube T using re
eiver II(sin
e water is essentially in
ompressible it enters and leaves the tube atthe same speed). Using Torri
elli's law evaluate the height z2 that resultsin the same speed for an ideal liquid. The di�eren
e z1 − z2 is a measureof internal losses due to vis
osity. Moreover it is safe to assume that thelosses o

ur mostly in tube T sin
e velo
ity of water in reservoir I is mu
hless.Vis
osity 
hanges the readings of the venturi manometer by a quan�tity ∆h whi
h 
an be estimated as the produ
t of the di�eren
e z1 − z2and the ratio of the distan
e ∆l between the manometer entries to the tubelength L. If

∆h ≫ (z1 − z2)
∆l

L
,water 
an be 
onsidered as ideal liquid at the s
ale of ∆l. If ∆h is 
ompa�rable to (z1−z2)

∆l
L one should subtra
t the quantity ∆z ∆l

L ρg from p1−p2.The same applies to the pitot tube. In addition, one should estimate the
orre
tion to manometer readings due to a �nite size of the bent se
tion oftube 2 inserted in the �ow.It is important to ensure that the �ow remains stationary during theexperiment. This is a
hieved by maintaining water level in the reservoir Iat the same height H by adjusting tap K. The glass tube used as a meterhas millimeter graduations for 
onvenien
e. Before the experiment oneshould make sure that the manometer tubes are not 
logged.LABORATORY ASSIGNMENT1. Pour some water in reservoir 1. Plug tube T and make sure that water lev�els in manometer tubes and in the reservoir are the same. Make ne
essaryadjustments if this not so.2. Measure the �ow rate for several water levels H in reservoir I starting from
∼1 
m. A �ow must be stationary, so a water level should be maintained
1.3.4 189
onstant during the measurement. The rate is determined by the time trequired to �ll reservoir II. Estimate the error of t. For every H re
ord thereadings of the venturi and pitot manometers.3. Cal
ulate average �ow velo
ity vð = V0/(tS1), where V0 is the volumeof reservoir II, t is the time required to �ll the reservoir, and S1 is the
ross-se
tional area of tube T. Estimate the error of vð.4. Measure the length L of tube T and ∆l of the venturi and pitot manome�ters.5. Plot the quantity v2ð versus water level H . Plot the errors as 
ross-bars.Plot also the height 
al
ulated a

ording to Torri
elli' equation, z2 =

= v2
p/(2g), on the same graph. Do the points 
oin
ide? What is thereason of the dis
repan
y?6. Using Eqs. (1) and (2) and the readings of venturi and pitot manometers
al
ulate velo
ities vV and vP (taking the losses into a

ount and withoutthem). Estimate the errors of the velo
ities. Compare the velo
ities with

vð and plot them versus vð. How do the errors of S1 and S2 in Eq. (1) andthe narrowing of the tube 
ross-se
tion where the pitot tube 2 is inserteda�e
t the dependen
e obtained?7. Plot vð versus H . Determine graphi
ally the regions of laminar and turbu�lent �ow. Determine the Reynolds number at the point of transition fromthe laminar to turbulent regime:Re =
vðrρ

η
,where ρ is the water density, r is the radius of tube T,η = 1·10−3 kg/m·s -isthe water vis
osity. Questions1. Spe
ify the assumptions used to derive Bernouilli's equation.2. How does vis
osity a�e
t the readings of venturi and pitot �ow meters?3. Whi
h water levels H in reservoir 1 
orrespond to laminar or turbulent �ow intube T?4. Suppose there is a laminar �uid �ow through a tube and the vis
osity de
reasesgradually while other �ow parameters remain 
onstant. How does the �ow
hange?5. Whi
h �ow regime, laminar or turbulent, provides a better agreement betweenthe values of �ow velo
ity determined by venturi and pitot tubes and that oneobtained by using reservoir II?6. Derive Torri
elli's equation and use it to estimate the velo
ity of liquid �owingout a very short pipe for di�erent levels H . Why are the experimental values ofthe velo
ities of water �owing out a long pipe su�
iently less?
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hani
s7. Estimate the di�eren
e of water levels ∆h in the left tubes of the manometers(see Fig. 3) atta
hed to tube T where the 
ross-se
tional areas are the same. How
an the pressure di�eren
e be explained? Can the pressure di�eren
e betweenthe inlet and outlet of tube T be found by linearly extrapolating the pressuredi�eren
e between the tubes? Literature1. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. I. � Ì.: Íàóêà, 1996. �ë. ÕII, �� 93,94, 95.2. Õàéêèí Ñ.Ý. Ôèçè÷åñêèå îñíîâû ìåõàíèêè. � Ì.: Íàóêà, 1971. �ë. ÕVI,�� 123, 124.3. Ñòðåëêîâ Ñ.Ï. Ìåõàíèêà. � Ì.: Íàóêà, 1975. �� 100�106.4. Êèíãñåï À.Ñ., Ëîêøèí �.�., Îëüõîâ Î.À. Îñíîâû �èçèêè. Ò. 1. Ìåõàíèêà,ýëåêòðè÷åñòâî è ìàãíåòèçì, êîëåáàíèÿ è âîëíû, âîëíîâàÿ îïòèêà. � Ì.:Ôèçìàòëèò, 2001. ×. 1. �ë. 8. �� 8.3, 8.4, 8.5, 8.6.5. Ôàáåð Ò.Å. �èäðîàýðîäèíàìèêà. � Ì.: Ïîñòìàðêåò, 2001.

Chapter IVMECHANICAL OSCILLATIONS ANDWAVES
Free harmoni
 os
illations. Me
hani
al motion and the pro
esses whi
h
an be regarded as periodi
al are usually 
alled os
illations. Su
h pro
esses
an be related to di�erent phenomena of nature, e
onomi
s, or so
iety.Os
illation takes pla
e provided there is a pro
ess that returns perturbedsystem to equilibrium (restoring for
e). This feature makes it possible togive universal mathemati
al des
ription of os
illations. Some examples ofrestoring for
e in me
hani
s in
lude elasti
 for
e of spring, gravity for
e,elasti
 for
e of twisted rod or wire, et
.A simple example of os
illation is the motion of a weight suspendedon elasti
 spring. But we start with even a simpler system. Let us puta weight and a spring on a horizontal smooth (fri
tionless) surfa
e. Oneend of the spring is �xed while the weight of mass m is atta
hed to theother end. Let the length of the undeformed spring be l0. The weightstarts moving along the spring axis (let it be x-axis) if it is displa
ed fromthe equilibrium or it re
eives some initial velo
ity along the axis. Now letus assume that the rea
tion for
e F of the spring is proportional to itselongation l− l0 whi
h is equal to the displa
ement x = l− l0 of the weightfrom the point of equilibrium:

F = −kx. (4.1)The minus sign indi
ates that for
e is opposite to displa
ement. The 
on�stant k is the so 
alled spring elasti
 
onstant. It should be noted that forlarge deformations spring rigidity depends on the deformation magnitude.This results in non-linearity dis
ussed later in this 
hapter.Equation of motion of mass m follows from Newton's se
ond law ofmotion:

mẍ = −kx. (4.2)Hereinafter the dots over variables stand for time derivative.



192 Me
hani
al os
illations and wavesLet us introdu
e the notation

ω2
0 =

k

m
. (4.3)Then Eq. (4.2) be
omes

ẍ + ω2
0x = 0. (4.4)This is an ordinary di�erential equation of the se
ond order. The gen�eral solution of Eq. (4.4) depends on two 
onstants determined by two
onditions. In parti
ular one 
an impose initial (i.e. at t = 0) 
onditions.For instan
e, at t = 0: x = x0 and ẋ = 0 or x = 0 and ẋ = v0.To integrate Eq. (4.2) let us multiply it by ẋ. Sin
e ẍ = dẋ/dt and

ẋ = dx/dt, this gives

mẋ
dẋ

dt
+ kx

dx

dt
=

d

dt

(

mẋ2

2
+

kx2

2

)

= 0. (4.5)Then

mẋ2

2
+

kx2

2
= E. (4.6)Here the �rst term is kineti
 energy of mass m and the se
ond term iselasti
 energy of the deformed spring. Constant of integration E is thetotal me
hani
al energy of the weight and the spring. Equation (4.6) showsthat E is a positive quantity whi
h 
an be found from initial 
onditions.If the initial velo
ity vanishes,

E =
kx2

0

2
. (4.7)If the initial displa
ement vanishes,

E =
mv2

0

2
. (4.8)Thus the �rst integral (4.6) of Eq. (4.2) is the law of 
onservation of me�
hani
al energy. For further integration let us write Eq. (4.6) as

ẋ = ±
√

2E

m

√

1 − k

2E
x2. (4.9)Let us introdu
e the notation

x

√

k

2E
= sin y. (4.10)

Chapter IV 193Using Eqs. (4.9), (4.10), and (4.3) one obtains
ẏ = ±

√

k

m
= ±ω0.Integration of this equation gives

x1 =

√

2E

k
sin(ω0t + α),

x2 = −
√

2E

k
sin(ω0t + β) =

√

2E

k
sin(ω0t + π + β).Both solutions 
an be written in the same form:

x =

√

2E

k
sin(ω0t + ϕ0), (4.11)where ϕ0 is the 
onstant determined from initial 
onditions. It is often
onvenient to write Eq. (4.11) as

x =

√

2E

k
cos(ω0t + ϕ0). (4.12)The argument of the sine, ω0t + ϕ0, is 
alled os
illation phase and the
onstant ϕ0 is 
alled initial phase of os
illations. The value of sine is thesame for two phases whi
h di�er by a multiple of 2π, so Eq. (4.12) des
ribesa periodi
 pro
ess. The period T is determined by the relation

2π = ω0(t + T ) + ϕ0 − (ω0t + ϕ0) = ω0T.The quantity ω0 introdu
ed in Eq. (4.3) is 
alled 
y
li
 frequen
y ofos
illations. It is related to the number of os
illations per se
ond (temporalfrequen
y or frequen
y for short) and to period T as

ν =
1

T
=

ω0

2π
. (4.13)Equation (4.6) shows that velo
ity ẋ de
reases when displa
ement xgrows. A halt (ẋ = 0) o

urs at the maximum displa
ement x = a whi
his 
alled amplitude of os
illations:

ka2

2
= E. (4.14)
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hani
al os
illations and wavesThe amplitude a is positive by de�nition. Substitution of Eq. (4.14)to (4.12) gives

x = a sin(ω0t + ϕ0). (4.15)Therefore the velo
ity is

ẋ = aω0 cos(ω0t + ϕ0). (4.16)Obviously the maximum displa
ement in the positive dire
tion of x lagsbehind the maximum velo
ity in the same dire
tion by a phase of π/2 (or90◦).In general, when both x0 and v0 are non-zero at t = 0 we have

a =
√

x2
0 + v2

0/ω2
0, ϕ0 = arctan

(

ω0x0

v0

)

. (4.17)Os
illations des
ribed by Eq. (4.15) are 
alled harmoni
 (or sinusoidal),sin
e sine and 
osine are harmoni
 fun
tions. Harmoni
 os
illations areiso
hronous, i.e. their period does not depend on amplitude. A systemwhi
h exe
utes harmoni
 os
illations des
ribed by Eq. (4.4) is 
alled har�moni
 os
illator. Noti
e that 
ir
ular motion at 
onstant speed 
an be
onsidered as the sum of two harmoni
 perpendi
ular os
illations whi
hhave the same amplitude and the phases di�ering by π/2. The 
y
li
 fre�quen
y in this 
ase 
oin
ides with angular velo
ity of the 
ir
ular motion,therefore the name. In general, addition of two perpendi
ular os
illationswith di�erent amplitudes and phases results in a 
ompli
ated traje
tory
alled Lissajous 
urve.Equation (4.15) 
an be written as

x = A sin ω0t + B cosω0t. (4.18)This relation depends on two 
onstants of integration determined frominitial 
onditions as in Eq. (4.15).Using Eqs. (4.15) and (4.16) one 
an obtain the following expressionsfor kineti
 and potential (elasti
) energy of the os
illator:
K =

mẋ2

2
=

mω2
0a

2

2
cos2(ω0t + ϕ0) =

mω2
0a

2

4
[1 + cos(2ω0t + 2ϕ0)],

U =
kx2

2
=

mω2
0a

2

2
sin2(ω0t + ϕ0) =

mω2
0a

2

4
[1 − cos(2ω0t + 2ϕ0)].Noti
e that

K + U = E =
mω2

0a
2

2
.

Chapter IV 195The values of K and U averaged over the period are
K̄ =

1

T

T∫

0

K(t) dt, Ū =
1

T

T∫

0

U(t) dt.Integration gives
K̄ = Ū =

mω2
0a

2

4
=

E

2
. (4.19)Therefore the average kineti
 and potential energies of the os
illator areequal.Now 
onsider os
illations of the weight of mass m suspended on a springwith elasti
 
oe�
ient k in gravitational �eld with free-fall a

eleration g.In this 
ase instead of Eq. (4.2) one gets

mẍ = −kx + mg. (4.20)Here the x-axis is dire
ted downwards along the gravity for
e.Let x0 be the spring elongation in equilibrium, then

mg = kx0. (4.21)Using Eqs. (4.20) and (4.21) one obtains for deviation ξ = x− x0 fromthe equilibrium:
mξ̈ = −kξ. (4.22)This is the equation of harmoni
 os
illator (4.4).Phase portrait of harmoni
 os
illator. There is a remarkable repre�sentation of harmoni
 os
illations in the so-
alled phase plane. Coordinateaxes on the plane are 
oordinate x and a quantity proportional to its timederivative, e.g. momentum mẋ. A point on the phase plane spe
i�es thestate of a me
hani
al system with one degree of freedom at a given time.Now 
onsider the phase plane of a harmoni
 os
illator whi
h exe
utes themotion

x = a cos(ω0t + ϕ).Let the abs
issa represent the 
oordinate x and the ordinate represent thequantity y = ẋ/ω0. This 
hoi
e is 
onvenient sin
e both x and y have thesame dimension. Obviously

y = −a sin(ω0t + ϕ).One 
an see that

x2 + y2 = a2. (4.23)
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Fig. 4.1. Phase portrait ofharmoni
 os
illator
This is the equation of the 
ir
le of radius a.A point (x, y) on the plane represents thestate of os
illator at a given time. Let us re�fer to this point as representing point. Thereis one-to-one 
orresponden
e between the mo�tion of os
illator and the motion of represent�ing point along the phase traje
tory whi
h is
ir
ular in our 
ase. Os
illations of di�erentamplitudes are represented by a family of 
ir�
les 
entered at the origin. Figure 4.1 showsthe portrait of harmoni
 os
illator.Os
illations of the same amplitude but ofdi�erent initial phases are represented by the same 
ir
le, however simulta�neous positions of the representing points on the 
ir
le are di�erent. Thephase di�eren
e is equal to the angle between radius ve
tors of the points.It is easy to verify that representing points run 
lo
kwise. A full revolutionis 
ompleted for os
illation period T = 2π/ω0.Free motion of damped harmoni
 os
illator. Consider os
illationswhi
h in addition to restoring for
e are also subje
ted to a for
e impedingthe motion, i.e. the for
e dire
ted opposite to velo
ity. Su
h a for
e ariseswhen the os
illation pro
eeds in a medium that resists motion. At a smallvelo
ity the for
e is dire
tly proportional to it:

Fñ = −bẋ. (4.24)In this 
ase instead of (4.2) one obtains:

mẍ = −kx − bẋ. (4.25)Let us introdu
e the notation

b

m
= 2β. (4.26)Then Eq. (4.4) 
an be rewritten as

ẍ + 2βẋ + ω2
0x = 0. (4.27)Let us 
he
k that the solution of this equation has the form

x = a0e
−βt sin(ωt + ϕ0). (4.28)Indeed, substitution of this ansatz to Eq. (4.27) shows that the equationholds provided

ω2 = ω2
0 − β2. (4.29)

Chapter IV 197Therefore in
rease in the vis
ous damping 
oe�
ient de
reases the os�
illation frequen
y, so the period whi
h is inversely proportional to thefrequen
y grows. Stri
tly speaking, this motion is not periodi
. Neverthe�less the period of damped os
illations 
an be de�ned as the time intervalbetween two 
onse
utive passages in the same dire
tion through the equi�librium:

T =
2π

ω
.For small damping (β ≪ ω0) it is reasonable to assume that the maximumdeviation o

urs whenever the sine in Eq. (4.28) equals unity:

a = a0e
−βt. (4.30)The ratio of two 
onse
utive maxima of deviation in the same dire
tion is
alled de
rement:

D =
ai

ai+1

= eβT . (4.31)The natural logarithm of this ratio δ is 
alled damping ratio:

δ = βT. (4.32)For some systems os
illation amplitude in
reases and the ratio is neg�ative, then it is 
alled in
rement. For small positive δ the amplitude de�
reases slowly and damping is small. It follows from Eq. (4.29) that for

β ≪ ω0 the os
illation frequen
y is 
lose to ω0.Let us determine the rate of energy dissipation of the os
illator forsmall damping. It follows from Eq. (4.19) that the energy depends on theamplitude as
E =

1

2
mω2

0a
2. (4.33)Substituting Eq. (4.30) in Eq. (4.33), taking logarithm, and di�erentiatingone obtains the relative 
hange in the energy averaged over the period:

dE

E
= −2βdt. (4.34)Therefore the energy de
rement ∆E during the period T is:

∆E

E
= 2βT = 2δ. (4.35)The important parameter of damped os
illations is Q-fa
tor whi
h isde�ned as the ratio of os
illation energy to its losses per period multiplied
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illations and wavesby 2π. Several useful expressions of Q-fa
tor in terms of os
illation param�eters at small damping are given below:

Q = 2π
E

∆E
=

π

δ
=

π

βT
=

ω0

2β
=

mω0

b
=

√
km

b
=

k

bω0

= πn. (4.36)Here n is the number of os
illation 
y
les exe
uted before the amplitudede
reases by a fa
tor of e (e = 2.71828 . . .).Phase portrait of damped os
illations is a spiral approa
hing the originas it revolves around. The motion be
omes aperiodi
 for strong damping,

β > ω0. When β = ω0 the damping is 
alled 
riti
al.Compound pendulum. Any rigid body that exe
utes os
illations arounda pivot or a rotation axis due to restoring for
e is 
alled 
ompound pendu�lum. Consider, for example, a 
ase when the restoring for
e is due togravity. The 
enter of mass of the pendulum is below the pivot on thesame verti
al. During os
illations the line 
onne
ting the pivot and the
enter of mass de�e
ts from the verti
al. Let the instantaneous value ofthe de�e
tion angle be ϕ. Then a

ording to Eq. (2.35) the equation ofmotion for this angle is

Iϕ̈ = −mga sin ϕ. (4.37)Here I is the moment of inertia around the pivot (rotation axis), a is thedistan
e from the rotation axis to the 
enter of mass.If the de�e
tion angle remains small, so that sinϕ ≈ ϕ, the equation ofharmoni
 os
illator follows whi
h gives the period of 
ompound pendulumas

T = 2π

√

I

mga
. (4.38)If the size of the body suspended on a thread or a weightless rod oflength l is mu
h less than the length, the body is 
alled point parti
le andthe pendulum is 
alled simple gravity pendulum. In this 
ase I = ml2and a = l and the expression for the period of simple gravity pendulum isreprodu
ed:

T = 2π

√

lg . (4.39)If the period of simple gravity pendulum 
oin
ides with the period of
ompound pendulum, l is 
alled equivalent length leq:
leq =

I

ma
. (4.40)

Chapter IV 199Center of os
illation of a 
ompound pendulum (Fig. 4.2) is the point O′lo
ated at the distan
e leq from the pivot O on the verti
al passing throughthe pivot and the 
enter of mass. If the pendulum mass is 
on
entrated atthe 
enter of os
illation the 
ompound pendulum be
omes simple gravitypendulum with the same period. Let the moment of inertia of 
ompoundpendulum around the 
enter of mass be I0. Then a

ording to Huygens�Steiner theorem (2.31) the moment of inertia around the pivot is
I = I0 + ma2. (4.41)Substitution of Eq. (4.41) to (4.40) gives
leq = a +

I0

ma
. (4.42)

Fig. 4.2. Compoundpendulum

Obviously the 
enter of os
illation is far�ther away from the pivot than the 
enter ofmass. It also follows from the above equa�tions that the equivalent length l′eq of the pen�dulum suspended at the 
enter of os
illation
oin
ides with leq. To prove this statementnoti
e that the distan
e from the 
enter of os�
illation, whi
h is now the pivot, to the 
enterof mass is
a′ = leq − a =

