INTRODUCTION

Physics is an empirical science. It is a popular belief that the ultimate
judge in physics is experiment and if for any reason a theory contradicts
an experiment, it is the theory that is to be blamed. However this is not
exactly so. There are a lot of theories which had «survived» although some
experiments testified against them. Let us consider an example.

It is well known that Einstein’s theory of Brownian motion had become
crucial for developing atomic theory of matter since it was later confirmed
by brilliant experiments of J. B. Perrin. However the same theory appeared
to be refuted by no less brilliant experiments of V. Henri. Why did the
confirmation by Perrin turn out to be more important than the refutation
by Henri?

Actually, any theory undergoes non-empirical checks and crosschecks
before being tested by an experiment. A theory must be consistent, it
must not contradict already established theories, and it must be in line
with a general wisdom of science, i.e. be simple, elegant, etc. Einstein’s
theory of Browinian motion was accepted, in particular, because it was
in line with the kinetic theory of gases and chemistry. As for the Henry
experiments, it was found later that they were incorrectly interpreted.

Thus, an experimental confirmation is necessary but not sufficient condi-
tion for accepting a theory. This is always taken into account in confronting
a new theory with real data.

Physics is not only empirical but also a theoretical science that em-
ploys the language of mathematics. The purpose of the latter is two-fold:
it supplies tools of calculation and provides a conceptual framework. Math-
ematical concepts represent the very essence of physical ideas. The concept
of velocity is inconceivable without the concept of derivative. The laws of
mechanics cannot be properly formulated without differential equations.
Quantum laws require operator equations. Every formal symbol in a phys-
ical theory has mathematical meaning. However, despite the fact that a
lot of mathematical ideas stemmed from physics, mathematics is an inde-
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pendent discipline. If it so, why is it possible to use the ideas of pure
mathematics to describe reality?

The answer is that mathematics studies very general and clear-cut mod-
els of natural phenomena — a special way of understanding reality. And
so does physics.

Teaching physics can be compared to advancement of scientific knowl-
edge. This viewpoint helps to understand the role of experiment in a
general physics course. A founder of experimental method was Galileo
Galilei. However experiment per se was not his invention: people relied on
experimental evidence from ancient times. We are indebted to Galileo for
a method which has become an integral part of physics research.

According to Galileo, a physicist B8
should design an experiment, repeat
it several times in order to eliminate ¢
or reduce irrelevant factors, conjecture
mathematical relationships (laws) be-
tween the quantities involved, develop o
new experimental tests for the conjec-
tured laws using available technics, and, Fig. 1
finally, when the laws have been confirmed, make new predictions based
on these laws which, in turn, must be experimentally tested.

According to Galileo, observation, working hypothesis, mathematical
treatment, and experimental verification are the four stages in a study of
natural phenomena.

Consider a simple instructive exam- f(«)
ple. Suppose we have several chunks
of a metal sheet (cardboard, plywood,
etc.), whose shape is shown in Fig. 1.
Assume also that we have tools for mea-
suring weight, length, and angle. By
measuring the weight of several trian-
gles cut from the same sheet, one finds
a formula for the weight of a triangle
(ABC):

0° 45° 90° «
2
Magc = ¢ f(a), Fig. 2
where f(«) is a universal function plotted in Fig. 2.

Now let us cut a triangle (ABC) in two pieces as in 3 and verify that
/BCD = /BAC. 1t is already found that

Mcpp =a*f(a), Macp = b*f(a).
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Using the scale one can check that the weights are additive:
Mapc = Mcpp + Macp.
Then using the assumed universality of function f(a) one finds that
A =a® +0°

This equation could be verified by further experiments.
B Does our result contradict Eu-
clidean geometry? Of course, not. In-
= deed, one can see that

Mapc = phSaBc,

b where p is the metal density, h is the
Fig. 3 sheet thickness, and Sapc is the area
of the triangle ABC. Obviously,

1 1
SaBc = gab = 562 sinacosa = 102 sin 2a,

fla)= iph sin 2av.

This thought experiment, in our opinion, is an excellent example of
Galileo’s experimental method. It is amazing that using measurement in-
struments and procedures, which by themselves introduce large uncertain-
ties, and only a limited amount of the triangles it is possible to derive an
exact mathematical relationship (Pythagoras’ theorem). As Einstein said,
the greatest mystery of the universe is that it is conceivable.

The main purpose of the laboratory course is to teach students a phys-
ical way of thinking. Firstly, they should learn how to reproduce and
analyze simple physical phenomena. Secondly, they should get a basic
hands-on experience in the laboratory and become acquainted with mod-
ern scientific instruments.

A student working in the laboratory should know:

- basic physical phenomena;

- fundamental concepts, laws and theories of classical and modern physics;
- orders of magnitude of the quantities specific for various fields of physics;
- experimental methods

and know how to:

- ignore irrelevant factors, build working models of real physical situations;
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make correct conclusions by comparing theory and experimental data;
find dimensionless parameters specific for a phenomenon under study;
- make numerical estimates;

- consider proper limiting cases;

- make sure that obtained results are trustworthy;

see physical content behind technicalities.

A laboratory assignment should be regarded as a research project in
miniature. An inclination to doubt and cross-checking is invaluable for
any researcher. We hope that our practicum would help to develop this
quality.
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MEASUREMENTS IN PHYSICS

Measurements in Physics

Numerical value of physical quantity. We say that a quantity z is
measured if we know how many units the quantity contains. A number of
the units contained is called a numerical value {z} of the quantity x. If [z]
is a unit of quantity = (e.g. a unit of time is 1 second, a unit of electric
current is 1 ampere, etc.), then
T
[z]
For example, if a current ¢ = 10 A, then {z} = 10 and [i]] = 1 A.
Equation (1.1) can be written as

x = {a}[z]. (1.2)

If a unit is reduced by a factor of a:

{2} = (L1)

[z] = [X] = =[z], {z} = {X}=ofz}.
The physical quantity remains the same because

z = {x}fa] = {X}[X]. (13)

Too large or too small numerical values are inconvenient. Therefore
new units are often used by taking a standard unit with a prefix, e.g.
1L mm3 =1-(1072 m)3 = 1072 m3. The decimal prefixes specified by the
International System of Units (SI) are listed in Table 1.

It is essential to avoid double or multiple prefixes, e.g. instead of 1 puF
one should write 1 pF'.
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Table 1
SI prefixes
Prefix Symbol Exponent

Latin | Cyrillic of 10
exa E S 18
peta P 11 15
tera T T 12
giga G r 9
mega M M 6
kilo k K 3
hecto h r 2
deca da na 1
deci d -1
centi c -2
milli m M -3
micro " MK —6
nano n H -9
pico p | —12
femto f o)) —15
atto a a —18

Dimension. In principle, any physical quantity can be measured using
its own units unrelated to the units of other quantities. In this case the
equations that express laws of physics would be obscured by many numer-
ical coefficients. The equations would become complicated and difficult to
understand. To avoid this issue physicists have long ago abandoned a prac-
tice of introducing independent units for all physical quantities. Instead
they use systems of units organized according to the following principle.
Some quantities are taken as the base ones and the corresponding units are
independently established. For instance, in mechanics the system (I, m, t)
is used, the base units are length (1), mass (m), and time (t). A choice
of the base units (and their number) is conventional. In the international
system of units (SI) nine quantities are taken as the base ones: length,
mass, time, electric current, thermodynamic temperature, luminous inten-
sity, amount of substance, angle, and solid angle. The units which are not
base are called derived units. The latter are derived from the equations
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used to define them. It is assumed that numerical coefficients in the equa-
tions are already fixed. For instance, the velocity v of a point-like object
traveling at a constant speed is directly proportional to the distance s and
inversely proportional to the time of travel ¢. If the units for s, t and v are
independent, then

s
v==k-,
t

where k is a numerical coefficient which particular value depends on the
choice of the units. For simplicity it is usually set & = 1, so that s = vt.
If the base units are length s and time ¢, velocity becomes a derived unit.
In this case the unit of velocity corresponds to uniform motion when the
unit distance is traveled per the unit of time. It is said that the dimension
of velocity equals the dimension of length divided by dimension of time.
Symbolically,
dimv = It71.
Similarly, for acceleration a and force F' we have:
dima = 1t 2, dim F = mit~2.

Now, let physical quantities x and y be related as

y = [f(x). (1.4)

Together with equation (1.3) this equation gives

Y = f(X), (1.5)

where X = ax and Y = PBy. Let us find the value of § assuming that the
argument = and parameter « can take any values. Differentiating Eqs. (1.4)
and (1.5) at constant « and [ gives

dy

d
=l =

Y- 7).

The second equation can be rewritten as

b dy _

7% _ ),
1. e.

%ty = r(x)
Since
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it follows that
ﬁ / / X)
@) =
or
fle) _ (X)
")~ (16)

The right-hand side of Eq. (1.6) depends only on X and the left-hand
side depends only on z. This is possible only if both sides are equal to a
constant, say c. This observation allows one to write a differential equation:

['(x)
f(x)
or
a _ A
f =z
Then
f(il?) = foxc>
where fy is a constant of integration.
Similarly,
Y = fOXC7
or
By = fo- (ax)".
Since
Yy = fO'rca
This gives
B =a“. (1.7)

Thus invariance of a physical quantity with respect to redefinition of its unit
(see Eq. (1.3)) results in Eq. (1.7). Let us discuss its physical meaning.
Obviously, if quantity z is chosen as a base one, the dimension of quantity
Yy is

dimy = z°.

The above reasoning can be extended to a case when a quantity depends
on several base units. Let, for instance, the number of the base units be
equal to three and these are length (1), mass (m), and time (¢). Then the
dimension of any quantity y is

dimy = PmIt", (1.8)
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Fig. 1.1. Definition of angle

where p, ¢, and r are constants. Equation (1.8) shows that if the units of
length, mass, and time are reduced by factors of «, 3, and -, respectively,
the unit of y will be reduced by a factor of a?(37y". Therefore its numerical
value will be increased by the same factor. This is a meaning of the concept
of dimension. The values p, ¢, and r are actually rational numbers, which
follows from the definition of physical quantities.

Often the dimension of a physical quantity is identified with its unit in
some system of units. For example, it is usually said that the dimension of
velocity is m/s and the dimension of force is kg-m/s2. Although incorrect
this is not a bad mistake.

Units of angles. Angular units require separate consideration. An angle
is measured in degrees or using an arc measure. The latter is defined as the
length of a segment of a unit circle (see Fig. 1.1). Both units are basically
a ratio of arc length to radius:

RE b L Ly L

T 2T W R R

Here the angle ¢ is measured between two ra-
dial vectors OO; and OO,. Here [; and I are
the arcs of the unit circle and L, and Lo are
the arcs of the circles with radii R; and Rs,
respectively. To emphasize the difference be-
tween the arc and degree units, the numerical
value ¢ is called «rad» (radian). For example,
if /] =1 m then ¢ =1 m/1 m = 1 rad which
© corresponds to 57°17'44,80625".

Fig. 1.2. Definiti f soli - .
® anll:ono solid Similarly for a solid angle we have (see
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Table 2
The base units of SI
Quantity symbol

Quantity name Unit name
Length Meter m
Mass Kilogram kg
Time Second S
Electric current Ampere A
Temperature Kelvin K
Luminous inten- | Candela cd
sity
Amount of Mole mol
substance
Angle Radian rad
Solid angle Steradian ST

Fig. 1.2):

1m?

Here Sy is an area on a sphere (in m?) which radius is equal to 1 m. If S is
an area on sphere of a radius R, then

So S

=Tz R
The unit of solid angle is determined in the following way. For Sy = 1 m?

1 m?

1m?

Thus the total angle (360°) is equal to ¢ = 27 rad and the total solid
angle (Sg is the total area of a sphere) is equal to = 47 sr. Often the

abbreviations «rad» and «sr» are dropped which sometimes is a source of
confusion.

=1 sr (steradian).

The base units of SI. The base units of the International System of
Units are shown in Table 2. The units are defined as follows.

Meter is the length of the path travelled by light in vacuum in
1/299,792,458 of a second.

Kilogram is defined as being equal to the mass of the International Pro-
totype Kilogram. The IPK is made of a platinum alloy known as “Pt?710Ir”,



12 Measurements in Physics

which is 90% platinum and 10% iridium (by mass) and is machined into a
right-circular cylinder (height = diameter) of 39.17 mm. The chosen alloy
provides durability, uniformity, and high polishing quality of the prototype
surface (which allows for easy cleaning). The alloy density is 21,5 g/cm?®.
The prototype is stored at the International Bureau of Weights and Mea-
sures in Sevres on the outskirts of Paris. The relative error of a comparison
procedure with the prototype does not exceed 2 - 1079,

Second is the unit of time defined as the duration of 9192631770 pe-
riods of the radiation corresponding to the transition between the two
hyperfine levels of the ground state of 33Cs atom.

Ampere is the unit of steady electric current that will produce an at-
tractive force of 2 - 10~7 newton per metre of length between two straight,
parallel conductors of infinite length and negligible circular cross section
placed one metre apart in a vacuum.

Kelvin is the unit of temperature that is defined as the fraction 1/273.16
of the thermodynamic temperature of the triple point of water.

Mole is the unit of amount of substance defined as an amount of a
substance that contains as many elementary entities as there are atoms in
12 grams of pure carbon *2C.

Candela is the unit of luminous intensity that is equal to the luminous
intensity, in a given direction, of a source that emits monochromatic radi-
ation of frequency 540 - 10'2 Hz and that has a radiant intensity in that
direction of 1/683 watt per steradian.

The derivative units of SI are listed in Table 3. The base units listed
above together with the derived units constitute the international system
of units SI. The units of angle and solid angle can be considered either like
the base or the derivative units. In physics radian and steradian are usually
regarded as derivative units. However in some fields of physics steradian
is considered as the base unit. In that case the symbol «sr» cannot be
replaced by 1.

Measurements and data treatment

A goal of the majority of physical experiments is to determine a numer-
ical value of some physical quantity. A numerical value shows how many
times a quantity contains a unit. Measured values of different quantities,
e.g. time, length, velocity, etc, could be related. Physics finds the rela-
tionships and interprets them as equations which can be used to determine
some quantities in terms of others.

Getting reliable numerical values is not an easy task because of exper-
imental errors. We consider errors of different types and introduce some
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Table 3
SI derived units

. Unit Expression in

Quantity name Symbol terms of other
name SI units

Force Newton N 1H=1kg-m-s 2
Pressure and Pascal Pa 1Pa=1N-m=2
stress
Energy and Joule J 1J=1N-m
work
Power Watt W 1W=1J-s1
Charge Coulomb C 1C=1A-s
Voltage Volt Y 1V=1W- A"
Electric Farad F 1F=1C V™!
capacitance
Electric Ohm Q 1Q=1V-A""
resistance
Electric Siemens S 185=10""
conductance
Magnetic flux Weber Wb 1Wb=1V-s
Magnetic flux Tesla T 1T=1Wb-m™?
density
Inductance Henry H 1H=1Wb-A"*
Luminous flux Lumen Im 1im=1cd- sr
Illuminance Lux Ix 1lx=11Im-m™2
Frequency Hertz Hz 1Hz=1s"1
Optical power Dioptre dpt 1dpt=1m™*

methods of data treatment. The methods allow one to derive the best
approximation to the true values using experimental data, to spot incon-
sistencies and mistakes, to design a sensible measurement procedure, and
to estimate correctly accuracy of a measurement.

Measurements and errors. Measurements are divided into direct and
indirect ones.

A direct measurement is performed with the aid of instruments which
directly determine a quantity under study. For example, the mass of an
object can be found with a scale, the length can be measured with a ruler,
and a time interval can be measured with a stopwatch.
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An indirect measurement is a measurement of a quantity determined via
its relation to the quantities measured directly. For example, the volume
of an object can be evaluated if the object dimensions are known, the
object density can be found via the measured mass and the volume, and
the resistance can be determined via voltmeter and ammeter readings.

A quality of measurement is specified by its accuracy. A quality of
direct measurement is determined by the method used, the instrument
accuracy, and how reliably the results can be reproduced. The accuracy of
indirect measurement depends both on the data quality, and on equations
which relate the desired quantity and the data.

The accuracy of a measurement is specified by its uncertainty. The
absolute error of a measurement is a difference between the measured and
true values of a physical quantity. The absolute measurement error Az of
a quantity z is defined as

AT = Times — Ttrue- (1.9)

Besides the absolute error Az it is often necessary to know the relative
measurement uncertainty €, which is equal to a ratio of the absolute error
to the value of a measured quantity:

AI Tmes — Ltrue
g = = : (1.10)
Ttrue Ttrue

The quality of measurements is usually specified by the relative error
rather than the absolute one. The same 1 mm uncertainty does not matter
when it refers to the length of a room but it is not negligible in the length
of a table and it is completely intolerable as an uncertainty of the bolt
diameter. Indeed, the relative error is ~2 - 10~ in the first case, in the
second it is ~1073, and in the third case the error is about 10 percent or
more. Absolute and relative errors are often called absolute and relative
uncertainties, respectively. The terms «errors» and <«uncertaintys when
referred to measurement are completely identical and we will use them
both.

According to Egs. (1.9) and (1.10) the absolute and relative errors of a
measurement can be determined if the true value of a measured quantity is
known. However, if the true value is known no measurement is necessary.
The real goal of a measurement is to determine a priory unknown true value
of a physical quantity, at least, a value which does not deviate significantly
from the true one. As for the errors, they are not calculated, rather they
are estimated. An estimate takes into account the experimental procedure,
the accuracy of a method, the instrument precision, and other factors.
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Systematic errors and random errors. First of all, we should mention
faults which take place because of a human error or instrument malfunc-
tioning. Faults should be avoided. If a fault is detected, the corresponding
measurement should be ignored.

Experimental uncertainties which are not related to faults can be either
systematic or random.

Systematic errors retain their magnitude and sign during an experiment.
They could be due to instrument imperfection (non-uniform scale gradu-
ations, a varying spring constant, a varying lead of a micrometer screw,
unequal arms of a weighing scale, e t.c.) and to the experimental proce-
dure itself. For example, a low density object is being weighed without
taking into account the buoyant force that effectively decreases its weight.
Systematic errors could be studied and taken into account by correcting
the measurement results. If a systematic error turns out to be too large,
it is often simpler to use up-to-date instruments rather than to study un-
certainties of the old ones.

Random errors change their magnitude and sign from one measurement
to another. Repeating the same measurement many times, one could notice
that often the results are not exactly equal but «dance» around some
average value.

Random errors could be due to friction (for example, the instrument
hand halts and does not point to a correct reading), due to backlash of
mechanical parts, due to vibration which is not easy to eliminate in urban
settings, due to imperfections of the object under study (for example, when
measuring the diameter of a wire it is assumed that it has circular cross-sec-
tion, which is an idealization), or finally due to the nature of a measured
quantity itself (for example, the number of cosmic particles detected by
a counter per minute). In the last case one can find that different mea-
surements produce close values distributed randomly around some average
value.

Random errors are studied by comparing results obtained in several
measurements under the same conditions. If the results obtained in two or
three equivalent measurements are identical, further measurements are not
necessary. If the results disagree, one should try to understand the reason
of the disagreement and eliminate it. If the reason cannot be found, one
should perform about 10-12 measurements and treat the results statisti-
cally.

The difference between systematic and random errors is not absolute
and is related to the experimental procedure. For example, when electric
current is measured by different ammeters, the systematic error of the am-
meter reading scale becomes a random error which magnitude and sign
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depend on the particular ammeter. However, one should clearly under-
stand the difference between systematic and random errors for any given
experiment.

Systematic errors. It has been already mentioned that systematic errors
are due to some permanent factors which, in principle, could be always
taken into account and therefore excluded. In practice this task is difficult
and requires a lot of skill on the part of an experimenter.

Systematic errors are estimated by analyzing the experimental proce-
dure, accounting for accuracy and precision of the measuring instruments,
and doing test experiments. In this practicum we usually account only for
the systematic errors due to the instrument inaccuracy. Let us consider
some typical cases.

A systematic error of an analog electronic instrument (ammeter, volt-
meter, potentiometer, etc.) is determined by its accuracy class which de-
fines the instrument absolute error as a percentage of the maximal value
of the scale used. For instance, let a voltmeter scale have a range from
0 to 10 V and a printed sign that shows the figure 1 inside a circle. The
figure indicates that the voltmeter has the accuracy class 1 and the al-
lowed uncertainty is 1% of the maximal value of the scale, i.e. in this case
the uncertainty is £0.1 V. Also one should take into account that scale
readings are customarily separated by an interval that does not exceed the
instrument accuracy by a factor of two.

An accuracy class of analog electronic instruments (and one half of
the scale reading as well) determines the maximal absolute uncertainty
which is the same along the scale. However a relative uncertainty changes
drastically, so an analog instrument provides the best accuracy when the
pointer is near the maximal value. Therefore an instrument or its scale
should be selected so that the pointer remains on the second half of the
scale during the measurement.

Nowadays digital multi-purpose electronic instruments are widely used,
they have a high accuracy. Unlike analog devices, the systematic error of
a digital instrument is evaluated using the formulas listed in the manual.
For example, the relative accuracy of the multi-purpose voltmeter B7-34
with the 1 V scale, can be evaluated as

Ukz
£x = [0.015 +0.002 ( U’“ - 1)] [t +0.1 -t —20]], (1.11)

x

where Uy, is the maximal value, V,
U, is a voltage measured, V,
t is the ambient temperature, °C.
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When the voltmeter is used to measure a constant voltage of 0.5 V at
the ambient temperature of ¢ = 30 °C the accuracy is

1
Ex = [0.015 +0.002 (ﬁ - 1)} [140.1-130 — 20|]= 0.034%,

that is #0.00017 V of the measured 0.5 V.

When the voltmeter range is 0-100 or 0-1000 V or it is switched to
another kind of measurement (electric current or resistance) the formula
remains the same but the numbers are different. The voltmeter accuracy is
reliable under the following conditions: an ambient temperature of 5-40 °C,
a relative humidity below 95% at 30 °C, and a power supply of ~220+22 V.

Some words should be said about the accuracy of rulers. Metal rulers
are relatively precise: the millimeter graduations are engraved with an
error less than 4+0.05 mm, and the centimeter graduations with an error
less than 0.1 mm, so the measurement results can be read with the aid of
a hand lens. It is better not to use wooden or plastic rulers since their
uncertainties are not known and could be large. A micrometer provides
the accuracy of 0.01 mm and the accuracy of a caliper is determined by
the accuracy of its vernier scale which is usually 0.1 or 0.05 mm.

Random errors. Random quantities (random error is an example) are
studied in the probability theory and mathematical statistics. Below we
describe without giving a formal proof the basic properties of random quan-
tities and the rules of statistical treatment of experimental data.

It is not possible to eliminate random errors. However they obey the
laws of statistics, so one can always determine the limits in which a mea-
sured quantity can be found with a given probability.

The theory that describes the properties of random errors agrees with
experiment. The theory is based on the following properties of the normal
distribution:

1. In a large pool of random errors, the errors of the same magnitude but
of different sign are equally probable.

2. Large errors are less frequent than small. In other words, large errors
are less probable.

3. Measurement errors can take continuous values.

To study random errors it is necessary to introduce a concept of prob-
ability.

The statistical probability of an event is defined as the ratio of the
number n of cases when the event happens, to the number N of all equally
possible cases:

P= (1.12)

n
N
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Let 100 marbles be in a bin and assume that 7 marbles are black and
the rest are white. The probability of randomly picking a black marble
is 7/100 and the probability to pick a white one is 93/100.

Now let us apply the probability concept to estimate the dispersion of
random errors.

Suppose n measurements of some quantity (e.g. the diameter of a
rod) have been done and assume that faults and systematic errors are
eliminated, so only random errors remain. The results of the measurement
are numerical values x1, x3, ..., . If g is the most probable value of
the measured quantity (we assume that it is known), the difference Ax;
between a measured value x; and xq is called the absolute random error of
the measurement. Then

1 — T = ALL‘l
o — Lo — A{EQ

gg == —=L (1.13)

where Az can be either positive or negative. According to the normal
distribution the errors of equal magnitude but of opposite sign are equally
probable. Therefore the greater the number of measurements n, the more
probable a mutual cancellation of the errors under averaging, so

lim l iAazi =0.
1=1

n—oo 1, 4

Then

1
lim zg4, = lim — le = 0. (1.14)

Therefore the arithmetic mean x,, of the results of different measurements
for a very large n (i.e. n — o0) is the most probable value zg of the
measured quantity. In practice n is always finite and x4, is only approx-
imately equal to the most probable value zy. The larger the number of
measurements n, the closer x4, to xg.
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Fig. 1.3. The normal distribution
The arithmetic mean of the obtained results is usually taken as the best
approximation to the value of a measured quantity:

lzn:x 1 +To+...+x,
— ;= )

- (1.15)

Tep =
i=1

To estimate the reliability of a result it is necessary to examine a dis-
tribution of random errors of different measurements. The distribution of
errors often obeys the normal distribution (Gaussian distribution):

1 (z—=g)?
e (1.16)

v= 270
where y is the probability distribution (probability density function) of the

€ITorS:
dn

y= n-ds’

where dn/(n-dd) is the fraction of the errors in a given infinitesimal interval
dé,

x( is the most probable value of the measured quantity,

d = (x — xp) is a random deviation,

o is the mean of the squared deviation. The quantity o2 is also called
standard deviation.

The normal distributions corresponding to different ¢ are plotted in
Fig. 1.3.

The points |§| = |z — z9| = o are inflection points of the Gaussian
curves. Parameter o specifies the measure of dispersion of random errors



20 Measurements in Physics

0. If the measurement results x are located close to the most probable
value xg and the values of random deviations § are small, the value of o
is small as well (curve 1, ¢ = o1). If the random deviations are large and
widely dispersed, the curve becomes more widespread (curve 2, ¢ = 02)
and o9 > o0;. The quantity o is a measure of dispersion of the measured
quantity.

A ratio of the area under a Gaussian curve between the values § = +o
(the area is shadowed in Fig. 1.3 for oy = 0.5) to the total area under the
curve is 0.68. Therefore the equation © = xg £ o says that the probability
to obtain a result = in this interval is 0.68 (68%).

If an equation reads = = zg £ 20, the probability to obtain a result
within this interval is 0.95. For x = ¢ & 30 the probability is 0.997.

In dealing with experimental uncertainties we always refer to Gaussian
distribution. There are serious reasons in favor of using the normal dis-
tribution. The most significant one is the central limit theorem: if a net
uncertainty is a result of several factors contributing independently to it
then the distribution of the net uncertainty will be Gaussian regardless of
the particular distribution of each of the factors.

For a finite number of measurements n the deviation of the result from
the most probable value zq is estimated as the mean of the squared devia-
tion oep:

(1.17)

In practice this equation is useless since the most probable value of xg
is unknown. However we get a reasonable estimate for .., by replacing
zo in (1.17) with arithmetic mean z4,:

n

1
Tuep = 4| = D (@i — wan)?. (1.18)
i=1

If n is small, x4, can differ significantly from zy and Eq. (1.18) gives a
rough estimate of oep. According to mathematical statistics the following
equation gives a better estimate:

n

Oosep = L D (@i — wep)?. (1.19)

n—1+4
=1

Here og¢p is the mean of the squared deviation of a measurement result
and/or the standard deviation derived from the experimental data. The
reliability of o4¢, improves for a greater number of measurements n.
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The uncertainty of the arithmetic mean. In practice we are not
usually interested in how the result of any of n individual measurements
deviates from the most probable value. Rather the question is what is an
uncertainty of the arithmetic mean. To find a reasonable estimate let us
perform a series of measurement sets with n measurements of quantity z
per set and find x,, for every set. The obtained values x,, are randomly
distributed around some central value zg, their distribution approaching
the normal distribution. The standard deviation of x,, from zo can be
estimated as the mean of the squared deviation o4, (in the same way
as we determined o, for n values of x.) In the probability theory it
is proven that the standard deviation o, is related to the mean of the
squared deviation oy as

n

(i — Taw)?. (1.20)

Osep _

o 1
“woyn \[nn-1)

K3
Therefore the measured quantity x can be presented as
T = Tgy £ Ogo- (1.21)

This notation says that the probability to find the most probable value
x of the measured quantity in the interval x4, & 04, is equal to 0.68 (68%)
(assuming n is large).

The uncertainty ., (or its square) is usually called the standard devi-
ation.

It can be shown that usually the deviation of a measurement exceeds
20,4, only in 5% of all cases and it is almost always less than 3o,

One could naively conclude from above discussion that even using low-
quality instruments it is possible to obtain better results by simply increas-
ing the number of measurements. Of course, this is not so. Increasing
the number of measurements reduces a random error. Systematic errors
related to imperfections of the instruments persist, so one should better
choose an optimal number of the measurements.

If the number of experiments is small (less than 8) it is recommended
to use more sophisticated estimates. It should be noted that for n ~ 10 the
value of o, could be determined with an accuracy of 20-30% Therefore the
errors should be calculated with an accuracy of no more than two digits.

Addition of random and systematic errors. In real experiments both
systematic and random errors occur. Let the corresponding errors be oy
and o,4y,. The net error is given by

o2, =02 o2, (1.22)

net sYs
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This equation shows that the net error is greater than both the random
and systematic errors.

An important feature of the equation should be mentioned. Let one
of the errors, say orqn, be less than the other one (osys) by a factor of 2.
Then

5
Onet = Ugys + Ugan = \/go'sys ~ 1a12asys'

In this example an equality opet = 0y holds with 12% precision. Thus
a smaller error almost does not contribute to the net error even if the latter
is only twice as large as the former. This observation is very important. If
a random error is only one half of the systematic error, it is not practical
to repeat the measurements anymore since this will almost not reduce the
net error. It would be enough to repeat the measurements two or three
times in order to convince yourself that the random error is indeed small.

Treatment of the results of indirect measurements. If a measured
quantity is a sum or difference of a couple of measured quantities:

a="b=xc, (1.23)

then the expected value of the quantity a is equal to the sum (or the
difference) of the expected values of each term: aey = bey + Ces, Or, as it
was already recommended

aer = (b) £ {c). (1.24)

Hereinafter the angular brackets (or the bar over a symbol) mean an aver-
age: instead of writing a4, we will use the notation (a) (or a).
If the quantities a and b are independent the standard deviation o, is

given by
Oq =\/0F + 02, (1.25)

i. e. the squares of the errors or, in other words, the standard deviations
of the results are added.
If the measured quantity is equal to product or ratio of two errors

a = bc or a=-, (1.26)

then
aex = (b) {c) or Geg = 5 - (1.27)
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The relative standard error for a product or ratio of two independent quan-

tities is given by
Oa op\ 2 (O'C ) 2
— = — — . 1.28
a ( b ) + c ( )
Let us give explicit formulae for the case when
a=b%.¢"€ ... (1.29)

The expected value of a is related to the expected value of b, ¢ and e,
etc. by the same equation (1.29) in which the specific values are replaced
by their expected values. The relative standard error of a is expressed in
terms of the relative errors of independent b, ¢, e, ... as

(B) = () 2 () +2 (%) +e a0
For the reference let us give an explicit general formula. Let
a= f(bce,...), (1.31)
where f is an arbitrary function of the quantities b, ¢, e etc. Then
ez = f(bex, Chest, Cexs - - -)- (1.32)

Equation (1.32) is valid both for the directly measured by, ce, etc. and
for the indirectly measured quantities. In the first case the values by, Ceq
etc. are equal to (b), (c) etc.

The error of a is given by

2 2 2
ai:(%) ~U§+(%) ~U§—|—<g—£) ot 4 (1.33)

Here 0f/0b is a partial derivative of f with respect to b, i.e. the derivative
with respect to b is calculated provided the rest of the variables (c etc.) are
held fixed. The partial derivatives with respect to ¢, e etc. are defined in
the same way. The partial derivatives must be evaluated at the expected
values beg, Cex, €ep €tc. Equations (1.25), (1.28) and (1.30) are the specific
cases of Eq. (1.33).

The analysis of the equations discussed in this section leads naturally to
several recommendations. First of all one should avoid the measurements
in which a desired quantity comes out as a difference of two large numbers.
For example, it is better to measure directly the thickness of a pipe wall
rather than to determine it by subtracting the inner diameter from the
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outer one (and dividing the result by two). In the latter case the relative
error grows significantly since the measured quantity (the wall thickness)
is small while its error is determined by adding up the diameter errors
and therefore increases. One should keep in mind that the measurement
error of 0.5% of the outer diameter could be 5 or more percent of the wall
thickness.

The quantities which are treated with the aid of Eq. (1.26) (e.g., when
the density of an object is evaluated using its weight and volume) should
be measured with approximately the same relative error. For instance, if
the volume of an object is determined with an error of 1% and the object
weight is known with an error of 0.5%, the object density is determined
with an error of 1.1%. Obviously it does not make sense to waste one’s
time and effort on measuring the object weight with an error of 0.01%.

For measurements which results are treated by means of Eq. (1.29)
one should pay attention to the error of the quantity with the greatest
exponent.

When planning an experiment one should always remember about a
subsequent treatment of the results and write down the explicit expres-
sions for the errors in advance. The equations help to understand which
quantities must be measured more carefully than others.

Some laboratory guidelines

Any laboratory experiment should be regarded as a research project in
miniature. A lab description provides only a guideline of the experiment. A
specific content, skills, and knowledge which a student would gain from the
experiment are mostly due to student’ attitude rather than the lab descrip-
tion. The most valuable skills which a student is able to develop during the
laboratory course are: thinking about an experiment, applying theoretical
knowledge in the laboratory setting, careful planning of the experiment
and avoiding mistakes, and noticing often insignificant little things which
could potentially initiate an important research project.

The experimental results are summarized in a lab report which must
include the following
1) theoretical motivation of the experiment including a brief derivation of
the required equations;

2) a diagram of the experimental setup;

3) a plan of the experiment and tables with experimental data;

4) data treatment: calculations of intermediate quantities, tables, plots,
and diagrams of the results, calculations of the final result;
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5) comparison of the obtained results with reference data (in handbooks
and manuals), discussion of possible mistakes, suggestions of future exper-
iments.