I0

ma
. (4.43)Then

l′eq =
I0

ma′
+ a′ = a + leq − a = leq. (4.44)Sin
e the equivalent lengths are the same,the period of 
ompound pendulum does not
hange if the pendulum is suspended at the 
enter of os
illations.When de�e
tion angle is large os
illations of simple gravity pendulumbe
ome non-linear, i.e. the os
illation period exhibits dependen
e on am�plitude (the maximum de�e
tion angle). Equation (4.37) is integrated inthe introdu
tion to the lab 1.4.3. For small amplitudes it reads:

T ≈ T0

(

1 +
ϕ2

m

16

)

. (4.45)Here T0 is the period at zero amplitude given by Eq. (4.38) and ϕm is themaximum de�e
tion angle.
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Fig. 4.3. Phase portrait of pendulumEquation (4.37) represents the law of 
onservation of me
hani
al energy(the �rst integral of motion) for non-linear os
illations:

ϕ̇2

2
− ω2

0 cosϕ =
E0

I
− ω2

0 .Here ω2
0 = mga/I is the os
illation frequen
y for small amplitudes whennonlinearity 
an be negle
ted and E0 is total energy (the potential energyis zero at the equilibrium). The phase portrait of the pendulum is shownin Fig. 4.3. The ellipti
 traje
tories at small angles be
ome the 
ir
les ofFig. 4.1. The traje
tories 
ease to be ellipses when the energy (or ampli�tude) gets large be
ause os
illation be
omes rotation. The traje
tory thatseparates �nite (bounded) motion of pendulum from rotation is 
alled sep�aratrix. A traje
tory 
orresponding to in�nite motion is 
alled a runawaytraje
tory.Driven os
illator with vis
ous damping. Stationary os
illations of asystem subje
ted to external periodi
 for
e are 
alled driven. We 
onsiderthe most important 
ase of a for
e whi
h time dependen
e is des
ribed byharmoni
 fun
tion, F = F0 sin ω0t. Any for
e 
an be represented as a linearsuperposition of harmoni
 for
es using Fourier series. Sin
e the equationof harmoni
 os
illations is linear we 
an use the prin
iple of superposition.An external for
e initiates os
illations of di�erent frequen
ies. Duringthe transition pro
ess only those os
illations survive whi
h frequen
y 
oin�

Chapter IV 201
ides with the frequen
y of the driving for
e. The rest of the os
illationsde
ay during the transition.When the driving for
e depends on time harmoni
ally, the equation ofmotion reads:

ẍ + 2βẋ + ω2
0x =

F0

m
sin ωt. (4.46)To solve Eq. (4.46) for stationary os
illations let us substitute the os
illa�tion whi
h has the same frequen
y as the driving for
e:

x = x0 sin(ωt + ϕ). (4.47)Here ϕ is the phase shift between the displa
ement x and the for
e F . Thephase shift is to be found from Eq. (4.46). Noti
e that the phase shift inEq. (4.15) is determined by the initial 
onditions whi
h are not essentialfor the stationary driven os
illations.Di�erentiation of Eq. (4.47) and substitution to (4.46), gives

{

[

(ω2
0−ω2) cosϕ−2βω sin ϕ

]

x0−
F0

m

}

sin ωt+
[

(ω2
0−ω2) sin ϕ+2βω cosϕ

]

x0 cosωt = 0(4.48)Sin
e fun
tions sinωt and cosωt are linearly independent,

[

(ω2
0 − ω2) cosϕ − 2βω sin ϕ

]

x0 =
F0

m
,

[

(ω2
0 − ω2) sin ϕ + 2βω cosϕ

]

x0 = 0.

(4.49)The se
ond equation of (4.49) 
an be rewritten as

tan ϕ = − 2βω

ω2
0 − ω2

. (4.50)Using the trigonometri
 formulae

cos2 α =
1

1 + tan2 α
, sin2 α =

1

1 + cot2 α
,one 
an derive from Eq. (4.50) that

cosϕ =
ω2

0 − ω2

√

(ω2
0 − ω2)2 + 4β2ω2

, sin ϕ = − 2βω
√

(ω2
0 − ω2)2 + 4β2ω2

.Substituting these expressions to the �rst of Eqs. (4.49) one 
an �nd theamplitude x0 of the stationary os
illations:

x0 =
F0/m

√

(ω2
0 − ω2)2 + 4β2ω2

. (4.51)
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illations and wavesEquations (4.50), (4.51), and (4.47) give the desired solution for drivenos
illations.Figures 4.4 and 4.5 show the amplitude and phase shift of driven os
il�lations versus the frequen
y of external for
e.When the frequen
y of driving for
e tends to zero the amplitude tendsto the 
onstant

F0

mω2
0

=
F0

k
. (4.52)Thus for slow motion, i.e. at small frequen
y (or large period), the dis�pla
ement is determined by the spring 
onstant.At high frequen
y

x0 → F0

mω2
, (4.53)i.e. the amplitude falls when the frequen
y grows. The larger the os
illatormass, the greater the rate of the fall.Cal
ulating the extremum of Eq. (4.51) one 
an �nd the maximumamplitude of the os
illations and the 
orresponding frequen
y of the drivingfor
e:

ωmax =
√

ω2
0 − 2β2, x0max =

F0/m

2β
√

ω2
0 − β2

. (4.54)For small damping

ωmax ≈ ω0, x0max ≈ F0

2βω0m
. (4.55)The less the damping, the greater the amplitude. Amplitude enhan
e�ment of driven os
illations at frequen
ies 
lose to the eigenfrequen
y is
alled resonan
e. As it follows from Eqs. (4.55), (4.52), and (4.36) the ra�tio of the amplitude at the resonan
e to the amplitude at small frequen
iesis equal to Q-fa
tor.The Q-fa
tor spe
i�es the fun
tion (4.51) 
lose to the resonan
e fre�quen
y and also the width of resonan
e peak. For small di�eren
e ω0 − ωand using Eq. (4.36) one 
an obtain from Eq. (4.51) :

x0(ω) =
F0

2mβω0

√

1 +

(

2ω0∆ω

2βω0

)2
=

x0max
√

1 + Q2

(

2∆ω

ω0

)2
. (4.56)The fun
tion

1
√

1 +
(ω0 − ω)2

β2
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F0

k

x0m

x0m√
2

x0

ω0 ω

∆ω

∼ 1

ω2Fig. 4.4. Amplitude-frequen
y response (Q = 10)

−π

−π

2

ϕ

ω0 ω

Fig. 4.5. Phase-frequen
y response (Q = 10)
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alled Lorentz fun
tion. It is often used to analyze spe
tral lines.Equation (4.56) gives the width of the peak at x0 = x0max/√2 as

2∆ω =
ω0

Q
. (4.57)Equation (4.50) shows that the phase shift between displa
ement anddriving for
e tends to zero for vanishing for
e frequen
y. The phases arethe same. At resonan
e the displa
ement lags behind the driving for
e by

π/2, but the phase of velo
ity and the phase of for
e 
oin
ide. It shouldbe 
lear that maximum amplitude is attained when the maximum for
e is
ollinear with the maximum velo
ity. At high frequen
y of the for
e thedispla
ement lags behind by π (they are in antiphase).Resonan
e dependen
es of velo
ity amplitude v0 and a

eleration a0
an be �gured out similarly. Sin
e v0 = x0ω and a0 = x0ω
2, then v0 = 0and a0 = 0 at ω = 0. The maximum velo
ity amplitude is attained at ω =

= ω0 and the maximum a

eleration amplitude at ω2
0/
√

ω2
0 − 2β2. Whenthe frequen
y of the driving for
e grows the velo
ity amplitude de
reaseswhile the a

eleration amplitude tends to F0/m.Energy of os
illator driven by external for
e remains 
onstant. At thesame time the os
illator 
onsumes energy from external sour
e. The energyis 
onverted to work against fri
tion and dissipates into heat. The rate ofenergy 
onsumption per unit time is

I(ω) = F · ẋ = F0ωx0cos(ωt + ϕ) sin ωt = −1

2
F0ωx0 sinϕ. (4.58)Suppose that the system is 
lose to resonan
e, i.e. |ω − ω0| = |∆ω| ≪ ω0.Then

1
√

(ω2
0 − ω2)2 + 4β2ω2

≈ Q

ω2
0

√

1 + Q2

(

2∆ω

ω0

)2
,whi
h gives

x0 =
F0Q

mω2
0

√

1 + Q2

(

2∆ω

ω0

)2
,

sin ϕ = − 1
√

1 + Q2

(

2∆ω

ω0

)2
.
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I(∆ω) =

F 2
0 Q

2mω0

[

1 + Q2

(

2∆ω

ω0

)2
] (4.59)or

I(∆ω) =
I(0)

1 + Q2

(

2∆ω

ω0

)2
,where

I(0) =
F 2

0 Q

2mω0

.Equation (4.59) shows that the energy 
onsumption versus the frequen
yof external for
e is also of resonant nature. Let us determine the width ofthe 
urve. At 1/2 we have
I(0)

2
=

I(0)

1 + Q2

(

2∆ω

ω0

)2
.Therefore

∆ω

ω0

= ± 1

2Q
,i.e. the width of the resonant 
urve is

2|∆ω| =
ω0

Q
.Thus both the maximum of energy 
onsumption and the width of the 
urveis determined by Q-fa
tor.Free os
illations of 
oupled pendulums. Up to this point we dis�
ussed only the systems with one degree of freedom. Now 
onsider thesimplest system with two degrees of freedom, namely, two identi
al pendu�lums 
onne
ted by a spring whi
h exe
ute os
illations in the same plane(see Fig. 4.6). A pendulum 
onsists of a massless rod with a small massivebob at the end.The notations are shown in the �gure. If the de�e
tion angles from theverti
al are small (sin ϕ ≈ ϕ, cosϕ ≈ 1 − ϕ2/2), the torque on the �rstpendulum due to the spring is

M21 = ka2(ϕ2 − ϕ1).
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φ1 φ2 

l l 

a a 

k 

m m Fig. 4.6. Coupled pendulumsThe torque on the se
ond pendulum has the same magnitude and theopposite sign:

M12 = −ka2(ϕ2 − ϕ1).The pendulums are 
oupled via these torques.Equations of motion of the pendulums are

ml2
d2ϕ1

dt2
= −mglϕ1 + ka2(ϕ2 − ϕ1), (4.60)

ml2
d2ϕ2

dt2
= −mglϕ2 − ka2(ϕ2 − ϕ1). (4.61)Adding the equations one obtains:

ml2
d2

dt2
(ϕ1 + ϕ2) = −mgl(ϕ1 + ϕ2). (4.62)Subtra
ting Eq. (4.61) from (4.60) gives

ml2
d2

dt2
(ϕ1 − ϕ2) = −(mgl + 2ka2)(ϕ1 − ϕ2). (4.63)Noti
e that addition and subtra
tion of Eqs. (4.60) and (4.61) allowsone to de
ouple them. Solutions of Eqs. (4.62) and (4.63) are

ϕ1 + ϕ2 = A cos(ω+t + α), (4.64)
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ϕ1 − ϕ2 = B cos(ω−t + β), (4.65)
ω+ =

√g
l
, ω− =

√g
l

+
2ka2

ml2
,where A, B, α, and β are some 
onstants. Adding and subtra
tingEqs. (4.64) and (4.65) one obtains

ϕ1 =
1

2
A cos(ω+t + α) +

1

2
B cos(ω−t + β), (4.66)

ϕ2 =
1

2
A cos(ω+t + α) − 1

2
B cos(ω−t + β). (4.67)Therefore the angular velo
ities are

ϕ̇1 = −1

2
ω+A sin(ω+t + α) − 1

2
ω−B sin(ω−t + β), (4.68)

ϕ̇2 = −1

2
ω+A sin(ω+t + α) +

1

2
ω−B sin(ω−t + β). (4.69)Let us analyze the obtained solutions. Suppose the pendulums havethe same initial (at t = 0) de�e
tions and zero velo
ities:

ϕ1(0) = ϕ2(0) = ϕ0, ϕ̇1(0) = ϕ̇2(0) = 0.Then from Eqs. (4.66) � (4.69) one gets

sin α = 0, A = 2ϕ0, B = 0,i.e.
ϕ1 = ϕ0 cosω+t, ϕ2 = ϕ0 cosω+t. (4.70)Therefore the pendulums os
illate with the same amplitude and phase(in-phase os
illations).If at t = 0

ϕ1(0) = −ϕ2(0) = ϕ0, ϕ̇1(0) = ϕ̇2(0) = 0,then it follows from Eqs. (4.66) � (4.69) that

sin β = 0, A = 0, B = 2ϕ0,i.e.

ϕ1 = ϕ0 cosω−t, ϕ2 = −ϕ0 cosω−t = ϕ0 cos(ω−t + π). (4.71)
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illations and wavesThe relations show that the pendulums os
illate with the same amplitudebut their phases di�er by π (antiphase os
illations). Two types of motiondes
ribed by Eqs. (4.70) and (4.71) are 
alled normal modes of 
oupledos
illators. Normal mode of os
illation is a 
olle
tive motion in whi
h theamplitude of os
illation of ea
h degree of freedom remains 
onstant. The
on
ept of normal mode is very important for modern physi
s.Now 
onsider the 
ase when only one pendulum is initially de�e
ted,i.e.

ϕ1(0) = ϕ0, ϕ2(0) = 0, ϕ̇1(0) = ϕ̇2(0) = 0.It 
an be shown that in this 
ase

ϕ1 =
ϕ0

2
(cosω+t + cosω−t), (4.72)

ϕ2 =
ϕ0

2
(cosω+t − cosω−t). (4.73)Using trigonometri
 formulae

cosα + cosβ = 2 cos
α + β

2
cos

α − β

2
,

cosα − cosβ = 2 sin
α + β

2
sin

β − α

2
,one 
an write Eqs. (4.72) and (4.73) as

ϕ1 = ϕ0 cos
ω+ − ω−

2
t · cos

ω+ + ω−

2
t, (4.74)

ϕ2 = ϕ0 sin
ω− − ω+

2
t · sin ω+ + ω−

2
t. (4.75)Let us analyze Eqs. (4.74) and (4.75). Noti
e that the os
illation fre�quen
y of the even mode (labeled by ¾+¿), ω+ =

√g/l, equals ω0 where
ω0 is the eigenfrequen
y of a solitary pendulum (the so-
alled partial fre�quen
y). On the other hand, the frequen
y of the odd mode (labeled by¾−¿) is

ω− = ω0

√
1 + 2ε,where the parameter ε = ka2/mgl spe
i�es pendulum 
oupling. For small
oupling, ε ≪ 1,

ω− ≈ ω0(1 + ε),i.e.

ω− − ω+ ≈ ω0ε, ω− + ω+ ≈ 2ω0.

Chapter IV 209In this approximation Eqs. (4.74) and (4.75) be
ome
ϕ1 = ϕ0 cos

ω0ε

2
t cosω0t, (4.76)

ϕ2 = ϕ0 sin
ω0ε

2
t sinω0t = ϕ0 sin

ω0ε

2
t cos

(

ω0t −
π

2

)

. (4.77)Thus we deal with harmoni
 os
illations of frequen
y ω0 whi
h amplitudevaries periodi
ally with time at a mu
h less frequen
y ω0ε/2. This is theso-
alled amplitude modulated os
illation or beat. The phase shift is π/2.The modulated amplitude of os
illations of the �rst pendulum is
A1(t) = ϕ0 cos

ω0ε

2
t. (4.78)Similarly the os
illation amplitude of the se
ond pendulum is

A2(t) = ϕ0 sin
ω0ε

2
t = ϕ0 cos(

ω0ε

2
t − π

2
).Initially, at t = 0:

A1 = ϕ0, A2 = 0.At t = π
ω0ε :

A1 = 0, A2 = ϕ0.At t = 2 π
ω0ε :

A1 = −ϕ0, A2 = 0.Noti
e that the amplitude of harmoni
 os
illation is positive by de�nition.The negative sign here means that the phase shift 
hanges by π. At t =
= 3 π

ω0ε :
A1 = 0, A2 = −ϕ0.At t = 4 π

ω0ε
A1 = ϕ0, A2 = 0.Thus pendulums ex
hange energy of os
illations. At t = 0 the energy isa

umulated in the �rst pendulum. Then the energy is gradually transferedvia the spring to the se
ond pendulum until it a

umulates all the energy.The time τ of the transfer 
an be estimated as

ω0ε

2
τ = π,i.e.

τ =
2π

ω0ε
. (4.79)
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illations and wavesThe frequen
y of the energy ex
hange between os
illators is

2π

τ
= ω0ε = ω− − ω+.Noti
e that os
illations in a system 
onsisting of a large number of
oupled os
illators 
an be regarded as propagation of waves of a 
ertainkind.Plane wave. In physi
s any time variation and spatial alternation ofmaxima and minima of any quantity, e.g. matter density, pressure, tem�perature, ele
tri
 �eld, et
., is 
alled a wave. Su
h alternation is essentiallyan os
illation pro
ess in a system with in�nite number of degrees of free�dom. However, propagation of a short time perturbation, a ¾pulse¿, isoften 
alled a wave as well. The simplest mathemati
al model of a wavepro
ess is a plane wave.Suppose that some s
alar quantity s depends on time t and position x(but it is independent of y and z) as

s = f(x − ut), (4.80)where f is an arbitrary fun
tion and u = const. Consider a snapshot ofthe wave pro
ess at t = 0. In this 
ase

s(0, x) = f(x). (4.81)Then 
onsider a snapshot of the same wave at t = t1. It is des
ribedby the equation

s(t1, x) = f(x − ut1). (4.82)Comparing Eqs. (4.81) and (4.82) one 
an see that two snapshots di�erby the displa
ement ut1 in the positive dire
tion of x. Therefore the wavepropagates to the right at the speed u while retaining its shape. A wavepro
ess des
ribed by the fun
tion (4.80) is 
alled plane wave. The wavespe
i�ed by

s = f(x + ut),propagates in the opposite dire
tion.Plane sinusoidal wave. A 
ase of sinusoidal fun
tion f is of spe
ialinterest. Consider

s = A cos(ωt − kx) = A cos
[

k(x − ut)
]

, (4.83)where u = ω/k is the velo
ity of wave propagation. At any point x thevalue of s exe
utes simple harmoni
 motion with the amplitude A and the
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ir
ular frequen
y ω. Both quantities are the same for all x. The os
illationperiod is T = 2π/ω and the phase is kx.A snapshot of (4.83) is a spatial sinusoid. For instan
e, at t = 0

s = A cos kx.The minimum distan
e λ, so that
s(x + λ) = s(x)for any x, is 
alled wavelength. The quantity k is 
alled wave ve
tor orspatial frequen
y. Obviously

λ =
2π

k
.Standing wave. Let a s
alar quantity s depend on position 
oordinates

x, y, and z and time t as
s = F (x, y, z) cos(ωt + ϕ),where F (x, y, z) is an arbitrary fun
tion and ω and ϕ are 
onstants. A
�
ording to the equation s exe
utes simple harmoni
 motion of the samefrequen
y and phase at any point in spa
e. But the os
illation amplitudevaries. Su
h a pro
ess is 
alled standing wave.Let us show that superposition of two plane waves of the same ampli�tude, wavelength, and phase and propagating in opposite dire
tions is asinusoidal standing wave.Indeed let

s1 = A cos(ωt − kx + α1), s2 = A cos(ωt + kx + α2).Their sum
s = s1 + s2in a

ordan
e with the trigonometri
 formula

cosx + cos y = 2 cos
x + y

2
cos

x − y

2
an be written as

s = 2A cos

(

kx − α1 − α2

2

)

cos

(

ωt +
α1 + α2

2

)

. (4.84)This equation des
ribes a sinusoidal standing wave.
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illations and wavesNow 
onsider

s1 = A1 cos(ωt − kx + α1), s2 = A2 cos(ωt + kx + α2).It 
an be shown that in this 
ase

s = 2A2 cos

(

kx − α1 − α2

2

)

cos

(

ωt +
α1 + α2

2

)

+ a cos(ωt − kx + α1).Here a = A1 − A2. The quantity a/A2 is 
alled 
oe�
ient of running.Wave equation. Consider a fun
tion whi
h des
ribes plane wave:

f(x, t) = f(x − ut). (4.85)Di�erentiating it with respe
t to time t one gets:

∂f

∂t
= f ′(x − ut) · (−u),

∂2f

∂t2
= f ′′(x − ut) · u2. (4.86)Here the prime stands for derivative with respe
t to x − ut. Now let usdi�erentiate the fun
tion (4.85) twi
e with respe
t to x:

∂f

∂x
= f ′(x − ut),

∂2f

∂x2
= f ′′(x − ut). (4.87)Comparing Eqs. (4.86) and (4.87) one 
an see that the fun
tion (4.85)satis�es the following equation

∂2f

∂t2
= u2 ∂2f

∂x2
. (4.88)Equation (4.88) is the partial di�erential equation termed wave equationwhi
h plays an important role in physi
al appli
ations. It 
an be proventhat the general solution of the equation is

f(x, t) = f1(x − ut) + f2(x + ut),where f1 and f2 are arbitrary fun
tions determined by initial or boundary
onditions.Longitudinal waves in elasti
 body. Consider dynami
s of longitudinalwaves in elasti
 rod. Let x-axis be dire
ted along the rod. Assume that therod elements whi
h lie in a plane perpendi
ular to x at t = 0 also remainin a plane perpendi
ular to x at any t 6= 0. A 
ross-se
tion with 
oordinate
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x at t = 0 has a di�erent 
oordinate x′ at t = t′. In the following thequantity (positive or negative)
s = x′ − xis 
alled the displa
ement of x. Now 
onsider the 
ross-se
tion between theplanes x and x + ∆x. In the non-deformed rod the 
ross-se
tion thi
knessis ∆x. A deformation displa
es the planes whi
h 
oordinates be
ome x′and x′ + ∆x′, respe
tively.Let

x′ = x + s(x),

x′ + ∆x′ = x + ∆x + s(x + ∆x),where s(x) is the displa
ement of the plane x and s(x + ∆x) is the dis�pla
ement of the plane x + ∆x. Then the thi
kness of the rod se
tionequals
(x′ + ∆x′) − x′ = ∆x′.The in
rement of the se
tion thi
kness is

∆x′ − ∆x = s(x + ∆x) − s(x).The average longitudinal strain of the rod se
tion between x and x + ∆xis
s(x + ∆x) − s(x)

∆x
.The longitudinal strain ε at a given plane is de�ned as the limit

ε = lim
∆x→0

s(x + ∆x) − s(x)

∆x
=

∂s

∂x
. (4.89)A

ording to Hooke's law

σ = Eε, (4.90)where σ is the stress and E is the bulk modulus. Now let us apply Newton'slaw of motion to the rod se
tion between the planes x and x + ∆x. These
tion mass is ρS∆x where ρ and S are the density and the 
ross-se
tionalarea in the absen
e of deformation. Let s be the displa
ement of the 
enterof mass of the se
tion. Then

ρS∆x
∂2s

∂t2
= Sσ(x + ∆x) − Sσ(x).
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illations and wavesThe left-hand side is the mass multiplied by a

eleration while the right�hand side equals the net for
e exerted on the se
tion. Let us divide theequation by S∆x:

ρ
∂2s

∂t2
=

σ(x + ∆x) − σ(x)

∆x
.Taking the limit ∆x → 0 one obtains the equation

ρ
∂2s

∂t2
=

∂σ

∂x
. (4.91)Substitution of Eq. (4.90) to (4.91) gives

ρ
∂2s

∂t2
= E

∂ε

∂x
.A

ording to Eq. (4.89)

∂ε

∂x
=

∂2s

∂x2
,i.e.

∂2s

∂t2
=

E

ρ

∂2s

∂x2
. (4.92)This is wave equation. Therefore a deformation propagates along the rodeither as a plane wave s = f(x∓ut) or a superposition of su
h waves. Thespeed of wave propagation (speed of sound) is

u =

√

E

ρ
.For steel u = 5200 m/s, for 
opper u = 3700 m/s, for aluminum u =

= 5100 m/s, and for rubber u = 46 m/s.Noti
e that the wave equation is derived under assumption that thewavelength is large 
ompared to the rod 
ross-se
tion. The opposite limit
orresponds to unbounded elasti
 medium. It 
an be shown that the speedof longitudinal elasti
 wave in that 
ase is

u1 =

√

E′

ρ
=

√

E(1 − µ)

ρ(1 + µ)(1 − 2µ)
,where µ is the Poisson ratio.Energy density. Consider a small se
tion of the rod whi
h volume in thenon-deformed state is S∆x, so its mass is ρS∆x. Kineti
 energy of these
tion moving in x-dire
tion is

1

2
ρS∆x

(

∂s

∂t

)2

,

Chapter IV 215where ∂s/∂t is the instantaneous velo
ity of the se
tion. Then the kineti
energy per unit volume is

wê =
1

2
ρv2.This quantity is 
alled kineti
 energy density.It 
an be shown that the se
tion has also the potential energy whi
hdensity equals (
onsult the derivation of Eq. (3.4)):

wï =
1

2
Eε2.The total energy density is

w = wê + wï =
1

2
(ρv2 + Eε2).The total me
hani
al energy of the rod se
tion bounded by the planes

x = x1 and x = x2 is:
W =

x2∫

x1

wS dx =
S

2

x2∫

x1

(ρv2 + Eε2) dx.An energy 
hange equals the work done by the for
es exerted by the adja�
ent se
tions. Let indi
es 1 and 2 refer to quantities related to the se
tions

x = x1 and x = x2, respe
tively. The for
e a
ting on the left is F1 = −Sσ1(the sign is negative sin
e for σ1 > 0 the for
e F1 is dire
ted to the left).The for
e a
ting on the right is F2 = Sσ2 (if σ2 > 0 the for
e is dire
tedto the right). The work done by the for
es F1 and F2 during the time dtequals F1v1dt and F2v2dt, respe
tively. Therefore the net work is

(F1v1 + F2v2)dt = −(σ1v1 − σ2v2)Sdt.A

ording to the law of 
onservation of me
hani
al energy this work isequal to energy in
rement dW , therefore

dW

dt
= Q1 − Q2,where

Q1 = −Sσ1v1, Q2 = −Sσ2v2.It should be 
lear that the quantity Q = −Sσv spe
i�es energy �owthrough a given 
ross-se
tion. The 
orresponding unit of measurementis [Q] = 1 erg/s or 1 J/s = 1 W .
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al os
illations and wavesEnergy �ow density is de�ned as

q = −σv = Pv,where −σ = P is the pressure in a given 
ross-se
tion. The 
orrespondingunit of measurement is [q] = 1 erg/(cm2 · s) or 1 W/m2. Let us 
al
ulatethe density of energy �ow of the plane sinusoidal wave des
ribed by theequation

s = A cos(ωt − kx).Obviously

σ = Eε = E
∂s

∂x
= EkA sin(ωt − kx),

v =
∂s

∂t
= −Aω sin(ωt − kx).Therefore

q = −σv = EkωA2 sin2(ωt − kx) =
1

2
EkωA2

(

1 − cos(2ωt − 2kx)
)

.One 
an see that the energy �ow attains its maximum twi
e per periodand its frequen
y is 2ω at any point of the rod. The value of q averagedover the period is

q̄ =
1

T

T∫

0

q(t) dt =
1

2
EkωA2.In a
ousti
s the value q̄ is 
alled sound volume. Usually the volume ismeasured in de
ibels (dB) a

ording to

D = 10 lg

(

q̄,
µW

cm2

)

+ 100 (dB).For example, if q̄ = 10−10 µW/
m2 then D = 0 (the initial value). For
q̄ = 10−6 W/
m2, D = 100 dB. The threshold of pain, i.e. the value of q̄at whi
h sound be
omes painful for a listener is

q̄ = 10−4 Âòñì2
= 102 µW

cm2
.This 
orresponds to D = 120 dB.Now 
onsider a standing wave

s = A sinkx cos(ωt + ϕ),
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σ = EkA cos kx cos(ωt + ϕ),

v = −Aω sin kx sin(ωt + ϕ),

q =
1

4
EkωA2 sin 2kx sin(2ωt + 2ϕ).One 
an see that the density of energy �ow through the 
ross-se
tionswith 
oordinates

x1 = 0, x2 =
λ

4
=

π

2k
, x3 = 2

λ

4
= 2

π

2k
, x4 = 3

λ

4
= 3

π

2k
, . . .is always zero. Therefore any se
tion of the rod of the length λ/4 en
losedbetween a stress nod and a velo
ity nod next to it does not ex
hange energywith the neighbors. Its energy is 
onstant.Transversal waves on string. In a
ousti
s a uniform elasti
 threadtightened by an external for
e is 
alled a string. It 
an be a stret
hed wire,
able, or a violin string.Consider a string whi
h equilibrium position 
oin
ides with abs
issa.Assume that the string elements move only in the plane (x, y). Let s(x, t)be the displa
ement of the element whi
h position in equilibrium is x. Nowlet us write Newton's law of motion for the element en
losed in the interval

x, x+∆x. The element mass is ρS∆x where ρ is spe
i�
 mass of the stringmaterial and S is 
ross-se
tional area. The produ
t of the element massby its a

eleration ∂2s/∂t2 is equal to the y-
omponent of the net for
eapplied to the ends of the element:

ρS∆x
∂2s

∂t2
= −Sσ(x) sin α(x) + Sσ(x + ∆x) sin α(x + ∆x). (4.93)Here σ(x) is tension at x and α(x) is the angle between the tangent to thestring at x and the abs
issa. Obviously,

tan α =
∂s

∂x
.Now suppose that displa
ement s(x, t) is small, so it is safe to assumethat: 1) the string tension σ(x) is approximately equal to the tension σ inequilibrium, 2) sinα approximately equals tan α.Then Eq. (4.93) is simpli�ed and be
omes:

ρ∆x
∂2s

∂t2
= σ

[

(

∂s

∂x

)

x+∆x

−
(

∂s

∂x

)

x

]

. (4.94)
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hani
al os
illations and wavesDividing Eq. (4.94) by ∆x and taking the limit ∆x → 0 one obtains thewave equation:

∂2s

∂t2
=

σ

ρ

∂2s

∂x2
. (4.95)A

ording to the equation a transversal wave propagating on stringretains its shape, the wave speed is

cs =

√

σ

ρ
=

√

F

ρS
,where F is string tension and ρS is the mass per unit length.String eigenmodes. Under 
ertain 
onditions string vibration be
omesstanding transversal wave whi
h is des
ribed by the equation

s = A sinkx cos(ωt + ϕ), (4.96)where k = ω/u. Let us separate a string segment by �xing the string at thepoints x = 0 and x = n(λ/2) = nπ/k. Sin
e the points are at rest (theseare the nodes of s), their �xing does not 
hange the vibration pattern.Therefore a string of length l with its ends �xed 
an exe
ute sinusoidalstanding vibrations with nodes at the ends. The string length is then amultiple integer of half-wavelengths:

l = n
λ

2
= n

πu

ω
, n = 1, 2, . . .The frequen
y of n-th eigenmode 
an be easily found:

ωn =
nπ

l

√

F

ρS
, νn =

n

2l

√

F

ρS
n = 1, 2, . . . (4.97)If the frequen
y of external transversal sinusoidal for
e 
oin
ides withthe frequen
y of an eigenmode, resonan
e o

urs. The resulting wave isthe standing wave 
orresponding to the vibrational eigenmode.Passage of longitudinal wave through boundary between two me�dia. Let the plane x = 0 be the boundary between two di�erent elasti
media. The quantities referred to the media on the left and on the rightwith respe
t to the boundary will be labeled with indi
es 1 and 2, respe
�tively. Suppose an elasti
 wave is 
oming from the left:

s1 = A1 cos(ωt − k1x). (4.98)
Chapter IV 219Here s1 is a displa
ement in the x-dire
tion. What happens on the bound�ary?To answer this question one should invoke physi
al properties of theboundary. Firstly, 
ontinuity requires the displa
ement on the both sidesof the boundary (x = 0) to be the same:

s1(0, t) = s2(0, t), (4.99)Se
ondly, a

ording to third Newton's law the stress on the both sides mustbe equal as well:
σ1(0, t) = σ2(0, t). (4.100)Now suppose that the wave penetrates from the �rst medium to these
ond,

s2 = A2 cos(ωt − k2x), (4.101)but this pro
ess does not a�e
t the �rst medium, so that Eq. (4.98) holds.Substitution of Eqs. (4.98) and (4.101) to (4.99) and (4.100) yields

A1 = A2, A1 = γA2,where
γ =

E2k2

E1k1

=
E2cl1

E1cl2
=

√
E2ρ2√
E1ρ1

.Here cl is the speed of longitudinal wave. Noti
e that the quantity √
Eρ =

= ρcl is often 
alled a
ousti
 impedan
e. However the above equations arein
ompatible unless there is no boundary,

γ = 1.Equations (4.99) and (4.100) 
an be simultaneously satis�ed by taking intoa

ount the experimental observation that there is also a re�e
ted wave inthe �rst medium,

A′
1 cos(ωt + k1x),so that

s1 = A1 cos(ωt − k1x) + A′
1 cos(ωt + k1x). (4.102)Substituting Eqs. (4.101) and (4.102) to (4.99) and (4.100) one obtains:

A1 + A′
1 = A2,

A1 − A′
1 = γA2

}

. (4.103)
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hani
al os
illations and wavesEquations (4.103) 
an always be solved for A′
1 and A2. For a given ampli�tude A1 of the in
ident wave Eqs. (4.103) determine the amplitudes of there�e
ted and refra
ted waves:

A′
1 =

1 − γ

1 + γ
A1, A2 =

2

1 + γ
A1. (4.104)Noti
e that

k2

k1

=
λ1

λ2

=
cl1

cl2
.Wavelengths are di�erent in both media. The wavelength is greater inthe medium in whi
h the speed of sound is greater. Let us introdu
e thenotations:

R =
q′1
q1

, T =
q2

q1

.The quantities R and T are 
alled re�e
tion and transmission 
oe�
ient,respe
tively. It is not di�
ult to show that

R =

(

1 − γ

1 + γ

)2

, T =
4γ

(1 + γ)2
. (4.105)As expe
ted,

R + T = 1.This relation follows from the law of 
onservation of me
hani
al energy:
q′1 + q2 = q1.For γ = 0 and γ = ∞ we have R = 1, T = 0: the energy is re�e
ted ba
kto the �rst medium. Noti
e that Eqs. (4.105) are invariant under repla
e�ment of γ with 1/γ. Therefore the introdu
ed re�e
tion and transmission
oe�
ients are the same regardless of the dire
tion of propagation of thein
ident wave. Literature1. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. I. � Ì.: Íàóêà, 1996. �ë. VI, Õ,�� 81�85.2. Êèíãñåï À.Ñ., Ëîêøèí �.�., Îëüõîâ Î.À. Îñíîâû �èçèêè. Ò. 1. Ìåõàíèêà,ýëåêòðè÷åñòâî è ìàãíåòèçì, êîëåáàíèÿ è âîëíû, âîëíîâàÿ îïòèêà. � Ì.:Ôèçìàòëèò, 2001. ×. III. �ë. 1�5.3. Êðàó�îðä Ô. Âîëíû. � Ì.: Íàóêà, 1974. �ë. 1�7.4. �îðåëèê �.Ñ. Êîëåáàíèÿ è âîëíû. � Ì.: �ÈÔÌË, 1959. �ë. I�VI.5. Êèòòåëü ×., Íàéò Ó., �óäåðìàí Ì. Ìåõàíèêà. � Ì.: Íàóêà, 1983.

1.4.1 221Lab 1.4.1Compound pendulumPurpose of the lab: to study the dependen
e of os
illation period of
ompound pendulum on its moment of inertia.Tools and instruments: a 
ompound pendulum (uniform steel rod),a knife edge, a simple gravity pendulum, an os
illation 
ounter, a ruler,and a stopwat
h.
 Fig. 1. Compound pendulum

A 
ompound pendulum is a rigid bodywhi
h 
an freely swing about a stationaryhorizontal axis in the gravitational �eld.The motion of pendulum is des
ribed bythe following equation:
I
d2ϕ

dt2
= M, (1)where I is the moment of inertia of thependulum, ϕ is the deviation angle mea�sured from the equilibrium position, t istime, and M is the torque a
ting on thependulum.A uniform steel rod of length l is usedas a 
ompound pendulum in this lab (seeFig. 1). A knife edge is �xed on the rod, soits arris is the pivot axis. The knife edge
an be shifted along the rod thereby alter�ing the distan
e OC ≡ a between the pivotof the pendulum and its 
enter of gravity.Using the Huygens-Steiner theorem (2.31)one 
an �nd the moment of inertia of the pendulum:

I =
ml2

12
+ ma2,wherem is its mass. The torque on the pendulum is due to the gravitationalfor
e:

M = −mga sinϕ.If the deviation angle ϕ is small one 
an set sinϕ ≈ ϕ and hen
e obtain

M ≈ −mgaϕ.



222 Me
hani
al os
illations and wavesThe pendulum 
an exhibit hundreds of os
illations without notable damp�ing provided the experimental setup is in good order. In this 
ase fri
tion
an be negle
ted. Substituting the expressions for I and M into Eq. (1)one obtains

ϕ̈ + ω2ϕ = 0, (2)where

ω2 =

ga

a2 +
l2

12

. (3)The solution is given by Eq. (4.15):

ϕ(t) = A sin(ωt + α).The amplitude A and the initial phase α depend on the way the os
illationsstarted, i.e. they are determined by initial 
onditions; the frequen
y ωa

ording to Eq. (3) depends only on the free fall a

eleration g and thependulum parameters l and a.The os
illation period equals

T =
2π

ω
= 2π

√

√

√

√

√

a2 +
l2

12
ag . (4)We 
an see that the period of small os
illations of a 
ompound pendu�lum depends neither on the phase nor on the amplitude. This statementmanifests the iso
hronism of os
illations, it is valid for pro
esses des
ribedby Eq. (2). In fa
t, this des
ription of the pendulum motion is approximatesin
e the equality sin ϕ ≈ ϕ used in the derivation of Eq. (2) is approximateas well.The os
illation period of a simple gravity pendulum is given by (4.39):

T ′ = 2π

√

l′g ,where l′ is the pendulum length. For this reason the quantity
leq = a +

l2

12a
(5)is referred to as the equivalent length. The point O′ separated by thedistan
e leq from O is 
alled the 
enter of os
illations. The pivot point andthe os
illation 
enter are reversible, i.e. the periods of os
illations about

O′ and O are the same.
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� �� ���� �

 �� � �  
Fig. 2. Simple gravity pendulum

An experimental veri�
ation of theabove statement is a good way of testingthe theory. Another way is to test valid�ity of Eq. (4). The latter 
ontains thequantity a whi
h 
hanges when the edgeis moved along the rod. In this lab a leadball suspended on two diverging wires (asshown in Fig. 2) is used as a simple grav�ity pendulum. The wires are wound ona horizontal axis and their length 
an bevaried. LABORATORY ASSIGNMENT1. Set the working range of the amplitudes so that the os
illation period T isapproximately amplitude-independent. For this purpose de�e
t the pendu�lum from its equilibrium position by the angle ϕ1 (∼10◦) and measure thetime of 100 full swings. The number of os
illations is 
ounted by an ele
�troni
 or me
hani
al 
ounter and the time is measured with a stopwat
h.To de
rease the error of time measurements start and stop the stopwat
hat the moment of pendulum 
rossing the point of equilibrium. Using thedata obtained 
al
ulate the os
illation period T1.Repeat the experiment for the initial de�e
tion angle of 1.5�2 timesless than that in the �rst experiment. If the periods are equal within theexperimental error the working range of the amplitudes lies within (0,ϕ1).If the periods di�er one should repeat the experiment for smaller angles.Identify the sour
e of the largest error of the measurement of the periodand try to redu
e it.2. Shift the knife edge along the rod and study the dependen
e of the os
il�lation period T on the distan
e a between the pivot point and the 
enterof mass. Plot the values T 2 vs a2 and obtain the values g/4π2 and l2/12by performing a linear �t (use Eq. (4)). Compare the obtained value of gwith the tabulated one and verify the value of l by dire
t measurement.3. Find the appropriate length of the simple gravity pendulum for a parti
ularposition of the knife edge so that the periods of both pendulums 
oin
idedwithin the error. Measure the length of the simple gravity pendulum and
ompare it with the equivalent length 
al
ulated from Eq. (5).4. Verify experimentally reversibility of the pivot point and the os
illation
enter. What pivot position ensures the most a

urate veri�
ation?Questions1. What are the simpli�
ations used in deriving Eq. (4)?