Preparation to experiment. Firstly, it is necessary to read an experi-
ment description and the corresponding theoretical material. It is neces-
sary to have a clear account of the phenomena, physical laws, and orders
of magnitude of the quantities under study, as well as the experimental
method, instruments, and a measurement procedure.

The lab reports should be written in a sufficiently large workbook so it
can be used, at least, during one semester. A report should start with a
number and the title followed by a theoretical introduction, a diagram of
the experimental setup, and a description of the experiment procedure.

Before an experiment it is necessary to think over the procedure sug-
gested in the lab description and determine a required number of measure-
ments. This will help to prepare the tables for the experimental data.

It is desirable to figure out in advance the range in which the measured
quantities will reside and to choose the appropriate units. At least, this
must be done at the beginning of the experiment. Also it is necessary
to estimate measurement accuracy. If a quantity is expressed in terms
of powers of quantities measured directly one should make sure that the
relative errors of the quantities with greater exponents are small, i.e. these
quantities should be measured with a better accuracy. When possible one
should avoid measuring a quantity as a difference between two numerically
close quantities . As it was already mentioned, the thickness of a pipe wall
should be measured directly rather than calculated as a difference between
the outer and inner diameters.

Beginning. At the beginning of the experiment one should carefully ex-
amine the experimental setup, figure out how to switch the instruments on
and off, how to handle them, and check that the equipment is in order.

Measurement instruments must be handled with care. It it is not a
good idea to unscrew the casing of a sensitive instrument and change the
settings.

It is necessary to write in the workbook the specifications of the instru-
ments (first of all, an accuracy class, the maximal value on the scale, and
the scale graduation) since they are used for data treatment.

When assembling electric circuits a power supply must be connected
no sooner than the circuit is completely assembled.

Operation of the experimental setup must be checked before the main
measurements. The first measurements are done to make sure that ev-
erything is in order and the range and accuracy of the measurements are
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correctly chosen. If the dispersion of the first results does not exceed a
systematic error, multiple measurements are not necessary.

The malfunctions of instruments or the installation must be docu-
mented in the workbook and reported to the instructor.

Measurements. The results of the measurements should be written in
detail with necessary explanations.

It is useful to plot the measured quantities during the experiment. It
helps to see the regions where the values change rapidly. In these regions
the quantity must be measured with a better precision (more measurement
points) than in the regions where the curve is smooth. If the quantity
is assumed to exhibit a priori dependence (e.g. linear) in some interval,
the measurements should cover a wider range in order to determine the
boundaries of the interval where the dependence holds.

Significant dispersion of the results at the beginning of an experiment
should alert the experimenter. Often it is better to interrupt the exper-
iment and try to eliminate the source of the dispersion rather than to
do a large number of measurements in order to reach the required accu-
racy. If a quantity measured depends on some parameter or another quan-
tity that changes gradually, one must make sure that the conditions have
not changed during the experiment. To this end the initial measurements
should be repeated at the end of experiment or the whole measurement
repeated in reversed order.

Before each table one should write down the unit of scale graduations
and accuracy class of every measurement instrument. It is better to write
down the graduations of an instrument rather than the corresponding value
of the measured quantity, e.g. current or voltage. This will spare you some
mistakes when writing down the readings. At the end of the day, the data
treatment is always possible while repeating the experiment is sometimes
difficult or even impossible.

The units should be chosen appropriately so that the results be rep-
resented by values in the range from 0.1 to 1000. In this case the tables
would be readable and the plots would be convenient to use. For instance,
Young’ moduli (E) of metals are represented by very large numbers in the
SI, so it is convenient to use the unit 10'° N/m?. (For aluminum the nu-
merical value is 7.05.) The corresponding column in the table or a plot axis
will be labeled as E, 10'° N-m~2. The comma is important: it separates
the quantity from its unit. Numerical factors in front of the units can be
replaced by words or their abbreviations.

Sometimes another convention is used. A quantity to be displayed in a
table or next to a plot axis is measured in ordinary units and represented
as a product of the quantity multiplied by some numerical coefficient. For
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Young’ modulus this convention reads: F - 107 N-m~2. Although the
numerical value listed in the table remains the same (7.05 for aluminum)
this convention is less common since the coefficient could be incorrectly
referred to the measurement unit.

Evaluation, analysis, and presentation of the results. The results
of direct measurements presented as tables and plots are then used for eval-
uating the desired quantities and their errors and for finding relationships
between the quantities. It is convenient to use the same workbook for the
calculations and write the results in blank columns of the tables together
with raw experimental data. This would help to check and analyze the
results of calculations and compare them with the data.

Finally a measured quantity must be presented in the following form:
the average, the error, and the number of measurements. The final result
of indirect measurements is determined via their functional dependence on
the directly measured quantities which are used for evaluating the averages
and the errors.

Since an error itself is seldom known with a better accuracy than 20%
the numerical value of the error in the final result should be rounded to one
or two significant digits. For example, it would be correct to write errors as
+3, £0.2, +0.08, and £0.14; and incorrect £3.2, +0.23, and +0.084. It is
not correct to round the value +0.14 to 0.1 since the rounding decreases
the error by 40%. The last digit of the average value of a quantity and the
last digit of the error must be in the same position. For example, a result
written as 1.243 4+ 0.012 for the error of +0.012 takes the form 1.24 +0.03
for a larger error of £0.03 and 1.2 4+ 0.2 for 0.2. Extra significant digits
could be kept in intermediate calculations for better rounding of the result.
Depending on the chosen units the error could be tens, hundreds, thousands
of the units or more. For example, if the weight of an object is 58.3+0.5 kg
its expression in grams must be (583 £5) - 10?2 g. It would be incorrect to
write 58300 % 500 g.

Finally the obtained results are compared to the tabulated values from
reference books in order to estimate their quality.

Plotting graphs. Graphs should be plotted on a special graphing paper:
regular graph paper, millimeter paper, or logarithmic paper. The plot size
(and the paper size) should not be too large or too small. The optimal size
is between a quarter and a full workbook page.

Before starting to plot the graph it is necessary to choose an appropriate
scale and the origin on the axes, so that the points are spread over the whole
plot area.

Figure 1.4 shows two plots. The experimental points occupy the lower
right corner of the plot on the left, which is a poor choice. On the right plot
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Fig. 1.4. Examples of correct and incorrect plots

a larger scale of the Y axis is chosen and the abscissa origin is displaced,
so the points are evenly spread over the whole plot area.

The names and units of the plotted quantities should be clearly written.
Labeling all the graduations on the axes is not necessary, there should be
enough labels to make the plot comprehensible and easy to use. It is
better to place the labels on the outer sides of axes. If a graph paper has
a network of lines of different thickness, the solid lines should be used for
round values. It is convenient when the network square corresponds to 0.1,
0.2, 0.5, 1, 2, 5, or 10 units of a quantity and it is usually inconvenient
when a square corresponds to 2, 5, 3, 4, 7, etc. units. An inconvenient scale
of axis graduations makes it difficult to determine coordinates of a point,
which leads to frequent mistakes. The name of a quantity on abscissa is
usually written below the axis at the right end and the name of quantity on
the ordinate is written at the top left to the axis. A unit of measurement
is separated by comma.

Points on a plot should be marked clearly. The points should be drawn
by pencil, so that possible mistakes could be corrected. Explanatory notes
should not obscure the plot; the coordinates of the points written next to
them are not necessary. If an explanation is in order the corresponding
point or the curve is labeled by a number explained in the text or in
the captions. It is advisable to plot the points obtained under different
conditions, e.g. heating/cooling or increasing/decreasing a load, by using
different marks or colors.

The known errors of experimental points should be drawn as vertical
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Fig. 1.5. Drawing line through experimental points

and horizontal bars which lengths are proportional to the corresponding
errors. In this case a point is represented by a cross. Half of the horizontal
bar is equal to an error of abscissa quantity and half of the vertical bar
is equal to an ordinate quantity error. If an error is too small to be rep-
resented graphically, the corresponding points are drawn as bars +o long
in the direction where the error is not negligible. Such a representation of
experimental points facilitates the analysis of the results. In particular, it
would be easier to find the best mathematical relation describing the data
and to compare the results with theoretical calculations and other results.

Figures 1.5a, b show the same data points with different errors. The
plot in Fig. 1.5a undoubtedly corresponds to a non-monotonous function.
The function is shown by a solid curve. The same data set for a larger
experiment error (Fig. 1.5b) is well described by a straight line: only a
single point deviates from the line by more than one standard deviation
(and less than two standard deviations). It is only when the points are
drawn with their errors shown explicitly it becomes clear that the data
in 1.5a requires a curve to be drawn and the data in 1.5b does not.

Often measurements are performed in order to obtain or confirm a spe-
cific relation between the measured quantities. In this case the correspond-
ing curve should be drawn through the experimental points. If necessary,
the errors of the measured quantities are then found using deviations of
the points from the curve. It is not difficult to draw a straight line through
the data points. Therefore if a relation between the plotted quantities is
hypothesized or already known from theory it is better to plot some func-
tions of the quantities, so that the relation between the functions becomes
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Fig. 1.6. Graphical method of data treatment. Estimating
random error of parameter a

linear. For example, consider an experiment that verifies the relation be-
tween a time interval it takes an object to fall in the gravitational field and
the initial height from which the fall starts. In this case one should plot
the height versus the time squared because these quantities are directly
proportional to each other if the field is uniform and the air drag is neg-
ligible. It would be less convenient to plot the time versus square root of
the height although the relation between them is also linear. Notice that
logarithms of the time and the height are also proportional in this case but
the linearity is significantly violated by relatively small errors of height
and time at the beginning of the fall. Logarithmic scale is convenient for
power laws and large ranges of changes of variables. In this case a linear
dependence allows one to determine the power law exponent.

There are different methods of drawing straight lines through experi-
mental points. The most simple method, which is useful for estimating
errors although too rough for getting the final result, requires a transpar-
ent ruler or a sheet with a straight line drawn on it. A transparent ruler
allows one to determine how many points there are on both sides of the
line. The latter should be drawn so that there is an equal number of the
points on both sides. The line parameters (a slope and an intercept) are
determined from the plot. This gives an analytic expression of the form:
y = a + bx, which for a nonzero a, does not pass through the origin.

Random errors of the parameters a and b could be estimated from the
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Fig. 1.7. Graphical method of data treatment. Estimating
random error of parameter b

plot as follows. To estimate the error of a one determines how much the
line is displaced so that the ratio of the numbers of points on both sides
becomes 1 : 2 (see Fig. 1.6). Explicitly, the line is displaced upward by
Aaz1, so that one third of the points is above the curve and two thirds is
below. When the curve is displaced downward by Aas, two thirds of the
points is above and one third is below. If there are n points, an estimate
of the standard deviation a is

o Aal + Aag

To estimate the error of the slope b one should divide the whole range
of abscissa values z into three equal parts (see Fig. 1.7). The line is then
drawn so that the ratio of the numbers of the points on both sides of the
line in the external parts is 1 : 2. In other words, increase the slope until
the number of points in the left part above the line is twice as large as
the number below it and the number of points in the right part below the
line is twice the number above, let the corresponding slope be b;. Then
decrease the slope until the number of points below the line in the left part
is twice as large as above and in the right part the number above is twice as
below, let the corresponding slope be bs. Then the error of b is estimated
as

Oq

by — by
NZD

gp =
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If the relation is y = kx, so that the line goes through the origin, the
error of k is estimated as follows. The range of abscissa values x is divided
into three equal parts. The points close to the origin are ignored. One
should determine the value ki, for which the number of the points above
the line is half the number of the points below (for all the points in the
central and right parts), and ko for the opposite ratio. The slope k is

estimated as
k1 — ke

O = \/ﬁ .

The method of least squares is a more precise and better justified
method of drawing a straight line through a set of points. The line is
drawn so that the sum of squares of the point deviations from the line is
minimal. This means that the coefficients a and b of y = a + bz are found
by minimizing the sum

n

Fla,0) =3[y — (a+bay)]”. (1.34)

i=1

Here z; and y; are the coordinates of experimental points.
Now let us give the explicit equations for a, b and their errors in terms
of the arithmetic means of x; and y;:

(%) — (z)

a=(y)—b{z). (1.36)

The corresponding errors are given by

L A=W,
op ~ \/ﬁ 7<I2> _ <x>2 b 5 (137)
0o = opy\/ (22) — (z)°. (1.38)

If it is known that the points are described by a linear dependence
y = kx, the slope k and its error are given by

] (1.39)

(@2)”

e - @) 1w,
O ~ \/ n<x2>2 = \/ﬁ <£L'2> k2. (140)
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Table 4
Some approximation formulae
Equation Accuracy of 5% | Accuracy of 1% | Accuracy of 0.1%
la| is less la| is less la| is less
1
~1—a 0.22 0,1 0.032
14+a
Vitax1+ Ea 0.63 0.28 0.09
L 1 1 0.36 0,16 0.052
~1--a . , .
vVi+a 2
e“~1+a 0.31 0.14 0.045
In(l4+a)~a 0.10 0.02 0.002
sina =~ a 0.55 0.24 0.077
tana ~ a 0.4 0.17 0.055
2
cosar1— ;— 0.8 0.34 0.11

(I+a)(1+b)...~1+a+b+...
sin(f 4+ a) = sinf + a cosd
cos(f 4+ a) = cosf — asiné

This method is the most time consuming but if a calculator or computer
is available the method must be preferred.

Sometimes one is not interested in a functional dependence approximat-
ing a data set, rather the experimental points are used to find numerical
values between them. If so, interpolation methods are employed. In the
simplest case a linear interpolation between two neighboring points is used.
Interpolating by parabola requires three points.

It should be emphasized that the plots provide a graphical representa-
tion of the experimental data. They are very useful for comparing theory
and experiment, understanding qualitative features of relations, and for es-
timating quantity dynamics. However, the final results of any experiment
are documented in a table.

Usually the final results are obtained from experimental data by means
of calculation. An accuracy of the latter should not exceed an accuracy of
the data. Often the calculations are simplified by means of approximation
formulae given in Table 4. The numerical entries are the values for which
the approximations in the left column provide the accuracy claimed in the
table upper row.

It should be noted that our recommendations on data treatment are
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Table 5
Synopsis of basic equations
. . 1 &
Arithmetic mean of Tav = () = = Z =
measured quantity ni
Standard deviation of 1 n
arithmetic mean of OC= | Z (zi — (2))?
- n(n —1) <=
measured quantity i=1

Propagation of
(independent) errors

2 _ 2 2
o =0y +05+...

Error of calculated result

A:B:I:C:>0124:U%3+J%

A=B-C o o o
pe) = () =) (%)

A:BB-CV:(%)zz

#(5) 2 ()

Recommended scales

1:1; 1:2; 1:5; 1:10; 1:20 ...

2:1; 5:1; 10:1; 20:1 ...

Drawing the best straight

p = 2y) = (@) (Y)

» a=(y) —bz)

line y = a+ bx (x2) — (x)*
Drawing the best straight k= (zy)
line y = kx (z2)

neither complete nor strict since they are designated for the freshmen whose
mathematical background is not sufficient to consider the questions related
to mathematical statistics in detail. More elaborated treatment will be
possible after first two years of study when enough experience in the lab
is gained and sufficient mathematics is learned. Therefore some equations
used for data treatment were given without proof, some of them are shown
in Table 5.

Finally, several recommendations on the data treatment.

When processing the data it is necessary to consider possible sources
of mistakes. Accuracy of intermediate calculations should exceed the data
accuracy to eliminate errors related to calculations. Usually it is enough
if the accuracy of intermediate calculations will exceed the accuracy of the
final result by one significant digit.
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Fig. 1. Circuits for measuring resistance by means of ammeter and
voltmeter

Lab 1.1.1

Determination of systematic and random errors
in measurement of specific resistance of
nichrome.

Purpose of the lab: determination of specific resistance of nichrome
wire and calculation of systematic and random errors.

Tools and instruments: ruler, caliper, micrometer, nichrome wire,
ammeter, voltmeter, power supply, Wheatstone bridge, rheostat, switch.

The specific resistance of the material of a uniform wire with a circular

cross-section can be determined according to the following equation

2
fu 7l 1)
where R,,; is the resistance, [ is the length, and d is the diameter of the
wire. Therefore to determine the specific resistance of the wire material
one should measure the following parameters of the wire: the length, the
diameter, and the electrical resistance.

One should take into account that the diameter of a real wire is not con-
stant but varies slightly along the wire. The diameter variation is random.
Therefore in equation (1) one should substitute a value of the diameter
averaged along the wire and take into account its random error.

The resistance R,,; is measured using one of the circuits shown in Fig. 1.
In the figure R is a variable resistance (rheostat), R 4 is the resistance of an
ammeter, Ry is the resistance of voltmeter, and R,,; is the wire resistance.

p:
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Let V and I be the readings of voltmeter and ammeter, respectively.
The values of the wire resistance calculated using these readings, namely,
Ryin = Vu/I, for the circuit (a) and Ry = V,/I, for the circuit (b)
will differ from each other and from the true value R,; due to internal
resistances of the instruments. However using Fig. 1 one can easily find
the relation between R,,; and the obtained values R,,;1 1 Ryi2. In the first
case the voltmeter measures a voltage across the wire correctly, whereas
the ammeter does not measure the current through wire, rather it shows
the value of the total current flowing through the wire and the voltmeter.
Therefore

V. Ry
Ryt = = = Ryi—2—. 2
T, Rui + Ry @)

In the second case the ammeter measures the current through the wire
but the voltmeter measures a total voltage across the wire and the amme-

ter. For this case v
Ruiz = = = Rui + Ra. (3)
Iy

It is convenient to rewrite equations (2) and (3) as follows. For the
circuit (a):

Ry Ry Ry
Ryi = Ry = ~ Ry; 1 —_— . 4
"Rv — Rwir 1 — (Rwi1/Ry) ! ( + Ry ) )

For the circuit (b):

Rui = Ruiz (1 _ fia > : (5)
Ruyio

The bracketed terms in Eqgs. (4) and (5) define corrections which should
be taken into account during the measurement. (Although the corrections
due to internal resistance of the instruments can be calculated at any time,
usually this is not done. In our case the calculation of the corrections turns
out to be very simple but for real circuits an accounting for the corrections
is time consuming and should be repeated every time the instrument is
switched, which seems impossible in practice.) The calculation provides an
example of a systematic error due to simplification of the exact equation.
For the circuit (a) the resistance R,,; turns out to be less than the calculated
value and for the circuit (b) it is greater.

The classical method of measuring a resistance with the aid of a dc
bridge (Wheatstone bridge) is more precise. The standard bridge P4833 is
used for the control measurement of the wire resistance.

In the assembly the nichrome wire stretched between two fixed plane
clamping contacts is used as a resistance. The length of a wire section
which resistance is measured can be varied by means of a mobile contact.
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LABORATORY ASSIGNMENT

. Get familiar with the operation principles of the measurement instruments.

Practice to measure dimensions of different objects with the aid of a caliper
and a micrometer.

. Measure the wire diameter at 810 different locations and write down the

results in a table. Compare the results obtained by means a caliper and
a micrometer. Average out the obtained diameter values. Calculate the
cross-sectional area of the wire and estimate an accuracy of the result.

. Write down into a new table the basic parameters of the ammeter and the

voltmeter: the type of an instrument, the accuracy class, the maximal value
of the scale x,,, the number of scale graduations n, the scale factor x,,/n,
the sensitivity n/x,, the absolute error Az, and the internal resistance
of the instrument (for a given maximal value of the scale).

. Using the indicated internal resistances of the instruments and the known

approximate value of the wire resistance, 5 Ohm, estimate the values of the
corrections to R,,; corresponding to the circuits shown in Fig. 1 with the
aid of Eq. (4) and (5). Choose the circuit that provides a minimal value of
the correction.

. Using a ruler measure the length of a wire section to be explored (between

fixed and mobile clamping contacts) and assemble the chosen electrical
circuit. Turn on the current. Varying it by means of the rheostat write
down in a new table the readings of the ammeter and the voltmeter for
5-6 different values of the current (usually during a direct measurement the
readings of the instruments are written directly as the scale graduations):

Nieas | 1121314516
V, nen

I, nen
V,B
I, A

Repeat the measurement by increasing and decreasing the current. Plot
the dependence V' = f(I) and calculate the value of R using the plot. Then
calculate the resistance R,,;. Estimate the error of R,;.

. Measure the wire resistance using the dc bridge (Wheatstone brigde)

P4833. How much does the result differ from the value measured previ-
ously? Does the result lie in the error interval of the result obtained with
the aid of the ammeter and the voltmeter?

. Carry out the measurements pp. 5, 6 for three different values of the wire

length.
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. Determine the resistivity of the wire material using Eq. (1). Estimate the
accuracy of the obtained value. Which accuracy of the wire resistance is
required for the attained accuracy of the wire length and the cross-section?

. Compare the results with the tabulated values.

Literature
. JIa6opamopruwe 3anarus no ¢pusuxe / Ilox pex. JI.JI. ombmuua. — M.: Hayxa,
1983. C. 53-66.
. Ckeatipc Jotc. Ilpakruyeckas dusuka. — M.: Mup, 1971.
. Cusyzun J.B. Obumit kypc dusuxu. T. III. — M.: Hayka, 1996. §§ 40, 41, 42.

Example of lab report 1.1.1

The instruments used: ruler, caliper, micrometer, nichrome wire, ammeter,
voltmeter, power supply, dc bridge (Wheatstone bridge), rheostat, switch.

1. A caliper accuracy is 0.1 mm. A micrometer accuracy is 0.01 mm.

2. Measure a diameter of the wire with a caliper (d1) and a micrometer (d2)
at 10 different locations (Table 1).

Table 1

Wire diameter

1 2 3 4 5 6 7 8 9 10
di,mm| 04 | 04 | 04 | 04 | 04 | 04 | 04 | 0,4 | 0,4 | 04
d2, mm| 0,36 | 0,36 | 0,37 | 0,36 | 0,37 | 0,37 | 0,36 | 0,35 | 0,36 | 0,37
di = 0,4 mm d> = 0,363 mm

The table shows no random error in the caliper measurements. Therefore the
accuracy of the result is due to the caliper accuracy (a systematic error):

dp = (0.4 £0.1) mm.

The measurement results obtained with the micrometer contain both system-
atic and random errors:

osyst = 0.01 mm,

0 =1/02,0 +0%q =/ (0.01)2 + (0.002)% ~ 0.01 mm.

Since 02,4 < a'gyst the wire diameter can be considered constant along the wire
with an accuracy o4 totally determined by osys: of the micrometer:

dy = dy £ 04 = (0.363 + 0.010) mm = (3.63 £ 0.10) - 10~2 cm.
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3. Determine the cross-sectional area of the wire:

2 ) 1n—2)2
5= WT% _ 314 (3'643 1077 ©1.03-107° em?.

The value of the error os can be calculated as follows

o4 0.01 -3 -5 2
=2—5=2—-103-100" =~ 6-10 .
78T 0.36 o
Thus S = (1,03 £ 0.06) - 1072 ¢m?, i. e. the accuracy of the cross-sectional
area amounts to 6%.

4. Write down the basic specifications of the instruments in Table 2.

Table 2
Basic specifications of instruments

Voltmeter Ammeter
System Moving-coil | Electromagnetic
Accuracy class 0.5 0.5
Maximal scale value z; 03V 0.15 A
Number of scale gradua- 150 75
tions n
Scale factor zy/n 2 mV/grad 2 mA /grad
Sensitivity n/xg 500 grad/V 500 grad/A
Absolute error Az 1.5 mV 0.75 mA
Internal resistance (for | 500 Ohm 1 Ohm
given maximal scale value)

5. It is known that Rw; ~ 5 Ohm, Ry = 500 Ohm, and R4 =1 Ohm. Using
Egs. (4) and (5) estimate the corrections for Ru::

for the circuit in Fig. la Ry:/Rv = 5/500 = 0.01, i. e. 1%;

for the circuit in Fig. 1b Ra/Ruw: = 1/5, i. e. 20%.

Conclusion: the circuit in Fig. la ensures the better accuracy in a measure-
ment of a relatively small resistance.

6. Assemble the circuit shown in Fig. la.

7. Carry out the experiment for three values of the wire length written below:

l1 =(20.0£0.1) cm; Iz = (30.0 £ 0.1) c¢m; I3 = (50.0 £ 0.1) cm.

Repeat the measurement for increasing and decreasing current. Write down
the instrument readings in Table 3. Record the results obtained by using the dc
bridge (Wheatstone bridge) P4833 in Table 4.

8. Plot the dependencies V = f(I) for all three values of the wire length
by drawing straight lines through the experimental points (Fig. 2). From the
plots one can conclude that there is no difference between the values obtained
for increasing and decreasing current. One can also conclude that the random
scatter is negligible and could be ignored.
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Table 3
Readings of voltmeter and ammeter
=20 cm =30 cm =50 cm

Vit L | vo | LoV | LoV LoV, LV
grad | grad | mV | mA || grad | grad | mV | mA || grad | grad | mV | mA

2 mV mA 2 mV mA 2 mV 0.5 mA
grad grad grad grad grad gra

26.0 | 12.5 | 52.0 | 25.0 || 26.0 | 8.5 | 52.0 | 17.0 || 34.5 | 28.0 | 69.0 | 14.0
32.5 | 15.5 | 65.0 | 31.0 || 35.0 | 11.5 | 70.0 | 23.0 || 44.1 | 35.6 | 88.2 | 17.8
63.2 | 31.1 |126.4| 62.2 || 62.5 | 20.4 |125.0| 40.8 || 67.1 | 54.5 [134.2| 27.3
82.8 | 40.5 |165.6| 81.0 || 91.1 | 30.1 |182.2] 60.2 || 98.0 | 79.6 [196.0| 39.8
119.5| 58.1 239.0|116.2|[118.5| 38.9 (237.0| 77.8 ||127.0|103.3|254.0| 51.7
137.8| 67.0 [275.6|134.0(/150.0| 49.5 {300.0| 99.0 ||147.3|120.0|294.6| 60.0
131.0| 64.1 {262.0|128.2{/139.5| 46.1 [279.0| 92.2 ||142.0(114.6 |284.0| 57.8
101.5| 49.5 {203.0| 99.0 ||130.0| 42.9 {260.0| 85.8 ||116.2| 94.0 |232.4| 47.0
88.1 | 43.0 |176.2| 86.0 ||103.1| 34.0 |206.0| 68.0 || 85.0 | 69.2 [170.0| 34.6
78.2 | 38.1 |156.4| 76.2 || 74.2 | 24.5 |148.4| 49.0 || 61.1 | 49.5 [133.2| 24.8
51.0 | 24.9 |102.0| 49.8 || 42.5 | 14.1 | 85.0 | 28.2 || 41.3 | 33.2 | 82.6 | 16.6
29.1 1139|582 |27.8] 23.0| 7.5 |46.0|15.0 || 31.0 | 25.2 | 62.0 | 12.6

Table 4

Wire resistance

[ =20 cm

=30 cm

[ =50 cm

Ro = 2,080 Ohm
(using P4833)
Ry = 2.060 Ohm
Rui = 2.068 Ohm

Ro = 3,062 Ohm
(using P4833)
Ryi = 3.030 Ohm
Ryi = 3.048 Ohm

Ro = 5.010 Ohm
(using P4833)
Rsv = 4.92 Ohm
Rui = 4.97 Ohm

OR,; = 0.008 Ohm || or,, = 0.014 Ohm || ogr,, = 0.04 Ohm

9. Using the plots find the average values of the resistances by calculating
the slope of the corresponding straight line: Rq. = V/I, where I and V are the
current and the voltage taken at some point of the line close to its end. Write
down the results in Table 4.

10. Estimate the accuracy of R, as follows

ORaw _  [(V)? <2)2
Row < 1% ) + I/’
where I and V are the maximal values of current and voltage obtained in the

experiment, whereas oy and oy are the standard deviations of the measurements
by means of the voltmeter and the ammeter. The error oy equals half of the
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Fig. 2

absolute error of the voltmeter:
Ax 15
=5 =5~ 0.75 mV.

For the ammeter the result can be similarly obtained: o7 = 0.75/2 =~ 0.4 mA.
An example of the calculation of og,, for a wire of the length [ = 30 cm;
from Tables 3 and 4 Rq, = 3.030 Ohm, V' =300 mV, I = 99 mA.

_ ov\2 , (o1\? _ 0.75\* | [04)* _ 2
aRMfRav\/(v) +(7) 3“'\/(%) +(E) ~1.4-10"2 Ohm.

Record the results of the calculations in Table 5.

ov

Table 5
[, sm 20 30 50
Ronm, Ohm | 2.060 | 3.030 | 4.92
or,,, Ohm | 0.008 | 0.014 | 0.04
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11. For all three values of the length [ take into account the measurement
correction for the resistance as follows
Rz,
Ry’

Rui = Rav +

Due to a relatively small value of the correction one can ignore it: or,, = OR,,,-
The results are written down in Table 4.

12. Compare the wire resistances measured by the voltmeter and the ammeter
with the values obtained by using the dc bridge (Wheatstone bridge) P4833. The
results coincide within the accuracy of the experiment.

13. Determine the wire resistivity according to equation (1) and find the
accuracy o, as follows

Z - (&) e+ ()

The results are written in Table 6.

Table 6
I,cm | p, 107* Ohm-cm | o,, 107° Ohm-cm
20 1.06
30 1.05
50 1.02

Finally: p = (1.04 & 0.06) - 10™* Ohm-cm.

A major contribution to the error o, is due to an uncertainty of the wire
diameter; it amounts to ~3%. This error doubles because the diameter is squared
in the final formula, so it amounts to ~6%. Therefore it is sufficient to measure
the wire resistance with an accuracy about 3-4%.

The obtained value of the resistivity is compared with a tabulated value. For
the resistivity of nichrome at 20 °C the reference book (Physical magnitudes.
M.:Energypublish, 1991. P. 444) gives the values from 1.12:10”* Ohm-cm to
0.97-10~* Ohm-cm depending on the mass ratios of the alloy components. The
closest value to that obtained in the lab is 1.06-10™* Ohm-cm for the alloy:
70+-80% Ni, 20% Cr, 0+-2% Mn (mass ratios).
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Fig. 1. Optical path in microscope
Lab 1.1.2

Measurement of linear expansion coefficient of a
rod with the aid of microscope

Purpose of the lab: to measure the dependence of linear expansion
of metal rod versus temperature and to determine its linear expansion
coefficient.

Tools and instruments: a microscope, an ocular micrometer, a ruler
with millimeter graduations, a quartz tube, a metal rod, an electric
heater, a variable transformer, a resistance thermometer, the Wheat-
stone bridge P4833, a power supply, and a galvanometer.

Microscope. Microscope is an optical instrument designed to magnify
images of small objects. The magnifying part of the microscope consists of
two sets of lenses called objective and eyepiece (ocular) which are mounted
in a tubus about 160 mm apart. We do not intend to study a microscope
design in detail, so we concentrate on its operation principle. For simplicity
we replace the objective and the eyepiece with two equivalent thin lenses.

Optical path in microscope is shown in Fig. 1. The object [ is placed
next to the front focal point (just before it) of the short-focus objective
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JI1 which creates the large real image [;. The image is viewed through the
eyepiece JIo which serves as a magnifying glass. The eyepiece creates the
virtual image ls at a convenient distance from observer’s eye. The position
of I can be varied by changing location of /; relative to the front focus of
the eyepiece. This is achieved by a small displacement of the microscope
with respect to the object.

Microscope magnification is its most important parameter. There are
linear and angular magnifications. Linear magnification equals the ratio of
a transverse size of the image [ to that of the object I:

r=-—+. 1
l 1)
Angular magnification equals the ratio of the tangent of the angle o sub-
tended by the image lo in the microscope to the tangent of the angle awo
subtended by the object at the conventional closest distance of distinct
vision D = 25 cm from unaided eye:

tan oy

= ) 2
i tan as ( )
The notations [, Iy, I3, a1, and «s are those in Fig. 1.
Counsider first the linear magnification I'. Let us write it as
lo ol
'==>=->—=T,T0. 3

I L ’ )
The first factor 'y, is called ocular magnification and the second one I'yg
is called objective magnification. It should be obvious from Fig. 1 that
li OB

F06:T—01A. (4)

The distance O1 A is approximately equal to the focal length of the objec-
tive and the point B is close to the focal point of the eyepiece, also fo < H,
which gives

OlA’Flifh OlB’&‘H—fg%H. (5)

The tubus length H is usually equal to 160 mm. Replacing the numerator
and denominator in (4) by their approximate values (5) one obtains:
H
T 6~ —. 6
o fl ( )
This value is not exactly equal to the objective magnification, however it
is independent of the eyepiece and the microscope adjustment. It is this
value which is engraved on the objective casing.
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Now consider the eyepiece magnification:

lo  0C
Lo =~ = .
lh, O3B (™)

It was already mentioned that O;B ~ f5. The value of O2C on the other
hand depends on the microscope adjustment. Near-sighted observers set
O2C' = 10 — 15 cm and far-sighted place [2 at a distance of 40 cm, some-
times even at infinity. When calculating the eyepiece magnification it is
customary to set OoC' = D = 25 cm, which corresponds to the conventional
closest distance of distinct vision for normal human eye. Substituting these

values in (7) we get:
= (®)
f2

This value is called ocular magnification and it is engraved on its casing.
Now let us consider the angular magnification:

FOC

L 1
o0F T 9)

vy =tana; : tanag =

For O2C = D the angular and linear magnifications are equal: I' = ~.

Equation (3) shows that to get a preliminary estimate of the micro-
scope magnification it would suffice to multiply the eyepiece and objective
magnifications. The value obtained is only approximate. A better estimate
should be determined experimentally.