224 Me
hani
al os
illations and waves2. What distan
e between the pivot point and the 
enter of mass 
orresponds tothe minimum period of os
illations?3. Des
ribe the behavior of the 
ompound pendulum whi
h pivot point and the
enter of mass 
oin
ide.4. Why is the simple gravity pendulum suspended on two wires?5. Formulate and prove the Huygens-Steiner theorem.Literature1. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. I. � Ì.: Íàóêà, 1996. �� 30, 33, 35,36, 40, 41.2. Ñòðåëêîâ Ñ.Ï. Ìåõàíèêà. � Ì.: Íàóêà, 1975. �� 52, 59, 124.Lab 1.4.2Measurement of gravitational a

eleration bymeans of Kater's pendulumPurpose of the lab: to determine the lo
al a

eleration of gravity usingKater's pendulumTools and instruments: Kater's pendulum, an os
illation 
ounter, astopwat
h, a 
aliper with 1 m s
ale.Free fall is a motion near Earth's surfa
e su
h that for
es resistingthe motion 
an be negle
ted. The gravitational a

eleration near Earth'ssurfa
e whi
h is usually 
alled g is then determined by gravity for
e Fexerted on a body of mass m,

~g =
~F

m
. (1)A referen
e frame related to the Earth is not inertial. In su
h a framethere are also 
entrifugal for
e and Coriolis for
e in addition to gravityfor
e. The Coriolis for
e is always perpendi
ular to the velo
ity of thebody, so the for
e 
hanges only the velo
ity dire
tion while the magnituderemains inta
t. Usually the gravitational a

eleration is identi�ed withthe a

eleration 
omponent whi
h is tangential to the body traje
tory, sothe Coriolis for
e does not 
ontribute. Obviously the normal for
e exertedon a body that rests upon Earths' surfa
e equals the sum of gravity and
entrifugal for
es (the body weight).A gravity pull exerted on a body by the Earth is equal to the produ
tof the body mass m by gravitational a

eleration ~g0:

~F0 = m~g0. (2)
1.4.2 225Gravitational a

eleration is determined by distribution of mass insidethe Earth. If the Earth were a solid sphere of 
onstant density, the a
�
eleration inside the sphere would be dire
tly proportional to the distan
etowards the Earth 
enter and the a

eleration outside would fall a

ordingto the inverse-square law. A
tually the Earth mass density is not uni�form and grows with depth. Be
ause of that the gravitational a

elerationslightly in
reases up to the depth of 2800 km (whi
h 
orresponds to thedistan
e towards the 
enter of 3600 km) and then falls linearly with thedistan
e to the 
enter. Above the surfa
e and 
lose to it the gravitationala

eleration is well approximated by that of the uniform sphere. The a
�
eleration de
reases by 10% at the height of 300 km whi
h 
orrespondsapproximately to a satellite orbit. Observation of satellite motion allowsone to determine the distribution of mass inside the Earth, whi
h is used,e.g. for sear
h of ore bodies.The net gravity for
e also in
ludes gravitational attra
tion to the Moonand the Sun. Although their 
ontribution to the net for
e is small thesefor
es are responsible for global e�e
ts su
h as tides.Earth rotation around its axis resulted in the Earth deformation be�
ause of 
entrifugal for
e. The distan
e from the Earth 
enter to a poleis approximately 21 km less than the distan
e to equator whi
h is equalto 6 378 140 m. As it was already mentioned the 
entrifugal for
e is 
om�bined with the gravity for
e for a body residing on the Earth surfa
e. It is
alled the net gravitational a

eleration g and its values are given in thetables of lo
al a

eleration of gravity. On a pole g = 983.2155 
m/s2 andit de
reases towards the equator where g = 978.0300 
m/s2. Therefore apendulum 
lo
k on the equator lags behind the one on a pole by 3.8 min.The dire
tion of the gravitational a

eleration is always perpendi
ular tothe surfa
e of a body of water and does not deviate signi�
antly from thedire
tion to the Earth 
enter.The mass distribution inside the Earth is not spheri
ally symmetri
,whi
h also results in lo
al variations of g. Extensive and pre
ise measure�ments of g on the Earth surfa
e showed that gravitational a

elerationdepends on time as well. Periodi
 variations related to the Moon and Suntides are approximately 2.49 ·10−4 
m/s2 and 9.6 ·10−5 
m/s2, respe
tively.There are also periodi
 variations of the same order due to geologi
al pro�
esses inside the Earth (the so-
alled se
ular variations).Measurements of g on the Earth surfa
e are re
orded on the gravi�metri
 maps to be used in sear
hing for ore bodies and studying internal
omposition of the Earth.The �rst measurements of g with an a

ura
y of up to 10−3 
m/s2(milligal) were performed at the beginning of the 20-th 
entury by means
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hani
al os
illations and wavesof Kater's pendulums. Su
h an a

ura
y requires the a

ura
y of pendulumperiods of 10−6 s and the a

ura
y of equivalent length of 1µm. Modernmethods of measurement of g are divided into dynami
 and stati
. Thedynami
 methods in
lude the measurements with the aid of pendulums, inparti
ular, Kater's pendulums. However these measurements 
an be madepre
ise only in laboratory 
onditions and take a lot of time. This is alsotrue for string gravimeters in whi
h the frequen
y of string os
illations isdetermined by its tension due to a suspended weight.

Fig. 1. Kater's pendulum
Re
ently the a

ura
y of measurement oflength and time intervals has been signi�
antlyimproved, so it be
omes possible to measurefree fall a

eleration dire
tly. For example, us�ing a laser interferometer and an atomi
 
lo
kto measure the path and time interval 
overedby a body equipped with a 
orner re�e
torwhi
h falls in an eva
uated tube allows one torea
h the a

ura
y of 3 · 10−6 
m/s2. The dy�nami
 methods are used to measure the abso�lute value of free fall a

eleration. Stati
 meth�ods allow one to measure a relative di�eren
e inthe gravitational a

eleration with an a

ura
yof up to 1.5 · 10−5 
m/s2. The stati
 methodsemploy measurements of spring deformationsor torsional deformations of horizontal stringsdue to suspended weights. To redu
e temper�ature e�e
ts the springs and strings are madeof quartz. The stati
 method is di�
ult to usefor pre
ise measurements of the absolute valueof gravitational a

eleration be
ause a depen�den
e of the load on deformation deviates fromHooke's law. The relative variations of g mea�sured by a stati
 method are then 
ompared to the referen
e points inwhi
h the absolute values are obtained by dynami
al methods. This ishow gravimetri
 maps are produ
ed.The equivalent length of a 
ompound pendulum is determined byEq. (4.38):

T = 2π

√

I

mga
. (3)Here I is the moment of inertia of the pendulum about the pivot, m is thependulum mass, and a is the distan
e from the pivot to the 
enter of mass.

1.4.2 227The pendulum mass and os
illation period 
an be measured with a higha

ura
y while the moment of inertia 
annot. Usage of Kater's pendulumallows one to ex
lude the moment of inertia from the equation for g.The method of Kater's pendulum is based on the observation that theperiod of a 
ompound pendulum remains the same when the pivot is pla
edin the 
enter of os
illation, i.e. the point separated from the pivot at thedistan
e equal to the equivalent length and lo
ated on the same verti
alwith the pivot and the 
enter of mass.The pendulum used in the lab (see Fig. 1) 
onsists of a steel plate (or arod) to whi
h two identi
al prisms Ï1 and Ï2 are atta
hed. The os
illationperiod of the pendulum 
an be varied by means of movable weights �1, �2,and �3.Suppose one has atta
hed the weights so that the periods T1 and T2 ofpendulum os
illations on the prisms Ï1 and Ï2 are the same, i.e.

T1 = T2 = T = 2π

√

I1

mgl1
= 2π

√

I2

mgl2
, (4)where l1 and l2 are the distan
es from the 
enter of mass to prisms Ï1 andÏ2.This 
ondition is met providing the equivalent lengths, I1/ml1 and

I2/ml2, are the same. A

ording to Huygens-Steiner theorem

I1 = I0 + ml21, I2 = I0 + ml22, (5)where I0 is the moment of inertia of pendulum about the axis through the
enter of mass and parallel to the pivot. Ex
luding I0 and m from Eqs. (4)and (5) one obtains the equation for g:g =
4π2

T 2
(l1 + l2) = 4π2 L

T 2
. (6)Here L = l1 + l2 -is the distan
e between prisms Ï1 and Ï2 whi
h 
anbe measured with an a

ura
y of 0.1 mm with the aid of a large 
aliper.Summation of the lengths l1 and l2 is less a

urate sin
e the 
orrespondingerror is several millimeters.Noti
e that Eq. (6) follows from Eqs. (4) and (5) providing

l1 6= l2, (7)sin
e Eqs. (4) and (5) be
ome identities for l1 = l2.
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hani
al os
illations and wavesEquation (6) is derived under assumption that T1 = T2. A
tually it isnot possible to equate the periods pre
isely. In general

T1 = 2π

√

I0 + ml21
mgl1

, T2 = 2π

√

I0 + ml22
mgl2

.Then

T 2
1 gl1 − T 2

2 gl2 = 4π2(l21 − l22),and g = 4π2 l21 − l22
l1T 2

1 − l2T 2
2

= 4π2 L

T 2
0

, (8)where

T 2
0 =

l1T
2
1 − l2T

2
2

l1 − l2
= T 2

2 +
l1

l1 − l2
(T1 + T2)(T1 − T2). (9)The error of g 
an be found from Eq. (8):

σgg =

√

(σL

L

)2

+ 4

(

σT0

T0

)2

. (10)To evaluate the error σT0 let us examine how the period of os
illationdepends on the distan
e l between the 
enter of mass and the pivot. To doso we express moment of inertia I via I0 using Eq. (5):

T = 2π

√

I0 + ml2

mgl
. (11)This fun
tion is shown in Fig. 2. When l → 0 the period goes to in�nity as

l−1/2. When l → ∞ the period goes to in�nity as l1/2. The minimum ofthe period is at lmin =
√

I0/m. Every value of T for T > Tmin is repeatedtwi
e for two di�erent values of l, one of them is greater than lmin and theother is less. These values were used in Eqs. (4) � (6). The plot shows thatthe values of the quantities l1 and l2 diverge when T grows.Let us determine how the error of T0 depends on the di�eren
e l1 − l2.To this end let us �nd how σT0 depends on the error of T1. Di�erentiatingthe �rst equation of (9) at 
onstant T2 we obtain:
2T0(dT0)T2

=
l1

l1 − l2
2T1dT1, (dT0)T2

=
l1

l1 − l2
· T1

T0

dT1.Similarly we obtain at 
onstant T1:
(dT0)T1

= − l2
l1 − l2

· T2

T0

dT2.
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Tmin

T

lmin ll2 l1Fig. 2. Os
illation period versus distan
e between 
enter of mass andpivotNow 
onsider the 
ase when l1 and l2 are 
lose. The denominator issmall and the error of T0 grows sharply. Therefore the period of os
illationsmust be 
hosen so that l1 and l2 are signi�
antly di�erent. If they di�erby a fa
tor of 1.5 the error of T0 ex
eeds the error of T1 by less than anorder of magnitude.Let us derive the equation for dT0. Consider the se
ond equality inEq. (9). Noti
e that T1 ≈ T2, so the di�eren
e T1 − T2 is small. Thereforethe se
ond term in the equation 
an be regarded as a minor 
orre
tion aslong as l1 − l2 is not large.Therefore the errors of l1 and l2, if taken into a

ount, will be multipliedby a small di�eren
e T1 − T2 and 
an be negle
ted in 
al
ulation of σT0 .This is true even for the errors of several millimeters typi
al for this lab.Now, sin
e the errors of T1 and T2 are independent and approximatelyequal the general formula (1.33) gives �nally:

σT0 ≈
√

l21 + l22
l1 − l2

σT , (12)where σT is the error of the period.One 
an see that the error does not signi�
antly depend on the a

ura
yof the equality T1 = T2. Therefore, as soon as the equality holds withinseveral per
ent, a further improvement is not ne
essary.Finally noti
e that the ratio l1/l2 should not be too large. Indeed l1is always less than the distan
e L between the prisms. The quantity l2
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illations and wavesbe
omes small for large l1/l2 and the period of os
illations grows sharply(re
all that I is always greater than I0). This in
reases the duration ofexperiment and an un
ertainty due to fri
tion whi
h is not taken intoa

ount in derivation of Eq. (3).Let us quantify this statement. The 
ontribution due to fri
tion 
an bedetermined as the ratio of the work done by fri
tion for
es to the energyof os
illation. The work of fri
tion depends on l2 only slightly be
ausethe work is the produ
t of the torque due to fri
tion (whi
h is almostindependent of l2) and de�e
tion angle whi
h is 
ompletely independent of

l2. The energy of os
illation equals the potential energy of the pendulum,i.e.

Wosc = mgl2(1 − cosϕ),where ϕ is the de�e
tion angle of the pendulum. So, the less l2, the less

Wosc.Thus we 
on
lude that the ratio of l1 to l2 should be neither too smallnor too large. A preferred value lies in the range:

1,5 <
l1
l2

< 3. (13)Laboratory setup. The design of Kater's pendulum is shown in Fig. 1.The distan
e L between the prisms Ï1 and Ï2 is �xed. Distan
es l1 and l2
an be varied by moving weights �1, �2 and �3.The number of os
illations is measured by a 
ounter whi
h 
onsists ofa spotlight, a photo
ell, and a digital 
ounter. A light rod atta
hed to thependulum end 
rosses the beam of light twi
e a period. Pulses generatedby the photo
ell are registered by the digital 
ounter. If n1 and n2 arethe initial and �nal readings of the 
ounter during time t, the number ofperiods is, obviously, equal to N = (n2 − n1)/2 and the os
illation periodis T = t/N . Time t is measured by the stopwat
h mounted on the 
ounter.To measure l1 and l2 one should remove the pendulum from its supportand pla
e it on the spe
ial horizontal bar whi
h has a sharp edge. Then oneshould �nd the position of the 
enter of mass by balan
ing the pendulumon the bar. The distan
es from the bar to the prisms are l1 and l2. Ifthey di�er signi�
antly (see Eq. (13)) and the periods T1 and T2 are 
lose,the a

ura
y of measurement of l1 and l2 need not be high a

ording toEq. (9). LABORATORY ASSIGNMENT1. Study Kater's pendulum design.
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illation amplitudes in whi
h os
illation period
an be 
onsidered as independent of the amplitude. To do so put thependulum on a prism, de�e
t it from the verti
al by an angle ϕ1 (∼10◦),and measure the time of 100 full swings. Find the period T1. Repeat theexperiment by de
reasing the initial de�e
tion by a fa
tor of 1.5�2 and �ndthe period T ′
1. If the periods 
oin
ide within the measurement a

ura
y,any initial amplitude ϕ whi
h does not ex
eed ϕ1 
an be 
hosen for furthermeasurements. If it turns out that T1 6= T ′

1, take the se
ond value of theinitial amplitude as ϕ1 and repeat the experiment. It is not re
ommendedto take the initial amplitude greater than 10◦ sin
e the prism 
an possiblyslide on the support.3. Figure out how the os
illation periods T1 and T2 (the pivot point on theprism Ï1 and Ï2, respe
tively) depend on the position of weights �1, �2and �3. It would su�
e to measure the time of 10�15 full swings. It isne
essary to determinea) whi
h of the weights has the greatest e�e
t on T1 and T2, and whi
hone has the least;b) whi
h of the weights has the greatest e�e
t on the di�eren
e |T1−T2|.Does a weight displa
ement 
hanges the periods T1 and T2 in the samedire
tion? Do the experiments for all the weights.4. By moving the weight whi
h has the greatest e�e
t on the di�eren
e

|T1−T2| (usually it is �2) make the periods roughly 
oin
ide. Determine T1and T2 by 10�15 full swings. Remove the pendulum from the support, lo�
ate its 
enter of mass, and measure the distan
es l1 and l2. As it wasalready mentioned, they should di�er by a fa
tor of no less than 1.5 andno more than 3.5. By moving the weight whi
h has the least e�e
t on the periods, make T1and T2 
oin
ide within one per
ent a

ura
y. Che
k whether the values l1and l2 satisfy inequalities (13). The �nal measurement should be performedusing 200�300 full swings. By the way make sure that fri
tion has no signif�i
ant e�e
t on the os
illations, i.e. the amplitude of os
illations de
reasesno more than by a fa
tor of 2�3 during the 200�300 full swings.6. Using Eqs. (8) and (9) 
al
ulate the gravitational a

eleration. Evaluatethe error and 
ompare the result with the tabulated value.Questions1. How do temperature variations, fri
tion, and the amplitude of os
illations a�e
tthe a

ura
y of the experiment?2. What distan
e from the pivot to the 
enter of mass 
orresponds to the minimumos
illation period?3. Show that the 
enter of mass lies between the pivot and the 
enter of os
illations.
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al os
illations and waves4. Prove Huygens-Steiner theorem.5. Show that if the pivot is pla
ed in the 
enter of os
illations the period of os
illa�tions remains the same. Literature1. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. I. � Ì.: Íàóêà, 1996. �� 35, 36, 41,66.2. Ñòðåëêîâ Ñ.Ï. Ìåõàíèêà. � Ì.: Íàóêà, 1975. �� 50, 124.Lab 1.4.3Study of non-linear os
illations of a long-periodpendulumPurpose of the lab: determination of the dependen
e of os
illationfrequen
y on amplitudeTools and instruments: long-period pendulum, stopwat
hEquation of the pendulum motion. A pendulum used in the lab
onsists of two identi
al weights �xed on a rigid rod; the rod 
an rotateabout a horizontal axis whi
h is slightly o� the 
enter of mass of the system.An arrangement of the rod and the weights is shown in Fig. 1, the namesof the variables used are indi
ated in the same �gure.

Fig. 1. Long-periodpendulum
The pendulum os
illations are due to thetorque of the gravitational for
e. The motion ofthe pendulum is spe
i�ed by the dependen
e ofthe deviation angle ϕ (measured from the equi�librium position) on time. The torque Mg dueto the gravitational for
e, whi
h tends to returnthe system to the equilibrium, 
an be written as

Mg = −
(

m + ρ
L + l

2

) g(L − l) sinϕ.In what follows we shall assume that the dragfor
e, whi
h is responsible for the os
illation damping, is dire
tly propor�tional to the velo
ity. This fa
t is 
onsistent with the experimental dataproviding the velo
ity is not large. In the 
ase 
onsidered the drag for
edepends on the air vis
osity and on the fri
tion in the bearings of the pen�dulum axis whi
h is too small to be taken into a

ount. Thus the torque
Md of the drag for
e equals
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Md = −b(L2 + l2)ϕ̇,where b is a 
onstant.The pendulum moment of inertia I about the rotational axis is equalto the sum of the moments of inertia of its 
onstituents (the weights andthe rod) about the same axis:

I = m(L2 + l2) + ρ
L3 + l3

3
,where m is the mass of ea
h of the weights (
onsidered as point masses)and ρ is the linear density of the rod.Consequently, the equation of the rotational motion of the pendulum,

Iϕ̈ = Mg + Md,be
omes
Iϕ̈ = −

(

m + ρ
L + l

2

) g(L − l) sin ϕ − b(L2 + l2)ϕ̇,or
ϕ̈ + 2βϕ̇ + ω2

0 sin ϕ = 0, (1)where
2β = b

L2 + l2

I

è ω2
0 =

(

m + ρ
L + l

2

) g(L − l)

I
.Negle
ting the rod mass 
ompared to the masses of the weights one 
anwrite down

2β =
b

m
, ω2

0 = g L − l

L2 + l2
.Small-amplitude os
illations. For small deviation angles sin ϕ ≈ ϕ;when plugged into Eq. (4.27) it gives the equation of small-amplitudedamped os
illations

ϕ̈ + 2βϕ̇ + ω2
0ϕ = 0. (2)The solution of the equation is given by (4.28)

ϕ = ae−βt cos(ωt + α), (3)where (see eq. (4.29))

ω2 = ω2
0 − β2. (4)
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illations and wavesThe 
onstants a and α are determined by initial 
onditions.From Eq. (4) one 
an see that damping de
reases the os
illation fre�quen
y and thus in
reases the period. To estimate the magnitude of thee�e
t (assuming a small damping: β2 ≪ ω2) we rewrite Eq. (4) as ∆ω2 =
= −β2 and obtain

∆T

T
= −∆ω

ω
= −2ω∆ω

2ω2
= −∆ω2

2ω2
=

β2

2ω2
=

β2T 2

8π2
.Using Eqs. (4.31) and (4.32) one �nally obtains

∆T

T
=

δ2

8π2
, where δ = βT = ln

ai

ai+1

. (5)Equation (5) allows one to estimate the in�uen
e of the damping on theos
illation period as the amplitudes ai 
an be easily measured. We assumethat the 
orre
tion (5) due to damping is small 
ompared to the 
orre
�tion due to the non-linearity of the os
illations. However, this assumptionshould be experimentally veri�ed.Non-linear os
illations. An equation of large-amplitude undamped os�
illations 
an be obtained by setting β = 0 in (1)

ϕ̈ + ω2
0 sin ϕ = 0. (6)This equation is non-linear1. For small deviation angles sin ϕ ≈ ϕ eq. (6)is linear and 
oin
ides with the equation of the harmoni
 os
illator (4.4).The dependen
e of the period of non-linear os
illations on the amplitude
an be obtained by integrating the relation

dt =
dϕ

ϕ̇

(7)from t = 0 to, e.g. t = T/4. To �nd the angular velo
ity ϕ̇ and thedeviation angle ϕ one should multiply Eq. (6) by ϕ̇

ϕ̇ϕ̈ + ϕ̇ω2
0 sin ϕ = 0and integrate on
e:2:

ϕ̇2

2
+ ω2

0(cosϕm − cosϕ) = 0, (8)1 We remind that linear equations are those in whi
h all terms are the �rst powers offun
tions and their derivatives. In eq. (6) the non-linearity is due to the sine fun
tion.In other 
ases there 
ould be polynomial or more 
ompli
ated fun
tions2 One 
an also obtain (8) from the energy 
onservation law

1.4.3 235where ϕm is the maximum deviation angle. From here it follows that
ϕ̇2 = 2ω2

0(cos ϕ − cosϕm) = 4ω2
0

(

sin2 ϕm

2
− sin2 ϕ

2

)

,

ϕ̇ = 2ω0 sin
ϕm

2

√

1 − sin2 ϕ
2

sin2 ϕm

2

. (9)Using Eqs. (9) and (7) one obtains
T = 4

T/4∫

0

dt = 4

ϕm∫

0

dϕ

ϕ̇
=

4

2ω0 sin ϕm

2

ϕm∫

0

dϕ
√

1 − sin2 ϕ
2

sin2 ϕm

2

. (10)Introdu
ing a new variable θ

sin2 θ =
sin2 ϕ

2

sin2 ϕm

2

(11)we 
an rewrite an expression for the os
illation period T as

T = T0 ·
2

π

π/2∫

0

dθ
√

1 − sin2 ϕm

2
sin2 θ

. (12)Here T0 = 2π/ω0 is the period of small-amplitude (linear) os
illations.The integral (12) is not expressed via primitive fun
tions but it 
an beworked out by Taylor expanding of the integrand. This gives the followingdependen
e of the os
illation period on the amplitude

T

T0

= 1 +
1

4
sin2 ϕm

2
+

9

64
sin4 ϕm

2
+ . . . (13)For relatively small angles one obtains:

T ≈ T0

(

1 +
ϕ2

m

16

)

. (14)In Fig. 2 the rigorous solution (13) (solid line) and the approximate one(14) (dashed) are depi
ted. At 90◦-amplitudes the dis
repan
y between thesolutions is about 2% while a non-linear 
ontribution to the period is about15�20% and 
an be measured with a simple stopwat
h if the os
illationperiod is about 10 se
onds.
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Fig. 2. Dependen
e of os
illation period on amplitudeBoth non-linearity and damping a�e
t the pendulum os
illation pe�riod (6). We have 
onsidered the 
ontribution of ea
h of the fa
tors in�dependently assuming that the other one is negligible. In fa
t these fa
torsa
t simultaneously and the os
illation period is a 
ompli
ated fun
tion ofthe damping de
rement and the amplitude. But if the 
orre
tion to theperiod is small, one 
an use the Taylor expansion of the fun
tion of twovariables:

f(x, y) ≈ f(0, 0) +
∂f(0, 0)

∂x
x +

∂f(0, 0)

∂y
y,whi
h gives for eqs. (5) and (14):

T (δ2, ϕ2
m) ≈ T0

(

1 +
δ2

8π2
+

ϕ2
m

16

)

. (15)One 
an see that in the �rst order the damping and the non-linearity
ontributions are independent.LABORATORY ASSIGNMENT1. Adjust the position of the weights on the rod so that the pendulum os
il�lation period is 5-10 se
onds.

1.4.4 2372. Release the pendulum without pushing from the initial 80�90◦ and devia�tion angle and start the stopwat
h simultaneously.3. Ea
h time the angle rea
hes its maximum value tabulate the number of theperiods n passed from the start of motion, the maximum deviation angle
ϕn, and the stopwat
h readings.4. Repeat the experiment several times for various os
illation periods.5. Estimate the e�e
t of damping on the pendulum os
illations. For thispurpose plot the values lnϕn vs n, 
al
ulate the slope of the line andextra
t the value of the logarithmi
 de
rement δ (see Eq. (5)). Using (5)estimate the 
ontribution of the damping to the os
illation period andas
ertain that it is small 
ompared to the e�e
t observed (or 
omparedto the expe
ted value 
al
ulated from Eq. (14)). Otherwise one shouldintrodu
e the 
orre
tion for the damping using Eq. (15) and use the value

T0 − δ2

8π2 instead of the small-os
illation period T0.6. Plot the dependen
e of the os
illation period T vs. the maximum deviationangle squared ϕ2 (measured in radians). Compare your result with thetheoreti
al predi
tion (14). Questions1. How does the pendulum os
illation period depend on damping?2. Dis
uss the design of a moderate size pendulum whi
h has a large os
illationperiod. Could a 
onventional pendulum be used in the lab instead?3. Dis
uss the dependen
e of the pendulum os
illation period on the amplitude.Literature1. Êèòòåëü ×., Íàéò Ó., �óäåðìàí Ì. Ìåõàíèêà. � Ì.: Íàóêà, 1983. Ñ. 251.2. Êèíãñåï À.Ñ., Ëîêøèí �.�., Îëüõîâ Î.À. Îñíîâû �èçèêè. Ò. 1. Ìåõàíèêà,ýëåêòðè÷åñòâî è ìàãíåòèçì, êîëåáàíèÿ è âîëíû, âîëíîâàÿ îïòèêà. � Ì.:Ôèçìàòëèò, 2001. ×. III. �� 2.4, 3.2.Lab 1.4.4Study of os
illations of 
oupled pendulumsPurpose of the lab: to study an os
illator with two degrees of freedomTools and instruments: a setup of two identi
al bi�lar gravity pendu�lums suspended on a tight horizontal string, a stopwat
h, and a rulerPrior to experiment read the paragraph 
on
erning 
oupled pendulumsin the introdu
tion to this 
hapter.
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hani
al os
illations and wavesThe measurements are performed using the setup shown in Fig. 1.One of the string ends is rigidly atta
hed to the verti
al support, whilethe other end runs over the sheave and is kept tight by the weight of mass

M . Points A and B of the string are �xed. Points C and D divide the dis�tan
e between A and B into three equal segments of length a ea
h; identi
algravity pendulums of mass m and length l are suspended at these points.Ea
h pendulum is suspended on two threads (bi�larly) in the string plane,so that os
illations o

ur in the plane orthogonal to the string. String ten�sion is mu
h greater than the weight of the pendulums provided M ≫ m.Verti
al displa
ement of the string from equilibrium does not a�e
t motionof the pendulums if os
illation amplitudes are small. Although horizontaldispla
ement of the string is also rather small 
ompared to the pendulumdispla
ements, it provides weak 
oupling between the pendulums.The displa
ements of points C and D of the string and both verti
al(Fig. 2à) and horizontal (Fig. 2b) displa
ements of pendulums are shownin Fig. 2.Assuming small displa
ements of the pendulums we obtain the followingexpression for tension T (see Fig. 2a)

mg ≈ T. (1)Dynami
 equations governing the horizontal 
omponents of pendulumdispla
ements are (Fig. 2):

mẍ1 = −T sin ϕ1 ≈ −T
x1 − x3

l
≈ −mg x1 − x3

l
, (2)

mẍ2 = −T sin ϕ2 ≈ −T
x2 − x4

l
≈ −mg x2 − x4

l
. (3)The relation between the string and suspension tensions 
an be obtainedfrom Fig. 2:

T
x1 − x3

l
= F

x3

a
+ F

x3 − x4

a
, (4)

T
x2 − x4

l
= F

x4

a
+ F

x4 − x3

a
. (5)Let us introdu
e a dimensionless parameter

σ =
T

F

a

l
=

m

M

a

l
,whi
h is mu
h less than unity in our 
ase (weak 
oupling). Thus fromEqs. (4) and (5) we obtain

σx1 = (2 + σ)x3 − x4, σx2 = (2 + σ)x4 − x3. (6)
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Fig. 1. S
heme of experimental setup

Fig. 2. Displa
ements of pendulums and string (a) view along thestring, (b) top view
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ting σ 
ompared to 2 we arrive at

x3 = σ
2x1 + x2

3
, x4 = σ

x1 + 2x2

3
. (7)Then the equations of pendulum motion be
ome:

ẍ1 +

g

l
(1 − σ)x1 = σ

g

3l
(x2 − x1), (8)

ẍ2 +

g

l
(1 − σ)x2 = σ

g

3l
(x1 − x2). (9)Noti
e that the system of equations (4.60)-(4.61) 
an be rewritten as

ϕ̈1 +

g

l
ϕ1 =

g

l
ε(ϕ2 − ϕ1),

ϕ̈2 +

g

l
ϕ2 =

g

l
ε(ϕ1 − ϕ2)or

ϕ̈1 + ω2
0ϕ1 = ω2

0ε(ϕ2 − ϕ1), (10)

ϕ̈2 + ω2
0ϕ2 = ω2

0ε(ϕ1 − ϕ2). (11)Equations (10) and (11) 
oin
ide with Eqs. (8) and (9) ex
ept for thenotations. One 
an introdu
e the quantitiesg

l
(1 − σ) = ω2

0 , σ

g

3l
= ω2

0εand thus obtain

σ

1 − σ
= 3εor

σ(1 + σ) ≈ 3ε,i.e.

σ ≈ 3ε (for weak 
oupling).Now Eqs. (8) and (9) be
ome

ẍ1 + ω2
0x1 = ω2

0ε(x2 − x1), (12)
ẍ2 + ω2

0x2 = −ω2
0ε(x2 − x1). (13)

1.4.4 241Thus all theoreti
al results derived in the introdu
tion to this 
hap�ter are valid for this experiment. In parti
ular, energy transfer from onependulum to another and vi
e versa takes the time (4.79):
τ =

2π

ω0ε
. (14)One 
an see that the 
oupling parameter 
an be written as

ε =
1

3

(

1 − ω2
0lg )

. (15)Using Eq. (15) one 
an rewrite the relation (14) as
τ =

6π

ω0(1 − ω2
0l/g)

≈ 6π
Ml

ma

√

lg . (16)Equation (16) 
an be experimentally veri�ed by measuring the partial fre�quen
y of a pendulum, its length, and the time of energy transfer.LABORATORY ASSIGNMENT1. Measure the pendulum lengths, the distan
e between �xed points of thestring and between pendulum suspension points. Write down the pendu�lum masses and the weight whi
h keeps the string tight.2. Measure the periods of normal os
illation modes. To measure the periodof in-phase os
illations T1 de�e
t the pendulums from the verti
al by equalangles (about 30◦) in the same dire
tion and release them simultaneously.Time readouts should be taken when the pendulums pass through theirequilibrium positions (about 10 os
illations). Repeat the measurement2�3 times and average the results. To measure the period of antiphaseos
illations T2 the initial de�e
tions should be in the opposite dire
tions.3. Measure the periods of partial os
illations. For this purpose one of thependulums should be deta
hed or put on a support.4. Observe swinging of one pendulum by another. For this purpose de�e
tonly one pendulum and measurethe period of beatings τ .5. Che
k validity of the relation

1

τ
=

1

T1

+
1

T2

. (17)6. Repeat the previous measurements for di�erent string tensions.7. Plot the dependen
e of the beatings period on the string tension.
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al os
illations and waves8. Compare the results obtained with the theoreti
al predi
tions given byEq. (16). Questions1. Give some examples of os
illators with two degrees of freedom.2. What are normal os
illations (normal modes)?3. What are partial os
illations?4. At whi
h initial 
ondition does the swinging of pendulums o

ur in turn?5. Derive the equation (17). Literature1. Êèòòåëü ×., Íàéò Ó., �óäåðìàí Ì. Ìåõàíèêà. � Ì.: Íàóêà, 1983.2. Êèíãñåï À.Ñ., Ëîêøèí �.�., Îëüõîâ Î.À. Îñíîâû �èçèêè. Ò. 1. Ìåõàíèêà,ýëåêòðè÷åñòâî è ìàãíåòèçì, êîëåáàíèÿ è âîëíû, âîëíîâàÿ îïòèêà. � Ì.:Ôèçìàòëèò, 2001. ×. III. �ë. 2. � 2.5.Lab 1.4.5Study of string os
illationsPurpose of the lab: to study the dependen
e of the frequen
y of stringos
illations on the tension; to study the formation of standing waves onthe string.Tools and instruments: bar with a �xed string, audio-frequen
ygenerator, 
onstant magnet, weightsOne of the main properties of a string is its �exibility whi
h is due to alarge ratio of the string length to its diameter. Even strings made of sti�materials almost do not resist a bending if the size of the bent se
tion ismu
h greater than the string diameter. This fa
t allows us to negle
t thestress due to bending in this lab.A horizontal string with �xed endpoints sags in a gravitational �eldwhen poorly tightened. In
reasing the tension will straighten the stringalmost to a straight line; in this situation the tension is su�
iently greaterthan the weight of the string. For this reason we will negle
t the gravitywhen 
onsidering straightly tightened strings.A tight string with �xed ends is well suited for the study of os
illationpro
esses sin
e it makes possible a dire
t observation of the simplest typesof os
illations and waves ex
ited on the string. It is also possible to de�termine the parameters of the os
illations and 
ompare the results withtheoreti
al predi
tions.
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Fig. 1. Experimental setupMotion of string segments 
an be 
aused by a perturbation of the stringshape or by a transmission of momentum along the string. The string ten�sion tends to restore its initial straight shape, whi
h results in the motionof string segments. The perturbation propagates along the string.From eq. (4.95) one obtains an expression for the speed of a transversewave propagating along a string
u =

√

F

ρl
, (1)where F is the tension, ρl is the mass of the string per unit length. For agiven frequen
y ν the wavelength is

λ =
u

ν
. (2)The frequen
ies of normal modes of the string are given by eq. (4.97):

νn = n
u

2l
, (3)where l is the string length, n is the number of half-wavelengths.Laboratory setup. The experimental setup is shown in Fig. 1. Bearings2 and 4 and magnet 3 are pla
ed on massive bar 1, the bearing 2 and themagnet 3 
an be moved along the bar while the bearing 4 is �xed. Oneof the string ends is �xed in the bearing 4. Then the string is threadedbetween the poles of the magnet, the bearing 4 (whi
h allows for horizontalstring displa
ements), and the �xed blo
k. Plate 5 is suspended on theloose end of the string; by pla
ing di�erent weights on the plate one 
anvary a string tension.
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al os
illations and wavesAn alternating voltage generated by the audio-frequen
y generator 6 isapplied between the massive bar 1 and the string end �xed in the bearing 4.An Ampere for
e due to the magneti
 �eld a
ting on the 
urrent makes thestring vibrate. The frequen
y of the for
e swinging the string is equal tothe frequen
y of the 
urrent os
illations, i.e. the frequen
y of the generator.The Ampere for
e results in string os
illations and wave propagation;the waves are re�e
ted by the bearings 2 and 4 and interfere, whi
h resultsin a standing wave provided the string length is an integer of half-wave�lengths.In real experiments there always exist losses of energy due to air fri
tion,transmission of energy to the bearings, irreversible pro
esses in the string,et
. To maintain the os
illations one needs to supply energy to the string.In a stationary regime the amount of the supplied energy equals the amountof the dissipated energy. In the experimental setup the Ampere for
e notonly ex
ites the string os
illations but also maintains them.In this situation the energy �ux propagates along the string. But theenergy propagation in a pure standing wave is prohibited (see the introdu
�tion to this 
hapter). Therefore a traveling wave must exist, a
tually thisleads to the smearing of the standing-wave nodes. If the energy losses perperiod are mu
h less than the energy stored in the string a traveling-wavefa
tor is mu
h less than unity:

A1 − A2

A2

≪ 1. (4)Here A1 and A2 are the in
ident and the re�e
ted wave amplitudes, respe
�tively. In this 
ase one 
an use the equations obtained for a pure standingwave. It is worth mentioning that the quantity A1 − A2 
an be estimatedby observing the smearing of the nodes; it equals half of the smearingamplitude. The wave amplitude in an antinode is 2A2.If inequality (4) is not well satis�ed, one should de
rease the outputpower of the generator. This would de
rease the rate of energy loss 
om�pared to the energy stored in the wave.One more fa
t should be mentioned. The Ampere for
e will ex
itepolarized waves with the plane of os
illations orthogonal to the dire
tionof the magneti
 �eld. In real experiments it is not always possible to obtainthe linearly polarized waves.LABORATORY ASSIGNMENT1. Examine the experimental setup. Pla
e the bearing 2 (Fig. 1) so that thelength L of the os
illating part of the string is longer than 80 
m.2. Turn on the power supply of the audio-frequen
y generator.
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 output signal of the generator and the minimal range ofthe output frequen
ies.4. Put some weights on the plate.5. Move the magnet and vary the generator frequen
y to obtain a pattern ofstanding waves. (Moving the magnet along the string 
hanges a lo
ationof the point where the Ampere for
e is applied. The point must be 
loseto a node although they should not 
oin
ide.)6. In
rease the generator frequen
y at a 
onstant tension and obtain the pat�terns of standing waves 
orresponding to n = 1, 2, 3, .... up to not less than6. For ea
h pattern write down the 
orresponding frequen
y; repeat themeasurement by in
reasing and de
reasing the generator frequen
y. Carryout this pro
edure for di�erent values (at least �ve) of the string tension.7. While 
arrying out the experiment 
he
k if inequality (4) holds. For thispurpose one should measure a node smearing and the amplitude of os
il�lations in an antinode. If (4) is not well satis�ed the output power of thegenerator must be redu
ed.8. For ea
h value of the string tension F plot the resonant frequen
y νn vs n.Cal
ulate the slope of the 
urves and determine the wave velo
ity u using(3) at a given value of the tension. Estimate the error of the results.9. Plot the wave velo
ity squared u2 vs the string tension F . Cal
ulate theslope of the line and determine the linear density ρl of the string using (1).Estimate the error and 
ompare the result with the value written on theexperimental setup. Questions1. What are longitudinal and transverse waves? Write down the wave equation.2. Derive the wave equation. Give a de�nition of node and antinode of a standingwave. Des
ribe an energy propagation along an os
illating string.3. Prove that the velo
ity of transverse wave on a string equals u =
√

F/ρl. Com�pare this value with the velo
ity obtained in the experiment.4. Des
ribe the re�e
tion of a wave from the �xed end and from the end whi
hmoves freely in a plane orthogonal to the dire
tion of the string tension. Whatis the value of a phase shift between the in
ident and re�e
ted waves?5. What 
ondition must be satis�ed for a traveling wave not to a�e
t the os
illationpattern? How 
an one 
he
k the 
ondition experimentally?Literature1. Ñòðåëêîâ Ñ.Ï. Ìåõàíèêà. � Ì.: Íàóêà, 1975. ?. 137�143.2. Õàéêèí Ñ.Ý. Ôèçè÷åñêèå îñíîâû ìåõàíèêè. � Ì.: Íàóêà, 1971. ?. 150�154.3. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. I. � Ì.: Íàóêà, 1996. �� 81, 84.4. Êèíãñåï À.Ñ., Ëîêøèí �.�., Îëüõîâ Î.À. Îñíîâû �èçèêè. Ò. 1. Ìåõàíèêà,ýëåêòðè÷åñòâî è ìàãíåòèçì, êîëåáàíèÿ è âîëíû, âîëíîâàÿ îïòèêà. � Ì.:Ôèçìàòëèò, 2001. ×. III. �ë. 5. � 5.6.