In practical measurements the object size is compared to some scale.
The scale can be placed in the plane of the object but this is not always
possible. More often the scale is located in the plane of the virtual image
l1. In this case both the object and the scale can be viewed simultaneously
and therefore be more reliably compared. However, in this setup the scale
is compared to the magnified image /; rather than to the object itself, so
an additional calibration is necessary.

Ocular micrometer. The microscope used
in the lab is equipped with an ocular microme-
ter. It consists of an immobile glass plate with
scale graduations and a mobile glass plate with
a cross and two parallel marks located in the
eyepiece focal plane (see Fig. 2). The mobile
plate can move relative to the immobile scale:
one turn of the micrometer screw displaces the
marks and the cross by one scale graduation
(1 graduation = 1 mm). The circumference of

Fig. 2. Scale of ocular
micrometer
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the screw knob is divided by graduations into

100 parts. Turning the knob by one gradua-

tion displaces the cross and the marks by 0.01 mm. Thus the scale in the
image plane l; (the focal image of the eyepiece) is the scale of the ocular
micrometer.

To determine the size of the object [ itself it is necessary to calibrate
the micrometer scale by using another scale (object scale) placed instead of
the object. In so doing the microscope adjustments should not be altered.
The object scale is a glass plate with graduations several hundredths of
millimeter apart.

Calibration of ocular scale. The ocular scale should be calibrated be-
fore using the microscope for the measurements. First of all, the scale
should be clearly visible, this is achieved by adjusting the outer lens of
the eyepiece. Then the object scale is placed on the microscope stage. To
achieve better visibility the object scale must be illuminated at some angle
to the glass plane and perpendicular to the marks. Then the clear image
of the scale must be obtained. To this end one moves the microscope tubus
down almost to the plate by using the focus wheel of coarse adjustment.
One should control the distance between the object and the microscope
objective by watching from the microscope side when moving the tubus
down'. Then one should slowly lift the tubus until the object scale comes
into sight and obtain the sharp image of the scale by using the focus wheel
of fine adjustment. Then the scale should be moved to the center of the
field of vision. The object scale must be illuminated so that both the object
and ocular scale are clearly visible.

The alignment of the ocular and objective scales is checked by the
method of parallax. If both images are in the same plane, a small lateral
displacement of eye will not result in their mutual displacement. If the
displacement is detected the tubus position is corrected by the focus wheel
until the parallax is eliminated.

The object scale should be placed on the stage so that the graduations
on both scales are parallel. Then the center of the cross is aligned with a
graduation on the object scale. The scale graduation and the graduation on
the micrometer knob are recorded. Then one should move the cross along
the object scale by several millimeters and repeat the procedure for another
scale graduation. Using the results it is not difficult to calibrate the ocular
scale, i.e. to determine the actual size in the object plane corresponding
to one graduation of the ocular scale. The calibration procedure must be
repeated three or four times, the results must be tabulated and averaged.

L 1t should be emphasized that moving the tubus down without control is prohibited.
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JIATP P4833

:

Fig. 3. Experimental setup for measurement of linear expansion coefficient

Laboratory setup. The experimental setup for the measurement of linear
expansion coefficient is shown in Fig. 3. The rod under study is placed in
a steel tube with electric heater inside. The right end of the tube is firmly
attached to a support by a screw. The left end can freely move along the
tube axis on the left support. The tube ends are sealed, the rod under
study is inserted inside the tube through the openings at the ends. The
rod can freely move through the end 1 and it is fixed at the end 2 with the
screw 3. A quartz tube T? with a mark on it is placed between the end of
the rod coming out of the tube end 1 and the spring stopper 4 mounted
on the support 5.

The electric heater power supply is controlled by means of the variable
transformer. The rod temperature is measured by the resistance ther-
mometer made of copper wire which is wound around the rod and extends
between the rod ends.

Usually the rod (and the resistance thermometer as well) is heated from
room temperature t,, the corresponding wire resistance is R,.. The wire
resistance depends on temperature as

R~ R.(1+0O(t—t,)), (10)

where © is the temperature coefficient of resistance (for copper © =
=4.3-1073 °C ~! at 20 °C), which gives

Ry — R,
At=t—t, = ——. 11
o%. (11)

Otherwise the objective could press the object and one of them can break down.
2 Coefficient of thermal expansion of fused quartz is negligible compared to that one
of metal.
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The rod length increases with temperature and the mark on the quartz
tube shifts. The displacement is measured with the aid of the microscope
equipped with the ocular micrometer. The coeflicient of linear expansion
of the rod is determined by the equation:

L;— L

L) 12

where L; and L, are the rod lengths at ¢ and ¢, respectively. Substitution
of the temperature difference ¢ — ¢, from eq. (11) finally gives
L,)R, R, AL R, An

(L -
T =""T""p=""""R 1
=L -R)° "L AR L ART® (13)

where B is the ocular scale graduation in millimeters and An is the dis-
placement measured in ocular scale graduations.

LABORATORY ASSIGNMENT

. Make sure that you understand the operation principles of the microscope
and the ocular micrometer.

. Using the object scale calibrate the scale of the ocular micrometer (express
ocular graduation in millimeters).

. Replace the object scale on the microscope stage with the quartz tube T’
attached to the rod end.

Obtain the clear image of the mark on 7. The initial position of the
mark on the ocular scale must be chosen so that the mark remained in the
field of vision during the whole experiment. Record the initial position of
the mark on the ocular scale at room temperature.

. Make sure that you understand the operation principle of the Wheatstone
bridge P4833 and get it ready for the experiment.

. Connect the resistance thermometer to the bridge and measure its resis-
tance R, at room temperature. Record the room temperature ¢,.

Choose the operation mode of the bridge corresponding to the maxi-

mum sensitivity.
. Determine dependence of the rod length on temperature (actually the
length vs the wire resistance). To this end connect the electric heater
to the transformer output. Set a moderate voltage and wait until the rod
is uniformly heated. Measure the thermometer resistance using the bridge
P4833 and record the cross position on the ocular scale.

Gradually increase the output transformer voltage and record the resis-
tances and the corresponding positions of the cross.
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. Plot the experimental points in coordinates n (the cross position) and R

(the resistance). Draw the straight line through the points and determine
its slope An/AR. Find the error §(An/AR) using the method of least
squares (see p. 32).

. Substitute the value of the slope in Eq. (13) and evaluate the linear expan-

sion coefficient o. The rod length is written on the setup.

. Evaluate the error of a.

An example of the lab report is presented in the appendix.

Questions

. For a given accuracy of AL determine the required accuracy of the rod length

and the thermometer resistance.

. Determine the contributions to the error of a: due to calibration of the ocular

scale, due to determination of the mark position, due to measurement of the room
temperature, and due to the error of the temperature coefficient of resistance.

. Near-sighted and far-sighted observers adjust the microscope so that the image

l2 is either at small or at large distance, respectively, from the observer’s eye. Is
it linear or angular magnification that changes less?

Literature
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Example of lab report 1.1.2

1. Calibration of the ocular micrometer scale using the object scale. The
object scale has a length of 1 mm=100 graduations.

Table 1
n (# of ocular scale graduations)
for [ =0 for [ = 0.5 mm An; | An
1.44 6.12 4.68
1.35 6.08 4.73 | 4,70
1.52 6.21 4.69

The length of the ocular scale graduation is

Al 0.50 mm 1
An  4.70 grad mm/gra
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6B _ [(aL\T, (on Y’
B Al An )’

where 6l ~ 0.005 mm (one half of the object scale graduation), and the overall
error of the ocular scale,

The relative error is

on = +/(0n1)% + (dn2)?,

is determined by the systematic error dn1 = 0.005 (one half of the graduation
scale of the micrometer) and by the random error

m

1 ——\2 _
ons = \J m(T—l)Z (Ani — An) =1.2-1072 grad.

i=1

Thus

on =+/(1.2)2+(0.5)2-10" >~ 1.3-10"? grad,

5B 0.005\% /0.013\?
g ~ 0.01 = 1%.
B \/( 0.5) +(4.7) 0.01 = 1%

Finally the graduation length of the ocular micrometer scale is

B = (1.06 £ 0.01) - 10" mm/grad.

2. The thermometer resistance is measured at room temperature ¢, = 22 °C.
The Wheatstone bridge P4833 operates at the ratio N = 1; R, = 49.294+0.01 .
The position of the mark on the ocular scale is n, = 1.88 grad.

3. The positions of the mark vs the thermometer resistances are tabulated
in 2, the plot is shown in Fig. 4.

Table 2
R,Q | nygrad || R,Q | n,grad || R, Q | n, grad
49.25 1.88 52.81 3.65 55.74 5.05
49.85 2.17 53.11 3.73 56.06 5.14
50.15 231 53.81 4.08 56.25 5.24
50.93 2.75 54.51 4.46 56.58 5.40
51.50 2.95 55.05 4.74 56.97 5.58
52.18 3.28 55.29 4.82 57.11 5.67

The slope of the curve is determined graphically:

An 5.67 —1.88

AR~ 57l _doos 0482 grad/
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Fig. 4. Position of the mark versus thermometer resistance

The linear expansion coefficient is found from Eq. (13). Since L, =
= (6004 1) mm, © =4.30-1072 °C™" at ¢, = 20 °C, one gets

R. AL R, An 49.25 - 0.482 - 0.106 - 4.30 - 1073 5 o1
aiL_TA_R@,L_TEB@, 600 = 1.80-10 Cc .

It is impossible to estimate the error of An/AR using the plot because the
straight line fits the points well. Therefore one should use the method of least
squares which provides a better accuracy. The goal is to determine the best fit
value b in the equation n: = a + bR; and the error b of the coefficient b. The
calculation (see (1.35) and (1.37)) gives

b= M = 0.477 grad/<,
(R?) — (R)

I R e
0= —= (P =00 d/S.

The linear expansion coefficient is determined by the Eq. (13):

o — 49.25-0.477-0.106 - 4.3 - 10~°

=1.785-10"° °C™ .
500 785-107° °C
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The relative error is
6_04_ SR, 2+ L. 2+ @2+ 6_BQ+ &2N
a R, L, ) B b))~
1) 105 \?
~ \/(ﬁ) + (H) ~ 0.024 = 2.4%.

The absolute error is

So=ca-0.024 = 1.785-0.024 - 10~° = 0.043 - 10~° °C™ ",

Finally
a=(1.79+0.04) - 107° °C~".

The value of a found directly from the plot agrees with this value.

Lab 1.1.3

Statistical treatment of measurements.

Purpose of the lab: to apply methods of processing experimental data
to measurement of electrical resistance.

Tools and instruments: a set of resistors (250-300) and the digital
voltmeter V7-23 operating in the mode «Measurement of resistance to
direct current».

Industrial production of resistors is a complicated technological pro-
cess. An actual value of resistance differs from the nominal. The error
can be both systematic and random. Inaccurate adjustment of a resistor
manufacturing machine results in systematic errors. Random errors are
due to non-uniformity of the wire (in width and chemical composition)
used in resistor production, random changes of temperature, and machine
backlashes.

Measurement of resistance in this lab requires a precise instrument be-
cause of relatively small differences from the nominal. An appropriate in-
strument is «universal digital voltmeter V7-23» used in the «Measurement
of resistance to direct current» mode which provides a relative measure-
ment accuracy of hundredths of percent. Exact values can be found in the
device manual.

Thus the error due to the measurement instrument is negligible in com-
parison with the deviations from the nominal arising in the process of
resistor manufacturing.
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The main part of the lab is measurement of all resistances of a given
set (about 250-300) and calculation of the mean value (1.15):

1 N
(R)= 3> R 1)
=0

If the number of resistors is large enough one could obtain a specification
of the set that no longer depends on the number of resistors.

To describe random errors arising in resistor production one should plot
a histogram. To this end one should find the maximum R,,,,, and the min-
imum R,,;, values of the obtained results. The difference R0z — Rmin 1S
divided into m parts. The obtained value is called the interval of resistance

variation: R R
AR — maxr min ) (2)

m

The histogram is plotted as follows. The intervals of resistance variation are
plotted on the abscissa. The number An of the measurements which belong
to a given interval is plotted on the ordinate. However it is convenient to
divide An by the total number of measurements N (which is the absolute
probability of occurrence in the corresponding interval) and by the interval
width AR (which gives probability density). So the quantity plotted on

the ordinate is
An

~ NAR’

It is interesting to observe how the histogram changes as the number of
partitions m increases. In the process m must remain much less than N.

One should also plot the mean value of the resistance on the abscissa
and notice how it is located relative to the histogram.

Standard deviation specifies dispersion of a random quantity (1.18):

Y

1 N
o=\ 7 2B — () (3)

It is instructive to plot the points (R) — o and (R)+ o on the abscissa and
notice how the histogram is located relative to these points.
The value of o defines the Gaussian (normal) distribution (1.16):

1 (R—(Rr))?
i (4)

v 2ro

One should plot this function on the histogram.
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LABORATORY ASSIGNMENT

. Read carefully the brief manual «universal digital voltmeter V7-23» and

pay special attention to the section «Measurement of resistance to direct
current».

. Turn on the voltmeter power supply and wait for 15-20 minutes until the

voltmeter warms up.

. Measure resistances of the given set of N = 250-300 resistors.
. Plot the histogram (follow instructions in the text) for m = 10 and m = 20.
. Calculate (R) and compare it with the nominal value. Plot the values

on the abscissa and compare them with the position of maximum of the
histogram. Plot the values (R) — o and (R) + o on the abscissa. Compare
the histogram width with these values.

. Calculate the number of the resistances which belong to the interval be-

tween (R) — o and (R) 4+ o and between (R) — 20 and (R) + 20.

. Plot the Gaussian distribution and compare it with the histograms corre-

sponding to different numbers of partitions n.

Literature

. Ckeatipc Jotc. Ilpakruyeckas dusuka. — M.: Mup, 1971.
. 3atdeavr A.H. DmemeHTapHBIE OIeHKYU ounruboK u3Mmepenuii. — JI.: Hayka, 1974.

Example of lab report 1.1.3

The following equipment is used: a set of 270 resistors with the nominal
of 560 Ohm and the universal digital voltmeter V7-23 operating in the mode
«Measurement of resistance to direct current».

The measured resistances of 270 resistors (in Ohm) are listed in Table 1 in
ascending order.

Using the tabulated resistances we plot the histograms for m = 20 and m =
= 10. To compare the histogram with the normal distribution we plot the number
of results An in a given interval divided by the total number of results N and by
the interval width AR on the abscissa, instead of plotting the number An itself.
The values of An and w = An/(NAR) versus the group number k are listed in
Tables 2 and 3, respectively. The histograms are shown in Figs. 1 and 2. We
calculate the mean value of the resistance according to Eq. (1):

N
1
(R) =+ > Ri =560,7 Ohm.

i=1

The standard deviation is determined according to Eq. (3):

1
=, = ; — RS .
T=0w izl(Rl (R)) 9 Ohm
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539.7
545.4
547.6
549.3
550.1
553.2
554.3
955.2
555.7
556.4
557.0
557.3
557.8
558.5
558.8
559.4
559.8
560.2
561.0
562.0
562.6
563.2
564.5
565.7
567.8
570.2
572.3
574.0
579.0
582.7

540.7
545.5
547.9
549.3
550.8
553.3
554.3
555.3
555.7
556.5
557.0
557.4
557.9
558.5
558.9
559.4
559.8
560.2
561.1
562.0
562.7
563.6
564.5
565.8
568.0
570.3
572.4
574.0
579.2
582.9

Table 1

Measured resistances of 270 resistors

941.5
545.9
948.0
549.3
351.8
353.6
554.5
955.3
555.7
356.95
357.0
59574
358.0
5958.5
358.9
959.4
559.8
960.3
561.1
962.0
562.7
563.6
964.8
565.9
968.1
570.6
572.6
974.8
579.7
383.1

542.3
546.0
548.4
549.4
552.0
553.7
554.7
555.3
555.7
556.6
557.1
557.4
558.0
558.5
559.0
559.6
559.9
560.4
561.1
562.3
562.7
563.6
565.0
566.1
568.3
570.7
572.9
975.1
579.8
584.1

942.8
546.1
948.7
549.6
952.1
353.9
554.8
355.3
556.0
356.6
357.1
957.5
358.0
558.6
959.0
959.7
560.0
560.4
561.4
962.3
562.8
564.0
965.1
566.1
968.7
571.0
573.0
976.0
580.0
984.3

943.4
546.1
948.9
549.7
952.3
954.2
555.0
355.3
556.1
356.7
357.1
957.5
358.1
958.7
359.1
959.7
560.0
560.4
561.5
962.5
562.8
564.2
965.1
566.2
968.9
571.1
5973.1
976.3
580.5
386.6

543.9
546.5
549.0
549.7
552.3
554.2
555.1
555.3
556.1
556.8
557.2
557.7
558.1
558.8
559.1
559.7
560.0
560.6
561.5
562.5
563.0
564.3
565.2
566.8
569.1
571.1
573.2
578.1
580.6
586.7

944.3
546.8
949.1
549.9
952.7
954.2
555.1
355.9
556.4
356.8
357.2
957.7
358.4
558.8
959.3
959.7
560.0
960.7
561.6
962.6
563.1
564.4
965.3
566.9
969.7
571.5
573.3
978.8
581.1
987.3

945.0
546.9
949.2
550.0
353.0
954.2
555.1
355.6
556.4
356.9
357.3
957.8
358.4
558.8
959.3
359.8
560.0
960.9
561.9
962.6
563.1
564.5
965.3
567.6
969.8
572.1
573.5
978.8
581.4
389.0
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Table 2
k 1 2 3145 6 718 9 |10
An 4 | 4 |10 | 17| 8 |16 |44 | 45| 28 | 25
w-1000 | 6 6 | 15|25 |12 |24 |65 |67 | 41 | 37
k 11 (12|13 (14| 15|16 | 17 | 18 | 19 | 20
An 14 (10|11 10| 3 715 5 3 1
w-1000 | 21 | 15|16 | 15| 4 |10 | 7 7| 4 1

k 112|345 |6 | 7|8]9 /|10
An 8127 (24|18 (5324211010 4
w-1000 | 6 |20 | 18 |66 | 39 |18 |16 | 7 | 7 | 3

The intervals between (R) —o and (R)+o0 and between (R) —20 and (R)+20
contain 46% and 93% of the total number of the results, respectively. Normal
distribution is defined by Eq. (4):

1 _(R—(R)?
e 202

v 2o
This function is shown in Figs. 1 and 2. One can see that the histograms agree
well with the normal distribution. According to the normal distribution a resis-
tance belongs to the interval between (R) — o and (R) + ¢ with the probability
of 68% and to the interval between (R) — 20 and (R) 4 20 with the probability
of 95%.

The experiment shows that the resistance of a resistor chosen randomly be-
longs to the interval 560 £ 9 Ohm with the probability of 46%, to the interval
560 + 18 Ohm with the probability of 93%, and to the interval 560 + 27 Ohm
with the probability of 99%.

Thus all the resistances belong to 5-percent interval ((R) £ 30).

1.1.3
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Lab 1.1.4

Measurement of radiation background intensity.

Purpose of the lab: to apply methods of experimental data processing
and to study statistical laws in measurement of radiation background
intensity.

Tools and instruments: Geiger-Miiller counter CTC-6, a power unit,
and a computer connected to the counter via the interface.

As it was stated in discussion of random errors the random dispersion
of experimental results could be due to both systematic errors and random
variations of the measured quantity. A flux of cosmic rays, which consid-
erably contribute to radiation background, randomly varies with time. If
variations take place near a definite value one says that the flux fluctu-
ates. In this case the random variable can be characterized by the mean
value and the standard deviation from this mean value. To determine the
mean value and standard deviation one employs the same methods which
are used in calculations of the mean values and random errors of measure-
ments. Cosmic rays are divided into the primary ones reaching the Earth
orbit from outer space and the secondary rays arising due to interaction
of the primary rays with the Earth atmosphere. The secondary rays con-
stitute the major part of the rays at the sea level. The main part of the
primary rays comes to the Earth from the Galaxy; the rest arises due to
solar activity and has lower energies. The origin of the galactic rays is a
subject of debate. A part of cosmic radiation is emitted by stars of the
Galaxy during chromospheric flares in the same way as on the Sun. More
energetic rays are apparently due to supernova outbursts and pulsars. It
is hypothesized that acceleration of space particles can be attributed to
high-velocity clouds of plasma originated in supernova explosions and to
galactic magnetic fields. The primary cosmic rays form the flux of stable
particles with a high kinetic energy which in the appropriate units lies in
the range from 10° to 10%! electron-volt (or shortly eV 1 electron-volt =
=1,6-107'2 erg = 1,6-1071% J). It is found that in outer space the particle
flux is independent of direction (isotropic). The basic quantity specifying
the amount of particles in the cosmic rays is intensity I. By definition
intensity is the number of particles passing through the unit area perpen-
dicular to the direction of observation per unit of spatial angle (steradian)
and per unit of time. The unit of measurement is

number of particles

cm?-sr-s
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For the isotropic distribution of cosmic rays that takes place outside
the Earth atmosphere the density F' of particle flux coming from the upper
hemisphere equals

/2
t ticl
F =27 J TcosOsinfdf =nl <am0“” 0]20 partic 68>.
cm? - s
0

The density of particles with absolute velocity V' equals:

Al (amount of particles)
n=— .

Vv

cm3

Notice that the majority of particles outside the Earth atmosphere moves
at speeds close to the speed of light ¢, therefore to estimate n one can
substitute ¢ for V. Also note, that the intensity of the secondary cosmic
rays near the ground is proportional to cos? 6, where 6 is the angle between
the velocity and the vertical.

Particle flux density is equal to the number of particles crossing the area
of 1 cm? per 1 second. The density is 1 particle/(cm?-s) at the distance
about 50 km from the Earth surface. The majority of the particles has the
energy of 10 GeV. Particles with energies less than 1 GeV are absent in the
flux, which is apparently due to magnetic fields of the Earth and the Sun.

Generally the primary cosmic rays consist of protons (92%) and helium
nuclei (6.6%) also called a-particles. Heavier nuclei (up to nickel) are
also detected, they constitute about 0,8% of the net flux. Electrons and
positrons constitute about 1%, the positron flux is ten times less than the
electron one. y-quanta with energies greater than 10® eV amount to only
0,01%. Time variation of the flux of primary cosmic rays is not significant.
The most variable part consists of the particles with energies about 1 GeV;
the variations are due to changing magnetic fields of the Solar system,
11-year cycles of solar activity, the 27-day period of the Sun revolution
around its axis, chromospheric bursts of the Sun (5—13 bursts during an
active year), and magnetic storms in the Earth magnetosphere.

When traversing the Earth atmosphere the primary cosmic rays inter-
act with the atomic nuclei of atmosphere gases and produce the secondary
cosmic rays. Only one of 100,000 protons of the primary rays reaches
the ground. However there are a lot of secondary protons; together with
muons (also called p-mesons) and neutrons they form the so called hard
(high-energy) component of the secondary cosmic rays. A radiation is
called hard if it passes through the lead plate of 10 cm thick. The soft
(low-energy) component of cosmic rays (shielded by a lead plate of 10 cm
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thick) mostly consists of electrons, positrons, and photons. The soft com-
ponent in the atmosphere close to the ground is produced by the hard
component. The flux density of soft component grows with height more
rapidly than the hard component flux. The density of vertical flux of the
soft component at the sea level is approximately half of the flux density
of the hard component which equals 1,7-1072 particles/(cm?-s). However
the flux density of the soft component 15 km above the Earth is 4-5 times
greater than that of the hard component. The net flux density of cosmic
rays is maximum at the height of 17 km. Overall, the flux of cosmic rays
at the sea level is about 100 times less than at the upper boundary of the
Earth atmosphere and two thirds of the flux consist of muons. Analysis of
silt on the ocean floor has revealed that the average flux density of cosmic
rays remained approximately constant during the last 35 thousand years.

The flux density of secondary rays close to the ground strongly depends
on direction. It has its maximum in the vertical direction and minimum in
the horizontal one. The flux is approximately proportional to the square
of the cosine of the angle between the flux and the vertical, which is due to
increasing the length of the path of the rays in the Earth atmosphere. Small
time variations of the flux density of secondary rays are caused by variations
in pressure, temperature, and magnetic field in the Earth atmosphere.

Although the powerful particle accelerators are in operation nowadays,
the cosmic rays remain the sole source of particles of ultrahigh energies.
However such particles do not come frequently. A particle with the energy
of 10'% eV crosses the area of one square meter only once in two thousand
years. Of course the area of 10 square kilometers reduces the waiting period
to several days. High energy particles are detected via the generated fluxes
of secondary particles called air showers. The total number of particles in
a shower originating about 20-25 km above the ground can reach several
millions and covers the area of several square kilometers. The simultaneous
detection of a large number of particles on a significant area proves their
common origin and makes it possible to determine the energy of the parent
particle.

Cosmic rays and natural radioactivity of the Earth and the atmosphere
are primary sources of ions in the lower part of the Earth atmosphere (up
to a height of 60 km). Ionization in the atmosphere initially decreases with
height but higher than 1 km it starts to increase, the increase accelerates
at the height of 3 km. The number of ions per unit volume is 3—4 times
greater at the height of 5 km than at the sea level, but at the height of
9 km it is already 30 times greater.

Cosmic rays can be detected and their intensity can be measured via ion-
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ization they produce. To this end a special device, namely, Geiger-Miiller
counter is used. The counter consists of a gas-filled vessel with two elec-
trodes. Several types of such counters exist. The counter used in the lab
(CTC-6) consists of a thin-walled metal cylinder operating as an electrode
(cathode). The other electrode (anode) is a thin wire stretched along the
cylinder axis. To use the counter in the particle count mode one should
apply the voltage of 400 V on the electrodes. The particles of cosmic rays
ionize the gas in the counter and also knock out electrons from its walls.
These electrons are accelerated by the strong electric field between the elec-
trodes and knock out secondary electrons in their collisions with the gas
molecules. The secondary electrons in turn are accelerated and ionize gas
molecules. This results in electron avalanche and the current through the
counter sharply increases. The electric circuit of the counter is shown in
Fig. 1.

A direct voltage is supplied to the counter by a power unit through
resistor R. In the initial state the electrodes of the counter and capacitor
C; are charged to 400 V, whereas the resistance of R is much less than
leakage resistances of the counter and C;. The capacitor Cs blocks the
direct voltage from being applied to the computer interface.

A small current through the counter initiates
a rapid electron avalanche of the charge accu- Komnbrotep
mulated in CTC-6 and capacitor C;. The en-
ergy of the discharge is supplied by the capac- J_
itor C7; which is connected in parallel with the -—&
counter. The discharge stops when the voltage _ Cuerunk +
across the counter becomes low and does not sup- —E—
port the avalanche anymore (the potential differ-
ence across the electron free path is less than the
ionization potential). The circuit returns to ini- I I
tial state in several RCy. During this process a C
short pulse of current passes through the capaci- ! R
tor C in the electronic circuit of computer inter-
face.

Capacitance C should be neither too high Biok
nor too small. The accumulated energy should MIUTaHUsA
be high en.ough to initiate jche avalanche but the Fig. 1. Electric circuit of
charging time of the capacitor (7 ~ RC:) called Geiger counter

the dead time should not be too large because dur-

ing this time the counter is not able to detect particles (usually the dead
time is about several microseconds). In CTC-6 counter the capacitance of
the Geiger tube serves as C1, so the extra capacitor is not necessary.
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The resistance R should also be neither too great (it increases the
counter dead time), nor too small, otherwise the capacitor accumulates
enough charge during the discharge and the avalanche would not termi-
nate. Usually R ~ 1 MOhm.

The number of detected particles depends on the time of measurement,
the counter size, the gas composition and its pressure, and also on the
material of the counter walls. The major portion of detected particles is
due to the natural radiation background.

Variations of particle flux, which are significant in the laboratory mea-
surement, are related to short-time variations of physical conditions of the
particle production and propagation in the Earth atmosphere. As it was
already mentioned, the random variable measured in the lab is the particle
flux density changing with time in a random way. The methods of data
processing are the same as those of random errors. An estimate shows
that the measurement error due to Geiger—Miiller counter is negligible in
comparison with variations of the flux itself (flux fluctuations). The mea-
surement accuracy is mostly determined by the time required to restore
the initial state of the counter after detection of a particle. This period is
called the resolution time. The size of the counter must be chosen so that
the time period between the particles passing through the counter exceeds
the resolution time.

The quantity measured in the lab is the number of particles passed
through the counter during time intervals of 10 and 40 seconds. Different
time intervals are chosen to demonstrate that the standard distribution
works better for larger time intervals and the histogram is more symmetric.
Random values obtained for smaller time intervals should be treated by
means of the Poisson distribution (see the Appendix).

The standard deviation of the number of counts measured for some
period of time is equal to the square root of the mean number of counts for
the same period: 0 = \/ng (see Eq. (10) of the Appendix). However the
true value of the measured quantity is unknown (otherwise the experiment
would be unnecessary). Therefore when evaluating the error of a particular
measurement one has to substitute the measured value n rather than the
true mean value ng:

o =+/n. (1)

Equation (1) shows that usually (with the probability of 68%) the variation
of the measured number of particles n from the mean value is less than
/1. The result of measurement is written as:

ng = n £ V/n. (2)
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Now consider the following important problem. Suppose one carries out
a set of N measurements and obtains the number of particles ny, ns, ...,
ny. So far we used these numbers to determine how much the result of a
particular measurement differs from the true mean value. As it was already
mentioned this problem addresses reliability of the result obtained in a
single measurement. But if one carries out several measurements the results
can be used to solve another problem: they allow one to determine the
mean value of the measured quantity better than for a single measurement.
If N measurements have been carried out the mean value of the number
of particles detected in one measurement equals obviously

1 N

whereas the standard error of the single measurement can be estimated
according to Eq. (1.18), i. e. by substitution ny =7 in Eq. (1.17) :

Osep =

According to Eq. (1) one expects that this error is close to /n;, i. e.
Osep = 03 = /N, where one could substitute any measured value n for n;.
Since n; are different, one obtains different estimates of o4p,. All of them
differ from the more reliable estimation of o, given by Eq. (4). This
is to be expected. When processing measurement results, we always get
approximate values of the measured quantity and the errors which could
more or less coincide with the true values. The value /7 is the closest one
t0 0gep defined by Eq. (4), i. e.

Goep ~ V. (5)

Of course, the value 71 from Eq. (3), which is obtained by averaging the
results of N measurements, does not exactly coincide with the true value
no, it is essentially a random quantity. Probability theory shows that the
standard deviation of 7 from ng can be determined by Eq. (1.20):

Here Eq. (4) is used in the second equation.
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Usually it is not the absolute but the relative error of measurement
which is of great interest. For the considered set of N measurements (10 s
each) the relative error of a measurement (i. e. the expected difference
between n; and ng) is

Osep 1

U N\/—n_z"

The relative error of the mean value n is determined similarly:

Esep =

On _ Osep 1
aV/N ~ VaN
The value o5, from Eq. (5) is substituted in the last equation of (7).

Thus the relative error of 7 is determined only by the total number of
counts 7N and it is independent of the set partitioning (10, 40 or 100 s).
This is to be expected, because all the measurements constitute the sin-
gle measurement, which registers > n; = N counts. As we can see the
relative accuracy of a measurement gradually improves as the number of
counts grows (and the time of the measurement increases).

Using Eq. (7) we have found that to attain an accuracy up to 1% of
the measurement of intensity of cosmic rays one should obtain at least
1002=10000 counts, the accuracy of 3% requires only 1000 counts, the
accuracy of 10% is reached at 100 counts, etc. The accuracy is the same
regardless of the way the net number of counts (1000 or 10 000) is obtained:
in a single or several independent experiments.

(7)

Epn = —
n

A specially designed computer code is used to measure the intensity
of cosmic rays and treat the experimental data. Using this code one can
obtain the specifications of the experimental assembly and carry out a nu-
merical experiment which simulates the real one. The simulated data are
generated by a special code (random-number generator). In real exper-
iment the code allows one to follow real-time variations of the quantity
under study, its mean value, the standard deviation, the histogram, and to
verify the theoretical formulae concerning measurements and errors. Data
analysis can be performed for various durations of the interval and the num-
ber of counts. The code also contains the main definitions and formulae
used in data treatment.

LABORATORY ASSIGNMENT

. Study the sections of the manual concerning measurements before the ex-
periment.

2. Study the experimental setup.
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. Turn on the computer and the assembly. After computer booting the code

STAT is loaded and the experiment begins. Study the manual of STAT which
is available in the laboratory.

. Carry out the demonstration experiment in which the data is produced

by the random-number generator. Study how the following values vary
depending on the number of measurements:

1) the measured quantity,

2) its mean value,

3) the error of individual measurement,

4) the error of the mean value.

. After the main experiment is completed copy the experimental data from

the computer monitor to the workbook.

. Using the data plot the histogram w, = f(n) of the distribution of the

number of counts for 10 s. To this end plot the integers n on the abscissa
and the fraction of the events corresponding to the number of counts equal
to n on the ordinate. The fraction of events w,, which is the probability of
getting n counts is determined according to the obvious formula:

number of events with outcome n

" total number of measurements(N)

. Combine the measurement results for 7 = 20 s bins in pairs and plot the

histogram of the distribution of the number of counts for 40 s bins. The
histograms of the distributions of the number of counts for 10 and 40 s
bins should be plotted on the same graph; this makes visual comparison
easier. The abscissa graduations on the second graph should be chosen so
that the positions of the mean values 7 coincide. How does the histogram
change when the period of the measurement increases? What determines
the width of the histogram peak?

. Determine the mean number of particles for 10 and 40 second bins and

the corresponding standard deviations for individual and the mean values.
Verify that the standard deviation of individual measurement is related to
the mean number of particles as o = /7.

. Determine the fraction of the events for which a deviation from the mean

value does not exceed o, 20. Compare the results with theoretical esti-
mates.
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Example of lab report 1.1.4

Lab equipment: Geiger-Miiller counter (CTC-6), a power unit, and a com-
puter.

1. Turn on the computer. (Accumulation of data for the main measurement
begins.)

2. In the course of the demonstration experiment we verify that when the
number of measurements increases

1) the quantity to be measured fluctuates;

2) the fluctuations of the mean value of the measured quantity decrease and
the mean value tends to a constant;

3) the fluctuations of the error of individual measurement decrease and the
error of individual measurement (the systematic error) tends to a constant;

4) the fluctuations of the error of the mean value and the value itself decrease.

3.Perform the main experiment: the measurement of the density of the cosmic
rays flux for 10 seconds (the results have been accumulated since turning on
the computer). Using the computer code process the results similarly to the
demonstration experiment. The results are recorded in tables 1 and 2.

4. Combine the measurement results from Table 1 in pairs, which corresponds
to N2 = 100 measurements for the time interval of 40 s. The results are recorded
in Table 3.

5. Represent the results of the last measurement in a special form which is
suitable for plotting the histogram (Table 4). The histograms of distributions of
the mean number of counts for 10 and 40 s are plotted on the same graph (see
Fig. 2). The abscissa graduation is 4 times greater for the second distribution to
make the maxima coincide.

6. Using Eq. (3) calculate the mean number of counts for 10 s:

Ny
ny = 1 Zni = 2896 = 7.24.

Ny & 400

7. Find the standard deviation of individual measurement using Eq. (4):

Ny
1 2934
= —_— i —n1)? = — ~2.7.
1= |y (= m) = g ~ 2T

i=1

8. Verify Eq. (5):
o1 = VN 2.7~ V7.24 = 2.69.

9. Determine the fraction of the events for which deviations from the mean
value are less than o1, 201, and compare them with the theoretical estimates (see
Table 5).
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Table 1
Number of counts for 20 s

# ombita | 1 2 3 4 5 6 7 8 9 | 10
0 20 |16 |20 | 16 | 16 | 15 | 13 | 16 | 13 | 14
10 17 |22 | 14 |12 | 15 | 17 | 20 | 16 | 16 | 17
20 16 | 15 | 28 | 15 | 19 | 5 | 14 | 17 | 14 | 15
30 11| 6 |14 |11 |16 | 12 | 18 | 14 | 14 | 25
40 10 |21 | 18 | 14 | 13 | 20 | 18 | 16 | 17 | 11
50 10 | 7 6 |21 | 23|19 |10 | 13| 14 | 15
60 10 (12 | 13| 9 |18 |19 |17 | 11| 9 | 16
70 16 | 15 | 12 | 16 | 12 | 20 | 6 | 11 | 13 | 19
80 22 |17 |19 |17 | 10 | 13 | 10 | 20 | 16 | 10
90 12 |10 |19 |16 | 14 | 15| 5 | 14 | 13 | 13
100 12 | 14 | 12 |14 | 13 |13 |17 | 7 | 18 | 15
110 13 |13 122 |12 |15 |14 |10 | 16 | 15 | 10
120 17 |19 | 27 | 13|16 | 16 | 13 | 15 | 15 | 13
130 6 |18 | 8 |14 |16 | 17 |13 | 15| 19 | 16
140 17 | 13 | 15|19 | 16 | 14 | 20 | 18 | 16 | 12
150 16 | 12 | 14 |12 |11 | 8 |12 | 10 | 13 | 20
160 11 |10 | 10 | 10 | 20 | 16 | 15 | 15 | 11 | 10
170 13 |12 | 15|14 |15 |13 |12 | 17 | 156 | 11
180 11 |13 | 15| 14 | 11 | 10 | 16 | 14 | 14 | 22
190 10 | 16 | 20 | 18 | 11 | 11 | 10 | 22 | 16 | 11

Footnote: Table is composed so that, e.g. the result of the 123-rd event is on the

intersection of the 120-th row and the 3-rd column.

10. Using Eq. (3) determine the mean number of counts for 40 s:

11. Find the standard deviation of individual measurement using Eq. (4):

g2 =

12. Verify Eq. (5):

n2

No

=1

127“7

N

1
No

o2 X

No

D (ni —n2)?

=1

na;

5.7~ v29.0 =5.4.

2896
100

~ 29.0.

3210
—— ~5.7.
V' 100
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0,04 |-

0,02 |-
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20 30 40 50 60 70

Fig. 2. Histograms for 7 =10 s and 7 =40 s
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Table 2
Data for histogram of distribution of number of counts for 10 s
Number of pulses n; 0 1 2 3 4 5
Number of events 0 3 9 15 30 59
Fraction of events wy, 0 0.007 | 0.023 | 0.037 | 0.075 | 0.147
Number of pulses n; 6 7 8 9 10 11
Number of events 49 53 62 45 28 20
Fraction of events w, | 0.123 | 0.132 | 0.155 | 0.113 | 0.070 | 0.050
Number of pulses n; 12 13 14 15 16 17
Number of events 14 7 2 3 0 1
Fraction of events w, | 0.035 | 0.017 | 0.005 | 0.007 0 0.003

Table 3
Number of counts for 40 s

7 of sample 1 2 3 4 5 6 7 8 9 10
0 36 | 36 | 31 | 29 | 27 | 39 | 26 | 32 | 36 | 33
10 31 (43 | 24 | 31 | 29 | 17 | 25 | 28 | 32 | 39
20 31 | 32 | 33 | 33 | 28 | 17 | 27 | 42 | 23 | 29
30 22 | 22 | 37 | 28 | 25 | 31 | 28 | 32 | 17 | 32
40 39 [ 36 | 23 | 30| 26| 22|35 |29 |19 | 26
50 26 | 26 | 26 | 24 | 33 | 26 | 34 | 29 | 26 | 25
60 36 | 40 | 32 | 28 | 28 | 24 | 22 | 33 | 28 | 35
70 30 [ 34 | 30 | 38 | 28 | 28 | 26 | 19 | 22 | 33
80 21 120 | 36 | 30 | 21 | 25 | 29 | 28 | 29 | 26
90 24 |29 | 21 | 30| 36 | 26 | 38 | 22 | 32 | 26

13. Compare the standard deviations of individual measurements for two
distributions: 1 = 7.4; 01 = 2.7 and n2 = 29; 02 = 5,7. One can easily see that
although the absolute value o of the second distribution is greater (5.7 > 2.7),
the relative half-width of the second distribution is smaller:

2. .
TL100% = 2 100% ~ 37%, 22 100% = 2L - 100% ~ 20%.
ni 7.24 no 29
This can be also seen in Fig. 2.

14. Determine the standard error of the quantity 71 and the relative error of

the estimate 71 using N = 400 measurements for 10 s bins. According to Eq. (6)

or _ 2T 013,

- VNL V400




70 Measurements in Physics

Table 4
Data for histogram of distribution of number of counts for 40 s

Number of pulses n1 17 | 18 19 | 20 | 21 22 | 23 | 24 | 25
Number of events 3 0 2 1 3 6 2 4 4
Fraction of events wy [0.03| 0 [0.02{0.01|0.03|0.06 {0.02|0.04|0.04
Number of pulses n; | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34
Number of events 12 2 10 8 5 5 7 6 2
Fraction of events wy |0.120.02|0.01{0.08|0.05|0.05[0.07|0.06 | 0.02
Number of pulses n; | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43
Number of events 2 7 1 2 3 1 0 1 1
Fraction of events wy |0.02|0.07(0.01{0.02|0.03|0.01| 0 |0.01|0.01

Table 5
Number )
Error of Fracton of events, % Theoretical
estimate
events
+o1 = £2.7 268 67 63

Find the relative error according to the first Eq. (7):

. 0.13
- (;_Lll +100% = =7 - 100% =~ 1.8%;

and according to the last Eq. (7):

o 100%  100% ~ 1.9%
nqy — = ~ 1. 0.
Y VAN V/7.24-400

Finally,
Ng=10s = N1 £ o, = 7.24 £0.13.

15. Determine the standard error of the quantity 72 and the relative error
of the estimate 72 using N2 = 100 measurements for 40 s bins. According to

Eq. (6)

P B Y
The relative error according to the first Eq. (7) is
0,57
Eny = 202 . 100% = -100% =~ 2.0%;

[\
©

n2

1.14 71

and according to the second Eq. (7):

. 100% B 100% -
\/’ﬁzNz \/29 - 100

n2

19% = Eﬁl .

Finally,
N¢=40s = N2 £ 0a, = 29.0 £ 0.6.

Appendix

The Poisson distribution. In physics the measurement results are often rep-
resented by integers. For example, a discrete (usually large) number of particles
passes through Geiger counter during the time of measurement. A nucleus un-
dergoing fission splits into integer number of parts. Statistical patterns in these
cases possess some general features.

Consider a counter which detects cosmic rays. Whereas the number of counts
for any period of time is an integer, the flux density v (i. e. the average number
of counts per one second per unit area) is usually non-integer.

Let’s find the probability that for a given flux density v the counter triggers
n times during a given time interval. For the sake of simplicity we will assume
that the counter has unit area, which does not influence the final result.

Since we calculate probabilities one should imagine a great number of similar
simultaneously operating counters. Some of them trigger exactly n times. The
ratio of the number of these counters to the total number of counters is the
probability of the event that a counter triggers n times during the given time
interval.

Let the net number of counters be V. On average Nv particles pass through
them per second and Nvdt particles pass for the time dt. If dt is small enough
none of the counters detects more than one particle during this time, therefore the
counters can be divided into two groups: those which triggered and those which
did not. The last group is, of course, the largest one. Obviously the number of
triggered counters is equal to the number of counted particles, i. e. approximately
Nvdt, so their ratio to the net number of counters is Nvdt/N = vdt.

Therefore the probability of a particle passing through a counter for dt equals
vdt. This argument is valid only if dt is very small.

Let us calculate now the probability Py(t) that no particle passes through a
counter for t. By definition the number of such counters at ¢ equals N Py(t) and
at t+dt it is equal to N Py(t + dt). The last number is less than N Py(t) because
during dt the number of the counters decreases by NPy (t)vdt. Therefore

NP()(t + dt) = NPQ(t) - NPQ(t)l/dt,
or
Po(t + dt) — Po(t) = —Po(t)l/dt.
Dividing this equation by dt and taking the limit of infinitesimal dt we obtain

P,
@ _ P,
i vro
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Integrating this equation we obtain
Py(t) = e ", (8)

The constant of integration is determined by the obvious condition that initially
the probability to find a counter which has not triggered equals unity.

Now let us calculate the probability P,(t + dt) of the event of exactly n
particles passing through a counter for the time ¢ 4 dt. These counters are
divided into two groups. The first group includes the counters which triggered
exactly n times for the period ¢ and not triggered for the period dt. The second
group includes the counters which triggered exactly n— 1 times for the time ¢ and
triggered once during the period dt. The number of counters in the first group
equals NP, (t)(1 — vdt) and the number of counters in the second group equals
NP,_1(t)vdt. (Each expression consists of two multipliers. The first determines
the probability that a counter triggers a given number of times during the time
t and the second specifies the probability to trigger or not to trigger during the
time dt.) Thus we obtain:

NP (t +dt) = NPu(t)(1 — vdt) + NPy (t)vdt.

Now move NP, (t)(1 — vdt) into the left part of the equation and divide it by

Ndt: JP
d_tn +vP, =vP,_1.

Applying the recurrence relation for n = 1, n = 2 etc., and using (8) we obtain

Vt)n —vt

Pn:( €

n!

Notice that vt denoted as ng equals the mean number of particles passing through
a counter for the time ¢. Then our formula can be written as
P, = %e*’m. (9)

It is the final formula which is known as the Poisson distribution law. It deter-
mines the probability that for a given mean number of counts no (not necessarily
integer) exactly n counts take place (n is integer).

The Poisson distribution law is specified by the single parameter: the mean
number of counts. Neither the time of measurement nor the counter area matters.
Similarly the law is not limited by a Geiger counter detecting cosmic rays. The
law applies to the number of telephone calls passing through central station or to
any other problem in which the number of counts is an integer and independent
of the number of counts detected previously (independent events).

Consider some properties of Eq. (9). First of all let us calculate the proba-
bility to find any number n:

oo oo nn oo nn
P, (no) = E —?(37"0 =e "0 E —? =e "™ =1.
n=0 n=0 n n=0 n
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Of course this result is evident because any value of n could be found in experi-
ment, therefore we have calculated the probability of a certain event.
Now calculate the mean value of n:

o s nm e nnfl
() = - nPalno) = donihe ™ = ¢ Mny Y0 Moy =
n=0 n=1 n: n=1 n- :
oo

_ Un) _
= nge "° E — = noe 00 — ny.
n!

n=0

The obtained result is predictable since we started from the assumption that the
mean value of n equals ng.

Now let us find the standard deviation of n. To this end we calculate the
variance of n (the mean value of the deviation squared):

((n— n0)2> = <n2 — 2nno +n(2)> = <n2> —2(n)no +ng = <n2> —ng.

To calculate (n”) it is convenient to find (n(n — 1)) at first and then make use
of the following expression (n(n — 1)) = (n*) — (n) = (n*) — no:

n, ng
ng, 2 2 : 0 2 § : 0 2 2
= e 0 no R nae no no _no .

Hence: <n2> = n% + no and
o? = ((n— n0)2> = <n2> —ng = (nd +no) — ng = no.

Finally,
o= V((n—n0)?) = Vno. (10)

Gaussian distribution. When the parameter no tends to infinity the Poisson
distribution takes the form of Gaussian distribution. Many other distribution
laws have the same limit. This is explained by the central limit theorem which
states that a distribution of the sum of a large number of independent random
values tends to Gaussian distribution. For example, the number of particles pass-
ing through a counter for n seconds (random quantity, the Poisson distribution)
could be treated as the sum of n numbers of particles passing through the counter
per second.

Consider the Poisson distribution for large no and n. Discreteness of the
distribution is no longer significant in this limit because n varies almost contin-
uously. We will specify the deviation of n from no by ¢ defined by the following
relation
n—"no

n=no(l+e¢) or €=
no
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Using Stirling’s formula
Inn!=Inv2rn+nlnn—n
and Eq. (9) we obtain

InP, =nlnng —no —Inv2rn —nlnn+n=

2
=nlh @ +(n—mno) —InVv2mn =~ —Inv2wno — n026 ,
n

then

1 _ (717710)2

e 2mo . 11
vV 27Tn0 ( )
The probability distribution P, can be extended to continuous quantities.
To this end notice that n — ng is equal to the deviation of experimental value n
from the mean value ng. Let us denote this deviation as x:

P, =

T =n—ng.

Using Eq. (10) we substitute the standard deviation o for ng. Finally, notice
that P, could be treated as the probability to find the value n in the interval
between n — 1/2 and n + 1/2. This interval corresponds to Az = 1. Making the
substitutions and changing the notation from P, to P(z) we obtain

22

e 207 (12)

Pla) = 2o

Function P(z) is the probability that the value z belongs to the unit interval

Az around the central value x. Choosing the infinitesimal interval dx instead we

find
! 72722d (13)
e 202dx.
Vamo
Equation (13) determines the probability that the random value is between

z — dx/2 and = + dx/2. The quantity p(x) is called probability density. For the
random value which has a non-zero mean value u the probability density (13) is

dP = p(x)dzx =

1 _e=w?

p(z) = me 207, (14)

The distribution (14) is called Gaussian distribution.
Using Eq. (13) it is easy to find the probability that the random value lies
between x; and x2, where z; and z2 are any numbers. Obviously,

2

22
\/21_7“7 e 2s2dx. (15)

P(zx1 <z < x2)

1
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The integral (15) cannot be expressed via primitive integrals. It is called the
error function erf(x):

erf(z) =

Sl

le dt. (16)

2] o

The function erf(z) is antisymmetric relative to the origin = 0:

erf(—x) = —erf(x). (18)

One can easily show, that

Plz1 <z <x2) = % {erf(

Using the tables of erf(x) one can easily find the probability that a random
value lies between —o and o, between —2¢ and 20, and between any other values:

P(—o<z<0)= % {erf (%) — erf (-%)} = erf (%) ~ 0,68,

P(—20 < z < 20) = 0,95,
P(—30 <z < 30) =1-0,0044.
The probability to find = between two values quickly approaches unity as the
width of the interval increases.

Indeed they are met not so rarely. It takes place, because real error distri-
butions are various and never strictly obey Gauss law. Such distributions are
treated as Gauss for the lack of better. In the area of small deviations from mean
value Gauss law mostly correctly estimates probabilities of different meeting in
practice deviations, but in the area of large deviations describes them badly, and
more the deviations — worse the description.

Lab 1.1.5

Study of elastic proton-electron collisions

Purpose of the lab: to calculate momenta and scattering angles of
protons and electrons using photographs of particle tracks; to treat the
results using non-relativistic and relativistic theory and to decide which
theory applies.

Tools and instruments: slides with photographs of particle tracks in
a hydrogen bubble chamber; a slide projector with a coordinate grid for
viewing the film.

One of the most efficient methods of studying atomic nuclei and ele-
mentary particles is to investigate their collisions with energetic particles
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and register the particles originated in the collisions. In these experiments
the following techniques are used: 1) creating beams of particles used as
projectiles, 2) preparing targets containing nuclei or other particles, and
3) detecting properties of the outgoing particles.

Energies of outgoing particles originated in the most radioactive sources
are limited by several MeV’s'. Particles, which carry electric charge, can
be accelerated in special machines called particle accelerators. Particle
energy of a commercial accelerator ranges from several MeV to tens of
GeV. All sources of nuclei and elementary particles are divided into ra-
dioactive sources (primary and secondary particles), accelerators (primary,
secondary, and tertiary beams), and nuclear reactors and cosmic rays.

A list of available targets is also limited. It includes all stable nuclei
and electron.

The major problem with particle detection stems from the fact that
possible macroscopic effect on matter due to a particle is very small. The
most prominent effect of this kind is ionization of matter by an electri-
cally charged particle. Some detectors employ electromagnetic radiation of
charged particles passing through matter. Neutral particles are registered
by secondary effects. The main part of a detector is a physical system in un-
stable state: superheated vapor or liquid, gas in a pre-discharge state, and
so on. A micro-particle entering such a system causes macro-catastrophe.

. D Elastic collisions between protons
Do /<9 and electrons is the subject of this
\K\ lab; the experimental data are photo-

12 graphic images of particle tracks in a

Fig. 1. Elastic collision between proton hydrogen bubble chamber. Working
and electron at rest substance in the chamber is a super-

heated liquid. A track due to a charged particle is formed by vapor bubbles.

The detailed mechanism of bubble formation is still to be understood.

Consider an elastic collision between a proton and an electron at rest.
Figure 1 shows: the proton momentum py before the collision, the proton
momentum p after the collision, the electron momentum p,, and the scat-
tering angles ¢ and 6 of the proton and the electron with respect to the
direction of incoming proton, respectively.

The law of conservation of momentum reads (see Fig. 1):

Po = PCosp + pecosb, (1)
psing = pe sin b.

1 1 eV (electron-volt) = 1.6 - 10719 J.
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Excluding the angle ¢ we get
(Po — pe cos 9)2 + pg sin? 0 = p?

or
pa — 2pope cos O + p? = p?. (2)

This relation follows from the law of conservation of momentum and it
is valid both in relativistic and non-relativistic mechanics.

Using the law of conservation of energy one must be careful since rela-
tivistic and non-relativistic expressions for particle energy are different. In
classical (non-relativistic) mechanics kinetic energy is expressed in terms
of mass, velocity, and momentum:

Bo="2 2 (3)

By introducing the notations M and m for the mass of proton and
electron, respectively, and using the notations for the momenta introduced
above (see Eq. 1)), the law of conservation of kinetic energy in non-rela-
tivistic approximation can be written as:

mwo_ P ()

oM~ 2M ' 2m’

Excluding the proton momentum after the collision from Egs. (2)
and (4) one obtains:

m m
De (1 + M) = 2p0M cosd (5)
or u
cosf = tm Pe (6)

2m  po’

It is evident that the momentum of the electron after the collision is
directly proportional to the cosine of its scattering angle. The momentum
increases as the angle decreases. Taking into account that M/m = 2000,
one gets

Pe & 2p0% cos 6. (7)

This implies that the maximum electron momentum is

Pemax ~ OOOlPO (8)

Then it follows from Eq. (1) that p ~ po and 6 > .
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Relativistic mechanics requires the modified expression for energy and
momentum in order for the laws of conservation of momentum and energy
be valid in different reference frames.

mu
b= 71)27 9)
-z
2
E = L (10)
02
I-=

Here v is the particle velocity, c is the speed of light, and m is the particle
mass.
Introducing the notations

and
= (12)

P

one can rewrite egs. (9) and (10) as

E = ymc?, (13)

E
p=5v= ~vBme, (14)
E? = p?c¢® + m2ct (15)

In relativistic mechanics the total energy ymc? of a free particle is the

sum of the kinetic energy (v — 1)mc? and the rest energy mc?.

Let the proton energy before and after the collision be Ey and F, re-
spectively. The energy of the electron after the collision is E. and before
the collision was equal to the electron rest energy mc?. Conservation of

the proton and electron energy gives:
Ey+mc® =E +E.. (16)

Notice that before and after any elastic collision the particles are the
same. Therefore, kinetic energy of the system which equals the difference
between the total and the rest energy for each particle is also conserved.
For electron

K = E. —mc*. (17)
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Now take p from (2) and F from (16), substitute in (15):
(Eo +mc? — E.)* = (p3 — 2pope cos 0 + p?)c? + M3

and simplify this expression taking into account that E3 = p3c® + M2c*
and E? = p2c? + m2c,

m2ct + Eymc* — EgE. — mc?E, = —popec? cos b,

which gives the relation between the electron momentum p. and the angle
0:

 EyE. + mc*E, — Egmc? — m2c* ~ (Eo+ mc?)(E. —mc?) Pe _

cos = =
PopeC? pac? Po
_ (Eo + mc2)(Ee — mcz) De
B EZ — (mc?)? po
_ Ey+mc®pe  M+m+ Ko/ pe

 Ee+mcpy 2m+Ke/® po (18)
Kinetic energy is negligible compared to rest energy for velocities small
compared to the speed of light, then Eq. (18) becomes Eq. (6).
Using the relation (15) between electron energy and momentum one
gets the following relation between the scattering angle of the electron and
its momentum:

Ep 4+ mc? De
Po VP2 +m2ct + me?

It is evident that the relation between the momentum and the cosine
is nonlinear. The cosine grows slower with the momentum than in the
non-relativistic case.

It is convenient to rewrite Eq. (19) using the dimensionless parameter

cosf =

(19)

PeC DPoc - PocC .
:Ee—i—ch :Eo+mc2 cosewE—Ocosﬁ_ﬂcosﬁ. (20)

z

This parameter is directly proportional to cosf. A plot of the function
z(cos ) can be used to determine the initial momentum of the protons.

It has already been mentioned that the elastic collisions between pro-
tons and electrons were observed in the bubble chamber placed in a uniform
magnetic field. The bubble chamber is a cylinder filled with a liquid which
temperature is close to the boiling point. The liquid does not boil because
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it is pressurized by a piston or a membrane used as a cylinder base. The
pressure drops when the proton beam enters the chamber, the liquid be-
comes superheated and remains unstable for some time. If during this time
(several milliseconds) a charged particle passes through the chamber, the
liquid will boil along the particle track which becomes visible as a chain of
vapor bubbles. The working liquid serves as the target and the detector at
the same time. Liquid hydrogen is often used as the working liquid, which
allows one to observe interaction of energetic particles with protons (the
hydrogen nuclei) and with electrons (from the hydrogen electron shells).
The chamber operates at the temperature of liquid hydrogen of 29 K and
at the pressure of 5 atm.

Bubble chamber is superior compared to the Wilson chamber in having
a greater density of the working medium, which lessens particle free path
and enables to detect more interaction events in the same volume. Nowa-
days bubble chambers are not used, they have been superseded by spark
chambers.

The bubble chamber in which the particle tracks have been pho-
tographed was placed in a uniform magnetic field B perpendicular to the
photographic plane. Recall that the particle with electric charge e which
is moving with the velocity ¢’ in the magnetic field B is subjected to the
Lorentz force:

F=etoxB. (21)

In our case it would be safe to assume that @ and B are orthogonal.
The Lorentz force is perpendicular to the velocity, so the particle executes
circular motion. The circle radius r» and the particle momentum p are
related as

2
o evB, (22)
r
or
p = eBr. (23)

This equation is valid both in classical and relativistic mechanics.
In what follows B = 2 T. If pc and r are measured in megaelectronvolts
(MeV) and centimeters, respectively, then

pe = 6r. (24)

Work with the photographs begins with installing the film in the slide
projector and obtaining a sharp image on a screen. The direction in which
the film is moving is considered as the direction of abscissa of the coordinate
grid. Then the film is examined and suitable images are selected.
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The photograph shows tracks of protons passing through the chamber.
The protons collide both with atomic nuclei (hydrogen nuclei in our case,
i.e. protons) and with electrons. In the first case either elastic scattering
or a nuclear reaction occurs, the latter often results in pion creation. The
path of incoming proton has a sharp cusp.

In the case of proton-electron colli-
sion a proton path is smooth since pro-
ton is much heavier than electron. The
trajectories of the recoiled electrons,
which are usually called §-electrons, are
curved by the magnetic field. As it fol-
lows from Eq. (23) the curvature radius
of a trajectory is proportional to the
particle momentum and so it is much
smaller for electrons than for protons.
Deceleration of electron due to its inter-
action with the environment results in
decreasing its momentum and therefore
the curvature radius of its path which
becomes a spiral (see Fig. 2).

The crosses (in the squares) on the photographs are the labels placed
on the bubble chamber window, through which the shots are taken, to
determine the image scale.

Besides the tracks of d-electrons one can also see the tracks of the
electrons which are not related to the proton trajectories. Such electrons,
which seemingly appear out of nothing, are due to scattering of y-quanta
(energetic electromagnetic radiation) on electrons. The photographs also
show the tracks of the pairs et and e~ originated at the same point and
bent in the opposite directions. Such electron-positron pairs are created
by y-quanta in the field of a nucleus.

Not all the photographs can be used for the measurements. One should
select the images on which the centers of the consecutive spiral revolutions
are not significantly displaced with respect to each other and the diame-
ter of the first spiral revolution exceeds 8-10 mm. The photographs on
which an electron recoils at the angle less than 2-3° must be discarded.
The reason is that the angle visible on the photograph is not the whole
story, there is always a component perpendicular to the film. The error of
the measurement arising due to the undetectable perpendicular component
increases if the angle is small. Also one should take into account that prob-
ability for a d-electron to emerge is inversely proportional to the square of
its kinetic energy, therefore the majority of J-electrons have small energies

X
2 X

~ < _ [poOTOH

P =

Fig. 2
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and their trajectories have small radii. This circumstance complicates the
measurements. It is advisable to select both «narrow» and «wide» spirals.

The measurements are performed with the aid of a magnifying glass
(x28). The distance between the crosses on the bubble chamber window is
known and it is used to determine the size of a trajectory. In our case the
radii R measured on the projector screen must be multiplied by the coeffi-
cient K = 0.427 in order to obtain the corresponding radii r in the bubble
chamber. Figure 2 shows the whole photograph which can be observed by
means of a magnifying glass with a less magnification.

A photograph allows one to determine the angle between the proton
trajectory and the initial segment of electron spiral. The electron momen-
tum is determined by the curvature radius of the spiral. In so doing the
experimental relation between electron momentum and scattering angle
can be found. Comparing the relation with Eqgs. (6) and (18) one could
infer whether relativistic effects should be taken into account.

The curvature radius R of electron trajectory and the scattering angle 6
are determined as follows. The selected image of the collision is centered on
the projector screen (see Figs. 3 and 4). The coordinates are chosen so that
the abscissa is directed along the proton trajectory. The origin is placed
at the initial point of d-electron trajectory which coordinates are (z1, y1).
We assume that the initial segment of the spiral is well approximated by
a circle:

(z —20)* + (y — w0)* = R*. (25)

Here zg and yg are the coordinates of the circle center and R is its radius.

Figures 3 and 4 show two possible directions in which an electron can

recoil. One can see that the circle center is located either on the left or on

the right of the ordinate. In both cases the angle o between the ordinate

and the radius drawn from the center (zg, yo) to the origin (z1, y1) equals
0 which can be determined providing R and yo are known. Then

Yo

cosf = ik (26)

The radius of electron trajectory R measured on the screen is used to
calculate the radius in the bubble chamber, »r = 0.427R. The electron
momentum is then determined from Eq. (24).

Radius and coordinates of the center of a circle can be determined
from the coordinates of three points of the circle. One of the points is
the origin (21, y1). Two more points are shown in Fig. 3: the point (z3,
y3) of the trajectory intersection with the ordinate and some intermediate
point (x2, y2). Substitution of the point coordinates in Eq. (25) gives three
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equations:
w§ +yg = R?,
(I2 - Io)z + (yg — y0)2 = R2’ (27)
x5+ (ys — yo)* = R*.
Then ) ,
Y3 T3+ Y2 — Y2y
=5 === 28
yo 2 0 2% (28)

For the case shown in Fig. 4 two additional points are: the point (zo,
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y2) of the trajectory intersection with the abscissa and an arbitrary point
(z3, y3). This gives the following set of equations:

3+ = B
(z2 — w0)* + 45 = R, (29)
(:Z?g — I0)2 + (y3 — y0)2 = R?.
Therefore
2 2
X2 T35 + Y3 — Tax3
== =2 72 =2 30
To 2 ) Yo 2y3 ( )

It is convenient to choose the point of the trajectory intersection with
the ordinate as the third point providing the trajectory does not deviate
significantly from a circle. Then

T
n=%. w=3. (31)

The radius of a circle is always found as

R = /a3 + 2. (32)

For cross-checking it is advisable to measure directly the distance be-
tween the origin and the center of J-electron trajectory on the screen using
the coordinate grid.

In particle physics energy is usually measured in electron-volts (eV) or
the derived units: kiloelectron-volt (1 KeV = 10 eV), megaelectron-volt
(1 MeV = 10° eV), and gigaelectron-volt (1 GeV = 10° eV). Momentum
and mass are conveniently replaced by pc and mc?, respectively. These
quantities have dimension of energy and expressed in electron-volts, which
simplifies calculations. Using these units in the lab is mandatory. The
masses of electron and proton are mc? = 0,511 MeV and Mc? = 938 MeV,
respectively.

LABORATORY ASSIGNMENT

. Make the table for recording the results of the measurements and calcula-
tions:

N T2, Y2, Y3, Rsc'r, R, cos 6 PeC, z

mm | mm | mm | mm mm MeV

-~

10.

11.
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Here N is the track number and R, is the radius measured on the screen.

. Using the magnifying glass project the image of the tracks on the screen.
. Select an appropriate electron track (the scattering angle exceeds 2-3° and

the diameter of the first curve revolution is 8-80 mm).

. Place the origin of reference frame at the initial point (z1, y1) of the

d-electron trajectory. Choose the abscissa direction along the proton tra-
jectory (see Fig. 3).

. Measure and tabulate the coordinates x2, y2, ys of the corresponding points

for a case shown in Fig. 3 and 2, x3, y3 or 2, y3 for a case shown in Fig. 4.

. Measure and tabulate the radius R of the first revolution of the track.
. Repeat the measurements 3-6 for 40-50 tracks.
. Calculate and tabulate the coordinates of the circle using Egs. (28) and (30)

or (31), the radius of the circle using Eq. (32), the cosine of the scatter-
ing angle using Eq. (26), the electron momentum multiplied by the speed
of light using Eq. (24) and the relation r = 0.427R, and z(cosf) using
Eq. (20).

. Plot the points with coordinates (p.c, cosf). On the same graph plot the

points cpe(cos @) calculated using non-relativistic and relativistic Eqs. (7)
and (19).

Plot the points with coordinates (z, cosf). Draw a straight line through
the points and the origin (using the method of least squares is preferable).
Using the value of the slope and Egs. (20), (9), (10), and (15) calculate:
the momentum of the incoming proton, the proton energy, the proton
velocity divided by the speed of light 3 = v/e, and the quantity v =
SN -]

Estimate the random error of the proton momentum and energy using the
following graphic method. Draw two additional straight lines through the
origin with the slopes 5+ Ag (5 is the slope of the line drawn previously)
by choosing AS so that two thirds of the points are between the lines.
Calculate the error of the momentum using

Ap~ p(B+ A\/ﬂﬁ) —p(B)

and compare the obtained value with the error given by the method of
least squares (1.40).

Questions

. Derive equations relating electron scattering angle and its momentum in rela-

tivistic and non-relativistic mechanics.

. Derive the formula relating velocity of a relativistic particle with its momentum

and energy.
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. Derive the equation relating electron momentum and the radius of its trajec-
tory in magnetic field. Show that this equation is valid both in relativistic and
non-relativistic mechanics.
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Example of lab report 1.1.5

The laboratory equipment: a film with photographs of events in a hydrogen
bubble chamber and a slide projector with coordinate grid for surveying the film.

The momentum and the scattering angle (the angle the recoiled electron
makes with the direction of the incoming proton) of an electron are determined
by its (spiral) trajectory in the magnetic field. The initial part of the spiral is ap-
proximated by a circular arc. The radius and the scattering angle are calculated
from the coordinates of three points lying on the arc: z2, y2, and y3 (see Fig. 3).
The origin of the reference frame is at the collision point. The corresponding
data are tabulated in Table 1. The coordinates are measured on the screen with
an error of 1 mm.

The table also contains the results of the calculation. The radius and the
cosine of the scattering angle are evaluated using Eqs. (32), (28) and (26).

Electron momentum is evaluated using Eq. (24) in which » = 0.427R (R is
in mm). The values of z are obtained from (20). The errors can be evaluated
using (1.33).

The points with coordinates (pec, cosf) are plotted in Fig. 5. The large
scatter is due to a large measurement error.

It is evident that electron momentum increases together with cos @ (the angle
decreases).