246 Me
hani
al os
illations and wavesLab 1.4.6Measurement of speed of ultrasound in liquid bymeans of ultrasound interferometerPurpose of the lab: to measure wavelength of ultrasound in di�erentliquids by means of ultrasound interferometer and to 
al
ulate speeds ofultrasound and adiabati
 
ompressibility of the liquids.Tools and instruments: an ultrasound interferometer, frequen
y gen�erator �4-42, and an ammeter.Sound waves with a frequen
y greater than 20 kHz are 
alled ultra�sound. Unlike sound, ultrasound is not per
eptible by human ear.Ultrasound waves 
an propagate in solids and �uids just like ordinarysound waves. In solids ultrasound propagates in the form of longitudinaland transverse waves; in �uids there are only longitudinal waves. The speedof ultrasound depends on elasti
 properties and density of the medium inwhi
h ultrasound propagates. Therefore elasti
 properties of a medium 
anbe determined if the speed of ultrasound and the medium mass density areknown.In the lab the speed of ultrasound in liquid is measured. There areseveral methods of measuring the speed. The method of ultrasound inter�ferometry used in the lab is one of the most pre
ise.A standing wave is ex
ited between an emitter and a rigid re�e
tingsurfa
e. (See the introdu
tion to the 
hapter.) The distan
e between theemitter and the re�e
tor must be an integer multiple of half wavelengths:
l = n

λ

2
, cs = λνn, (1)where cs is the speed of ultrasound and νn is the wave frequen
y.The interferometer 
an be 
onsidered as a resonator tuned to the fre�quen
ies derived from (1):

νn = n
cs

2l
. (2)These frequen
ies 
orrespond to standing waves of the resonator, they are
alled resonant frequen
ies. Two adja
ent resonant frequen
ies 
orrespondto distan
es l between the emitter and the re�e
tor separated by

∆l =
λ

2
. (3)Equation (3) is more general than (1). Indeed, Eq. (1) is derived on theassumption that both ends of the 
olumn of liquid are 
losed by absolutely
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 walls whi
h 
ompletely re�e
t the sound. This assumption is neversatis�ed, so a phase shift between the in
ident and re�e
ted waves neverequals π.Equation (3), whi
h spe
i�es the distan
e between two 
onse
utive res�onan
es, is independent of the details of re�e
tion from the top and bottomof the 
ontainer. As long as a resonan
e is dete
ted, further in
rement ofthe 
olumn height by λ/2 in
reases the path of the wave between two 
on�se
utive re�e
tions by λ, so the phase 
hanges by 2π and the next resonan
eo

urs.Consider a method of ex
iting the ultrasound. Usually one employs a�at quartz 
rystal pla
ed between the plates of a 
apa
itor (the plates areglued or thermally sprayed on the 
rystal). The size of the 
rystal 
hangesperiodi
ally due to ele
tri
 �eld (piezo-e�e
t) of a desired frequen
y. Theos
illations are then transferred to liquid.Usually the quartz 
rystal is pla
ed in the liquid to avoid extra surfa
esre�e
ting the sound. In our 
ase the plate is rigidly �xed to the 
ontainerbottom. The os
illations are transferred to the liquid through the bottomwhi
h in ideal 
ase would 
oin
ide with a node.However os
illations 
annot be ex
ited at the node be
ause there is nomotion and no work 
an be done. This looks like a 
ontradi
tion sin
eenergy must be transferred from the emitter to the liquid to 
ompensatelosses on the re�e
ting surfa
es and due to internal fri
tion. The bottom
oin
ides with an os
illation node only for an ideal liquid in whi
h thereare no losses. No losses means no 
ompensation. In a real liquid the energylosses are imminent and the bottom needs not be immobile.In resonan
e and in the absen
e of energy losses, the amplitudes of thewaves propagating in opposite dire
tions are equal and their sum is a stand�ing wave. In reality the amplitude Aup of the wave propagating upwardfrom the emitter somewhat ex
eeds the amplitude Adown of the downwardwave. The sum of the waves is a standing wave with the amplitude of

2Adown and a propagating wave with the amplitude of Aup − Adown. Thepropagating wave transfers energy and ¾blurs¿ the wave pattern at thenodes.Now let us dis
uss how to measure a sound wavelength. It shouldalready be 
lear that the measurement is essentially the measurement ofthe distan
e between two 
onse
utive positions of the re�e
tor for whi
ha resonan
e o

urs. A

ording to Eq. (3) one �nds the wavelength bydoubling the distan
e obtained.The speed of sound cs 
an then be found from Eq. (1). In addition tothe wavelength one should know the frequen
y of os
illations of the quartz
rystal whi
h 
oin
ides with the signal frequen
y.



248 Me
hani
al os
illations and wavesUsing the value of cs one 
ould determine 
ompressibility χ of liquid:

cs =

√

1

χρ
, χ =

1

ρc2
s

, (4)where ρ is the liquid density. Sin
e propagation of sound is an adiabati
pro
ess, this equation de�nes adiabati
 
ompressibility χad. The adiabati
and thermal 
ompressibility of liquid do not di�er mu
h, e.g. for water thedi�eren
e is 1%, the di�eren
e between them 
an often be negle
ted.A strong ele
trolyte dissolved in water disso
iates into ions. The ele
tri
�eld of an ion aligns the nearby water mole
ules that drasti
ally redu
esthe 
ompressibility. Roughly speaking, ea
h ion be
omes the 
enter of asphere whi
h 
ompressibility is almost zero. As a result the 
ompressibilityof the solution de
reases and the speed of ultrasound rises sharply.

Fig. 1. Ultrasound interferometer
Laboratory setup. The interferometerused in the lab 
onsists of 
ylinder C (seeFig. 1), quartz plate K is glued to its bot�tom. The plate is 
ut in a spe
ial way (theso 
alled ¾X-
ut¿) and possesses piezoele
�tri
 properties. Charges of opposite signa

umulate on the opposite 
rystal fa
esto whi
h stress or 
ompression is applied.The reverse e�e
t is used in the interfer�ometer: a periodi
 voltage applied to thehorizontal 
rystal fa
es 
oated with silvermakes the 
rystal os
illate. The alternat�ing voltage is generated by the standardfrequen
y generator �4-42 whi
h gradua�tion s
ale has an error less than 1%. Thegenerator has a resonan
e ampli�er tunedto the eigenfrequen
y of the quartz plate(1 MHz). A voltage applied to the 
rystalis tens of volts.The thi
kness of the 
ontainer bottomis 
hosen so that resonan
e o

urs in the working range of frequen
ies.The 
ontainer bottom ex
ited by the quartz 
rystal transmits ultra�sound to the bulk of liquid. This prevents a 
onta
t between the liquidand the quartz 
rystal and allows one to study even 
ondu
ting liquidswhi
h otherwise would damage or short-
ir
uit the 
rystal.The 
urrent supplied to the 
rystal is 
ontrolled by an ammeter. Thelatter is 
onne
ted in series with diode Ä and in parallel with resistor
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R whi
h is in
luded in the 
rystal supply 
ir
uit. The ammeter servesto dete
t resonan
e. A power 
onsumed by the 
rystal rises sharply inresonan
e and so does a 
urrent through the resistor.Disk O made of stainless steel serves as the interferometer re�e
tor. Itslower surfa
e is parallel to the 
ontainer bottom. Mi
rometri
 s
rew M isused to move the disk up and down. Spring Ï lifts the rod Ø up there�by maintaining me
hani
al 
onta
t between the rod and the mi
rometri
s
rew. LABORATORY ASSIGNMENT1. Turn on generator �4-42 and let it warm up for several minutes. Emptythe 
ontainer by un
lamping a hose if there is any liquid inside. Set therange of working frequen
ies of the generator, i.e. the range 
ontaining theeigenfrequen
y 1 MHz of the quartz 
rystal.Find the resonant frequen
y of the 
rystal by adjusting the frequen
y toa
hieve a maximum of the 
urrent. Using the knob ¾output level¿ 
hoosethe signal amplitude so that the ammeter readings are approximately 2/3 ofthe s
ale. Using the mi
rometri
 s
rew move the re�e
tor down and wat
hthe readings. If the readings exhibit periodi
 behavior make sure that itis due to resonan
e (e.g. 
onse
utive maxima are separated by equal dis�tan
es). It 
ould happen that it is not possible to dete
t a resonan
e. Thisdoes not ne
essarily mean that the interferometer does not work properlysin
e dete
ting resonan
e in air 
olumn requires more sensitive instrumentsthan for liquids.Small deviations of the readings 
an be due to tou
hing the mi
romet�ri
 s
rew. This 
hanges the interferometer ele
tri
al 
apa
itan
e and theoutput generator frequen
y as well. One 
ould avoid su
h deviations byturning the s
rew 
arefully and keeping in tou
h with the s
rew knob.2. Clamp the hose and �ll the 
ontainer with water using a funnel. Raisethe re�e
tor but keep its working surfa
e under water. Make sure thatthe surfa
e is free of air bubbles. Che
k the resonant frequen
y. Move there�e
tor down and wat
h the ammeter readings to determine how manyhalf-wavelengths �t the distan
e traversed by the re�e
tor.Plot the # of a maximum as abs
issa and the maximum position asordinate. Verify that the points lie on a straight line. Using Eq. (3)determine graphi
ally the speed of ultrasound in water.Using Eq. (4) 
al
ulate the adiabati
 
ompressibility χad of water. Re�peat the experiment 4�5 times. Estimate the error of cs and χad.3. Repeat the experiment with NaCl water solutions with 
on
entrations of 5,10, 15, and 20%. Measure the solution density with a hydrometer. Plot csand χad versus 
on
entration. Using the plot determine the 
on
entration



250 Me
hani
al os
illations and wavesand χad of a standard solution. Rinse the 
ontainer with the standardsolution before �lling it.At the end of the experiment the 
ontainer must be rinsed with purewater. Questions1. Whi
h me
hani
al os
illations are 
alled ultrasoni
?2. What are longitudinal and transverse waves? In whi
h media 
an the wavespropagate?3. Write down a mathemati
al expression for a plane wave.4. What 
onditions should be met to make wave interferen
e possible?5. Derive an equation whi
h spe
i�es the 
ondition of resonan
e in the interferom�eter. How does the equation depend on boundary 
onditions?6. What 
onditions should be met to 
reate a standing wave? Give de�nitions ofnode and anti-node. How is energy transferred in the wave?7. Why is the speed of ultrasound greater in a solution of ele
trolyte than in thepure liquid?8. Suppose the open surfa
e of liquid is used instead of the metalli
 re�e
tor. Theheight of the liquid 
olumn 
an be gradually varied by slowly emptying the
ontainer. What is the phase di�eren
e between the in
ident and re�e
ted waveson the air-liquid boundary?9. How should the interferometer be modi�ed in order to do the same measurementswith gases? Literature1. Ëàíäàó Ë.Ä., Àõèåçåð À.È., Ëè�øèö Å.Ì. Ìåõàíèêà. � Ì.: Íàóêà, 1969.�ë. XVI, �� 125�129.2. Õàéêèí Ñ.Ý. Ôèçè÷åñêèå îñíîâû ìåõàíèêè. � Ì.: Íàóêà, 1971. �ë. XIX,�� 153�155.3. Êèíãñåï À.Ñ., Ëîêøèí �.�., Îëüõîâ Î.À. Îñíîâû �èçèêè. Ò. 1. Ìåõàíèêà,ýëåêòðè÷åñòâî è ìàãíåòèçì, êîëåáàíèÿ è âîëíû, âîëíîâàÿ îïòèêà. � Ì.:Ôèçìàòëèò, 2001. ×. III. �ë. 5. �� 5.2�5.5.Lab 1.4.7Determination of elasti
 
onstants of liquids andsolids via measurement of speed of ultrasoundPurpose of the lab: to measure the speed of sound in liquids and solidsand to 
al
ulate elasti
 
onstants of the studied media using the resultsof measurements.Tools and instruments: An ultrasound sensor, a gage post, a set ofsamples, a millimeter ruler, and prism probes.
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Fig. 1. Pulse method ofultrasound speed measurement

Ultrasound is a me
hani
al os
illationwith the frequen
y ex
eeding 20 kHz.Plane waves are the simplest type of ul�trasound waves, they 
an be longitudi�nal and transverse. In longitudinal wavesparti
le displa
ement 
oin
ides with thedire
tion of wave propagation, in trans�verse waves it is perpendi
ular. Longitu�dinal ultrasound waves 
an propagate inany medium. Transverse waves propagateonly in solids where shear stress is possi�ble.Under normal 
onditions, the speedof ultrasound is about 300 m/s in air,1500 m/s in water, 5700 m/s in quartz,6000 m/s in steel.Generation and dete
tion of ultra�sound waves. Pulse method is one ofpopular methods of ultrasound speed mea�surement. A short pulse of ultrasound issent to the tested medium and the time tof ultrasound propagation at some distan
e l is measured. The ultrasoundspeed is determined by the simple formula:

cs =
l

t
. (1)An ultrasound pulse is generated by a piezoele
tri
 transdu
er. Thepulse is dete
ted by a re
eiver, pla
ed at some distan
e from the transdu
er.As an alternative the re
eiver 
an be repla
ed by a re�e
tor (see Fig. 1).In this 
ase the re�e
ted pulse returns to the transdu
er, whi
h not onlygenerates but also dete
ts ultrasound. When a s
heme with the re�e
tor isused the distan
e is passed twi
e, so the distan
e between the transdu
erand the re�e
tor in Eq. (1) should be doubled.To measure the time of pulse propagation it is 
onvenient to use anos
illos
ope whi
h shows two pulses 
orresponding to the moment of signalemission and its return. The time t is determined from the distan
e be�tween the pulses on the s
reen (the os
illos
ope sweep is 
alibrated). Theultrasound speed measured by this method is the group velo
ity whi
h isnot the same as the phase velo
ity mentioned above. These two velo
itiesare equal if there is no dispersion (dispersion is a dependen
e of the phasevelo
ity on the wavelength).
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hani
al os
illations and wavesUsually barium titanate piezoele
tri
al plates are used as transdu
ers.(BaTiO3). To ex
ite both longitudinal and transverse waves in the bodyunder study the so 
alled prism probes are used. The transdu
er is lo
atedat some angle α to the working surfa
e of the re
tangular prism probe(see Fig. 2) whi
h 
an be made of plexiglass. The transdu
er generates alongitudinal wave in plexiglass whi
h is in
ident at the angle α onto theinterfa
e between the plexiglass and the studied body. At small angles ofin
iden
e the wave di�ra
ted on the interfa
e 
ontains both longitudinaland transverse waves. As their speeds are di�erent, two re�e
ted pulses
an be seen on the os
illos
ope beside the initial one.The probe should be glued to the sample to transmit transverse waves,a liquid lubri
ant will not do.

α

τ

l

Fig. 2. Prism probe 1

2

3

4

5

6

7

Fig. 3. Installation s
hemeLaboratory setup. A standard ultrasound sensor is used to measurespeed of ultrasound in liquids. (The instrument is designated for measur�ing the depth of defe
ts under the surfa
e of an obje
t). A generator ex
itesshort high-frequen
y os
illation pulses in the transdu
er (made of bariumtitanate BaTiO3). A pulse is transmitted into the sample through a thinlayer of lubri
ant. After re�e
tion from the opposite side of the samplethe pulse returns to the transdu
er whi
h 
onverts it ba
k to ele
tri
 sig�nal. Then the ampli�ed signal is applied to the sensor CRT. Signals onthe s
reen are seen as pulses: the transmitted one is at the beginning ofthe sweep and the re�e
ted ones are lo
ated to its right. The distan
e be�tween the pulses is proportional to the time t of ultrasound passage fromthe transdu
er to the re�e
tive surfa
e and ba
kwards. This distan
e is
1.4.7 253measured with the aid of a mark (a step on a sweep line) whi
h 
an bemoved along the line by the depth gauge 
ontrol.The installation setup is shown in Fig. 3. The transdu
er 1, 
onne
tedto the ultrasound sensor 2 with a shielded 
able is atta
hed into the bot�tom 3 of the gage post. A studied rod or the 
ylindri
al stainless steelvessel with liquid 5 is se
urely pla
ed on the post in the support 4. A
onta
t between the transdu
er and the sample is maintained by a layer oflubri
ant whi
h transfers only longitudinal waves into the sample. In solidsamples, the pulse is re�e
ted from the top free end; in liquids the piston 6made of stainless steel serves as the re�e
tive surfa
e, its height above thebottom is measured by the s
ale on the rod 7. Water is used to 
alibratethe depth gauge s
ale (the propagation speed is cs = 1497 m/s at 25 ◦Cand the temperature 
oe�
ient dcs/dt = 2.5 m/(s·Ê)).By measuring the ultrasound speed (and 
alibrating the devi
e) one 
anmeasure the time interval between the transmitted and re�e
ted pulses orbetween two sequentially re�e
ted pulses. The latter method is preferablebe
ause the result does not in
lude the error due to passage of the ultra�sound through the bottom of the vessel.To measure the speed of transverse ultrasound waves (as well as longi�tudinal ones), an installation with a prism probe should be 
onne
ted tothe ultrasound sensor instead of the gage post. The sample has a shapeof a semi
ylinder. The probe is lo
ated on its axis (Fig. 2) so that thedistan
es passed by longitudinal and transverse waves in the sample arethe same (they are equal to the double radius of the semi
ylinder) and donot depend on the angle at whi
h the waves enter the sample. An a
ousti

onta
t between the probe and the sample is a
hieved by means of a thinlayer of mineral wax or BPh-2 adhesive. These substan
es 
an transmittangential stress to the sample.LABORATORY ASSIGNMENT1. Plug the ultrasound sensor in the AC supply. Swit
h it on by turning the¾Intensity¿ knob 
lo
kwise.2. Warm up the sensor for 1�2 minutes, then obtain a 
lean and sharp im�age of the sweep line by turning the ¾Intensity¿ and ¾Fo
us¿ knobs. Setthe beginning of the sweep at the left side of the s
reen using the ¾ShiftX¿ knob. Set the ¾Frequen
y¿ swit
h to 5 MHz whi
h 
orresponds tothe resonant frequen
y of the transdu
er. Set other swit
hes to the fol�lowing positions: ¾Ele
troni
 magni�er¿ to ¾O�¿, ¾Measurement type¿ to¾Smooth¿, ¾Automati
 
ontrol area¿ to the outmost right position, ¾Sen�sitivity¿ to the middle position, ¾Time 
orre
ted gain¿ to the outmostright position, ¾Pulse power¿ to the outmost right position, ¾Cuto�¿ tothe middle position, and I and I+ II swit
hes to I position.
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al os
illations and waves3. Calibrate the s
ale of the depth gauge. For this purpose pla
e a vessel�lled with water into the measurement gage. Before pla
ing the vessel ora sample do not forget to grease the emitter surfa
e with light oil! Set the¾Measurement type¿ swit
h to the ¾Ä. Ïð.¿ position. Using the ¾Soni
range¿ swit
h set the ne
essary range (in a

ordan
e with the distan
e

t from the emitter to the surfa
e of the re�e
tive piston). Calibrate thes
ale using several (5�6) distan
es between the emitter and the piston. Plotthe 
alibration 
urve in the 
oordinates of the depth s
ale marks and the
al
ulated time of the pulse passage. The distan
e l is measured by meansof the s
ale on the piston rod. The speed of ultrasound in water is givenin the introdu
tory se
tion.4. Measure the speed cl of longitudinal ultrasound waves in the samples madeof di�erent materials (steel, aluminum, brass, organi
 glass, and so on)and liquids (tetra
hloromethane and oil). Measure the length l of the solidsamples using the millimeter ruler and the distan
e between the vesselbottom and the re�e
tor using marks on the piston rod. The time ofpulse passage 
an be determined by means of the depth gauge s
ale andthe 
alibration 
urve. Cal
ulate the speed of ultrasound in the materialsunder 
onsideration.Hint. When 
arrying out the experiment make sure that the pulses
hosen for the measurement 
orrespond to two sequentially re�e
ted pulses.Various ghost pulses 
an appear on the os
illos
ope s
reen, e.g. those dueto dire
t re�e
tion from the sample bottom.For the shortest samples there is a minor di�eren
e in the amplitudesof re�e
ted pulses, while for the longest samples the di�eren
e in the am�plitudes of two sequentially re�e
ted pulses 
an be quite large. Sometimesit is ne
essary to in
rease the sensitivity of the ampli�er (¾Sensitivity¿) tobe able to see the se
ond re�e
ted signal.5. Measure the speed of longitudinal cl and transverse cτ waves in di�erentmaterials (steel, aluminum, brass and so on) by using the prism probe withthe angle of in
iden
e α whi
h ensures transmission of both types of thewaves into the studied medium (the value of the angle is indi
ated on theprobe prism). The time of passage of ea
h pulse 
an be determined bymeans of the depth gauge s
ale and the 
alibration 
urve. The ultrasoundpath should be measured with the millimeter ruler.6. Cal
ulate the Poisson ratio µ, Young's modulus E, and shear modulus Gfor the studied solids by using the following formulae
cτ =

√

G

ρ
,
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cl =

√

E(1 − µ)

ρ(1 + µ)(1 − 2µ)
,

G =
E

2(1 + µ)
.The material density ρ 
an be taken from tables.7. Cal
ulate the adiabati
 
ompressibility for the liquids under study usingthe formulae

χ =
1

ρc2
l

.8. Evaluate the errors of the results obtained and 
ompare the results withthe tabulated values. Questions1. When measuring the speed of ultrasound by means of the ultrasound sensor one
an see ghost pulses on the s
reen in addition to sequentially re�e
ted pulses.Why are these pulses seen? How 
an one get rid of them?2. When measuring the ultrasound speed using the prism probe, a systemati
 er�ror is introdu
ed be
ause there is a wedge-shaped part of the plexiglass probebetween the emitter and the material under study. Evaluate this error for givensizes of the probe and the sample.3. Show that the re�e
tion 
oe�
ient of the ultrasound wave on the interfa
e be�tween two media does not depend on the dire
tion of wave propagation.Literature1. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. I. � Ì.: Íàóêà, 1996. �� 78, 81, 83,85.2. Êèíãñåï À.Ñ., Ëîêøèí �.�., Îëüõîâ Î.À. Îñíîâû �èçèêè. Ò. 1. Ìåõàíèêà,ýëåêòðè÷åñòâî è ìàãíåòèçì, êîëåáàíèÿ è âîëíû, âîëíîâàÿ îïòèêà. � Ì.:Ôèçìàòëèò, 2001. ×. III. �ë. 5.