In a non-relativistic case and for a constant energy of protons the electron
momentum is determined by Eq. (7), so it is directly proportional to cos .

In a relativistic case the corresponding dependence is non-linear and it is
given by Eq. (19). It is convenient to introduce the function

z =

Pboc Pboc
= cosf ~ —— cosf = B cosb.
p2c2 + m2ct + me2  Eo+mc? Eo ’
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The function depends linearly on cos 8, which allows one to determine the velocity
of incoming protons using graphical methods.

The calculated values of z are presented in Table 1.

The final results are shown in Fig. 6, the straight line is drawn using the
method of least squares (Egs. 1.39)and (1.40)).

The line slope is = 0.936 4+ 0.014.

The relative error of 8 found by the method of least squares is:

AB 0014

= 0.015 = 1.5%.
163 0.936 %

Now let us evaluate the random error of 3 graphically. To this end we draw
two additional straight lines, so that approximately 40 - 1/3 - 1/2 ~ 7 points lie
outside the lines. The slopes of the lines differ from the slope of the central line
by +0.08. The random error of (3 is

AB = 0.08 ~ 0.013; AB =0.14 = 1.4%,

V40 B

which agrees with the results of the method of least squares.
Calculate ~:

1
T /T 00362
Equations (1.33) and (12) give the error of v:

B
Finally: v = 2.8 +0.3.
The initial proton momentum is found from Eq. (14):

poc = vBmc® = 2.8-0.936 - 938 MeV = 2.5 + 0.3 GeV.
The initial proton energy is
Ey = ymc® = 2.8-938 MeV = 2.6 + 0.3 GeV.

The proton velocity is v = ¢ = 0.936 c. The dashed line in Fig. 5 corresponds
to p(cos 0) calculated using the non-relativistic Eq. (7). The solid line on the same
plot corresponds to the relativistic dependence (19).

It is obvious that the electron momentum should be determined from rela-
tivistic formulae.
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1.1.5

Table 1
# T2 Y2 Y3 R Rser | cos@ PeC z
track | mm | mm | mm | mm | mm MeV

1 7.5 10 24 13.2 13 0.91 3.4 0.861
2 8 15 25 13.6 13 0.919 3.5 0.864
3 3 3 8.5 44 4 0.95 1.1 0.64
4 2 5 10.5 8 8 0.66 2.0 0.78
5 11.5 20 33.5 | 17.8 18 0.94 4.6 0.895
6 29 20 40.5 | 21.6 22 0.939 5.5 0.911
7 11.5 20 40 23 23 0.87 5.8 0.916
8 15 10 155 | 9.6 10 0.81 2.5 0.816
9 18 23 45 23.1 23 0.97 5.9 0.917
10 8 10 19.5 | 9.9 10 0.98 2.5 0.822
11 6 3 6 3.8 4 0.8 0.97 0.60
12 2.5 5 10.5 7 7 0.78 1.7 0.75
13 6.5 8 13.5 | 6.8 7 0.99 1.74 0.75
14 22.5 15 22 14.2 14 0.77 3.64 | 0.869
15 24 30 57 28.9 29 0.98 7.4 0.933
16 9.5 15 28.5 | 15.4 15 0.92 3.9 0.879
17 37.5 47 94 48.1 48 0.97 | 12.32 | 0.959
18 21.5 | 12.5 | 24.5 | 14.2 14 0.86 3.64 | 0.869
19 30 23 47 24.2 24 0.97 6.2 0.921
20 21 15 27 14.9 15 0.91 3.82 | 0.875
21 5 10 19 12 12 0.82 2.9 0.84
22 22 27 50.5 | 22.5 22 0.99 6.53 | 0.925
23 6 10 19 10.5 10 0.9 2.7 0.828
24 12.5 8 19 9.9 9 0.96 2.53 | 0.818
25 2.5 7.5 12 8 8 0.7 2.1 0.79
26 7.5 10 21 11.1 11 0.95 2.8 0.836
27 19.5 15 30.5 | 15.7 16 0.97 4.02 | 0.881
28 17 20 40.5 | 20.6 20 0.98 5.28 | 0.908
29 16 24 47.5 | 25.6 25 0.93 6.6 0.925
30 9 6 10.5 | 6.0 6 0.87 1.55 0.72
31 5.5 9 17 9.3 9 0.9 2.4 0.81
32 10 15 28.5 | 15.1 15 0.94 3.9 0.877
33 35.5 26 51.5 | 28.2 28 0.96 7.22 | 0.932
34 24.5 19 38 19.6 20 0.97 5.02 | 0.903
35 12.5 | 12.5 22 11.1 11 0.99 2.84 | 0.836
36 8 15 28.5 17 17 0.85 4.3 0.888
37 33 40 81 41.4 41 0.98 | 10.61 | 0.953
38 11 16 32.5 | 17.5 18 0.93 4.5 0.892
39 12.5 17 35 18.5 18 0.95 4.7 0.898
40 34.5 40 80 40.4 40 0.99 | 10.35 | 0.952

pec A
MsB

10 |
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Fig. 5. Plot pec(cos 6)

0,4 0,6

Fig. 6. Plot z(cos6)
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Lab 1.1.6

Study of electronic oscilloscope

Purpose of the lab: to study operation principles and design of elec-
tronic oscilloscope.

Tools and instruments: an oscilloscope, generators of electric signals,
and cables.

Oscilloscope is an instrument which displays an electric signal as time-
dependent curve. Oscilloscopes are widely used in experiments. Any time-
dependent physical quantity which can be converted to electric signal can
be studied with the aid of an oscilloscope.

The oscilloscope used in the lab is a modified version of the models
C1-94 and C1-1.

-1100 B -750 B
T3 24 T6 7
1 TT

1 Tpocq 9

11

2 ls l6 7 3
1)

-1000 B +110 B +1500 B

Fig. 1. Cathode-ray tube

Cathode-ray tube. The main part of oscilloscope that determines its
most important specifications is a cathode-ray tube (CRT). It is a glass vac-
uum tube containing the following elements (see Fig. 1): cathode heater 1,
cathode 2, modulator 3 (an electrode which controls image brightness),
first (focusing) anode 4, second (accelerating) anode 5, deflecting plates 6
and 7, third (accelerating) anode 8, and screen 9.

An electron beam is formed by a set of electrodes called «electron gun»:
the cathode and the heater, the modulator, and the focusing and acceler-
ating anodes. The electrodes are arranged to accelerate electrons and to
focus the beam on the screen. A voltage difference between the first (fo-
cusing) anode and the cathode can be adjusted by knob «FOCUS». The
size of the screen bright spot is determined by the quality of the focusing
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Fig. 2. Deflection of electron beam by electric field of the plates

system, the size does usually not exceed 1 mm. Spot brightness is pro-
portional to the electron beam current which can be adjusted by varying
the modulator voltage (knob «BRIGHTNESS»). The oscilloscope screen
is the tube front surface covered with a phosphor layer.

On its way to screen the beam of electrons passes two pairs of deflecting
plates. Two vertical plates are a capacitor which electric field deflects the
beam in the horizontal direction. Two horizontal plates deflect the beam in
the vertical direction. By applying the appropriate voltage on the plates it
is possible to «draws a figure on the screen using the beam as a «marker».

Consider the motion of an electron in a homogeneous electric field of
deflecting plates (see Fig. 2). Let an electron enter the field at the speed
vo and go along z-axis, i.e. perpendicular to the field lines. The motion is
free along the z-axis and it is uniformly accelerated along the y-axis:

at?
z = ﬂot, Yy = 7 (1)
The acceleration can be found by using the second law of Newton:
ek,
= 2)
Using Egs. (1) and (2) one finds:
eE, ,

y= 2mv8 = (3)
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Therefore the electron path between the deflecting plates is a parabola.
The electron is displaced by distance hy from the point of entry at the field
exit and its velocity is deflected by the angle o from z-axis:

ey o eE,
=1 t = lq. 4
2mv(2) b ana mv% ! (4)

h1 =

Here [; is the length of the plates. After leaving the field the electron goes
along a straight line. The displacement h from the center of oscilloscope
screen can be obtained from Fig. 2:

ek ll ll
h=h+lptana = —2 <—+12>. (5)
mvg \ 2

Let the distance between the center of a plate and the screen be L.
Then
eE, L

h =
2
mug

(6)

The speed vg is determined by accelerating voltage U, on the second
anode:

2
™0 _ ey, (7)
2
The electric field E, between the deflecting plates is
U
E, = 71}7 (8)

where U, is the voltage between the plates and d is the distance between
them. Using Eqgs. (6) —(8) one obtains:

LL

h= ¥ U,. 9)

Therefore beam displacement is directly proportional to the deflecting volt-
age Uy. The proportionality coefficient k in Eq. (9) is called tube voltage
sensitivity:

U, 2dU,
The tube sensitivity to voltage on the second pair of plates is calculated in
the same way.

Equation (9) also applies when deflecting voltage is time-dependent pro-
viding the corresponding variation of time 7 of electron passage between
the plates is small. Typical time interval T', which defines signal variation

h 1L [0‘7;1] (10)
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rate, can be the signal period, duration, build-up time, etc. Let us estimate
the minimum value T,,;, which satisfies T},;, > 7. The speed of electron
leaving the «electron gun» is approximately 2 - 107 m/s (for U, ~ 10° V).
For [ = 3 cm this gives 7 = 1.5- 107 s. Assuming that Eq. (9) applies
if Tpnin/T > 10 one obtains Tj,, = 15 - 1072 s. Therefore Eq. (9) cor-
rectly determines the electron coordinates on the screen if the frequency of
sinusoidal voltage on the deflecting plates is less than ~10%® Hz = 0.1 GHz.

However, the actual maximum frequency is sufficiently less. Voltage
sensitivity of the tube is a fraction of mm/V, so the input signal must be
amplified before it is applied to oscilloscope. Any amplifier has a working
frequency range in which its coefficient of amplification is constant, outside
the range the coefficient falls sharply. The upper frequency is determined
by the time constant of oscilloscope circuit. Usually the working frequency
range of oscilloscope is limited by that of the amplifier.

For the oscilloscope used in this lab the working range is 0 — —1 MHz.
In this range, a beam displacement on the screen in horizontal and vertical
directions can be considered directly proportional to the voltage on the
corresponding deflecting plates.

Sweeps. According to Eq. (9) = and y coordinates of the point where the
beam strikes the screen are proportional to instantaneous voltages U, (t)
and Uy (t).

The signal amplitude varies between tens of microvolts and several hun-
dred volts whereas the sensitivity of the deflection plates is a fraction of
mm/V. Therefore before the signal is applied to oscilloscope it must be
either amplified or diminished.

Amplifiers «Y» and «X» serve to amplify the signal applied to the
horizontal and vertical plates, respectively. The attenuator (divider) at
the «Y» input allows one to reduce the input signal by a required factor.

Two requirements must be met in order to obtain an «image» of periodic
electric signal U,.(t) on the screen.

1. The voltage U, applied to the vertically deflecting plates must be
related to U, as:

Uy(t) = Upy + Ky Uc(t). (11)

Here Uy, is a constant voltage which determines image location on the Y
axis of the screen and k,,, is the amplification coefficient of the input signal
in the vertical channel.

2. The voltage U, applied to horizontally deflecting plates must be
linearly proportional to time t:

Uy = Ugg + kaul. (12)
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Fig. 3. Sweeps voltage

Here Uy, is a constant voltage which determines the image location on the
X axis of the screen and k., is a coefficient which depends on working
parameters of the sweep oscillator and the «X» channel amplifier.

A sawtooth voltage generated by the sweep oscillator is also called
sweep voltage (see Fig. 3). During the forward sweep (T%s) the voltage
increases to maximum, so the beam crosses the screen from left to right at
a constant rate. When the forward sweep is completed, the voltage returns
to its initial value (Tps), so the beam returns to its initial position on the
left side of the screen. The rate of forward sweep, i.e. the scale of X-axis,
is controlled by knob «TIME/DIV» which graduation corresponds to the
time of beam crossing a cell of the graticule. Waiting interval T,, allows
one to vary the scale of X axis regardless of the sweep period.

A potential difference between the modulator of «electron gun» and the
cathode is positive during the forward sweep, so the bright trace on the
screen is visible. During the backward sweep (T3s) the modulator voltage
«blocks» the beam, so there is no trace on the screen during the blocking
interval.

Triggering. Observation of periodic and especially fast processes requires
the period of sweeps be a multiple of the signal period. However either
the sweep oscillator or the signal is not stable. In practice sweeps are
controlled by the studied periodic signal: the beginning of a forward sweep
must coincide with a selected point of the signal. Process of synchronizing
sweeps by means of a selected point of the signal is called triggering. This
method of synchronization is illustrated in Fig. 4.

Signal U, of an arbitrary shape (trapezoid in the figure) reaches the
threshold voltage U, (triggering level) from below that is controlled by
knob «LEVELs» on the oscilloscope front panel. At this moment the for-
ward sweep of the «saws starts provided the threshold is crossed during
the waiting interval T,, (Figs. 3 and 4). The «saw» can start when the
signal U, crosses threshold U; either from below (like in Fig. 4) or from
above according to the chosen triggering mode (the switch «TRIGGER
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Fig. 4. Triggering of sweeps

+» or «TRIGGER —» on the front panel of oscilloscope). Adjusting the
knobs «TRIGGER» and «<LEVEL» one controls a signal phase at the be-
ginning of the sweep and achieve a desired image stability and observation
convenience. Synchronization is impossible unless U, crosses Uj.

Sweep oscillator can work in automatic or trigger mode that is con-
trolled by switch «AUTO/TRIG». In automatic mode the waiting time
T, can not exceed some maximum 7Ty, max- If the signal U, does not cross
U; during Ty, max the forward sweep starts automatically at the moment
which is not related to signal phase; the period T, of sawtooth voltage
is determined by internal parameters of oscilloscope. In this case the im-
age on the screen is «runningy; if there is no signal the horizontal line is
displayed.

If the signal U, crosses U; during the waiting interval, a forward sweep
is triggered at the moment corresponding to a certain phase of the signal.
A stable image is then displayed.

Synchronization in automatic mode is possible only if the internal
period of sweep oscillator is greater than the period of studied signal,
Touto > Ts. Otherwise the first sweep cycle will be followed by another
one or more forward sweeps of the «saws triggered at the moments not
related to a certain phase of the signal, which will result in several super-
imposed images.

In the waiting mode a forward sweep is triggered only if U, crosses
U, during the waiting time T,,. The time can be as long as necessary,
so synchronization is realized for any period of the signal Ug(t). A short
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interval of signal (e.g. the signal front or a short pulse which duration is
much less than the time interval between pulses) can be observed only in
the waiting mode.

Sweeps can also be synchronized by an external signal (instead of Uy)
which is synchronous to the signal under study. The external signal is
applied to the input connector «EXT.TRIG.» on the oscilloscope front
panel. The switch «TRIGGER» must be in position «<EXT.». Operation
of the triggering circuit is similar to the one described above. The sweep
range (scale) is controlled by switch «TIME/DIV».

The vertical image dimension is controlled by switch «V/DIV» which
graduation in volts corresponds to beam displacement by one cell of the
graticule (this quantity is called deflection coefficient). Knob «]» is used
to shift the image up and down by varying the constant Uy, (see Eq. (11)).

Now consider frequency response of vertical and horizontal deflec-
tion channels of oscilloscope. Suppose that the sinusoidal signal U, =
= Uysin(2n ft) is applied to the «Y» channel. Beam position on the oscil-
loscope screen is then y = yo(f)sin(2nft + AD,(f)), where yo(f) is the
position amplitude as a function of frequency f and A®,(f) is the differ-
ence between the phase of y and the phase of the signal U, (phase shift)
at the frequency f.

Then the frequency response of the vertical channel is given by

_ y(f)
Ky(f) = 5

and the phase response is the function A®,(f). Frequency and phase
respounses of the horizontal deflection channel are defined in the same way.

Usually the frequency response K, (f) remains constant, K, = K, max,
in the range from fii, to fiax and decreases for f < fun and f > fiax.
The frequency range between fui, and fiax is called bandwidth. The
values fimin and fiax are determined according to

Ky(fmin) . Ky(fmax) _ i

= ~0,7.
Ky,max Ky,max \/5

Since K,(f) and A®(f) are not constant in the whole frequency range,
the shape of a high frequency pulse is distorted in the vertical deflection
channel.

The «Y» channel can be used with an open and closed input. In the
first case both the variable U., and constant U~ components of a signal
are transmitted, while in the second case it is only the variable one. In
the closed input mode the constant component is blocked by a dividing
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capacitor connected to the input. By switching «~/~» on the front panel
one can choose a required input of the «Y» amplifier. The horizontal
deflection channel has the similar «X» amplifier.

To observe the dependence U, = F(U,) one applies signal U, to the
closed input «—>X». The horizontal image size can not be adjusted in the
lab oscilloscope. To shift the image horizontally one uses the potentiometer
«» which changes the constant Up, (see Eq. (12)).

Lissajous curves. Two oscillations with equal or multiple frequencies
applied to the oscilloscope inputs make the beam draw a stationary closed
curve called Lissajous curve. The curve slowly rotates if the frequencies
are not exact multiples; for arbitrary frequencies the pattern is smeared.

Let us apply signal U, = U, cos(2nft + 1) to the horizontally de-
flecting plates (the internal sweep oscillator must be switched off) and
apply the signal of the same frequency but with the phase shifted, U, =
= Upcos(2mft + v2), w1 # p2, to the vertically deflecting plates.

For sensitivities k, and k, the beam coordinates z, y on the screen are:

x=Acos(2mft + 1), y = Bcos(2mft+ v2), A=kUs, B=kyU.

Excluding time ¢ from these equations one readily obtains beam trajectory:

2 2
B 2T sl ) = i ).

Thus the curve obtained by superimposing two oscillations of the same
frequency is ellipse. The ellipse orientation depends on the phase shift
between the oscillations (g2 — ¢1).

The particular Lissajous curve depends on the relation between peri-
ods, phases, and amplitudes of the oscillations. Some Lissajous curves
for different periods and phases are shown in Fig. 5. Parameters of an
oscillation, e.g. f, can be determined from the Lissajous curve provided
the parameters of the other oscillation, e.g. f,, are known. For example,
one should imagine two straight lines, a vertical and horizontal one, which
cross the curve without crossing its nodes. The number of crossings with
the horizontal line n, and the vertical line n, determines the ratio of the
frequencies according to f,/fs = na/ny.

If either or both oscillations are not harmonic the curves are more
complicated.

Calibration signal. The oscilloscope has internal generator of rectangu-
lar pulses of a fixed amplitude and the frequency of 50 Hz. The signal
is used to check deflection and sweep coefficients. When the signal is ap-
plied to «Y» input (the switch «V/DIV» is in K position), a deflection on
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Fig. 5. Lissajous curves for oscillations of the same amplitude

Y -axis must be 4.5-5.0 divisions and the oscillation period on X-axis must
be 20 ms.
Preparation of equipment

. Check that the device casings are properly grounded. Switch on power
supplies of the oscilloscope and the generators and let them warm up for
3—5 min.

. Set the following knobs in intermediate positions (see Fig. 6): «<BRIGHT-
NESS», «FOCUS», «]», «<», and «<LEVEL>.

in position «AUTO». Switch «V/DIV» should be set to a low sensitivity,
e.g. 5 V/div.

. Set the switch «TIME/DIV» in position 2 ms.

. A horizontal line appears on the screen in 1-2 min after the oscilloscope is
switched on. If the line does not appear adjust the line position by knobs
«]» and «<». Use the knobs «BRIGHTNESS» and «<FOCUS» to obtain
a clear sharp image.

CAUTION!

. Do not increase brightness beyond the level at which the image starts to
grow.

. The beam on the oscilloscope screen is visible only during the forward
sweep. In the waiting mode there is no image unless U; and Uy cross (see

1.1.6

99

Fig. 6. Front panel of oscilloscope
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Fig. 4). Therefore an experiment should begin in «<AUTO» mode at the
lowest sensitivity of the input «Y». In so doing the horizontal line is visible
even if a signal is absent. By increasing the sensitivity with «V/DIV»
set the image amplitude of 2-6 divisions. Use the knob «LEVEL» to
stabilize image. A convenient horizontal dimension is adjusted by knob
«TIME/DIV». If this fails try again the synchronization attempt in the
«WAIT> mode.
. To apply a signal to the «X» input (to observe U, = F(U,) dependence)
one should switch off the internal sweep oscillator as follows:
— set the beginning of sweep at the screen center in «AUTO» mode;
— switch the trigger to waiting mode («WAIT»);
— turn the knob «LEVELs» to the minimum, the image must vanish;
— increase the screen brightness if necessary («<BRIGHTNESS»).

LABORATORY ASSIGNMENT

I. Observation of periodic signal of acoustic frequency generator
(AFG)

. Figure out how the signal image depends on synchronization modes. To
this end connect the input «Y» to output of AFG. Set the following
switches as: «TRIGGER» to «INT +», «WAIT-AUTO» to «AUTO»,
«V/DIV» to 5, and «TIME/DIV» to 2 ms. Apply a signal of frequency
100 Hz and arbitrary amplitude (e.g. set the attenuator of AFG at 0 dB)
to the input «Y». The oscilloscope must display a sinusoid. If the sinu-
soid is «running», stabilize it by turning knob «LEVEL». Shift the image
horizontally until the initial point of the sinusoid appears.

. Turn the knob «<LEVELs> and observe how the curve changes. Perform the
same observations at the modes «AUTO», «WAIT», and internal trigger
modes «INT +» and «INT —». Figure out how the curve appearance
depends on triggering mode.

. Obtain a stable image for three arbitrary sets of AFG controls (e.g. 100 Hz,
0 dB; 1000 Hz, 10 dB; and 3 - 10° Hz, 30 dB). Adjust the image size using
knobs «TIME/DIVs», «V/DIV>».

II. Measurement of amplitude of sinusoidal signal. Correspon-
dence between step-wise attenuator of AFG (the switch «< dB»)
and the control switch of vertical image scale («V/DIV» on the
oscilloscope front panel).

. Set the switch «V/DIV» in position «5», the frequency of AFG at f,rs =
= 1000 Hz, and the attenuator at «0 dB»; by adjusting the AFG output
set the sinusoid amplitude at 2A = 4 divisions. Obtain a stable sinusoid
on the screen. After that the output voltage of the generator should not
be altered.
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. Set the step-wise attenuator of AFG in position «10 dB». Adjust the ver-

tical image size by the knob «V/DIV» and measure the signal amplitude.
Perform the measurement for all positions of the attenuator (they corre-
spond to different values of attenuation «, [dB]) and tabulate the results
in Table 1.

Table 1
Settings of AFG attenuator and oscilloscope divider
a,dB | V/DIV | 24, DIV | 24,B B,dB | |a— g, dB
0
10

70

Parameter (3 is defined as 8 = —201g(2A[V]/20[V]), the measurement
unit is 1 dB (1 decibel). Plot a graph in coordinates 3, «. Find the
maximum discrepancy between 3 and a.

III. Measurement of frequency of sinusoidal signal

Set the amplitude of sinusoidal signal at 6 divisions and the AFG fre-
quency in accordance with Table 2. Obtain a stable image. Set a con-
venient horizontal size of the image by using the switch «TIME/DIVs.
Measure the signal period, calculate the frequency and tabulate the results
in Table 2.

Table 2
Period and frequency of sinusoidal signal

fafg: M T: T: fmes: |fafg _fmes‘y M
Hz DIV DIV S Hz Hz Sfmes

2-10

2-102

2106

IV. Measurement of frequency response of the amplifiers of
«X» and «Y» channels

. Connect the output of AFG to the «Y» input of oscilloscope. Set the

switch «V/DIV» in position «1». Set the amplitude of sinusoidal signal
at 6 divisions at AFG frequency f,r, = 103 Hz. Obtain a stable image.
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Measure the signal amplitude 24, (or 24;) in the whole working frequency
range of AFG according to Table 3 both for open (=) and closed (~) input.
Calculate the values of parameter K using Eq. (13):

2A(farg) V]

K(fafg) = 6[V] (13)

Tabulate the results in Table 3.

Table 3

Frequency response of channel amplifiers

fagg, Hz | 10 | ... | 10% | 10% | 10* | 10° | 10° | ... | 107
24,, div
Ky, ~
24,, div
Ky, ~
2A,, div
K

One should determine the frequencies at which coefficients K, and K,
are equal to approximately 0.7 of their maximum values. These frequencies
define the amplifier bandwidth.

. Turn off the internal sweep oscillator of X. To do this set the switches
in the following positions: «TRIGGER» to «<EXT», «WAIT-AUTO» to
«WAIT>, turn «<LEVEL>» clockwise to halt, and «<BRIGHTNESS» to max-
imum. Connect the output of AFG to the «X» input of oscilloscope and
set the signal amplitude at 6 divisions at AFG frequency f,r, = 10° Hz.
The image should be a segment of straight horizontal line at the screen
center.

. Measure the signal amplitude 2A,, calculate K,(f) in the same way as
K,(f), and tabulate the results in Table 3.

. Plot K, ~(f), Ky, ~(f), and K,(f) on the same graph using logarithmic
scale for frequency f.

. Turn on the internal sweep oscillator. Consider (qualitatively) how the
frequency response of «Y» channel affects a pulse signal. Set the switch of
signal shape of AFG in position «M». Set the signal amplitude at 4 divisions
on the oscilloscope screen. Observe the signal at open (~) and closed (~)
inputs at frequencies of 10 Hz, 10 Hz, 2 - 10° Hz, and 10° Hz. Sketch the
curves.

. Turn off the internal sweep oscillator as ~
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V. Measurement of phase shift between output signals of «Y» and
«X» channels when input signal is the same for both channels,
i.e. measurement of the difference between phase responses of
«X» and «Y» channels.

in IV.2. Apply a signal of frequency 10* Hz ]
from the AFG output simultaneously to in- /
puts of «X» and <Y» channels using a tee 4| B

connector. By adjusting the AFG output set /

the amplitude of X at 6 divisions. The scale

on Y must be 0.5 V/DIV. The image must
be a segment of straight line at the angle of
30-60° to the vertical (a degenerate ellipse). Fig. 7. Lissajous curve for
By varying frequency observe transformation fz = fy and arbitrary phase
of the segment to ellipse. shift A®qy

. Using the graticule measure the parameters A and B (see Fig. 7) in the

whole range of AFG frequencies and calculate the phase shift A®,, as

+arcsin &, if the ellipse is tilted to the right,
Ad,, = as in Fig. 7;

+m Farcsin £, if the ellipse is tilted to the left.

The sign «+» or «—» corresponds to clockwise or counterclockwise motion
of the point tracing the ellipse. By increasing or decreasing frequency one
transforms the ellipse to a straight line and the motion reverses.

Tabulate the data in Table 4. Plot A®,,(f) using a logarithmic scale

for fafg .

Table 4
Phase shift A® versus frequency
fafg, Hz | 10 | ... | 50 | 10 | 103 | 10* | 105 | 10¢ | ... | 107
A, div
B, div
AD,,

VI. Observation of Lissajous curves obtained by superimposing
orthogonal oscillations

Turn off the internal sweep oscillator. Apply a sinusoidal signal of
frequency f, to the input «X» from the first AFG, and a sinusoidal signal of
frequency f, to the input «Y» from the second AFG. Adjust the amplitudes
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of the signals and the switch «V/DIV» so that the Lissajous curve occupies
the major part of oscilloscope screen. Set f, at 1 kHz. By varying f, obtain
a stable curve for the following values of the ratio f,/f,: 1:1, 2:1, 3:1, and
3:2. Sketch the curves and compare them with the curves shown in Fig. 5.

Literature

. JIa6opamopruwe 3anarus no ¢pusuxe / Ilox pex. JI.JI. ombmuua. — M.: Hayxa,

1983.

. Cusyzun J.B. O6uuit kypc busuxu. T. III. — M.: Hayka, 1996.
. Kanawnuros C.I. dnexkrpuyecrso. — M.: Hayka, 1985.
. Moicone M.X. Dmexrporuka — npakTtuideckmii Kypc. — M.: IToctmapxker, 1999.

Chapter Il

DYNAMICS

Dynamics of many particles. In classical mechanics the state of motion
of a particle is defined by the particle position vector ¥ and momentum p =
= md. A state evolves in time according to equation of motion, (Newton’s
second law):

% = F(7,p,t). (2.1)
It is important that the right-hand side (the force) depends only on the
particle state. Solution of Eq. (2.1) for some boundary conditions gives a
law of particle motion:

7= 7(t).

Since the equation of motion of a particle is linear, it becomes for a set
of particles

n
~ R
== > F. (2.2)
i=1

Here only the external forces are counted because the internal forces acting
between the particles cancel out.

Any set of particles has a remarkable geometric point called the center
of mass. The position vector of the center of mass is defined as

mT;
R="=—___

m;g

1

<.
Il

Obviously, the velocity of the center of mass is

v=—,

3
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n

R n
where P = Y p; is the net momentum of the particles, and m = Y m; is
i=1 i=1
its mass. According to Eq. (2.2)

i=1

Therefore the center of mass behaves as the single particle which mass is
equal to the total mass of particles and the force exerted on this particle
equals the sum of all the external forces. The center of mass velocity can
be regarded as the velocity of the set as a whole.

If there are no forces exerted on the set of particles, the set is called
isolated or closed. In this case Eq. (2.2) predicts conservation of the net
momentum:

n
Zﬁi = const, (2.3)
i=1
i e.
¥ = const.

The center of mass of an isolated set of particles serves as the origin of a
special inertial frame of reference called the center of mass frame.

The net momentum in the center of mass frame is zero.

The sum of momenta of two particles before and after an interaction,
e.g. a collision, is the same:

Dio + P20 = P1 + P2 (2.4)

or
mlﬁlo + mgﬁgo = mlﬁl + m2172. (25)

Here the subscript «0» refers to the quantities before the interaction.

Let p be the particle momentum and 7 be its position vector with
respect to some point of origin O. Then the angular momentum L of the
particle with respect to O is defined as the cross product:

-

L=7xp. (2.6)

Similarly, if there is a force F exerted on the point, the torque due to
the force with respect to O is defined as the vector product

M=7xF. (2.7)
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Multiplying Eq. (2.1) by # on the left and using 7= mi—? one finds:
L -
pn (2.8)

Equation (2.7) can be written in a more transparent form as
M =rFsinf = Fh,

where 0 is the angle between the vectors 7 and F and h = rsin# is the
length of the perpendicular drawn from the point O to the direction of the
force, this distance is called the lever arm with respect to O.

On the other hand,

) R
M=ixF=|2 y 2 |=
F, F, F.

= ;(sz —zFy) +;(2Fm —zF.) + E(xFy —yFy).

Here i, f, and k are the unit basis vectors corresponding to the axes Oz,
Oy, and Oz. Let us choose the reference frame so that vectors 7 and F' lie
in the same plane. In addition, let the axis Ox be directed along 7. Then

—

7= (11770,0), F:(Fw>Fy>O)7

ie.
M, =0, M, =0, M, =xF, =xFsinf = Fh.

Since the perpendicular drawn from the point O to the direction of the
force F is perpendicular to Oz, its length h can be called the lever arm with
respect to Oz. For this reason the projections of M on the coordinate axes
are called moments of force with respect to these axes. Similar consideration
applies to angular momentum L.

In an arbitrary frame vectors 7 and F' can be written as follows:

FZ’FL—FF”, ﬁ:ﬁl+ﬁ|.

Here | is the component of 7 perpendicular to Oz and 7 is the parallel
component. The vectors F| and F’H are similarly defined. One can show
that
MH = 7_‘]_ X Fl,
i.e.
M, =r) -F| sinp,
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where ¢ is the angle between ) and F| . For the component L, of angular
momentum one has
L,=r,  -pisina,

where « is the angle between 7 and p .

The net angular momentum of a set of particles is the sum of angular
momenta of all particles and the net torque is due to external forces only
because the torques due to inter-particle forces cancel out. Therefore

d (é Ez—> n

dt

M;. (2.9)

=1

If the set of particles is isolated, i.e. no external force acts on it, the net
torque is zero and the net angular momentum of the particles is conserved:

n

Zﬂ- X P = const. (2.10)

i=1

Sometimes vector quantities like momentum and angular momentum
are not conserved but a certain component is. For instance, the component
of momentum perpendicular to the lines of force of uniform gravitational
field and angular momentum with respect to an axis parallel to the field
are conserved. In a central field the angular momentum with respect to
the field center is conserved.

The work done by force F' is defined as the dot product

dA =F - dr, (2.11)

where dr is the particle displacement due to the force.
Using the second Newton’ law (2.1) one obtains
N N | (pz’)
dA = —dr=vdp= —pdp=—pdp=d| — ).
dt m m 2m
Therefore the work changes the quantity called kinetic energy of the
particle:
p? mu?
T 2m 2
If the work done by a force on a particle which travels in a closed path
is zero, the force is called conservative. An equivalent definition is that
the work done by a conservative force is path independent. Gravitational
field is an example of conservative force. The field of a conservative force

(2.12)
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can be specified by potential energy U. By definition the work done by a
conservative force equals the loss of the potential energy:

dU = —F dF. (2.13)

Using the second Newton’s law one obtains:

. d (U + p—) ~0. (2.14)

This is the law of conservation of mechanical energy.

The net kinetic energy of a set of particles is equal to the sum of kinetic
energies of the particles. In an isolated set of particles, i.e. no external
force acts on the set, the net kinetic energy can change (unlike the net mo-
mentum and angular momentum) due to the work done by internal forces.
The net kinetic energy is conserved provided the interactions between par-
ticles are elastic, i.e. energy transforms only from kinetic to potential and
back. For two particles with an elastic interaction between them the law
of conservation of kinetic energy is
Plo  Po _ PE . P
2m1 2m2 2m1 2m2

or
2 2 2 2
mi1vig mav3 mivy mavy
= . 2.1
2 + 2 2 + 2 (2.15)

Here the subscript «0» stands for a quantity before the interaction.

Using these relations in Egs. (2.4) and (2.5) one can prove that in the
center of mass frame the momentum of a particle changes only its direction
while its magnitude remains the same.

The net kinetic energy of a set of particles in an arbitrary frame is the
sum of the kinetic energies of particles in the center of mass frame and the
kinetic energy of the set which speed equals that of the center of mass.

The laws of conservation of momentum, angular momentum, and en-
ergy derived from equations of motion are, in fact, fundamental properties
of an isolated system, which follow from homogeneity and isotropy of space
and homogeneity of time.

A particle which speed is close to the speed of light (v ~ ¢, ¢ =
= 3-10'° ¢cm/s) is called relativistic. High energy physics experimentally
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confirms the relation between the momentum of a relativistic particle and
its velocity:

—

muv

o
b= —F—
/ 2

2

where m is the particle mass. Equation (2.1) remains the same although
the relation between momentum and velocity is different. Using Eq. (2.1)
one can show that

(2.16)

d mc? dA

dt \ ;2|  dt’
c2

where dA = F - dF is infinitesimal work. The kinetic energy K of a particle
can be defined as the work done by a force accelerating the particle from
zero speed to v. Then

K=-"9_ _ne (2.17)

Since

which is to be expected.

According to collider experiments the energy of a free particle does not
vanish at v = 0 but tends to a constant value of mc?. Therefore the particle
energy is actually the quantity

E =K +mdc,

i.e.
2

£= \/17—7”—2 (2.18)

The constant mc? is called the particle rest energy. By comparing
Eqgs. (2.16) and (2.18) one can see that the particle momentum is

=7 (2.19)
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At v = ¢ both momentum and energy of a massive particle tend to infinity.
Therefore a massive particle cannot move faster than light. However rel-
ativistic mechanics admits existence of massless particles which travel at
the speed of light (e.g. photons and neutrinos). Equation (2.19) for these

particles becomes
&

p=— (2.20)

We use the term «particle» although its «elementariness» is never used.

Therefore Egs. (2.16), (2.18), and (2.19) can be equally applied to any body

comprised of many particles. The mass m is then the total body mass and v
should be understood as the body velocity as a whole.

The energy of a body at rest consists of the rest energy of the constituent

particles, their kinetic energies and the interaction energy of the particles.

Therefore
me? # g m; - c2,
i

where m; is the mass of i-th particle.

Thus mass is not conserved in relativistic mechanics, there is only the
law of conservation of energy which also includes rest energy.

By taking the squares of Egs. (2.16) and (2.18) one can see that

E? — (pe)? = m2c, (2.21)
ie.
& =+/(mc?)? + (pc)2. (2.22)

Equation (2.21) is often called the main kinematic identity of relativistic
mechanics.
Notice that a particle for which

p > mc,

is called ultrarelativistic. For such a particle Eq. (2.20) holds approxi-
mately.

When describing collisions of relativistic particles it is convenient to
write the main kinematic identity as

2 2
<Z &) - (Z@c) = invariant. (2.23)

The term «invariant» means that the right-hand side of Eq. (2.23)
remains the same in another inertial frame of reference.
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Rigid body dynamics. One of the most important mechanical concepts
is that of absolutely rigid body. Absolutely rigid body is a set of particles in
which the distance between any pair of particles remains the same during
the body motion.

Consider rotation of a rigid body around some axis. In this case all the
body particles move around the circles which centers belong to the same
straight line called rotation axis. The axis can be either inside or outside
the body. Let us choose a point O on the rotation axis. The position
(ﬂhe particle A of the rigid body can be specified by the radius-vector
OA = 7. If the body rotates by the angle dy for the time interval dt, the
displacement of A is then

|dr] =7 - dp, (2.24)

where | is the distance between A and the rotation axis.
The rate of change of the angular displacement is called angular velocity
w. Since the linear displacement dl = rdy for the same time interval equals
vdt,
v=w-T. (2.25)

This relation can be also written in vector form by introducing the
vector of rotation angle ¢ and the vector of angular velocity &J. These
quantities together with torque and angular momentum are vectors albeit
unusual. Unlike ordinary vectors (e.g. position vector, velocity, and force)
which are called polar vectors, these vectors have opposite directions in the
right-handed (the z-axis is along the motion of a right screw when turning
the screw from x to y) and left-handed coordinate frames. Vectors which
possess this property are called axial vectors. As long as one employs the
same coordinate frame (usually it is the right-handed) the axial and polar
vectors can be treated on the same footing. In vector form Eq. (2.25)
becomes:

=4 XT. (2.26)

The rotation angle is related to the angular velocity as

dg
dat’

ﬁ:

(2.27)

Any body can be treated as a set of n particles (including n — o). In
this case the torque and the angular momentum are defined as the sums:

n

M =7 x F, (2.28)

i=1

1!

S
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n
L= 7 x m;. (2.29)

i=1
As it was already mentioned a set of particles in which the distance
between any two particles remains constant during a motion is called rigid
body. Consider rotation of a rigid body around immobile axis Oz. The
angular velocity vector & is the same for all particles of the body and it is

parallel to the axis. The particle velocity is

5= x 7,

where 7; is the position vector of the particle drawn from the origin O.
Any particle moves around the circle which radius is r;; . The vectors 7
and v;, are perpendicular, i.e. the angular momentum of i-th particle is

2
Ly = miriivi = mry| w.

The net angular momentum of the body is

n
L, = g mirfj_w =IlLw.

i=1

The quantity I, introduced here specifies the body’s rotational inertia,
it is called the moment of inertia around z axis. It is determined not only
by the body mass but also the mass distribution with respect to the axis
of rotation:

L= miri. (2.30)
=1

The moment of inertia I around an axis of rotation can be expressed via
the moment of inertia Iy around the parallel axis which passes through the
center of mass of the body, the mass of body m, and the distance between
the axes ag:

I = Iy +mad. (2.31)

This relation is called Huygens-Steiner theorem.

The distance of mass m; from the axis of rotation in Eq. (2.30) can
be expressed via its coordinates as r?, = z? + y?. Similar equations can
be written for moments of inertia around x and y axes:

I, = Zmi(y%zﬁ), I, = Zmi(zf—kxf), I = Zmi(l’fwf)- (2.32)
i=1 i=1 i=1
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2

i

Adding the moments of inertia and taking into account that r
= 22 + y? + 22 one obtains the relation:

Lo+ 1y + 1. =2 mir] =215, (2.33)
i=1

Here the moment of inertia around the point I is introduced.

Equation (2.33) turns out to be very useful in calculating the moments
of inertia. For example, by placing the origin at the center of a thin spher-
ical shell of radius R one obtains:

IL=1I,=1=>I,=-mR* (2.34)

Equation of motion of a rigid body rotating around a fixed axis Oz is

dw

1, T M,. (2.35)
Comparing this equation with Newton’s second law (2.1) one can see that
two equations are identical up to replacement of the force with the torque,
the acceleration with the angular acceleration, and the mass with the mo-
ment of inertia (the latter depends on the mass and its distribution relative
to the axis). Similar correspondence exists in the expression of kinetic en-
ergy K:

_1 2 Iy 2 o 1.5 L7
K= 5;77%1)1- —§;miru_wz =5l = T (2.36)

Notice that the linear displacement in the expression for work is similar
to the rotation angle. In the simplest case of the force tangential to the
circular path of a particle one obtains:

dA =Fdr = Frdp = M de. (2.37)

Equation (2.30) also applies to continuous mass distribution if the sum
over the particles is replaced by the integral over infinitesimal body ele-
ments:

I = Jri dm. (2.38)

Vectors and tensors. Many problems of physics require the concept of
tensor to be properly formulated. Often a vector is defined as an ordered
triplet of numbers. However one can see that not any ordered triplet forms
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Fig. 2.2. Rotation of coordinate frame

a vector. For instance, pressure, volume, and temperature (P, V, T') of
any mass of gas form the ordered triplet which is not vector. On the other
hand, the triplet (x, y, z), where z, y, and z are coordinates of some point
in a Cartesian frame form the vector called radius vector. What is the
difference?

Vector is a concept originated from experience. The latter teaches that
particle displacements (arrows) are added according to the parallelogram
rule (see Fig. 2.1):

T3 = T12 + T23.

This is one of the defining properties of
vector that is independent of the coordinate 1 .,
frame. However the definition of the radius 1
vector as a triplet of numbers (z, y, z) depends
on the coordinate frame. This definition can / ~
be made invariant by specifying the rule re- Lo
lating the coordinates of a point in different Fig. 2.1. Vector addition:
frames. 713 = 712 + 723

Let a coordinate frame be rotated around z axis by the angle ¢ (see
Fig. 2.2).

Coordinates of the point A transform as:

)y = xacosp+yasineg,
/

Yy =—Tasing+yacosp,
zy = za.

These equations define the law of transformation of the components of
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radius vector because 74 = (2a,ya,z4). The same transformation law
holds for components of any vector. For instance, the vector of force

—

F = (F,, Fy, F,) transforms as:

F] = Fycosp+ Fysing,
F, =—F,sinp+ F,cosp,
F' = F,.

z

Thus the transformation law of the components of radius vector defines
vector of any kind. The triplet of numbers (P, V', T') does not satisfy this
law since it is independent of the coordinate frame.

Let us give a general definition of a vector. Suppose there are two
coordinate frames, Ozixox3 and Ozjxbal, with the common origin O.
Vector A is an ordered triplet of numbers (A;, Ay, As) which transforms
under rotation of the coordinate frame as the triplet of coordinates (x1,
Z9, x3) of a radius-vector:

3
Al = ZaikAk, i=1,2,3. (2.39)
k=1

Here «;y, is the cosine of the angle between the axes Ox} and Oxy.

This definition can be generalized. A second-rank tensor is a triplet of
vectors (Ty, Ty, Ts) which under rotation of the frame transforms according
to the same law:

3
T/ =Y onTr, i=1,2,3. (2.40)
k=1

Vectors fl, fg, and fg can be called components of tensor T' on the axes
Oz1, Oza, and Oz, respectively, and vectors 77, T3, and T4 are the com-
ponents on the axes Ox}, Oz}, and Oxz%. Obviously,

Ty = 7T + jTha + KTi3,
Ty =115y + jT2e + k23, (2.41)

—

Ty = iTs1 + jT30 + K33,

where ;, f, and k are unit vectors of the coordinate frame. Thus tensor
T can be specified by the matrix T;; which elements are called tensor
components.

The set of Egs. (2.41) can be written in a compact form:

Th=> &Tu, k=123, (2.42)
l
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—

where €1 =1, €2 = j, and €3 = k. Similarly,

=Y e, i=123 (2.43)
where @ =7, & = J', and & = k'. Substituting Egs. (2.42) and (2.43) in
Eq. (2.40) one finds

Z gmﬂm = Z (6777 g[ Tkl- (244)
m k,l

Scalar multiplication of Eq. (2.44) by &, gives the transformation law for
the tensor components:

T;, = Z ik 0l Th. (2.45)
k,l

éq—»

Here one uses the relation (€),,€)) = ani, (€,,€,) = Omn, where §,,,, is

identity matrix, i.e.

_ ecmm  m =n,

5 L
mrT 0, ecom m o # n.

Equation (2.45) defines the transformation
law of a second-rank tensor under rotations
of coordinate frame. One can see that it is
reasonable to classify vectors and scalars as
tensors of the first-rank and zero-rank, respec-
tively. Components of a third-rank tensor
transform as

/
ikl — E Qim Ok Ap Tmnp~
m,n,p

Fig. 2.3. Calculation of
moment of inertia around

As an example, consider tensor of inertia
of a rigid body. Let us calculate the moment arbitrary axis
of inertia I of the body around arbitrary axis OA passing through the
origin O (see Fig. 2.3).

Let us write the radius vector 7 of a body element of mass dm as the
sum of the vector components along OA and perpendicular to it:

7= FH + 7.
By definition the moment of inertia is

I= Jridm = J(T2 - rﬁ)dm.
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If §'is a unit vector along the axis OA, then
7| = (7,5) = 2151 + T252 + 353.

Also

2 2 2 2 2 2 2
r° =x] + x5 + 3, s$1+s5 +s3=1.

Combining the above relations one obtains:

1= 1118% + IQQS% + 133S§ + 2[128182 + 2]238283 + 2]318381, (246)

where
L = [(23 + 3)dm, Iy = Iy = — [ z122dm,
Iy = [ (a3 + 2%)dm, Iz = I3 = — [ wows dm, (2.47)
I33 = f(:z:% + x3)dm, I31 = I13 = — fxgxl dm.

Equation (2.46) shows how the moment of inertia around axis OA de-
pends on the cosines of the axis. The equation has a geometric interpreta-
tion. Let us draw straight lines through the origin O in various directions
and plot the points on them at the distance 1/ VT from the origin. The
points form a surface. Let us find the equation of the surface. Radius-vec-
tor of a point on the surface is

g

\/77

—
T =

i.e.
si=xVI,  i=1,2,3. (2.48)

Substitution of Eq. (2.48) in Eq. (2.46) gives
Illl'% + IQQ,T% + 1331,'% + 2]12$1$2 + 2IQ3$2$3 + 2]31$3$1 =1. (249)

This surface of the second order is an ellipsoid since it does not have points
at infinity (I # 0). The ellipsoid is called inertia ellipsoid of the body
constructed around the point O. Inertia ellipsoid depends on the point
of construction. The central inertia ellipsoid is the ellipsoid constructed
around the center-of-mass. One can show that the moment of inertia of a
rigid body has all the features of a second-rank tensor: it is in one-to-one
correspondence with matrix I;; and its vector components are

I =&y + &lis + é3hs,
Iy = €191 + €212 + €313, (2.50)
3 = €131 + €213 + €3133.
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There is a theorem in algebra that Eq. (2.49) can be reduced to the
main axes Oz, Oy, and Oz:

La* + Iy* + [L2° = 1. (2.51)

The origin O of coordinate frame is usually placed at the center-of-mass.
The quantities I, I,;, and I, are called the main moments of inertia of the
body. Vector components of the tensor on the main axes Ox, Oy, and Oz
are

= -

I,=il,, I,=jl,, L =EFkIL. (2.52)
If the cosines of a given axis with respect to the main axes are known,
Sy = COSQ, 8y = cos 3, S, = COS7Y,
then taking into account that
Iy =0, I,. =0, I, =0,
and using Eq. (2.46) one obtains:
I =1,cos®a+1I,cos> B+ I, cos? 7. (2.53)

Otherwise, if the moments of inertia I;, I3, and I3 around three arbi-
trary axes are known, one can solve the set of linear equations

I = I, cos? aq + 1, cos? 31 + I, cos® 1,
Iy = I, cos® ag + 1, cos? B3y + I, cos? s, (2.54)
Is = I, cos® as + 1, cos? B33 + I, cos? s,

and determine the main moments of inertia: I, I, and I..

The main axes of a body can be found from its symmetry. The main
axes of a homogeneous rectangular parallelepiped are parallel to its edges.
If a body is rotationally symmetric its inertia ellipsoid has the same symme-
try. A cylinder is an example. In this case the moments of inertia around
the axes perpendicular to the symmetry axis are the same. The symmetry
axis is one of the main axes. Any axis which is perpendicular to it is also
the main one. For a spherical body any axis passing through its center is
the main axis.

For example, consider a homogeneous rectangular parallelepiped which
edges are a, b and ¢ (see Fig. 3 on p. 139).

Let us place the origin O of the coordinate frame Ozyz at the center of
mass of the parallelepiped. It is not difficult to calculate the main moments
of inertia:

m m m
I = — (b +¢ I, = —(a*+¢ I = —(a® +b%).
R+, Iy =5+ ), @ +07)
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Now let us find the moment of inertia with respect to the diagonal OO’.
For this purpose we use Eq. (2.53). One can see that the cosines of the
axis OO’ are

a b c
— s = ———, cosY = ———.
«/a2+b2+c2 1/(]/2_*_1324_02 «/a2+b2+c2
Thus the desired moment of inertia is

m  a?b? + a?c? + b*c?

I; = . . 2.
d 6 a? +b%+c2 (2.55)

Ccosx =

For a cube

The latter is clear because the inertia ellipsoid of a cube is sphere.
Notice that the angular momentum L of a rigid body can be written
as the dot product of inertia tensor I and angular velocity vector &:

Ly = I1ywy + Iows + I13ws,
Ly = Inywi + Irows + Io3ws, (2.56)
L3 = Isjwi + Isowa + I33ws.

These equations are simplified when written in the coordinate frame of the
main axes:
L, =1I,w,;, Ly = Lw,y, L,=1w,. (2.57)
Literature
. Cusyzun J.B. Obumit kypc dusuxu. T. I. — M.: Hayka, 1996. I'n. I-V, VIL
. Kumnecen A.C., Jloxwun I.P.;, Oavzos O.A. Ocnosbt dusuku. T. 1. Mexanuka,

JIEKTPAYECTBO U MarHeTw3M, KojiebaHus u BOJIHBI, BOJIHOBad omruka. — M.:
Ouzmariant, 2001. 9. 1. I'm. 1-7, 10.

Lab 1.2.1

Determination of pellet velocity by means of
ballistic pendulum

Purpose of the lab: determination of pellet velocity using conservation
laws and employing ballistic pendulums.

Tools and instruments: an air-rifle on a support, a spotlight, an
optical system to measure pendulum displacement, a ruler, pellets and a
balance to weigh them, and ballistic pendulums.

Muzzle velocity of an air rifle is in the range from 150 to 200 m/s, and
that of a rifle is ~1000 m/s.
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These velocities are large in comparison with a pedestrian speed
(~2 m/s) or even with the speed of an automobile (~20 m/s). A labo-
ratory bench is usually about a few meters long, so the time of pellet flight
is about 1072-1072 s. Measurement of such time interval requires an ex-
pensive equipment capable of registering fast processes. It is cheaper to
determine pellet velocity by measuring the momentum transferred by the
pellet to some body in an inelastic collision. Net pellet-body momentum
is conserved providing external forces are negligible or the collision time
is small. If the body mass exceeds considerably the pellet mass the speed
of the body (with the pellet stuck in it) is significantly less than the ini-
tial pellet velocity and can be easily measured. Duration of the inelastic
collision, which lasts from the initial contact between the pellet and the
body until the pellet gets stuck, depends on resistance of the body mate-
rial. The time can be estimated using the pellet penetration depth and
assuming that the resistance force is constant. A velocity of 200 m/s and
a penetration depth of ~1 cm allows one to estimate the collision time as
~10~* s. Within that period even a body one hundred times heavier than
a pellet will change its position by 0.1 mm only. For small collision times
a momentum transferred by external forces is far smaller than the pellet
momentum.

The momentum transferred by the pellet and therefore its velocity can
be measured by a ballistic pendulum. The latter is a pendulum which is set
in motion by a short initial impact. The impact can be considered short
if the collision time is much shorter than the pendulum period. In this
case the pendulum displacement during the collision time is much smaller
than the amplitude of the pendulum swing. For harmonic oscillations
collision time 7, pendulum period T, angular deviation Ay developed for
the collision time, and the maximum swing ¢,, (amplitude) are related by
a simple equation:

Ap 277

Pm T

Thus, if the collision time equals 0.01 of the period, the deviation is 0.06
of the amplitude.

Maximum swing of pendulum and initial velocity resulting from pulse
impact can be determined from the law of of conservation of mechanical
energy providing energy loss for oscillation period is much smaller than
energy of oscillation. We consider an attenuation as small if the amplitude
decreases less than by half after ten swings. Pellet momentum and velocity
can be found from the initial maximum swing.

While carrying out the experiment one should ensure that the pendulum
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Fig. 1. Pellet-velocity measurement setup

swings in a plane and do not allow a transverse motion after the pellet
strikes. This can be achieved by installing the rifle carefully. Also one
should be aware that the pellet is followed by air jet which may affect
pendulum motion thereby deteriorating the results. Therefore the rifle
must be positioned at a distance sufficient for jet dispersion. The influence
of the gas jet on the pendulum can be estimated by means of a blank shot.

The rifle is mounted on a special support. To load the rifle one should
loosen the lock screw of the support and tilt the rifle to one side in the
holder then bend the barrel in the trigger direction as far as it can go. The
initial rifle position should be restored after it is loaded.

I. Pellet-velocity measurement setup

The ballistic pendulum used in this part of the lab is a heavy cylinder
suspended on four threads of the same length. It is shown in Fig. 1 as
a part of the measurement setup. When the pendulum is swinging any
point of the cylinder executes circular motion with the radius equal to the
suspension length. The motion is illustrated in Fig. 2 (side view of the
swing plane). All the points of the cylinder move round circular arcs of the
same radius L. In particular the center of mass My moves to M; along
the arc which center is at the point O.
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Fig. 2. Pellet-velocity measurement setup

We have already mentioned that the rifle must be appropriately in-
stalled. The rifle should be mounted so that the pellet velocity before colli-
sion would be directed along the cylinder axis (at least close enough). The
external forces for the pellet-cylinder system are gravity force which has
no horizontal component and the thread tension forces which develop hor-
izontal components when the pendulum swings. However if the deviation
is small these components are also small and their momentum transferred
during the collision is negligible compared to the momentum of the pellet.
Thus the law of conservation of momentum applied to the collision looks
as follows:

mu = (M +m)V. (1)

Here m is the pellet mass, M is the cylinder mass, u is the pellet velocity
before collision, and V' is the cylinder velocity after collision.
Taking into account that the pendulum mass exceeds considerably that
of a pellet we can write
M

UZEV (2)
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Having gained some kinetic energy during collision the pendulum will
rise until its kinetic energy is converted into potential energy in the grav-
itational field (losses neglected). According to the law of conservation of
mechanical energy the pendulum elevation h above its equilibrium position
is related to the initial pendulum velocity V' as

V% =2gh. (3)

Here g is the gravitational acceleration.
Pendulum elevation can be expressed via the angle ¢ of pendulum de-
viation from the vertical:

A
h = L(1 — cos @) = 2L sin* %, miSoiSmiS ¢ ~ TI (4)

From Egs. (2), (3) and (4) we obtain the final formula for pellet veloc-

ity:
M /g
= —/ 7 Az.
A Vi (5)

The pendulum deviation Az is measured by means of an optical system
shown in Fig. 1. Enlarged image of the scale attached to the cylinder
makes it possible to determine its horizontal displacement. This allows
one to measure successive amplitudes of pendulum swing and determine
the attenuation.

Equation (3) and therefore the final formula (5) are valid as long as an
energy loss during pendulum motion can be neglected.

The most important sources of swing attenuation are air drug and a
loose pivot.

The energy lost during a swing quarter-period could be omitted from
the conservation law (3) if it is small compared to the maximum potential
energy. As it was already mentioned the attenuation can be neglected if
the swing magnitude decreases less than by half for ten periods.

LABORATORY ASSIGNMENT

. Examine the ballistic pendulum and the measurement setup, learn how to
handle the air-rifle.

. Using the precision balance weigh the pellets and place them into box
compartments with appropriate numbers so that not to mix them up. Do
not forget to reset the balance before changing pellets.

. Measure the distance L (see Fig. 1) with a two-meter ruler.

. Assemble the optical system designed for measuring pendulum displace-
ment. Switch on the spotlight and obtain a clear image of the scale on the
screen.

o
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. Fire a few blank shots at the pendulum to make sure that it does not

respond to the impact of the air jet from the rifle.

. Make sure that the swing attenuation is small: the amplitude decreases

less than by half after ten swings.

. Fire a few shots and determine pellet velocity for each shot using Eq. (5).
. For each shot estimate an accuracy of determination of pellet velocity.
. Find the average pellet velocity and a scatter near the average. What is the

reason for the observed scatter? Is it due to the measurement inaccuracy
or to different shot velocities?

Questions

. Give a definition of ballistic pendulum and describe where it can be used.
. When is initial momentum of ballistic pendulum equal to pellet momentum?

Why is it necessary to use inelastic collision between pellet and pendulum?

. Estimate the time of pellet-pendulum collision in the experiment.

What factors are responsible for non-conservation of momentum during the col-
lision?

. What are the specific requirements for rifle installation?

. What factors contribute to swing attenuation?

. Which assumptions made in derivation of eq. (5) can be checked experimentally?
. Why are the suspension threads not parallel (see Fig. 1)?

I1. Method of torsion ballistic pendulum

The measurement setup is shown in Fig. 3. A pellet of mass m hits a
target fixed on the rod aa which together with weights M and the wire II is
a torsion ballistic pendulum. To determine the pellet velocity we assume a
pellet-target collision to be inelastic and use the law of angular momentum
conservation

mur = IQ. (6)

Here r is the distance between the pellet path and the pendulum axis of
rotation (the wire II), I is the pendulum moment of inertia, and {2 is its
angular velocity right after the collision.

The law of angular momentum conservation can be used if the time
of pellet-target collision is much less than the period of small oscillations
of the pendulum. An angle of pendulum rotation during the collision is
small compared to the amplitude of pendulum swing. Consequently the
torque in the wire right after the collision is small compared to the torque
at the maximum swing which is always finite. What matters is that the
product of the torque and the collision time is small compared to the
angular momentum of the pellet before the collision.
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L

Fig. 3. Measurement of pellet velocity using a torsion ballistic
pendulum

Initial kinetic energy of the pendulum converts to potential energy, i.e.
elastic energy of the wire torsion, and a part of it is irreversibly lost, first
of all, due to air friction. The loss can be estimated by measuring the
decrement of swing amplitude in 10 periods. The swing attenuation is
considered small if the amplitude decreases by half or less. This means
that the energy loss during oscillation period is considerably less than the
swing energy. Neglecting the losses we can write the energy balance as

2 2
® Q
k— =1—.

Here k is the torsion modulus of the wire IT and ¢ is the maximum swing
angle.
From Egs. (6) and (7) we obtain

u= wﬁ- (8)

mr
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The maximum angle in the experiment is always small. It can be easily
determined from a displacement z of the image of the filament spotlight
on the measurement scale. It follows from Fig. 3 that

x
~—. 9
k¥ (9)

Here d is the distance from the scale 171 to the pendulum rotation axis.

Equation (8) includes the product kI which can be found by measuring
the period of the pendulum with the weights M and without them. In the
former case the pendulum period is equal to

1
T = 27‘(’\/;. (10)
[ ] — 2

It follows from Egs. (10) and (11) that

In the latter case

ArMR2T
Vil = & 1

— 12
71 (12)

Here R is the distance from the centers of mass of the weights M to the
wire.

LABORATORY ASSIGNMENT

. Examine the experimental setup and learn how to handle the air-rifle.
2. Using the precision balance weigh the pellets and place them into box

compartments with the appropriate numbers so that not to mix them up.
Do not forget to reset the balance before changing pellets.

. Measure the distances r, R and d (see Fig. 3) with a ruler.
. Adjust the optical system designed for measuring pendulum rotation angle.

Switch on the spotlight, direct the light to the mirror and obtain a clear
image of the spotlight filament on the scale.

. Fire a few blank shots at the pendulum to make sure that it does not

respond to the impact of the air jet from the rifle.

. Make sure that the swing attenuation is small: the amplitude must decrease

by half or less after ten swings.

. By measuring the time of 10-15 full swings of the pendulum determine 73

and Ty. Using Eq. (12) find the value of v kI and estimate its error.

. Fire a few shots and determine the pellet velocity for each shot using

Egs. (9) and (8).
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. Estimate the pellet velocity error for each shot.
10.

Find the average pellet velocity and a scatter near the average. What is the
reason for the observed scatter? Is it due to the measurement inaccuracy
or to different shot velocities?

Questions

. How does a deviation of the pellet-target impact angle from 90 degrees affect the

validity of the method employed in the experiment?

. At which amplitudes of pendulum swing should the periods be measured?
. How does pellet momentum affect pendulum swing?

Literature

. Cusyzun /J.B. Obmuit kypc ¢msuku. T. I. — M.: Hayka, 1996. §§ 26, 30, 33,

34, 41.

. Cmpeaxos C.II. Mexanuka. — M.: Hayka, 1975. §§ 53, 124, 126.
. Xatxun C.9. @usuueckue ocHosbl mexanuku. — M.: Hayka, 1971. §§ 22, 26, 67,

68, 89, 95.

Lab 1.2.2

Experimental verification of the dynamical law of
rotational motion using the Oberbeck pendulum

Purpose of the lab: 1) to verify that angular acceleration of the pen-
dulum is directly proportional to the torque exerted on the pendulum, to
determine the moment of inertia of the pendulum; 2) to access friction
forces applied to the axis of rotation.

Tools and instruments: the Oberbeck pendulum, weights, a stop-
watch, a ruler, and a caliper.

The purpose of the lab is to verify experimentally the dynamical law of
rotational motion:

To this end the Oberbeck pendulum is used, its design is shown in Fig. 1.

The pendulum consists of four thin rods which are rigidly attached to
the hub at right angles. The hub and two wheels of different radii (r1 and
r9) are attached to the same horizontal shaft which is fixed between two
spindle bearings. The moment of inertia of the pendulum can be varied by
placing the weights m4 along the rods. A thin thread is winded around one
of the pendulum wheels. The light platform of a known mass is attached
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to the thread, it is used for placing the weights. The torque exerted on the
pendulum is due to the thread tension T

My, =T, (2)

where r is the wheel radius (r; or r2). The force T' can be easily found
from the equation of motion of the platform with a weight on it:

mg — T = ma. (3)

Here m is the mass of the platform and the weight.

If the torque My, due to the friction in the bearings is small compared
to the torque Mr due to the tension in the thread, then the acceleration
a is constant according to Eqgs. (1), (2), and (3). The acceleration can be
found by measuring the time ¢ that takes the platform to descend through

the distance h: oh

This acceleration is related to the angular acceleration 8 = dw/dt by:
a=r— =r10. (5)

Equations (2) — (5) specify the pendulum motion.

In real experiment the torque My, is often large, which significantly af-
fects the results. At first sight, the effect due to friction could be mitigated
by increasing the mass m. However this is not so because:

1) greater mass m increases the pressure exerted on the shaft by the pen-
dulum thereby enhancing the friction;

2) large m reduces the time ¢ and therefore deteriorates the accuracy of
time measurement.

In our installation the friction in the spindle bearings (see Fig. 1) is
small, so the friction torque is not large. However it is not negligible and
should be taken into account in data treatment.

It is convenient to separate the friction torque in Eq. (1) explicitly:

dw
Mp — Mg, = IE' (6)
Before proceeding to the measurement the weights m; should be installed
at some distance R from the rotation axis, so that the pendulum be in
neutral equilibrium. To check the latter set the pendulum in motion and
let it stop several times. (What is the use of the procedure? How can one
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Fig. 1. Oberbeck pendulum

infer from the observations that the pendulum is well balanced?) Then
wind one layer of the thread around a wheel and set the height h of the
platform descent. The recommended height is 70-100 cm. It is convenient
to perform measurements for the same height h using 3-5 different weights
on the platform.

The experiment consists of two parts. In the first part the pendulum
rotation is studied for different weights and the same moment of inertia
(the positions of the weights m; are fixed). The results are used to calculate
the moment of inertia I and the torque My, due to friction in the bearings.

In the second part the rotational motion is studied for different (5-6)
values of the moment of inertia. The latter is varied by changing the
distance R of the weights from the shaft. The measured value of the
moment of inertia is compared to the calculated one. The weights m; are
cylinders of radius r and height [. The moment of inertia of the pendulum
is evaluated as

myl? _|_4m1r27
12 4

I=1y+4mR*+4 (7)
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where [ is the moment of inertia without the weights m;. The derivation
of the formula is left to the reader.

LABORATORY ASSIGNMENT

. Achieve the neutral equilibrium by varying the distance R between the

weights m; and the shaft. The distance R should be measured and
recorded.

. Increase the tension T' by loading the platform. Find the minimum mass

myq of the weight for which the pendulum starts spinning. Perform the
experiment for each wheel. Estimate the torque due to friction.

. Put an additional weight on the platform and measure the time of the

platform descent. Repeat the measurement 4-5 times and find the average

t. Using Eqgs. (2) - (5) determine the angular acceleration 3 = 2% and
the torque Mp. Tabulate the results using the table below.

& g .

*5 O
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. Repeat the experiment for 3-4 different values of m for each wheel (6-8

measurements overall). Tabulate the results.

. Plot the experimental results for two wheels. Plot the values of Mt on the

abscissa and the angular acceleration 3 on the ordinate. Determine graph-
ically the moment of inertia ! and the friction torque My, (the z-intercept
of the function 3(Mr)). Estimate the errors.

. Repeat the measurements of 3-5 for two different values of the moments of

inertia corresponding to maximum and minimum distance of the weights
my from the shaft.

. Compare the values of My, obtained in the experiments. Does the value

of M¢, depend on the moment of inertia of the pendulum?

. Repeat the experiments described in 3 for three different moments of inertia

of the pendulum using only one weight and the large wheel. In each case
determine I using Eq. (6). Take the value My, from 5.

. Plot the values of I obtained for different R’s as a function I = f(R?).

Using the plot determine the moment inertia of the pendulum Iy without
the weights.
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Do the experimental results agree with Eq. (7)? How does the relative
contribution of two last terms in Eq. (7) depend on R? Is the correspond-
ing correction comparable to the measurement errors? To answer these

questions plot the value AI/I versus R?, where

ml? mr?
Al =4—+4——.
12 + 4

What are possible sources of the experimental error?

Questions

. Why must the torque due to friction in the shaft bearings be reduced as much

as possible? It appears that Eq. (6) is valid for any value of My,..

. What is the role of the thread thickness and elasticity?
. Which quantity has to be measured with the greatest accuracy in this experi-

ment?

. State and prove Huygens-Steiner theorem.

Literature
. Cusyzun /[.B. Obmuit kypc dusuxku. T. I. — M.: Hayxka, 1996. §§ 30, 32, 35,
36.
. Cmpeaxos C.II. Mexanuka. — M.: Hayxka, 1975. I'm. VII, §§ 52, 53, 59; ri1. V,
§§ 41, 42.