Chapter VTABLES

T a b l e 1Physi
al 
onstantsQuantity Symbol orequation ValueSpeed of light in va
uum c 299 792 458 m/s (exa
t)Plan
k 
onstant h
~ = h/2π

6.62606876(52) · 10−34 J·s

1.054571596(82) · 10−34 J·sBoltzmann 
onstant k 1.3806503(24) · 10−23 J/KAvogadro 
onstant NA 6.02214199(47) · 1023 mol−1Atomi
 mass unit 1 u 1.66053873(13) · 10−27 kgGas 
onstant R = kNA 8.314472(15) J/(mol·K)molar volume, ideal gas atSTP(T0 = 273.15 Ê,

P0 = 101325 Pa) V0 =
RT0

P0

22.413996(39) · 10−3 m3

molGravitational 
onstant G 6.673(10) · 10−11 N · m2/kg2Ele
tron 
harge(magnitude) e
1.602176462(63) · 10−19 C
4.8032042 · 10−10 esuEle
tron 
harge-to-massratio e/me 1.758820174(71) · 1011 C/kgEle
tron mass me 0.910938188(72) · 10−30 kgProton mass mp 1.67262158(13) · 10−27 kgNeutron mass mn 1.67492716(13) · 10−27 kg

Chapter V 257T a b l e 1 (
ont'd)Quantity Symbol orequation ValueEle
tron rest energy mec
2 0.510998902(21) MeVProton rest energy mpc2 938.271998(38) MeVNeutron rest energy mnc2 939.565330(38) MeVUn
ertainty of the last digits is shown in parenthesis.

T a b l e 2Conversion of unitsLength:Angstrom
1 �A = 10−10 m = 10−8 cm = 0.1 nmAstronomi
al unit
1 AU = 1.5 · 1011 m = 1.5 · 1013 cmLight year
1 lyr = 9.5 · 1015 m = 9.5 · 1017 cmParse

1 pc = 3.1 · 1016 m = 3.1 · 1018 cmPressure:Atmosphere (standard)
1 atm = 760 mm Hg = 101325 Pa (exact)Energy:Erg
1 erg = 10−7 JCalorie

1 cal = 4.1868 J (exact)Ele
tron-volt

1 eV = 1.6021765 · 10−19 J = 1.6021765 · 10−12 ergTemperature 
orresponding to 1 eV,

11605 K



258 TablesT a b l e 3Astrophysi
al 
onstantsSolar mass

MÑ = 1.99 · 1030 êã = 1,99 · 1033 gSolar luminosity

LÑ = 3.86 · 1026 W = 3.86 · 1033 erg/sSolar 
onstant

EÑ = 1.35 · 103 W/m2 = 1.35 · 106 erg/(s · cm2)Solar radius

RÑ = 6.96 · 105 km = 6.96 · 108 mSolar angular diameter as viewed from Earth

αÑ = 0.92 · 10−2 radSolar surfa
e temperature

TÑ = 5.9 · 103 KEarth mass

MÇ = 5.98 · 1024 kg = 5.98 · 1027 gEarth mean density

ρE = 5.52 · 103 kg/m3 = 5.52 g/cm3Earth equatorial (a) and polar (b) radius

a = 6378 km, b = 6357 kmMean radius of equivalent sphere

R = 6371 kmStandard gravitational a

elerationgn = 9.80665 m/s2Average distan
e between Sun and Earth

LE = 1 AU = 1.5 · 108 km = 1.5 · 1011 mAverage temperature of Earth surfa
e

TE = 300 ÊEarth average orbital velo
ity

vE = 30 km/s = 3 · 104 m/sAngular velo
ity of Earth rotation

ωE = 0.727 · 10−4 rad/sEarth es
ape velo
ities (1-st and 2-nd)
v1 =

√

GMÇ/RE = 7.9 km/s = 7.9 · 103 m/s,

v2 = v1

√
2 = 11.2 km/s = 11.2 · 103 m/sVenus mass

MV = 0.82ME = 4.87 · 1024 kg = 4.87 · 1027 g

Chapter V 259Average distan
e between Venus and Sun
LV = 1.08 · 108 km = 1.08 · 1011 mVenus year

TV = 225 daysVenus radius

RV = 0,99RE = 6.3 · 103 km = 6.3 · 106 mVenus mean density
ρV = 4.7 · 103 kg/m3 = 4.7 g/cm3Gravitational a

eleration on Venus surfa
egV = 0.84gE = 8.2 m/s2Mars mass
MÌ = 0.11ME = 0.66 · 1024 kg = 0.66 · 1027 gAverage distan
e between Mars and Sun
LM = (2.06 − 2.49) · 108 kmDistan
e between Mars and Earth
LME = (0.55 − 4.0) · 108 kmMars average density
ρM = 4 · 103 kg/m3 = 4 g/cm3Gravitational a

eleration on Mars surfa
egM = 0.37gE = 3.6 m/s2Moon mass
ML = 7.4 · 1022 kg = 7.4 · 1025 gMoon diameter
DL = 3.48 · 103 km = 3.48 · 106 mAverage distan
e between Moon and Earth

LL = 3.84 · 105 km = 3.84 · 108 mMoon mean density
ρL = 3.3 · 103 kg/m3 = 3.3 g/cm3Gravitational a

eleration on Moon surfa
egM = 1.64 m/s2 T a b l e 4Gravitational a

eleration at various latitudes

θ, deg g , 
m/s2 θ, deg g , 
m/s2 θ, deg g, 
m/s20 978.0300 35 979.7299 70 982.60615 978.0692 40 980.1659 75 982.866510 978.1855 45 980.6159 80 983.058415 978.3756 50 981.0663 85 983.175920 978.6337 55 981.5034 90 983.215525 978.9521 60 981.914130 979.3213 65 982.2853
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Tables

T a b l e 5Properties of elements at 760 mm Hg

ρ � density (at 20 ◦C); CP � molar heat 
apa
ity (at 25 ◦C); tm and tvap � melting and vaporization points; q � molarenthalpy of fusion; r � molar enthalpy of vaporization; λ � thermal 
ondu
tivity (at temperatures shown in parenthesis);

α � linear 
oe�
ient of thermal expansion of isotropi
 substan
es at 0 ◦C.Element Sym-bol ρ, g
cm3 CP , J

mol·K
tm,◦C tvap,◦C q,

kJ
mol

r, kJ
mol

λ, W
m·K

α,10−6 Ê−1Aluminum Al 2.70 24.35 660 2447 10.7 293.7 207 (27) 22.58Barium Ba 3.78 26.36 710 1637 7.66 150.9 � 19.45Beryllium Be 1.84 16.44 1283 2477 12.5 294 182 (27) 10.5Boron (
ryst.) B 3.33 11.09 2030 3900 22.2 540 1.5 (27) 8Bromine Br 3.12 75.71 −7.3 58.2 10.58 30.0 � 8.3Vanadium V 5.96 24.7 1730 3380 17.5 458 33.2 (20) �Bismuth Âi 9.75 25.52 271.3 1559 10.9 151.5 8 (20) 16.62Wolfram W 18.6�19.1 24.8 3380 5530 35.2 799 130 (27) 4.3Germanium Ge 5.46 28.8 937.2 2830 29.8 334 60.3 (0) 5.8Iron Fe 7.87 25.02�26.74 1535 � 15.5 � 75(0) 12.1Gold Au 19.3 25.23 1063 2700 12.77 324.4 310(0) 14.02Indium In 7.28 26.7 156.01 2075 3.27 226 88(20) 30.52Iodine I 4.94 26.02 113.6 182.8 15.77 41.71 0.44(30) 93.0Iridium Ir 22.42 25.02 2443 4350 � � 138(20) 6.5Cadmium Cd 8.65 26.32 321.03 765 6.40 99.81 93(20) 29.0Potassium K 0.87 29.96 63.4 753 2.33 77.5 100 (7) 84Cal
ium Ca 1.55 26.28 850 1487 8.66 150 98 (0) 22(0)Cobalt Co 8.71 24.6 1492 2255 15.3 383 70.9 (17) 12.0Sili
on (
ryst.) Si 2.42 � 1423 2355 46.5 394.5 167 (0) 2.3Lithium Li 0.534 24.65 180.5 1317 3.01 148.1 71 (0-100) �Magnesium Mg 1.74 24.6 649 1120 8.95 131.8 165 (0) �Manganese Mn 7.42 26.32 1244 2095 141.6 224.7 � 22.6Copper Cu 8.93 24.52 1083 2595 130.1 304 395�402 (20) 16.62Molybdenum Mo 9.01 23.8 2625 4800 27.6 594 162 (27) 5.19
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T a b l e 5 (
ont'd)Element Sym-bol ρ, g
cm3 CP , J

mol·K
tm,◦C tvap,◦C q,

kJ
mol

r, kJ
mol

λ, W
m·K

α,10−6 K−1Sodium Na 0.971 28.12 97.82 890 2.602 89.04 133 (27) 72Neodymium Nd 6.96 27.49 1019 3110 14.6 � � 8.6Ni
kel Ni 8.6�8.9 25.77 1453 2800 17.8 380.6 92 (20) 14.0Tin (gray) Sn 5.8 25.77 231.9 2687 7.07 290.4 65 (20) �Palladium Pd 12.16 25.52 1552 3560 17.2 � 76.2 (20) 12.42Platinum Pl 21.37 25.69 1769 4310 21.7 447 74.1 (20) 9Rhodium Rh 12.44 25.52 1960 3960 � � � 8.7Mer
ury (liquid) Hg 13.546 27.98 −38.86 356.73 2.295 59.11 8.45 (20) �Rubidium Rb 1.53 30.88 38.7 701 2.20 69.20 35.5 (20) 90Lead Pb 11.34 26.44 327.3 1751 4.772 179.5 34.89 (20) 28.3Selenium (
ryst.) Se 4.5 25.36 217.4 657 5.42 � 0.13 (25) 20.3Sulphur (o
ta.) S 2.1 22.60 115.18 444.6 1.718 90.75 0.2 (0) 74Silver Ag 10.42�10.59 25.49 960.8 2212 11.27 254.0 418 (27) 19.02Strontium Sr 2.54 25.11 770 1367 9.2 138 � 20.6Antimony Sb 6.62 25.2 630.5 1637 20.41 128.2 23 (20) 9.2Tantalum Ta 16.6 25.4 2996 5400 31.4 75.3 63 (27) 6.2Tellurium (
ryst.) Te 6.25 25.7 449.5 989.8 17.5 114.06 � 17.0Titanium Ti 4.5 25.02 1668 3280 15.5 430 15.5 (20) 7.7Thorium Th 11.1�11.3 27.32 1695 4200 15.65 544 35.6 (27) 9.8Carbon (diamond) C 3.52 6.12 � � � � � 1.2Carbon (graphite)1 C 2.25 8.53 3500 3900 � � 114 (20) �Uranium (13 ◦C) U 18.7 27.8 1133 3900 19.7 412 22.5 (27) 10.7Phosphorus (white) P 1.83 24.69 44.2 � 2.51 � � 125Chromium Cr 7.1 23.22 1903 2642 14.6 349 67 (27) 7.78Cesium Cs 1.87 31.4 28.64 685 2.18 65.9 23.8 (20) 97Zin
 Zn 6.97 25.40 419.5 907 7.28 114.7 111 (20) 32Zir
onium Zr 6.44 25.15 1855 4380 20 582 21.4 (20) 5.1

1 Rea
tor graphite, ρ = 1.65 − 1.72 g/
m3; the given value 
orresponds to λ⊥ perpendi
ular to pressing dire
tion, λ⊥/λ‖ = 1,5.

2 At 20 ◦C.



262 TablesT a b l e 6Properties of solids (at 20 ◦C)

ρ � density; α � linear 
oe�
ient of thermal expansion; λ � thermal
ondu
tivity.Substan
e ρ, g/
m3 α, 10−6 K−1 λ, W/(m·K)AlloysBronze (Cu, Zn, Sn, Al) 8.7�8.9 16�20 200Duralumin (Al, Cu) 2.8 27 186Invar (Fe, Ni, C) 8.0 ∼1 11Constantan (Cu, Ni) 8.8 15�17 21�22Brass (Cu, Zn) 8.4�8.7 17�20 80�180Manganin (Cu, Mn, Ni) 8.5 16 �Platinum-Iridiumalloy (Pl, Ir) 21�22 8.7 �Steel 7.5�7.9 10�13 ∼40Wood (dried)1Balsa (
ork) 0.11�0.14 � 0.04Bamboo 0.31�0.40 � 0.14�0.17Bee
h 0.7�0.9 2.57 �Bir
h 0.5�0.7 � 0.117Oak 0.6�0.9 4.92 0.171Cedar 0.49�0.57 � 0.08�0.09Maple 0.62�0.75 6.38 0.12�0.13Pine 0.37�0.60 5.41 0.08�0.11Poplar 0.35�0.5 � 0.1Ash 0.65�0.85 9.51 0.12�0.14MineralsDiamond 3.01�3.52 1.5 628Asbestos 2.0�2.8 � 0.1Basalt 2.4�3.1 � 2.177Plaster 1�2.3 � 0.18�1.05Clay 1.8�2.6 8.1 1.05�1.26Granite 2.34�2.76 8.3 2.7�3.3Quartz (fused) 2.65 1.46 �Lime 1.9�2.8 � 1.1Marble 2.6�2.84 3�15 2.7�3Mi
a 2.6�3.2 � �
1 Thermal 
ondu
tivity of wood is given for dire
tions perpendi
ular to �bers;thermal 
ondu
tivity along �bers is greater by the fa
tor of 2-3.

Chapter V 263T a b l e 6 (
ont'd)Substan
e ρ, g/
m3 α, 10−6 K−1 λ, W/(m·K)Mis
ellaneous substan
esCardboard 0.69 � 0.21Bri
k 1.4�2.2 3-9 1�1.3I
e 0.913 � �Para�ne 0.87�0.91 � 2.5Plexiglas 1.16�1.20 92�130 0.17�0.18Cork 0.22�0.26 � �Rubber 1.1 220 0.146Glass 2.4�2.8 6 0.7�1.13Flint glass 3.9�5.9 7�8 0.84Por
elain 2.3�2.5 2.5�6 1.05Ebonite 1.15 84.2 0.17Amber 1.1 57 �T a b l e 7Properties of liquids (at 760 mm Hg)

σ � surfa
e tension at the temperature in the left 
olumn (a � liquid-airsurfa
e, v � liquid-vapor surfa
e); η � vis
osity at 20 ◦C; λ � thermal
ondu
tivity at 0 ◦C.Liquid t, ◦C σ, 10−3 N
m

η, 10−3 kg
m·s

λ, W
m·KAniline 19.5 40.8 (v) 4.40 0.181A
etone 16.8 23.3 (v) 0.324 0.170Benzoyl 17.5 29.2 (a) 0.647 0.153Water 20 72.75 (a) 1.0019 0.596Gly
erin 20 63.4 (a) 1495.0 0.290Di
hloroethane � � 0.146Nitri
 a
id 70% 20 59.4 (a) � �Sulphuri
 a
id 85% 18 57.6 (a) 27 �Castor oil 18 33.1 (a) 986 �Nitrobenzene 13.6 42.7 (v) 2.01 0.166Tin 232 526.1 (CO2) � 34.3Mer
ury 20 487 (v) 1.552 8.45Turpentine 20 26.7 (a) � �Methanol 20 23.0 (v) 0.578 0.222Ethanol 20 22.75 (v) 1.200 0.184Carbontetra
hloride 20 27 (v) 0.972 0.112Diethyl ether 20 16.96 (v) 0.242 �
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Tables

T a b l e 8Properties of liquids

ρ � density at 20 ◦C; tm and tvap � melting and vaporization points at standard pressure; tcr � 
riti
al temperature;

Pcr � 
riti
al pressure; c � spe
i�
 heat 
apa
ity at 20 ◦C; q and r � spe
i�
 latent heat of fusion and vaporization;

β � bulk 
oe�
ient of thermal expansion at 20 ◦C.Liquid Formula ρ, kg
m3

tm,

◦C tvap,

◦C tcr,

◦C Pcr,atm c,

J
g·K

q,

J
g

r,

J
g

β,

10
−5 K−1Aniline C6H7N 10261 −6 184 426 52.4 2.156 87.5 458.9 85A
etone C3H6O 792 −95 56.5 235 47.0 2.18 82.0 521.2 143Benzoyl C6H6 897 +5.5 80.1 290.5 50.1 1.72 126 394.4 122Water H2O 998.2 0.0 100.00 374 218 4.14 334 2259 18Gly
erin C3H8O3 1260 +20 290 � � 2.43 176 � 51Methanol CH4O 792.8 −93.9 61.1 240 78.7 2.39 68.7 1102 119Nitrobenzene C6H5O2N 1173.22 +5.9 210.9 � � 1.419 � � �Carbon disul�de CS2 1293 −111 46.3 275.0 77.0 1.00 � 356 �Ethanol C2H6O 789.3 −117 78.5 243.5 63.1 2.51 108 855 112Toluene C7H8 867 −95.0 110.6 320.6 41.6 1.6163 � 364 114Carbontetra
hloride CCl4 1595 −23 76.7 283.1 45.0 � 16.2 195.1 122A
eti
 a
id C2H4O2 1049 +16.7 118 321.6 57.2 2.64 187 405.3 107Phenol C6H6O 1073 +40.1 181.7 419 60.5 � 123 495.3 �Chloroform CHCl3 1498.51 −63.5 61 260 54.9 0.96 197 243 �Diethyl ether C4H10O 714 −116 34.5 193.8 35.5 2.34 98.4 355 163

1 at 15 ◦C; 2 at 25 ◦C; 3 at 0 ◦C; 4 at 1�8 ◦C.
ChapterV
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Speedofsoundatdi�erentmedia
Gases(at0

◦C)

Gas

c,m/s
d
c/

d
t,ms

·Ê Gas
c,m/s

d
c/

d
t,ms

·Ê

Nitrogen333.640.85Oxygen314.840.57

Ammonia 415.00.73Methane4300.62

Argon 319.0�Neon
4350.78

Hydrogen1286.02.0Watervapor405�

Air 331.460.607(100
◦C)

(dry)Helium9701.55Carbondioxide260.30.87
Liquids

Liquid
t,◦C

c,m/s
d
c/

d
t,ms

·Ê Liquid

t,◦C

c,m/s

d
c/

d
t,ms

·Ê

Nitrogen
−

1
9
9
.0962

−
1
0Carbondisul�de251149

−
3
.3

Aniline201659
−

4
.0Turpentine251225�

A
etone 251170
−

5
.5Ethanol201177

−
3
.6

Benzoyl251295

−
5
.2

Water251497

+
2
.5Toluene251300

−
4
.3

Gli
erine261930

−
1
.8Carbon

Kerosene251315

−
3
.6tetra-

25930

−
3
.0

Mer
ury201451

−
0
.4

6
hloride



266 TablesSolids

c‖ � speed of longitudinal waves, c⊥ � speed of transversal waves, c � speed oflongitudinal waves in thin rod.Solids c‖, m/s c⊥, m/s c, m/sAluminum 6400 3130 5240Con
rete 4250�5250 � �Wolfram 5174 2842 �Granite 5400 � �Wood (oak, along �ber) � � 4100Wood (pine, along �ber) � � 3600Duralumin 6400 3120 �Iron 5930 � 5170Quartz 
rystal (X-
ut) 5720 � 5440Quartz fused 5980 3760 5760Brass 4280�4700 2020�2110 3130�3450Copper (oxidized) 4720 � 3790Marble � � 3810Ni
kel (oxidized,non-magneti
) � � 4810Tin 3320 � 2730Polystyrene 2350 1120 �Polyethylene 2000 � �Silver 3700 1694 2802Glass: 
rown 5260�6120 3050�3550 4710�5300�int 3760�4800 � 3490�4550Tool steel 5900�6100 � 5150Stainless steel 5740 3092 �Zin
 4170 � 3810Ebonite 2500 � �

Chapter V 267T a b l e 10Elasti
 properties of materials (at 18 ◦C)
E and G � Young and shear modulus; µ � Poisson ratio; K � 
ompressibility.Material E, 1010 N

m2 G, 1010 N
2 µ K, 1010 N

m2MetalsAluminum 7.05 2.63 0.345 7.58Bronze (66% Cu) 9.7�10.2 3.3�3.7 0.34�0.40 11.2Bismuth 3.19 1.20 0.33 3.13Iron 19�20 7.7�8.3 0.29 16.9Gold 7.8 2.7 0.44 21.7Cadmium 4.9 1.92 0.30 4.16Constantan 16.3 6.11 0.32 15.5Brass 9.7�10.2 3.5 0.34�0.40 10.65Copper 10.5�13.0 3.5�4.9 0.34 13.76Ni
kel 20.4 7.9 0.28 16.1Tin 5.43 2.04 0.33 5.29Platinum 16.8 6.1 0.37 22.8Lead 1.62 0.56 0.44 4.6Silver 8.27 3.03 0.37 10.4Steel 20�21 7.9�8.9 0.25�0.33 16.8Titanium 11.6 4.38 0.32 10.7Zin
 9.0 3.6 0.25 6.0Mis
ellaneous materialsBamboo 3.3 � � �Oak 1.3 � � �Quartz �ber 7.3 � � �Redwood 0.88 � � �Rubber soft 0.00015� 0.00005� 0.46�0.49 16.80.0005 0.00015Pine 0.9 � � �Glass 5.1�7.1 3.1 0.17�0.32 3.75