Lab 1.2.3

Determination of principal moments of inertia of
rigid bodies by means of trifilar torsion
suspension

Purpose of the lab: to determine the moments of inertia of rigid
bodies and to compare the results with theoretical calculations; to verify
additivity of the moments of inertia and the Huygens-Steiner theorem.

Tools and instruments: a trifilar suspension, a stopwatch, an oscilla-
tion counter, and a set of rigid bodies (a disk, a rod, a hollow cylinder
etc.).

Rotational inertia is due to the moment of inertia with respect to the
corresponding axis of rotation (see the introduction to this chapter). The
moment of inertia with respect to an immobile axis of rotation is defined
as

I= J'r2 dm. (1)

[l

Fig. 1. Trifilar suspension

Here r is the distance of the body element dm from the axis. Integration
is performed over all elements.

The moment of inertia can be calculated for uniform bodies of a simple
shape. Otherwise the moment of inertia can be determined from experi-
ment. The trifilar suspension shown in Fig. 1 is often used for this purpose.
The device consists of the immobile platform P and the platform P’ which
is symmetrically suspended on three threads AA’, BB’, and CC’ and can
execute free oscillations.

The platform P is mounted on a bracket and is equipped with a lever
(not shown) used to initiate rotational oscillations by slightly turning the
upper platform. It is better to turn the upper platform which is attached
to the immobile shaft since turning the lower platform would also cause
pendulum-like oscillations which are difficult to account for. The upper
platform remains at rest after the initial turn during the ensuing oscilla-
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tions. Once the lower platform P’ is turned by the angle ¢ with respect
to the upper one, the restoring torque arises. It tends to return the lower
platform to the equilibrium position that corresponds to zero rotation an-
gle. However the platform does not remain in the equilibrium because of
non-zero angular velocity (kinetic energy). This results in angular oscilla-
tions.

Neglecting the energy losses due to friction in air and at the points of
suspension one can write the law of conservation of energy for the oscilla-
tions: 152

% +mg(zo—2) =E. (2)
Here I is the moment of inertia of the platform and the body, m is the
mass of the platformm and the body, ¢ is the platform angle of rotation
(the dot stands for time derivative, so it is the angular velocity), 2o is the
vertical coordinate of the center O’ of the lower platform at ¢ = 0, and z
is the coordinate of the center that corresponds to the rotation angle ¢.
The first term on the left-hand side is the kinetic energy of rotation, the
second term is the potential energy in the gravitational field, and F is the
total energy.

It should be obvious from Eq. (2) that the restoring force is due to
gravity.

Now let us choose the coordinate frame z, y, z, which is rigidly fixed
to the upper platform (see Fig. 1). In this frame the coordinates of the
suspension point C are (r, 0, 0 ). The coordinates of the lower end C’ of
the corresponding thread at equilibrium are (R, 0, z9). When the platform
turns by the angle ¢ the lower end is at the point C” with coordinates
(Rcosg, Rsing, z). The distance between points C u C” is equal to the
thread length L. Therefore

(Rcosp — 1) + R?sin® ¢ + 2% = L2 (3)
Since at small angles cos ¢ ~ 1 — ¢?/2, we obtain
22 =L~ R*—r? 4+ 2Rrcosp = 25 — 2Rr(1 — cos @) ~ 23 — Rryp?. (4)

Taking the square root of Eq. (4) we obtain for small ¢:

Rry? Rry?
2 & /25 — Rro? = 2041 — 2 A zp — o (5)

Substituting this value for z in Eq. (2) we get

1 Rr
—1¢? —¢® =E.
5 ©° +mg 57 © (6)
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Differentiation of the last equation with respect to time yields the equa-
tion for small angular oscillations of the platform:

.. Rr
I<p+mgz—oap:0. (7)

The time derivative of E is zero since we neglected the energy losses due
to friction.
One can easily check by direct substitution that the solution of this

equation is
. mgRr
© = @p sin t+6|. (8)
IZO

The amplitude g and the phase 6 of oscillations are determined from
initial conditions. The oscillation period is

IZO
T=2 \/ . 9
T mgRr 9)

Notice that this is the period of the simple gravity pendulum for r = R
and I = mR? (a thin ring).
Equation (9) gives the formula for the moment of inertia:

mgRrT?
472z (10)

Now, the parameters R, r, and zo do not change during the experiment,
which allows one to rewrite the last equation as:

I =kmT?. (11)

Rr
Here k = 4g is a constant quantity.

T2z
Thus the egluations derived allow one to determine the moment of in-
ertia of the platform with or without a body by measuring the period of
angular oscillations. The moment of inertia of the body can then be calcu-
lated using additivity of moments of inertia. The additivity can be verified
by performing the measurements for two bodies together and separately.
The derived equations are based on the assumption that irreversible
energy losses due to friction are negligible, i.e. the oscillations decay slowly.
Oscillation damping can be evaluated by comparing the time 7, which takes
the oscillation magnitude to decrease by a factor of 2-3, with the oscillation
period T'. The irreversible energy losses are negligible providing

T>T. (12)
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It is recommended to determine oscillation period with a relative error
of 0.5%. The number of oscillations required to measure the period is
determined by this error and by accuracy of time measurement.

Oscillations are registered by a counter which consists of a light source
(2), a photovoltaic cell (3), and a digital counter (1) (see Fig. 1). A leaf
shutter attached to the platform crosses the beam twice a period. The
signal from the cell is registered by the digital counter.

LABORATORY ASSIGNMENT

. Before loading the lower platform check the installation, i.e. make sure
that oscillations can be properly initiated and that the pendulum-like os-
cillations are not excited. Check operation of the oscillation counter.
. By exciting angular oscillations check how well relation (12) is satisfied.
This task does not require high accuracy of the corresponding time inter-
vals. The measurements must be performed for the unloaded platform.
Explain why.
. Find the working range of oscillation amplitudes. In this range the oscil-
lation period determined by 20-30 full swings is independent of the initial
amplitude. This means that oscillation period remains the same when the
amplitude is halved.
. Measure parameters zg, R, and r (see Fig. 1). Calculate the installation
constant k in Eq. (11) and its error oy.
. Measure the moment of inertia of the unloaded platform (hereinafter the
oscillation period should be measured with a relative error less than 0,5%))
6. Measure the moments of inertia of two bodies
from the set, separately at first and then to-
gether. The bodies should be placed on the
platform so that the center of mass of the sys-
tem lies on the axis of rotation, i.e. no notice-
able tilt of the platform is detected. For conve-
nience a set of concentric rings is engraved on
the platform. Check additivity of moments of
inertia, i.e. validity of the relation I = I + I5,
where I; and I> are the moments of inertia
Fig. 2. Position of bodies on  of the first and the second body and I is the
platform total moment of inertia. The accuracy of this
relation can be taken as the accuracy of the lab measurement. Calculate
the moments of inertia I of all the bodies used and compare the results
with the experimental values.
. Place a disk which is cut in two halves on the platform. Gradually move
the halves apart, so that their center of mass remains on the rotation axis
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(see Fig. 2), measure the moment of inertia I of the system versus the
distance h between each of the halves and the rotation axis (the platform
center).

Plot the dependence I(h?) and use it to determine the mass and the
moment of inertia of the disk.

Questions

1. What are the assumptions used in the derivation of Eq. (10)?
2. Can the method of measuring the moments of inertia suggested in the lab be

used if the axis of rotation of the platform does not pass through the center of
mass?

. Prove the Huygens-Steiner theorem.

Literature

. Cusyzun J.B. Obmuit kypc ¢usuku. T. I. — M.: Hayxka, 1996. §§ 35, 36, 42.
2. Cmpeaxos C.II. Mexanuka. — M.: Hayxka, 1975. §§ 52, 55, 59.
. Xatxun C.9. Pusuueckue ocHosbl mexanuku. — M.: Hayka, 1971. §§ 67, 68, 89.

Lab 1.2.4

Determination of principal moments of inertia of
rigid bodies by means of torsional oscillations

Purpose of the lab: to measure periods of torsional oscillations of a
suspension frame with a body attached, to verify theoretical dependence
between the periods of torsional oscillations with respect to different
rotation axes, to determine moments of inertia with respect to different
axes and to use them to determine principal moments of inertia, and to
plot inertia ellipsoid.

Tools and instruments: a rigid frame suspended on a vertical wire, in
which a rigid body can be fixed, a set of rigid bodies, and a stopwatch.

Rotational inertia of a rigid body is determined not only by the body
mass but also by its spatial distribution. The latter is determined by the
quantity called inertia tensor which can be represented by a symmetric
(3%x3) matrix specified by six elements. If all the matrix elements are
known in some coordinate system, the moment of inertia with respect to
an arbitrary axis passing through the origin can be found from Eq. (2.46).
Any inertia tensor can be reduced to diagonal form like any symmetric
matrix. The corresponding diagonal elements I, I,, and I, are called
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Fig. 1. Inertial ellipsoids of parallelepiped, disk, and cube

the principal moments of inertia. Inertia tensor can be visualized as an
ellipsoid which in principal axes of inertia is represented by Eq. (2.51):

La® + Iy* + L2° = 1. (1)

This ellipsoid is called the inertia ellipsoid. It is rigidly fixed to the body.
The coordinate axes Oz, Oy, and Oz coincide with the principal axes of
inertia of the body. If the system origin O coincides with the center of
mass the inertia ellipsoid is called central.

The inertia ellipsoid allows one to determine the
moment of inertia with respect to any axis pass-
ing through the ellipsoid center. One should simply
draw the radius-vector 7 along the rotation axis to
the point of intersection with the ellipsoid surface.
The length r specifies the corresponding moment of

inertia according to
1 7 1

I = —. 2
» )

N L
The principal axes of a body can often be de-
2 termined by its symmetry. For instance, symmetry
3 axes of cylinder and/or sphere are the principal axes

of inertia because the moment of inertia with respect
Fig. 2. Experimental  to any axis passing through a plane perpendicular to
setup the symmetry axis is the same. Therefore the inertia
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ellipsoid being the ellipsoid of rotation with respect to the symmetry axis
has the same symmetry as the body itself.

Inertia ellipsoid turns out to be symmetric for some bodies which do
not possess axial symmetry. For example consider a parallelepiped with
square base or a cube. For cube the inertia ellipsoid is spherical, therefore
the moment of inertia is independent of the rotation axis, just like for
sphere. Figure 1 shows (not to scale) the central inertia ellipsoids for
parallelepiped, disk, and cube.

Figure 2 shows the setup used to observe torsional oscillations. The
frame 1 is rigidly attached to the vertical wire 2 fixed in the special clamps 3
which allow one to excite torsional oscillations around the vertical. The
rigid body 7 is fixed in the frame by means of the plank 4, the nuts 5, and
the screw 6. The body has special holes used to fix the body in different
positions, so that the rotation axis passes through the center of mass at
various angles.

Torsional oscillations of the R
frame and the body are described
by the equation

Dr

2

(I+1)%2 = —fo. ()
Here I and I, are the moments y
of inertia of the body and the
frame, respectively, ¢ is the an-
gle of rotation which depends on
time t, and f is the torsion co- Y
efficient of the wire. The period

of torsional oscillations is deter- // /' c N, / b
mined by the equation / ' P

I+1, I I
T=2m|—L2 (4
f Fig. 3. Rotation axes of parallelepiped

Figure 3 shows the positions
of rotation axes in parallelepiped. The principal axes are AA’, BB’, and
CC’. The moments of inertia with respect to these axes are I, I,, and
I,. The axis DD’, which coincides with the main diagonal, makes the
same angles with the principal axes and with the edges a, b, and ¢ which
are parallel to the axes. The cosines of the angles are a/d, b/d, and ¢/d,
respectively, where d = va? + b2 + ¢2 is the diagonal length.
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The moment of inertia Iy with respect to the diagonal DD’ is expressed
via the principal moments of inertia as (2.53):

a? b2 c?
Idzlzﬁ +Iyﬁ +Izﬁ' (5)
This gives the equation:
(a® + 0> + Ay = a*I, + b1, + 31, (6)

Using the relation (4) between the moment of inertia and the period of
torsional oscillations one obtains the relation between the periods of oscil-
lation:
(@® +b* + )T = a°T2 + b°T, + *T7. (7)
Experimental verification of this relation serves to verify Eq. (5) as well.
This equation also allows one to derive the relations between the moments
of inertia corresponding to the axes EE’, MM’, and PP’ and the principal
moments of inertia. Using Eq. (4) one can find the corresponding oscillation
periods. The reader is suggested to calculate the cosines of the angles which
the above axes make with the principal axes and obtain the relations

(b* + AT} = b°T; + T2, (8)
(a® + *)TE = a®T? + T2, 9)
(a® + )Ty = a®T2 + b°T7. (10)

These relations should be experimentally verified as well.

LABORATORY ASSIGNMENT

. Learn how to handle the installation. Make sure that 1) the wire is tight,
2) the frame is rigidly attached to the wire, 3) the device for exciting the
torsional oscillations is properly functioning, and 4) vertical vibrations are
not excited together with the torsional oscillations.

. Learn how to attach bodies to the frame. A body has special holes which
must fit with the screws on the frame. To fix the body (see Fig. 2) one
should do the following. Unscrew the nuts 5, pull up the plank 4 and insert
the body into the frame, so that the hole on the body fits the jag on the
lower side of the plank. Lower the plank and insert the screw 6 protruding
from the plank by 5-7 mm into the hole on the body. Tighten the nuts 5
and then the screw 6. If the body gets loose in the frame tighten the
screw 6 to fix it.
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. Before each set of measurements (the empty frame or the frame with the

body) one should choose a proper amplitude of torsional oscillations (the
maximum rotation angle of the frame). The amplitude is properly chosen if
the oscillation period (determined by 10-15 oscillations) remains the same
when the amplitude is reduced by half. One should decrease the amplitude
until this condition is fulfilled.

. Determine the oscillation periods for empty frame and for different posi-

tions of the bodies with respect to the rotation axis. A period should be
measured by 10-15 oscillations, each measurement should be repeated at
least 3 times.

. Measure the parallelepiped dimensions using the caliper. Calculate the

principal moments of inertia. Verify Egs. (7) — (10) using the data obtained.

. Draw cross-sections of inertia ellipsoid by principal planes. For this pur-

pose take the measured oscillation periods with respect to the axis in the
principal plane and for each axis calculate the quantity 1//72 — T which
is proportional to the distance from the center of mass to the point of inter-
section of the ellipsoid with the axis. Here T}, is the oscillation period of the
empty frame. Plot the values obtained along the directions corresponding
to the axes and draw the ellipse through these points (8 points overall).
The ellipse corresponds to the cross-section of the inertia ellipsoid by the
principal plane (not to scale). Find the ratio of the principal moments of
inertia.

. Perform the same measurements for the cube and draw the corresponding

cross-sections of the inertia ellipsoid. Verify that the central moments of
inertia are equal.

Questions

. What are the principal moments of inertia of a rigid body?
2. What does the inertia ellipsoid of a cube look like?
. Describe the state of free (torqueless) rotation of a rigid body.

Literature

. Cusyzun JI.B. Obwwmit kypc dusuku. T. I. — M.: Hayka, 1996. §§ 53, 54.
2. Cmpeaxos C.II. Mexanuka. — M.: Hayka, 1975. §§ 63, 64.
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Lab 1.2.5

Study of gyroscope precession

Purpose of the lab: to study the forced precession of gyroscope; to
specify the dependence of precession velocity on the torque on the gyro-
scope axis; to calculate the rotational velocity of the gyroscope rotor and
compare the result with that one obtained from the precession velocity.

Tools and instruments: a gyroscope in Cardan suspension, a stop-
watch, a set of weights, unfastened rotor of a gyroscope, a cylinder of
known mass, a torsional pendulum, a caliper, and a ruler.

The dynamical equation of a rigid body can be presented as

—

dP

> _F 1
7 ; (1)
dl -

— =M (2)

Here Eq. (1) represents dynamics of the center of inertia, and Eq. (2)
is the angular momentum equation. A rigid body possesses six degrees of
freedom, for this reason these two vector equations provide the complete
description of its motion.

If the force F does not depend on rotational velocity and the torque
M is independent of translational velocity, Eqs. (1) and (2) can be treated
independently. This assumption is invalid, for example, for projectile mo-
tion in the atmosphere. But if the separation of the equations is possible,
Eq. (1) describes motion of a material point and Eq. (2) regards the prob-
lem of rotation of a rigid body about a fixed point. The latter problem is
considered in the lab.

The angular momentum of a rigid body written in projections on its
principal axes z, vy, z is

=

L=7lw,+ ] Iyw, + kL., (3)

where I, I, I, are principal moments of inertia, w;, wy, w, are the com-
ponents of the angular velocity vector &. A fast-rotating body with

Lw, > Liw,, Iywy,

is commonly referred to as gyroscope. If the gyroscope center of inertia is
at rest, the gyroscope is called balanced.

1.2.5 143

According to Eq. (2), the increment of angular momentum is given by
the integral

AL = j N dt. ()

If the torque is applied for a short period of time, it follows from Eq. (4)
that the increment of the angular momentum AL is much less than the
angular momentum itself:

AL < |).

This equation accounts for the remarkable dynamic stability of a fast-rotat-
ing gyroscope.

Let us figure out what forces should y
be applied to a gyroscope in order to
change the direction of its axis. Con- al
sider a flywheel rotating about z-axis
which is orthogonal to the wheel plane
(Fig. 1). We assume that

<

w, = wo, we =0, wy = 0.

Now assume that the axis of rota-
tion turns by infinitesimal angle dy in
zzx-plane in the direction of z-axis. This
angular displacement represents an ad-
ditional rotation of the flywheel about
y-axis, such that

dp = Qdt, Fig. 1. Flywheel

where  is the angular velocity of the additional rotation. Let us assume
that

Lo < Ly,. (5)
This means that the angular momentum of the flywheel, which is equal to

I.wq prior to application of force, rotates in zz-plane and its magnitude
remains constant. Thus

|dL| = Ldp = LQ dt.

The increment of the angular momentum is directed along x-axis; for this
reason one can represent vector dL as cross product of the angular velocity
vector €2 (directed along y-axis) and the vector of angular momentum of
the flywheel (directed along z-axis):

dlL = O x Ldt,
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ie. .
dL - -
— =QxL
a
Using Eq. (2) one obtains
M=GxL. (6)

Equation (6) is valid provided the condition (5) is fulfilled. It allows one
to determine the torque M which makes the flywheel axis start rotating
with velocity Q. Thus, to turn the flywheel axis toward z-axis one needs
to apply the force directed along y-axis rather than along x-axis. In this
case the torque M is directed along x-axis.

The torque M on the gyroscope axis results in its slow rotation around
y-axis with angular velocity 2. This kind of motion is referred to as regular
precession of gyroscope. In particular, the torque can be caused by the
gravitational force if the gyroscope center of inertia does not coincide with
its point of suspension. Let the gyroscope mass be m, and its axis of
rotation be deflected by angle « from the vertical. Then the velocity of
precession caused by the gravitational force is

M mgglesina  mggle

Q = = - 7
I, wpsin o Twosina Lwy ' (™

where [. is the distance between the point of suspension and the center of
inertia of the gyroscope, i.e. the precession velocity does not depend on
the angle a.

To study the regular precession of the gyroscope one suspends addi-
tional weights on its axis. This results in displacement of the center of
inertia and produces the torque of gravitational force leading to precession.
The precession velocity in this case is given by the following equation:

O- mgl (8)

Isz,

where m is the mass of the weight and [ is the distance between the center of
the Cardan suspension and the point of weight suspension on the gyroscope
axis (see Fig. 3).

In this lab regular precession of the gyroscope is studied. The outer ring
A of the suspension can freely rotate about the vertical axis aa. The inner
ring B is connected to the ring A via horizontal axis bb. The gyroscope
itself is mounted in the ring B, its axis cc is orthogonal to the axis bb. The
center of inertia of the gyroscope coincides with the intersection point of
the three axes and its spatial position is constant under arbitrary rotations
of the rings. Effectively the gyroscope is suspended at the center of inertia.
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Fig. 2. Gyroscope in Cardan suspension

The experimental setup for studying the gyroscope precession is shown
in Fig. 3. The gyroscope rotor is the rotor of high-speed electric motor M
supplied with alternating current of the frequency of 400 Hz. The motor
casing (the stator with coils supplied with 400-Hz current) is attached to
the ring B (see Figs. 2 and 3). The motor and the ring B can rotate about
the horizontal axis bb in the ring A which, in turn, can rotate about the
vertical axis aa. The engine rotor is a massive steel cylinder with cooper
veinlets like "squirrel case". The lever (marked with letter C in Fig. 3)
is directed along the rotor symmetry axis, it is used for suspension of the
weights W. One can alter the force F' which induces precession by using
different weights. The torque due to this force is determined by the distance
[ between the suspension point of the weights and the gyroscope center of
inertia; this distance is indicated in the setup.

In the previous derivation of the equations governing gyroscope pre-
cession we assumed that the vectors of forces are coplanar to the vectors
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Fig. 3. Experimental setup

of self-rotation angular velocity and precession velocity (zy-plane). In this
case the torque due to gravitational forces changes only the direction of the
gyroscope angular momentum while the magnitude remains constant. Fric-
tion forces do not lie in the plane of axial rotation, so they can change both
the magnitude and the direction of the angular momentum. The force of
friction exerted on the gyroscope rotor is compensated by the motor, while
the friction in the gimbal axes is not compensated. As a result the gyro-
scope axis will descend in the direction of gravitational force exerted on
the weights. The reader is encouraged to analyze the friction forces in de-
tail and to estimate the errors in determination of the velocity wg of the
gyroscope rotation around its symmetry axis due to the friction-induced
lowering of the axis.

In the first part of the lab the dependence of precession velocity on
the torque on the gyroscope rotation axis is studied. For this purpose
one suspends the weights W on the lever C. The precession velocity is
determined by measuring the number of revolutions of the lever around
the vertical and the time passed. During the measurements the lever does
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not only rotate but also slightly lowers, thus it should be raised by 5-6°
prior to the measurements. The measurement should be stopped when the
lever is lowered by the same angle.

Measurements of the gyroscope precession velocity allow one to calcu-
late the angular velocity of its rotor. Equation (8) is used for this purpose.
The moment of inertia of the rotor Iy is measured via the torsional oscilla-
tions of the rotor replica which is suspended on a stiff wire along the rotor
symmetry axis. The period of torsional oscillations Ty depends both on
the moment of inertia Iy and the wire torsion modulus f:

To = 27‘1’\/?. (9)

To eliminate the unknown torsion modulus from Eq. (9) one measures
the oscillation period of a cylinder of a given size and mass (and hence a
given moment of inertia I.). The moment of inertia of the rotor is then
determined by the equation:

T2
Iy = I.=2, 10
0 CTCQ ( )
where T, is the period of torsional oscillations of the cylinder.

One can also work out the angular velocity of the rotor without the
study of precession. The motor casing used in the lab has two coils which
are necessary for fast spin-up of the gyroscope. In this lab the first coil
is used for the spin-up while the second one can be used to measure the
number of revolutions. The rotor is always slightly magnetized, for this
reason its rotation leads to the induction of alternating emf in the second
coil. The emf frequency equals the rotor rotation frequency; it can be
measured, e.g. by observing Lissajous figures on oscilloscope screen. For
this purpose one should apply the emf-signal and the sinusoidal signal from
the generator to the X- and Y-inputs of the oscilloscope, respectively. If
the frequencies of two signals coincide the figure on the screen is an ellipse.

LABORATORY ASSIGNMENT

. Set the gyroscope axis horizontally by turning the lever C carefully.
2. Turn on the gyroscope power supply and wait for 4-5 minutes until the

rotor motion becomes stable.

. Make sure that the rotor rotation is fast: tapping on the lever C should

not change its direction. Explain why the gyroscope axis is stable. "Play"
with the gyroscope: press on the lever C with the pencil and observe the
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gyroscope reaction. Determine the direction of gyroscope rotation from
the observation.

. Suspend the weight W on the lever C, which should result in gyroscope

precession. Friction in the axis (in which exactly?) leads to slow lowering
of the lever.

. Lift the lever C by 56 degrees from the horizontal plane. Suspend the

weight W and measure the precession velocity Q with a stopwatch. Con-
tinue the measurements until the lever goes down by 5-6 degrees below the
horizontal plane (the number of revolutions should be an integer). Also
measure the speed of lowering. Repeat the measurement at least 5 times
and average the results.

. Repeat the experiments described in 5 for various values of the torque

M (5-7 values) with respect to the gyroscope center of mass (the arm !
is indicated on the setup). Plot the obtained dependence of precession
velocity 2 on torque M.

. Measure the moment of inertia of the rotor with respect to its symmetry

axis Ij: suspend the rotor replica by the wire so that the symmetry axis of
the replica is vertical and measure the oscillation period of the "pendulum".
Replace the rotor with a cylinder of a given mass and radius and measure
its oscillation period. Using Eq. (10) calculate the moment of inertia of
the gyroscope rotor Ij.

. Estimate the errors of the obtained values of Iy and €.
. Calculate the rotor rotation frequency using Eq. (8).
10.

Estimate the torque due to friction using the known value of the speed of
lowering.

Determine the rotor speed using Lissajois figures. Turn on the oscillo-
scope and the generator and apply the signal from the second coil of the
gyroscope (from two terminals on the gyroscope base) to the oscilloscope
Y-input. The signal from the generator should be applied to the X-input.
The subsequent adjustment of the oscilloscope depends on its model: if
"GOS-620" device is used, set the "Time/div" knob to "X-Y" mode by
turning it counter-clockwise and adjust the horizontal and vertical scales
using the "Volts/div" knobs. To obtain a Lissajois figure (ellipse) one
should set the generator frequency equal to the rotor frequency. Make the
ellipse stable by fine tuning of the generator frequency. If this is not pos-
sible turn the motor power off for a while: then the current in the first
coil does not induce emf in the second one and does not interfere with the
measurements. With the power off the measurements should be performed
quickly due to deceleration of the rotor. Stability of the ellipse means that
the generator frequency equals the rotor frequency.

12.

13.

T W N =

—_
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Estimate the errors of the results and compare two values of the gyroscope
angular velocity determined by different techniques.
Find out if Eq. (5) is applicable in the lab.

Questions

. What is gyroscope and what are its major properties?

. What factors does the velocity of regular precession depend on?

. What is the dimensionality of the torsion modulus in Eq. (9)7

. Derive Eq. (8) from Eq. (7).

. Can you explain that a rolling coin is turning in the direction of tilt?

Literature

. Cusyzun /J.B. O6muit kypc dbusuku. T.I. —M.: Hayka, 1996. Ch. VII, §§ 49-51.

2. Cmpeaxos C.II. Mexanuka. — M.: Hayka, 1975. §§ 65-67.

. Xatuxur C.9. Pusunyeckue ocuosol mexanuku. — M.: Hayka, 1971. §§ 99-104.
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CONTINUOUS MECHANICS

The subject of continuous mechanics is a macroscopic description of
solid objects and fluids. In continuous mechanics any small volume is
presumably large enough to contain a very large number of molecules. Such
idealization justifies the usage of efficient mathematical methods developed
for analytic functions.

Strain and stress of a deformable solid. Consider a solid object at rest
which is not absolutely rigid, i.e. it can change its shape and the volume
under pressure. A deformation of the solid results in internal forces which
try to restore its original shape. Such a force divided by the corresponding
area is called stress.

Stress is due to molecular forces, i.e. the forces between molecules.
The range of molecular forces is of the order of intermolecular distance. As
a macroscopic theory the continuous mechanics deals only with distances
greater than distances between molecules. Therefore the «range» of inter-
molecular forces in continuous mechanics should be considered as negligible
and so an internal force can act only through a surface.

Let some point of a solid object with coordinate x move at a distance
s. If the displacement is the same for all points, this would be equivalent
to a parallel transport (translation) of the object. Let us assume that the
displacement of a neighboring point with coordinate x+dx is different from
s and it is actually s 4 ds. Strain is defined as

ds
dz’
i.e. strain is a relative displacement of two points divided by the initial
distance between them. If the distance between the points increases the
strain is called tensile otherwise it is called compressive.

Notice that the direction of ds is not necessarily the same as that of dz.
If the strain is such that ds is perpendicular to dz it is called shear strain;
the definition remains the same, € = ds/dz (see Fig. 3.1).

E =
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_-- :ds
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dx dsw dx
|
normal shear

Fig. 3.1. Normal and shear strain

Actually all intermediate strain directions are possible, so in general d§
u dZ are vectors. The quantity e relates the two vectors and therefore it is
a second-rank tensor which can be represented as a (3 x 3) matrix €;;.

Consider Cartesian coordinates x, y, z and let the components of the
displacement vector s be u, v, w:

§:@?u—|—fv+l;:w.

It could be shown that for small deformations the matrix ¢;; takes the
form:

1 /0s; Os; ..
€ij = 3 <8xj + (937]1) i,j=1,2,3 (or z,y,2).

One can see that

ou ov ow

5rr:€z:%7 gyy:5y:a_y7 gzz:€zza~

The forces responsible for stretch (compression) and shear distortion (see
Fig. 3.2) are called tension (compression) and shear forces, respectively.

*F

e

tension shear stress

Fig. 3.2. Tension and shear stress

The corresponding stress is defined as the force divided by the area on
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which the force acts:

g = §

Unlike force, stress is a local quantity, i.e. it is defined at every point of an
object. Stress is defined as the local force exerted on a unit area of some
imaginary plane inside an object (see Fig. 3.3).

shear

tensile stress
stress

Fig. 3.3. Tensile and shear stress

In general stress depends on the plane orientation; all intermediate cases
between normal tension and shear stress are possible. Therefore stress is
also defined as the second-rank tensor which has nine components and
relates three force components and three components of the unit vector
normal to the plane the force acts upon. Figure 3.4 illustrates physical
meaning of the components of stress tensor o;;.

The figure pictures an imaginary in-
finitesimal parallelepiped in a solid ob-
i Oy ject and the forces per unit area exerted
i 0 o on its faces.

—>
N
2

Notice that an object under ten-

7 %= v | sion force remains at rest (see Fig. 3.2)
! H Oyx
AP s R =-->>— whereas under the shear stress an ob-
- v

. ject will be rotating counterclockwise.
2 ! To prevent the object from rotation an-

f other pair of forces acting in the oppo-
Fig. 3.4. Components of stress tensor ~Site direction must be applied. This can
be done if the second pair of shear stress forces is exerted on the upper and
lower faces of the parallelepiped in Fig. 3.2. Thus an object will remain in
equilibrium providing the shear stress forces applied to the corresponding
perpendicular planes are equal. The inspection of Fig. 3.4 shows that the
following equations must hold:

Ozy = Oyz, Ozy = Oyzx, Oxz = Ozx,
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i.e. stress tensor is symmetric. Because of this requirement only six com-
ponents out of nine of any stress tensor are independent. Note that strain
tensor is symmetric by definition. Overall, 12 independent variables are
required to describe an equilibrium state of a deformed solid object.

Elastic modulus. Equation of state of ideal gas gives the relation between
gas pressure P and its volume V at a given temperature. An equation
similar to the equation of state relates the quantities o and . The equation
has been established empirically and it reads: for tension (compression),

o = Ee, (3.1)

and for shear stress,
o= Ge =G, (3.2)

where v is the deformation angle (see Fig. 3.1).

The quantity E is called Young’s modulus and G is called shear modu-
lus. It is known from experiment that the moduli F and G are independent
of stress in a wide range of the latter. The moduli E and G specify elastic
properties of a material in the range where a linear relation between stress
and strain holds.

In general, a relation between stress and strain in a crystal is determined
via a forth-rank tensor which has 81 components. The tensor relates nine
components of stress tensor and nine components of strain tensor, similarly
to Egs. (3.1) and (3.2). Since only six components of the stress and strain
tensors are independent, there are only 36 elastic moduli. The actual num-
ber of the moduli is less due to a symmetry of the crystal and ranges from
21 to 3. Of course, this is true for single crystals. Polycrystalline bodies
composed of small single crystals can be considered isotropic. This approx-
imation is valid as long as we are interested in a large scale deformation
of a crystalline solid. An isotropic body is specified by two independent
elastic moduli.

Strain and stress in parallelepiped. Let a homogeneous isotropic body
have a shape of a parallelepiped. Consider the forces F;, F;, and F., applied
to the opposite faces (see Fig. 3.5). Let the corresponding stresses be o,
oy, and o, and let us find the strains caused by the forces. We assume
small strains, so superposition principle applies.

Let the coordinate axes be directed along the parallelepiped edges which
lengths are I, I, and .

If only the force F}. acts, the edge [, is increased by Aql;:

Allw _ Ox

ls E-
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I |
|
]
i
: Fx
|
K ! £
|
|
D i T .
2 y

Fig. 3.5. Strains in parallelepiped

If only the force Fy acts, the dimension of the slab perpendicular to the
y-axis decreases. In particular, the edge [, would receive the decrement
Asl, which can be calculated as

Aglm o Oy

I HE>

where g is called Poisson’s ratio. Young’s modulus F and Poisson’s ratio p
specify completely elastic properties of an isotropic material. Other elastic
coefficients can be expressed in terms of £ and p. The relative increment
of the edge I, due to the single force F, would be

Aglm o O,

I HE-

If all the forces act simultaneously, the resulting increment of the edge [,
is the sum of all three increments according to the superposition principle:

Al = Aqly + Asly + Asly.
The increments of the edges [, and [, can be found in a similar way. Finally:

Or

“=FF

(Uy + O'Z)v

Chapter I1I 155
_ 9y _ K
Ey - E E(UZ + Ua:)7 (33)
€, = % — %(am +0y).

These equations are called generalized Hook’s law.