268 TablesT a b l e 11Surfa
e tension of water and aniline atvarious temperaturesInterfa
e: water � air, aniline � air.

t σ, 10−3 N/m t σ, 10−3 N/m

◦C Water Aniline ◦C Water0 75.64 � 60 66.1810 74.22 44.10 70 64.4220 72.75 42.7 80 62.6130 71.18 � 90 60.7540 69.56 � 100 58.8550 67.91 39.4 T a b l e 12Vis
osity of liquids at various temperatures(η, 10−3 N · s/m2)Sugar solution Castor

t, Water Gly
e- in water t, t, Mer
ury

◦C rin 20% 60% ◦C oil ◦C0 1.788 12100 3.804 238 5 3760 −20 1.8610 1.306 3950 2.652 109.8 10 2418 0 1.6915 1.140 � 2.267 74.6 15 1514 20 1.5520 1.004 1480 1.960 56.5 20 950 30 1.5025 0.894 � 1.704 43.86 25 621 50 1.4130 0.801 600 1.504 33.78 30 451 100 1.2440 0.653 330 1.193 21.28 35 312 200 1.0550 0.549 180 0.970 14.01 40 231 300 0.9560 0.470 102 0.808 9.83 100 16.970 0.406 59 0.685 7.1580 0.356 35 0.590 5.4090 0.316 21100 0.283 13 T a b l e 13Vis
osity of gly
erin-water solution(gly
erine mass ratio is shown)
t 10% 25% 50% 80% 95% 96% 97% 98% 99% 100%20 1,31 2,09 6,03 61,8 544 659 802 971 1194 149525 1,15 1,81 5,02 45,7 365 434 522 627 772 94230 1,02 1,59 4,23 34,8 248 296 353 423 510 662

Chapter V 269T a b l e 14Compressibility of liquids
κ = − 1

V

(

∂V

∂P

)

TLiquid Formula Pressure
P , atm t, ◦C κ,

10−6 atm−1Aniline C6H5NH2 85.5 25 43.2A
etone (CH3)2CO 0�500 0 82Benzoyl C6H6 1�4 15.4 87Water H2O 0�100 20 46.8Gly
erin C3H8O3 1�10 14.8 22.1Kerosene � 1�100 16.5 69.6Sulphuri
 a
id H2SO4 1�16 0 302.5Nitrobenzene C6H5NO2 86.5 25 46.1Sulphur dioxide CS2 1�2 20 80.95Methanol CH3OH 1�500 0 79.4Ethanol CH3CH2OH 1�50 0 96Carbontetra
hloride CCl4 0�98.7 20 91.6Carbon dioxide ÑÎ2 60 13 1740Chloroform CHCl3 1�2 0 87.27Bromoethane C2H5Br 1�500 10.1 80T a b l e 15Spe
i�
 heat 
apa
ity of water and speed of soundin water at various temperatures

t, ◦C c, J/(g·Ê) v, m/s t, ◦C c, J/(g·Ê) v, m/s0 4.2174 1407 60 4.1841 155610 4.1919 1445 70 4.1893 156120 4.1816 1484 80 4.1961 155730 4.1782 1510 90 4.204840 4.1783 1528 99 4.214550 4.1804 1544



270 TablesT a b l e 16Boiling point of water at various pressures

P , torr t, ◦C P , torr t, ◦C P , torr t, ◦C680 96.9138 725 96.6846 770 100.3666685 96.1153 730 98.8757 775 100.5484690 97.3156 735 99.0657 780 100.7293695 97.5146 740 99.2547 785 100.9092700 97.7125 745 99.4426 790 101.0881705 97.9092 750 99.6294 795 101.2661710 98.1048 755 99.8152 799 101.4079715 98.2992 760 100.000720 98.4925 765 100.1838 T a b l e 17Water density at various pressures

t, ◦C ρ, g/
m3 t, ◦C ρ, g/
m3 t, ◦C ρ, g/
m30 0.99987 12 0.99952 24 0.997321 0.99993 13 0.99940 25 0.997072 0.99997 14 0.99927 26 0.996813 0.99999 15 0.99913 27 0.996544 1.00000 16 0.99897 28 0.996265 0.99999 17 0.99880 29 0.995976 0.99997 18 0.99862 30 0.995677 0.99993 19 0.99843 31 0.995378 0.99988 20 0.99823 32 0.995059 0.99981 21 0.99802 33 0.9947210 0.99973 22 0.99780 34 0.9944011 0.99963 23 0.99757 35 0.99406T a b l e 18Di�usion 
oe�
ient of saline (at 18 ◦C)Con
entration of NaCl,mol/l D, 10−5 
m2/s0.05 1.260.40 1.21.00 1.242.0 1.293.0 1.364.0 1.435.0 1.49

Chapter V 271T a b l e 19Di�usion 
oe�
ients of inorgani
 substan
e in watersolutionSolute Con
entration,mol/l t, ◦C D,
10−5 
m2/sBr2 0.0050 25 1.18CO2 01 18 1,46CaCl2 1.5 9 0.84CdSO4 1.0 16.8 0.33Cl2 0.1 16.3 1.3CoCl2 0.0127 11 0.73CuCl2 1.5 10 0.5CuSO4 0.1 17 0.45H2 01 18 3.6HCl 0.2 25 3.0HNO3 3.0 6 1.8KBr 1.0 10 1.2KCl 0.1 25 1.89KNO3 0.2 18 1.39KOH 0.1 13.5 2.0K2SO4 0.02 19.6 1.27LiCl 1.0 18 1.06MgSO2 1.0 15.5 0.53N2 01 18 1.63NH3 0.683 4 1.23NaBr 2.9 10 1.0Na2CO3 2.4 10 0.45NaCl 1.0 18.5 1.24NaNO3 0.6 13 1.04O2 01 25 2.60NaOH 0.1 12 1.29

1 Low 
on
entration.



272 TablesT a b l e 20Di�usion 
oe�
ients of gasesCoe�
ients of self-di�usion (at t = 0 ◦C, P = 1 atm)Gas D, 
m2/s Gas D, 
m2/sNitrogen N2 0.17 Xenon Xe 0.048Argon Ar 0.156 Krypton Kr 0.08Hydrogen H2 1.28 Methane CH4 0.206Water vapor 0.277 Neon Ne 1.62Helium He 1.62 Carbon oxide CO 0.175Oxygen O2 0.18 Carbon dioxide CO2 0.097Coe�
ients of inter-di�usion (at t = 0 ◦C)System D, 
m2/s System D, 
m2/sHe � CH4 0.57 H2 � air 0.66He � O2 0.45 H2 � CH4 0.62He � air 0.62 H2 � O2 0.69Ne � H2 0.99 CH4 � N2 0.2Ne � N2 0.28 CH4 � O2 0.22Ar � CH4 0.172 CH4 � air 0.186Ar � O2 0.167 N2 � H2O 0.204Ar � air 0.165 N2 � CO2 0.208Ar � CO2 0.177 CO � O2 0.175Kr � N2 0.13 CO � air 0.182Kr � CO 0.13 O2 � CO2 0.174Xe � H2 0.54 air � CO2 0.207Xe � N2 0.106 H2O � CO2 0.41T a b l e 21Thermal 
ondu
tivity of air at various temperatures(at P = 1 atm)
t, ◦C λ, 10−2 W

m·Ê t, ◦C λ, 10−2 W
m·Ê t, ◦C λ, 10−2 W

m·Ê
−173 0.922 −23 2.207 27 2.553
−143 1.204 −3 2.348 37 2.621
−113 1.404 0.1 2.370 67 2.836
−83 1.741 7 2.417 97 3.026
−53 1.983 17 2.485

Chapter V 273T a b l e 22The Joule-Thomson 
oe�
ients(µJ−T = ∆T/∆P ; in units of Ê/atm)Carbon oxide (CO)
t, ◦C P , atm1 50 100 2000 0.295 0.240 0.190 0.09325 0.251 0.206 0.162 0.08450 0.213 0.175 0.137 0.072100 0.150 0.122 0.095 0.049Hydrogen (H2)
T , Ê P , atm

≈ 0 20 100 18060 0.391 0.287 0.035 �70 0.287 0.234 0.059 −0.03980 0.220 0.192 0.061 −0.037Methane (CH4)

t ◦C P , atm

≈ 0 17 51 102.121.1 0.405 0.425 0.410 0.33237.8 0.359 0.375 0.365 0.29471.1 0.283 0.298 0.290 0.229104.4 0.227 0.239 0.233 0.180Ethane (C2H8)

t ◦C P , atm

≈ 0 17 51 102.121.1 0.939 1.217 � �37.8 0.833 1.037 � �71.1 0.657 0.760 0.890 0.353104.4 0.498 0.572 0.586 0.399



274 TablesT a b l e 22 (
ont'd)Argon (Ar) Helium (He)

t, ◦C P , atm P , atm1 20 100 200 200

−150 1.81 � −0.025 −0.056 −0.052
−100 0.860 0.800 0.285 0.040 −0.0580 0.431 0.406 0.305 0.192 −0.061625 0.371 0.350 0.264 0.175 �100 0.242 0.224 0.175 0.127 −0.0638200 0.137 0.126 0.095 0.068 −0.0641Nitrogen (N2), Oxygen (O2)

t, ◦C P , atm1 20 100 200

−150 1.265 1.128 0.020 −0.027

−100 0.649 0.594 0.274 0.0580 0.267 0.250 0.169 0.08725 0.222 0.206 0.140 0.078100 0.129 0.119 0.077 0.042200 0.056 0.048 0.026 0.006Carbon dioxide (CO2)

t, ◦C P , atm1 20 100 200

−25 1.650 0.000 −0.005 −0.0120 1.290 1.402 0.022 0.00520 1.105 1.136 0.070 0.02740 0.958 0.966 0.262 0.06660 0.838 0.833 0.625 0.12580 0.735 0.724 0.597 0.196100 0.649 0.638 0.541 0.256200 0.373 0.358 0.315 0.246Air

t, ◦C P , atm1 20 100 200
−100 0.5895 0.5700 0.2775 0.0655
−50 0.3910 0.3690 0.2505 0.1270
−25 0.3225 0.3010 0.2130 0.12400 0.2746 0.2577 0.1446 0.109725 0.2320 0.2173 0.1550 0.095950 0.1956 0.1830 0.1310 0.082975 0.1614 0.1508 0.1087 0.0707100 0.1355 0.1258 0.0884 0.0580

Chapter V 275T a b l e 23Criti
al properties and parameters a and b in Van derWaals equation
(

P +
a

V 2

)

(V − b) = RT ; a =
27

8
RTcrb, b =

RTcr

8PcrSubstan
e Tcr Pcr ρcr a bÊ MPa g
cm3

N·m4

mol2
cm3

molNitrogen (N2) 126.25 3.399 0.304 0.1368 38.607Argon (Ar) 150.65 4.86 0.531 0.1361 32.191Water (vapor) (H2O) 647.30 22.12 0.32 0.5524 30.413Hydrogen (H2) 33.24 1.297 0.0310 0.02484 26.635Air 132.45 3.77 0.35 0.1357 36.51Helium (He) 5.20 0.229 0.0693 0.00344 23.599Nitrous oxide (N2O) 309.58 7.255 0.453 0.3852 44.347Oxygen (O2) 154.78 5.081 0.41 0.1375 31.662Neon (Ne) 44.45 2.72 0.484 0.0211 16.948Nitri
 oxide (NO) 180 6.54 0.52 0.1444 28.579Carbon oxide (CO) 132.92 3.499 0.301 0.1473 39.482Methane (CH4) 190.60 4.63 0.160 0.2288 42.777Methanol(CH4O) 513.15 7.95 0.272 0.9654 67.047Ethanol(C2H6O) 516 6.4 0.276 1.2164 84.006Sulphur dioxide (CS2) 552 7.90 0.44 1.1243 72.585Carbon dioxide (CO2) 304.15 7.387 0.468 0.3652 42.792Chlorine (Cl2) 417 7.71 0.573 0.6576 56.202Carbon tetra
hloride(CCl4) 556.25 4.56 0.558 1.9789 126.78Ethane (C2H6) 305.45 4.87 0.203 0.5571 64.997T a b l e 24Temperature dependen
e of parameters a and

b of argonTemperature, ◦C a, 106 atm·
m6/mol2 b, 
m3/mol151 1.90 61157 1.87 59,5163 1.84 58173 1.785 55,5183 1.735 53193 1.69 51213 1.60 48233 1.53 45253 1.47 43273 1.42 41
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Tables

T a b l e 25Properties of gases

M � mole
ular mass; ρ � density (at t = 0 ◦C, P = 1 atm); tcr � 
riti
al temperature; Pêð � 
riti
alpressure; ρêð � 
riti
al density; tm � melting point (at P = 1 atm); tvap � boiling point (at P = 1 atm).Substan
e Formula M ρ, kg/m3 tcr, ◦C Pcr, atm ρcr, kg/m3 tm, ◦C tvap, ◦CNitrogen N2 28.016 1.2505 147.1 33.5 311 −210.02 −195.81Ammonium NH3 17.031 0.7714 132.4 112.0 234 −77.7 −33.4Argon Ar 39.944 1.7839 122.4 48.0 531 −189.3 −185.9Hydrogen H2 2.0158 0.08988 239.9 12.80 31,0 −259.20 −252.78Water vapor H2O 18.0156 0.768 374.2 218.5 324 0,00 100.00Dry air 1 � 28.96 1.2928 140.7 37.2 310 −213 −193Helium He 4.002 0.1785 267.9 2.26 69,3 −272.2 −268.93Nitrogen dioxide N2O 44.013 1.9775 36.5 71.7 450 −90 −88.6Oxygen O2 32.000 1.42896 118.8 49.7 430 −218.83 −182.97Methane CH4 16.04 0.7168 82.5 45.7 162 −182.5 −116.7Neon Ne 20.183 0.8999 228.7 26.9 484 −248.60 −246.1Nitri
 oxide NO 30.006 1.3402 92,9 64.6 520 −167 −150Carbon oxide CO 28.01 1.2500 140.2 34.5 301 −205 −191.5Carbon dioxide CO2 44.01 1.9768 31.0 73 460 −56.62 −78.483Chlorine Cl2 70.914 3.22 144 76.1 573 −100.5 −33.95
1 Air 
omposition (volume fra
tion): 78.03% N2, 20.99% O2, 0.933% Ar, 0.03% CO2, 0.01% H2, 0.0018% Ne et
..

2 At P = 5.12 atm (triple point).

3 Sublimation temperature.
ChapterV
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T a b l e 26Thermal properties of gases

cp è Cp � spe
i�
 and molar heat 
apa
ity (for given temperature ranges); γ = cp/cv at 20 ◦C; η � dynami
 vis
osityat 20 ◦C; λ � thermal 
ondu
tivity at 0 ◦C; β = (1/V )(∂V/∂T )P � 
oe�
ient of thermal expansionGas Formula t, ◦C cp,

J
g·Ê Cp,

J
mol·Ê γ

λ,

10−2 W
m·Ê η,

10−7 kg
m·ñ t, ◦C β,

10−3 Ê−1Nitrogen N2 0�20 1.038 29.1 1.404 2.43 174 0�100 3.671Ammonia (vapor) NH3 24�200 2.244 38.1 1.34 2.18 97,0 � �Argon Ar 15 0.523 20.9 1.67 1.62 222 100 3.676A
etone (vapor) C3H6O 26�110 1.566 90.9 1.26 1.70 73,5 � �Hydrogen H2 10�200 14.273 28.8 1.41 16.84 88 100 3.679Water vapor1 H2O 100 1.867 34.5 1.324 2.35 128 1�120 4.187Dry air � 0�100 0.992 29.3 1.40 2.41 181 � �Helium He −180 5.238 21.0 1.66 14.15 194 100 3.659Nitrous oxide N2O 16�200 0.946 41.7 1.32 1.51 146 0 3.761Oxygen O2 13�207 0.909 29.1 1.40 2.44 200 0�100 3.67Methane CH4 18�208 2.483 39.8 1.31 3.02 109 −50 ÷ +50 3.580Nitrogen oxide NO2 13�172 0.967 29.0 1.40 2.38 188 0 3.677Carbon oxide CO 26�198 1.038 28.5 1.40 2.32 177 0�100 3.671Sulfur dioxide SO2 16�202 0,561 36,0 1,29 0,77 126 � �Carbon oxide CO2 15 0.846 37.1 1.30 1.45 144,8 0�100 3.723Chlorine Cl2 13�202 0.519 36.8 1.36 0.72 132 0�100 3.830Ethylene C2H4 15�100 1.670 46.8 1.25 1.64 103 � �

1 λ is measured at 100 ◦C.



278 TablesT a b l e 27Vis
osity of gases and vapors at various temperatures

η, 10−8 kg/(m·s)

t,

◦C NitrogenN2

ArgonAr Hydro-gen H2

Watervapor Air HeliumHe Oxy-gen O2

Carbon-dioxideCO2

−75 1285 1585 677 � 1312 1526 1452 1007

−50 1419 1760 733 � 1445 1640 1612 1126

−25 1542 1930 788 � 1582 1750 1753 12470 1665 2085 840 883 1708 1860 1910 136720 1766 2215 880 � 1812 1946 2026 146325 1778 2248 890 975 1840 1968 2052 148650 1883 2400 938 1065 1954 2065 2182 160775 1986 2550 985 1157 2068 2175 2310 1716100 2086 2695 1033 1250 2180 2281 2437 1827T a b l e 28Pressure and density of saturated water vapor at varioustemperatures

t,

◦C P ,torr ρ,g/m3
t,

◦C P ,torr ρ,g/m3
t,

◦C P ,torr ρ, g /m3

−30 0.28 0.33 −2 3.88 4.13 26 25.21 24.4
−28 0.35 0.41 0 4.58 4.84 28 28.35 27.2
−26 0.43 0.51 2 5.29 5.60 30 31.82 30.3
−24 0.52 0.60 4 6.10 6.40 32 35.66 33.9
−22 0.64 0.73 6 7.01 7.3 34 39.90 37.6
−20 0.77 0.88 8 8.05 8.3 36 44.56 41.8
−18 0.94 1.05 10 9.21 9.4 38 49.69 46.3
−16 1.13 1.27 12 10.52 10.7 40 55.32 51.2
−14 1.36 1.51 14 11.99 12.1 50 92.5 83.0
−12 1.63 1.80 16 13.63 13.6 60 149.4 130
−10 1.95 2.14 18 15.48 15.4 70 233.7 198
−8 2.32 2.54 20 17.54 17.3 80 355.1 293
−6 2.76 2.99 22 19.83 19.4 90 525.8 424
−4 3.28 3.51 24 22.38 21.8 100 760.0 598

Chapter V 279T a b l e 29Emf of thermo
ouples at various temperaturesemf, mV
t, Platinum � pla- Chromel � Iron � Copper �
◦C tinum+10% Rhodium Alumel Constantan Constantan100 0.64 4.1 5 4200 1.44 8.1 11 9300 2.31 12.2 16 15400 3.25 16.4 22 21500 4.22 20.6 27600 5.23 24.9 33700 6.26 29.1 39800 7.34 33.3 45900 8.45 37.4 521000 9.59 41.3 581200 11.95 48.91400 14.37 55.91600 16.77 T a b l e 30Spe
i�
 resistan
e and temperature 
oe�
ient of resistivity ofmetal wires (at 18 ◦C)Metal ρ,10−6Ohm·
m α · 104,Ê−1Aluminum 3,21 38Wolfram 5.5 51Iron (0.1% C) 12.0 62Gold 2.42 40Brass 6�9 10Manganin (3% Ni, 12% Mn, 85% Cu) 44.5 0.02�0.5Copper 1.78 42,8Ni
kel 11.8 27Constantan (40% Ni, 1.2% Mn, 58.8% Cu) 49.0 −0.4 ÷ 0.1Ni
hrome (67.5% Ni, 1.5% Mn, 16% Fe, 15% Cr) 110 1,7Tin 11.3 45Platinum 11.0 38Lead 20.8 43Silver 1.66 40Zin
 6.1 37



280 TablesT a b l e 31Work fun
tionMetal A, eVAluminum 4.25Barium 2.49Wolfram 4.54Iron 4.31Copper 4.40Ni
kel 4.50Barium oxide 1.1(thin �lm on wolfram)Tin 4.38Platinum 5.32Mer
ury 4.52Silver 4.3Cesium 1.81Zin
 4.24
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