A quasistatic stretching of the slab in the x direction does the work
A = %Swag;Alx, where S, = [l is the area of the face orthogonal to the
z-axis. The work can be written as
Al, 1

= _Vax5w>

1
Ay = Slalylon 5 = 5

where V = [,1,. is the slab volume. Similarly,

1 1
A2 = §V0'y€y7 A3 = §VUZEZ.
By adding all three contributions we find the density of elastic energy of

the slab:

1
Wep = 5(03059; + oyey + 0282). (3.4)
Using Eq. (3.3) allows one to rewrite Eq. (3.4) as
1
Wel = 5 (02 + 0 + 07 = 2u(040y + 0y0s + 0.04)] - (3.5)

Notice that an absolutely rigid slab (E — o0) does not accumulate the
elastic energy (w — 0) whatever forces act on it.

Strain due to uniform compression. Consider a case when all the
stresses o, oy, and o, are equal and negative. In this case the slab is
under the uniform pressure applied to all its sides:

P=—-0,=—-0y=—0..

Then it follows from Eq. (3.3) that
P
r =6y =6, =——=(1—-2p). 3.6
comey=e=—p(1-2) (36)

Calculating the logarithmic derivative of both sides of the equation
V=100,

gives
AV Al Al Al

V lz ly ly ’
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or

AV
7 =é&z té&yte;.
Therefore Eq. (3.6) can be written as
AV P
VvV TR (3.7)
where B
K=_—-—. 3.8
3(1—2p) (3:8)

The constant K is called bulk modulus.
Then Eq. (3.5) for the elastic energy density can be rewritten as

3(1—2u)P> P2
Wel = ———FF—— = -5=

2F 2K’
Since we; is positive definite, then
1—2p>0,
or
- 1
p<g

For rock Poisson’s ratio u is close to 0.25 and for metals it is 0.3.

Unilateral tension strain. Let a homogeneous rod be compressible or
stretchable along its axis which is along x direction. Assume also that the
transverse dimensions of the rod do not change due to the rod environment.
The transversal shape of the rod is irrelevant. Then Eq. (3.3) can be used.
Setting ¢, = €. = 0 gives:

oy — (o, +0z) =0, o, — p(og +0y) =0.

Then
Oy =0:= 10,
Oy 22
Ex=—1(1—
E 1—p
Finally
Al, o,
L ol (3.9)
where .
F=p— M (3.10)

(L+p)(1 —2p)
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The quantity E’ is called P-wave modulus.

Relation between elastic moduli. As it is already mentioned a uni-
form isotropic elastic body is specified by two independent elastic moduli.
Therefore the elastic coefficients introduced above must be related. It can
be shown that

E
K=——
3(1—2p)
g t=m
(1+p)(1=2p)
_E
C2(14p)’
E’:K+§G.

Here K is bulk modulus, E’ is P-wave modulus, p is Poisson’s ratio, F is
Young’s modulus, and G is shear modulus. Therefore all elastic coeflicients
can be expressed in terms of E and G.

Pascal’s law. In continuous mechanics a fluid can be defined as a medium
in which a shear stress is absent in equilibrium. Therefore only the diagonal
(matrix) components of the stress tensor are non-zero:

o5 =0, if 1#]; i #0 (i,7=1,2,3).

Moreover all the diagonal components must be equal due to the fluid
isotropy. Therefore the stress tensor of a fluid takes the form

-P 0 0
0i5 = 0 —P 0 s
0 0 —-P

where P is the pressure at a given point of the fluid.

In other words the normal stress (pressure) is independent of the ori-
entation of a surface on which the pressure is exerted. This statement is
called Pascal’s law.

Pressure P in a fluid is caused by compression of the fluid. Since shear
stress is absent the elastic properties of the fluid are specified by the single
elastic constant called compressibility,

lav
X="yap
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or by the inverse quantity, bulk modulus:

K=-V—.
av

It is assumed that the fluid temperature is maintained constant.

Bernoulli’s equation. A fluid flow is specified if the position of any fluid
parcel is known at any given time. By taking time derivative of the position
it is possible to find the parcel velocity and the acceleration. Suppose that
the coordinates zg, yo, and zp of a parcel at a time ty are given. The
coordinates at a time ¢t can be found from the following functions:

T = Fl(x()vy(); 205 t)v
y= F2($07y0, ZO7t)7

z = F3(x0, 90, 20, t).

This set of equations is called the Lagrange equations and the function
arguments are called Lagrange variables. To specify a fluid state completely
one must also know the pressure, the density, and the fluid temperature.
These quantities are determined by the laws of conservation of energy and
momentum and by the equation of state.

There is also another method to specify a flow that refers to what
happens at any point of space at any given time. Usually three components
of the velocity as functions of the coordinates and time are introduced

U = fl(x7yuz7t)7

U= fQ('r?y) Z, t)7
w = f3($7y727t)'

This set of equations is called the Euler equations. To determine the
parcel path one integrates the following set of equations:

dr = udt, dy=wvdt, dz= wdt.

Since three constants of integration can be considered as the parcel coor-
dinates at a given initial time the Lagrange equations are reproduced.

A pictorial representation of a fluid flow is given by the so called lines of
the field flow. The tangent to a field flow line at any given point coincides
with the direction of the fluid velocity. For a stationary flow, which is time
independent, the field flow lines coincide with the parcel trajectories.

In a stationary flow all parcels going through the same point in space
will later go along the same field flow line. A flow region swiped by the
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parcel during its motion through the fluid is called material line. To derive
equations which describe a flow it is convenient to consider a material
line with small cross-sectional area, so that the fluid parameters can be
considered constant across the line. Let p be the fluid density, v be the
fluid velocity, and S be the cross-sectional area of the material line. Then
the volumetric flow rate ¢, i.e. the fluid mass passing through a given
cross-section per unit time, is

q = pvS. (3.11)

Conservation of the fluid mass flowing along the material line with a varying
cross-section gives:
plvlSl = pg’UQSQ. (312)

As to the law of conservation of en- B P
ergy we take into account changes of
kinetic and potential energy of a fluid
caused by work of pressure forces but
neglect changes of internal energy of
the fluid due to compressibility, viscos-
ity, and thermal conductivity. A fluid h,
which viscosity and thermal conductiv-
ity can be neglected is termed perfect Fig. 3.6. To derivation of Bernoulli’s
fluid. Consider a material line which equation
vertical cross-section is shown in Fig. 3.6. The gravity force is directed
to the figure bottom. The heights of the cross-sections 1 and 2 and the
corresponding parameters of the flow are indicated. A fluid parcel tra-
verses infinitesimal distance vdt for an infinitesimal time dt.The parcel at
the cross-section S; moves at the cross-section S, and the parcel from S,
moves to S5. Since the displacements are small, the corresponding changes
in the areas of the cross-sections are negligible. The work done by the pres-
sure forces to displace the mass of the liquid between the cross-sections Sy
and Y9 is the sum of the positive work p;Sjvi1dt and the negative work
p2Savadt (the displacement is opposite to the force). To calculate a change
in the kinetic and potential energy notice that the energy of the liquid
between the cross-sections Sll and S5 remains the same. The change is
completely due to a transition of the mass between the cross-sections S; u
Si, dm = p1S1v1dt = paSavadt, to the position between the cross-sections
Sy u Si. Using the law of conservation of mass in the expression for the
work due to the pressure forces and equating this work to the change in
potential and kinetic energy we obtain:

2

(12 — ZE) dm = dm (g(h2 —hy) + v ;’1) : (3.13)

1 P2
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This gives Bernoulli’s equation:

2

2
LI ghy + ];—1 S gha + % = const. (3.14)
1 2

2 2

The compressibility of a liquid under standard conditions is usually
small. For instance, increasing the density of water by 1% requires a pres-
sure of 200 atm (such a pressure exists at the sea depth of 2km) and
increasing by 10% requires more than 3000 atm. Therefore water is consid-
ered incompressible for small pressures. Then instead of (3.12) and (3.14)
one can write

vlSl = ’1}252, (315)

'U2 'U2
p1+ p71 + pgh1 =p2 + pTQ + pgha. (3.16)

Using Bernoulli’s equation (3.16) for incompressible fluid one can derive
Torricelli’s equation for the velocity of a jet of liquid flowing from a vessel
through an opening. The area of the opening is considered small compared
to the area of the free liquid surface. Therefore the normal component of
the velocity on the free surface is negligible in comparison with the jet
velocity at the opening. The jet can be extended as a material line to
the surface. The pressure in the jet is equal to the atmospheric pressure
because the air-jet boundary is at rest, so there is no force exerted on the
boundary. The pressure on the free surface is also equal to the atmospheric
pressure. If the opening is below the free surface by h, Eq. (3.16) gives for
the jet velocity:

v =+/2gh. (3.17)

Notice that the magnitude of the velocity is independent of its direction
(the normal to the opening area). The quantity pv?/2 is called dynamic
pressure which is equal to the specific density of kinetic energy. It follows
from Eq. (3.17) that the dynamic pressure equals the hydrostatic pressure
pgh. The total pressure in a liquid at rest at this depth follows after adding
the atmospheric pressure.

The Poiseuille equation. According to Bernoulli’s equation the pressure
of a stationary flow of a fluid in a horizontal tube of constant cross-section is
the same along the tube. Actually the pressure decreases in the direction of
the flow. To keep the flow stationary it is necessary to maintain a pressure
difference at the ends of the tube that balances the forces of internal friction
in the fluid.

Consider two parallel plates and a layer of liquid between them. To
maintain a constant relative speed of the plates a pair of forces F and
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—F must be applied to the plates. Newton found experimentally that the
magnitude of the force is

V2 — U1

F= 1
S =7, (3.18)

where S is the plate area, h is the distance between the plates, v; and
vy are the plate velocities, and 7 is dynamic viscosity (viscosity for short).

The force between two layers of a viscous fluid depends on the velocity
gradient in the direction perpendicular to the flow (Newton’s law for a

viscous fluid):

dvg
F=5n—. 3.19
"y (3.19)

Let an incompressible fluid flow along a straight cylindrical tube of a
radius R. Let abscissa be directed along the tube axis in the flow direction.
Cousider a cylinder of the length dz and of the radius r (see Fig. 3.7).

The lateral surface of the cylinder is
subjected to the tangential force due to
viscous friction, the force is directed op-
posite to the cylinder velocity:

d
dF = 27r1"77—dv dx.
r

The force due to the difference in pres- Fig. 3.7. To derivation of the
sure acts on the cylinder bases in the di- Poiseuille equation
rection of motion:

dFy = mr* (P(z) — P(z + dz)) = —WTQC;—Pdl‘.
x

The field flow lines are parallel, the cross-sectional area of a material line
remains constant, so Eq. (3.15) shows that the acceleration of the fluid
parcel under consideration is zero. Therefore the sum of the forces exerted
on the parcel must vanish:

dF +dFy = 0.

It follows from the equation that
Mm— =r—. (3.20)

Since the velocity v as well as dv/dr are independent of x, the derivative
dP/dz in Eq. (3.20) must be constant and equal to
P,— P
l )
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where P; and P, are the pressures at the tube inlet and outlet, respectively.
This gives
dv P1 — P2
—_——r

&= o (3.21)

Integration of this equation yields

P — P
_ 1 27”2

e

v =

The constant of integration can be found by assuming that the fluid sticks
to the tube walls:

v(R) =0.

Then
P — P
v= —=

2_ 2
e (R® —1°).

The velocity v is maximum at the tube axis and equals

PP

R%.
4nl

Vo
Away from the axis the velocity decreases according to quadratic depen-
dence.

Now let us determine the flow rate, i.e. the amount of the fluid passing
through a tube cross-section per unit of time. The mass of the fluid passing
through a ring-like area of internal radius r and external radius r + dr
equals d@Q = 27rdr - pv. Substituting the expression for the velocity and
integrating from 0 to R one finds:

R
__h-PR 2 2
Q=m o J(R —ro)rdr,
0
or
Ph-P _,
=mp————R". .22
Q=mp 8 (3:22)

Thus the flow rate is proportional to the pressure difference, to the fourth
power of the tube radius, and inversely proportional to the tube length
and dynamic viscosity. This law was found experimentally and derived by
Poiseuille although he was not the first to discover it. Equation (3.22) is
called the Hagen—Poiseuille equation.
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In practice the flow rate is conveniently measured in terms of the volume
of fluid flowing through cross-sectional area (volumetric flow rate). Then
Eq. (3.22) becomes

TR

Qv = 8—771(P1 - Py). (3.23)

This particular form of the Poiseuille equation is used in the lab 1.3.3.

A flow of an incompressible viscous fluid is described by the Navier-
Stokes equation:
ov ov ov ov

Vg = +vy3_y —i—vza

1 n
9v = —ZgradP + !Aw. 24
Er o pgra + p 0] (3.24)

Here

0P 0P 0P
gradP—z%—i-ja—y-i-k%

0%y 0%v 0%

’ AT = Ox2 +3y2 +5‘22'

The equation can be reduced to a dimensionless form by introducing a
typical size L and a typical velocity v of the flow. The contribution of
each term is then determined by its coefficient. The contribution of the
viscous term compared to the inertia terms on the left is determined by
the Reynolds number:
pLu
.

For the large Reynolds number the viscous term coefficient is small and
viscosity is negligible. The Reynolds number also determines transition
between the laminar and turbulent regimes of a viscous fluid flow.

Re
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Lab 1.3.1

Determination of Young’s modulus based on
measurements of tensile and bending strain

Purpose of the lab: to determine experimentally the dependence be-
tween stress and strain (Hooke’s law) for two simplest states of stress -
normal stress and bending, and to determine Young’s modulus from the
results.

Tools and instruments: the first part: Lermantov’ machine, a wire
made of studied material, a telescope with a scale, a set of weights, a
micrometer, and a ruler; the second part: a bracket for bending beams,
an indicator for measuring strain, a set of beams, weights, a ruler, and a
caliper.

The first part of the lab is devoted to studying normal stress described
by eq. (3.1), the stress is observed in a stretched wire. Shear stress is
studied in the second part, measurements are performed by bending a
beam. The relation between the beam bending and the magnitude of
the force applied between the points of support is expressed via Young’s
modulus. Therefore the modulus can be determined by measuring the
bending versus the force.

I. Determination of Young’s modulus by measurement
of wire strain

Young’s modulus is measured with the aid of Lermant’s machine which
design is shown in Fig. 1. The upper end of the wire II made of material
under study is attached to the bracket K, and the lower one to the cylinder
at the end of the pivoted bracket I71. The cylinder supports the lever r
to which the mirror 3 is attached. Thus elongation of the wire can be
measured by the angle of mirror rotation.

The wire strain is changed by displacing weights from the platform M
to the platform O and vice versa. Under this arrangement the deformation
of the bracket K remains the same and do not affect the measurement
accuracy.

It should be taken into account that the wire II is always bent if no
stress is applied, which affects the results especially for moderate stress.
Under small load the wire is not just stretching, it is mostly straightening

up.

1.3.1
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Fig. 1. Lermant’s machine
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LABORATORY ASSIGNMENT

. Determine the cross-sectional area of the wire. For this purpose measure
the wire diameter at least at ten different spots and in two perpendicular
directions at each spot. Watch that the micrometer does not deform the
wire. In the calculations that follow use the diameter averaged over all
measurements.

. Measure the wire length.

3. Train the telescope on the mirror 3. The scale reflection should be clearly

visible. Derive the relation between the number n of scale graduations, the
distance h between the scale and the mirror, the length of lever r and the
elongation Al of the mirror. The lever length is recorded on the machine
and the distance h should be measured.

. Make sure that wire elongation remains directly proportional to stress (elas-
tic region) during experiment. To do so, estimate the maximum load by
assuming the yield stress (at which the material begins to deform plas-
tically) be 900 N/mm?. The working load should not exceed 30% of the
maximum. Then verify the estimate. Put a weight on the platform, remove
it, and check that the wire length remains the same. Repeat the experi-
ment with two, three, and more weights until reaching the maximum load.
As soon as irreversible deformations become noticeable increasing the load
must be stopped. Each time the load is changed the arising oscillations
should be damped (the damper is not shown in Fig. 1).

. Measure the dependence of wire elongation, i.e. the number n of scale
graduations, on the mass m of weights by increasing and then decreasing
the load. Repeat the experiment 2-3 times.

. Using the results plot elongation Al versus the load P. When no stretching
force is applied the wire is usually bent, so for small loads its «elongation»
is due to straightening rather than stretching. Therefore the elongation
grows rapidly at the initial part of the curve Al(P) (small P) and only
later the points approach a straight line (which does not pass through the
origin). The line slope can be used to find elastic coefficient k of the wire
and subsequently the Young’s modulus. The initial part of the curve Al(P)
should be excluded from the treatment.

. Using the plot determine the elastic coefficient k£ and the Young’s modulus
E. Estimate the accuracy of k and E.

. Determine the wire material by comparing the obtained value of Young’s
modulus with tabulated values.
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II. Determination of Young’s modulus by
measurement of beam bending

The installation consists of a robust frame with two support prisms
A and B (see Fig. 2). The beam (plank) C lies on the prism edges. The
platform IT with the weights on it is suspended on the prism D at the beam
center. The beam deflection is measured with the aid of the indicator
I which is attached to a support separate from the frame. A complete
revolution of the big indicator hand corresponds to 1 mm or one graduation
of the small dial.

Young’s modulus E of the beam material is related to deflection ymax
(the displacement of the beam center) by Eq. (20) (see p. 172):

B pP3
 4ab3Ymax |

Here P is the load, [ is the distance between the prisms A and B, and
a and b are the width and the height of rectangular cross-section of the
beam.

To exclude the error due to table deflection which changes under the
load, the weights should be placed on the plank above the lower shelf of
the support frame before the experiment.

Equation (20) is derived under the following conditions: firstly, the
edges of the support prisms A and B are at the same height and, secondly,
the force P is applied precisely at the beam center. The reader is rec-
ommended to verify how significantly this equation changes if the above
conditions are not satisfied within the accuracy of experiment.

LABORATORY ASSIGNMENT

. Measure the distance between the prisms A and B.
2. Determine width and thickness of the beam. To do so, measure these

parameters at least at ten different spots. The averaged values should be
used in calculations.

. Put the beam on the frame. Set the indicator at the beam center and

measure the deflection ymax versus the load P. Perform the measurements
by increasing and then decreasing the load. Check that the beam restores
its initial shape when the load is removed.

. Study how the result depends on the position of the point where the force

P is applied. Displace the prism D by 2-3 mm from the beam center
and measure the deflection again. Compare the value obtained with the
previous result.
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Fig. 2. Installation for measurement of Young’s modulus

. Overturn the beam upside down and repeat the measurements. Compare
the results with the previous ones.

. Perform the measurements for two or three wooden beams and for one
made of metal.

. For each beam plot the dependence of «load» versus «deflection» both for
increasing and decreasing loads. Determine the average Young’s moduli
from the slopes of the curves.

. Estimate the measurement errors and compare the Young’s moduli ob-
tained with the corresponding tabulated values.

Questions

. What are the main sources of measurement errors? How can the errors be dimin-
ished?

. Estimate the maximum accuracy of measurement of wire elongation and beam
deflection which is reasonable in this experiment.

. What is the difference between the state of normal stress and the state of normal
deformation?

. For which stress and strain does Hooke’s law hold?

. Which deviations from Hooke’s law are possible in deformation of solids?
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. What is Poisson’s ratio?
. Which assumptions are made to obtain the relation between the maximum beam

deflection and Young’s modulus?

. What function y(z) describes the shape of the middle line of beam under perfect

bending?

. What is the use of platform M in Lermant’s machine?
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Appendix

Figure 3a shows the beam under the load P applied in the middle between
supports A and B. Each support exerts the force P/2 at points A and B. The
beam is bent so that upper layers become compressed and lower ones stretched.
It is reasonable to assume that the magnitude of stress in a layer is proportional
to the distance between the layer and the middle line of the beam, as it is shown
by the arrows in Fig. 3b for some beam element. Since the middle line of the
beam is not stressed, the length dly of the element middle line does not change
under deformation (which is also true for the middle line of the beam). This
stressed state of beam is called pure bending. We assume that stresses in layers
are related to their deformations by Hooke’s law:

_dl—dly
c=FE T (1)

The slope of middle line of the beam element (see Fig. 3c) changes from «
to a — da along the distance dlp. The corresponding arc length can be expressed
via curvature radius R:

dly = —Rda. (2)

Here the minus sign is taken because R is considered positive and the slope
of middle line in the coordinates of Fig. 3a decreases along the beam (as it is
shown in Fig. 3c). Let y(x) be the equation of the middle line in the coordinates
z, y (notice that the ordinate points downward), then the slope of the middle
line is determined by the expression:

dy(z)
dx

The length of the element middle line can be written as (see Fig. 3d):

= tan a. (3)

dlo = /(d2)? + (dy)? = da 1*(%) . (a)
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Fig. 3. Beam bending

1.3.1 171

From the same triangle it follows that

dx
qg — cose (5)

Differentiating Eq. (3) with respect to = and using Eq. (2) one obtains:

Py _ 1 da_ (db) dadhy __(db)* 1 (©)
dz?  cos2adxr \dxr) dlpdr dx R’

Together with Eq. (4) this gives:

1 y//
IR (7)
R (1+9y?)
The stress in the layer located at the distance £ from the middle line of the
beam (see Fig. 3c) is given by Eq. (1) which can be rewritten as

dl —dlo

c=F dlo

E
= ¢ ®)

This formula makes use of the relation following from similarity of the triangles
in Fig. 3c:

dl gdlo _ % . )

The net elastic force acting in a beam cross-section is zero, so the net torque

due to the forces is independent of the point used to calculate the torque. Let
us choose the point at the beam middle line. This gives:

b/2 b/2
_ _E 246 £
M= J fodS =% J ¢ ds = 41, (10)
—b/2 —b/2

where dS = adg, a is the width, and b is the height of the beam cross-section (see
Fig. 3). I is called moment of inertia of the beam cross-section with respect to
the axis passing through the beam middle line. It follows from Fig. 3b that the
beam section from x = 0 to z is in equilibrium provided the forces applied at the
point of support and at the cross-section are equal as well as the corresponding
torques and the torque determined by Eq. (10). Torque equality gives:

EI P
T2 (11)

Now using Eq. (7) one can write the equation for the beam middle line:

a2 P (12)

"no_ /2
y =-0+y) " 5y

For small deflection
y? <1 (13)
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In this case it follows from Eq. (12) that

7 P
= —5p7% (14)

Integrating this equation one gets:

r__ P 2
v =-151% +C. (15)

Here C' is the constant determined by the condition that the beam is symmetri-
cally bent, y' =0 at = = 1/2. Then Eq. (15) gives

P I’

Integrating one more time and taking into account that y = 0 at = 0 one
obtains the equation for the beam middle line:

Pz
T 48EI

y (31 — 4z?). (17)

The maximum deflection of the beam is determined by the value of y at
x=1/2:

PP
Ymax — 48EI (18)
For beam of rectangular cross-section
b/2 b/2 s
b
I= J &dS=a J & ds= 3 (19)
—b/2 —b/2
The value of Young’s modulus follows from Eqgs. (18) and (19):
PP
E=— 2
4ab3Ymax (20)
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Lab 1.3.2

Determination of torsional rigidity

Purpose of the lab: to measure the dependence of twist angle of an
elastic rod on torque applied, to measure torsion and shear moduli of a
rod using static method, and to measure the same moduli using torsional
oscillations.

Tools and instruments: part 1: arod, an eyeglass with a scale, a tape
measure, a micrometer, and a set of weights; part 2: a wire made of the
studied material, weights, a stopwatch, a micrometer, a tape measure,
and a ruler.

The distribution of deformations and stresses in a twisted cylindrical
rod of circular cross section is uniform along the rod only far from the
points of force application. In these regions of uniform deformation one
can consider every cross section as absolutely rigid, i.e. rod particles are
not displaced from the radial lines on which they are located prior to the
deformation; all radial lines in a given cross-section are thus turned by
the same angle. This stressed state of the material is referred to as pure
torsion. In what follows it will be shown that the tangential stresses in the
cross section are directly proportional to the distance to the rotation axis.

Consider a part of length [ of a twisted cylinder shown in Fig. la. A
straight line drawn parallel to the axis of an unstrained cylinder becomes
a helix after a twisting torque is applied. Cross sections separated by the
distance [ are rotated by the angle ¢.

To derive equations describing torsion it is convenient to consider a
part of cylinder: a ring of arbitrary radius r, infinitesimal thickness dr,
and infinitesimal height dI, as shown in Fig. 1b. The top of the ring
under torsion is rotated by the angle dy relative to the bottom while the
generatrix of the ring cylindrical surface dl (an infinitesimal part of the
helix mentioned above) is tilted by the angle aa from the vertical.

For small torsion angles o one can write down the relation

adl = rdp. (1)

One can readily see that o grows with the distance to the cylinder axis. An
infinitesimal part of the deformed ring is shown in Fig. 1c. The tangential
stress 7 is directly proportional to the twist angle «, the proportionality
constant is shear modulus G (see Eq. (3.2)):

T = Goa. (2)
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Fig. 1. Twisted cylinder

The tangential stress 7 is directly proportional to «, hence it increases pro-
portionally to the distance to the axis of the cylinder, as it was mentioned
above. Using Eq. (1) one obtains

dyp
T T (3)
These tangential stresses provide the torque about the cylinder axis:
dM =2mrdr -7 - 1. (4)

The total torque on the whole cross section can be obtained by integrating
Eq. (4) over r from zero to the cylinder radius R:

R
B do [ 3. dp R*
M_27TGWJ'T dT_ﬂ,GW? (5)
0

This torque is constant over the cylinder length. Torques acting on the face
planes of any given part of cylinder are balanced, thus there is no rotation.
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Then using Eq. (5) one readily obtains a linear relation between the relative
twist ¢ of two cross sections and the distance [ between them. Therefore
we obtain the relation between the applied torque M, the relative twist
angle ¢ of the cross sections, and the distance | between them:

TR*G

M =
21

o= fe. (6)

Here the torsion modulus f is introduced which is related to shear modulus
G by the following equation:

TR*G
p="C @

It is worth empathizing that Eq. (6) is valid only for the stresses much
less than the shear modulus, i.e. at small angles o.

I. Static method of determination of torsion modulus
of a rod

The experimental setup for the study of static torsion is shown in Fig. 2.
The top end of the vertical rod R is rigidly attached to the bar while the
bottom end is jointed to the disc D. The twisting moment is provided by
two wires wound around the disc and passed over the blocks B; the wires
are loaded by identical weights W. The mirror M mounted on the disc is
used to measure the twist angle. To determine the angle one should adjust
the eyeglass to observe a sharp reflection of the scale in the mirror M. The
scale and the eyeglass are mounted on single support. Measurement of
displacement of the scale image allows one to determine the twist angle of
the rod.

LABORATORY ASSIGNMENT

. By adjusting the eyeglass observe a clear image of the scale reflected by

the mirror M. Measure the distance between the mirror and the scale and
the diameters of rod R and disc D.

. Gradually increase the load on the wires and obtain the dependence ¢ =

= p(M). Carry out the measurements by decreasing the torque. Repeat
the measurements at least three times.

. Plot the results in the (¢, M) — coordinates. Using the plot obtained

determine the torsion modulus f and estimate the error.

. Using Eq. (7) calculate the shear modulus G and compare its value with

the tabulated one.
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Fig. 2. Experimental setup

II. Dynamic measurement of the shear modulus (using
torsional oscillations)

The experimental setup used in this part of the lab is shown in Fig. 3.
The setup includes the vertical wire and the horizontal metal rod R at-
tached to its lower end. Two identical movable weights W are symmetri-
cally attached to the rod. The upper end of the wire is securely clamped
by a collet; a special mechanism allows conjoint rotation of the wire end
and the collet about the vertical axis, thus it is possible to excite torsional
oscillations of the system. Rotation of the rod R and the weights W is due
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to the elastic torque of the wire. The rotation is described by Eq. (2.35):

d?¢

=M. (8)

Here [ is the moment of inertia of the rod and weights about the rotation
axis, @ is the rotation angle measured from the equilibrium, and M is the
torque which at small angles ¢ is well described by Eq. (6). Introducing
the notation

W=l (9)

one obtains from Eqgs. (6) and (8):

d?
pra w?p=0. (10)

This is the equation of harmonic oscillations (4.4). Its solution is
® = po sin(wt + 0), (11)

where amplitude g and phase € are determined by the initial conditions.
The oscillation period T equals

2T I

Equation (10) together with Eqgs. (11) and (12) describe free oscilla-
tions. In order to apply them to a real process one should ascertain that
the damping of oscillations is negligible. If the amplitude of oscillations
decreases less than by half after 10 full swings one can use the equations
for free oscillations. Also one should make sure that the oscillation period
does not depend on the initial amplitude, otherwise the amplitude should
be decreased until this dependence vanishes.

LABORATORY ASSIGNMENT

. Estimate experimentally the working range of amplitudes in which the re-

sults derived for free oscillations are valid. For this purpose fix the weights
on the rod symmetrically and excite torsional oscillations. Measure the
time of several full swings (at least ten) and calculate the period T7. Halve
the initial amplitude and determine the corresponding period T5. If 71 =
= T one can work with any amplitude not exceeding the first one. Other-
wise decrease the initial amplitude and repeat the measurements until the
equality is obtained.
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Fig. 3. Experimental setup

. Make sure that after 10 full swings the amplitude is decreased less than by
half.

. Fix the weights on the rod at equal distances [ from the rotation axis (wire)
to the centers of inertia of the weights and measure the oscillation period 7'.
Repeat the measurement for 4-6 different values of . The torsion modulus
can be obtained from the experimental data plotted in coordinates (12, T?).
. Measure the wire length and diameter. Using the obtained torsion modulus
f calculate the shear modulus G (see Eq. (7)), estimate the error, and
compare the result with the tabulated value.

Questions

. How does friction in the axes of blocks B affect the results of static measurements?
How can one minimize this influence?

. How does the oscillation period change when damping is increased?

. Which method of measurement of shear modulus is preferable in practice: the
static or dynamic one?
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. How can one estimate the error of shear modulus from the plot in (I2

T?)-coordinates?
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Lab 1.3.3

Determination of air viscosity by measuring a
rate of gas flow in thin pipes

Purpose of the lab: determine a domain of stationary flow, regimes
of laminar and turbulent flows, air viscosity, and the Reynolds number.

Tools and instruments: metal pipes mounted on a horizontal sup-
port, gas flow meter, micrometer-type manometer, U-shaped glass pipe,
stopwatch.

Consider a flow of viscous fluid in a circular pipe. At small velocities
of the flow its motion is laminar (streamline), velocities of flow parcels
are parallel to the pipe axis and their magnitude is a function of radius.
Increasing of the velocity makes the flow turbulent, so layers of different
velocities mix. In turbulent regime the velocity at any point of the fluid
chaotically changes its magnitude and direction while the average velocity
remains constant.

Particular regime of the fluid flow through a pipe is determined by a
specific value of the dimensionless Reynolds number:

urp
Re o (1)
where v is the flow velocity, r is the pipe radius, p is the fluid density,
and 7 is its viscosity. In circular pipes with smooth walls transition from
laminar to turbulent regime occurs at Re ~ 1000.

In the laminar regime the volume of gas V flowing through a pipe of

length [ during a time period ¢ is given by Poiseuille equation (3.23):

7T’l"4

QV:%

(Pr = P»). (2)

In this equation P, — P; is the pressure difference between cross sections
1 and 2 of the pipe and [ is the distance between the cross sections. The
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quantity @ is referred to as the volumetric flow rate. Equation (2) allows
one to determine the gas viscosity once the flow rate is known.

Let us specify the conditions for Eq. (2) to be valid. First, the inequality
Re < 1000 should be satisfied. Second, the specific volume (or density) of
the gas should be almost constant throughout the pipe (the specific volume
is assumed to be constant in (2)). For a liquid flow this assumption is
usually well satisfied; for a gas flow the pressure difference between the pipe
ends must be small compared to the pressure itself. In the experimental
setup the gas pressure equals the atmospheric pressure (103 cm of water)
while the pressure difference does not exceed 10 cm of water, i.e. it is less
than 1% of the atmospheric pressure. Third, Eq. (2) is valid for the pipe
regions in which the radial distribution of gas velocities does not change
along the pipe.
= When gas flows into a

 E— ] S— )

— pipe from a bulk reservoir
the velocities of gas layers are
constant throughout the pipe
cross section (Fig. 1). The velocity distribution pattern gradually changes
along the pipe as the wall friction drags the adjacent layers. The parabolic
velocity distribution typical for a laminar flow is formed at a certain dis-
tance a from the pipe entry point. This distance depends on the pipe
radius 7 and the Reynolds number and can be estimated as

Fig. 1. Formation of gas flow in a circular pipe

a ~0,2r - Re. (3)

The pressure gradient in the flow formation domain is greater than
that in the laminar flow domain. This fact allows one to distinguish these
domains experimentally.

Laboratory setup. The measurements are performed by means of the
experimental setup shown in Fig. 2. Pressurized air (an extra pressure
exceeds the atmospheric one by 5-7 cm of water) flows through the gas
meter GM into the reservoir A to which two metal pipes are soldered.
The approximate dimensions of the pipes are given in the figure; the exact
dimensions are marked on the setup. Both pipes are supplied with end caps
blocking the air flow. During the measurements the end cap is removed
only from the working pipe while the other pipe should be tightly sealed.

Previous to the gas meter a U-shaped pipe half-filled with water is
set up. It is used for two purposes: first, it measures the pressure of the
incoming gas; second, it preserves the gas meter from a possible breakdown.
The gas meter operates normally providing the input pressure does not
exceed 600 mm of water. The height of the U-shaped pipe is about 600
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Fig. 2. Setup for measurement of air viscosity

mm, thus if the input pressure exceeds 600 mm the water spills out from
the pipe into the tank T thereby attracting the experimenter’s attention.
Such situation can occur if gas is supplied to the system while the pipe
ends are sealed.

There are several millimeter-wide openings in the pipe walls for mea-
suring a pressure difference. To measure the difference, manometer inlets
are connected to two adjacent openings while the other ones are sealed.
Air supply is adjusted by the valve V.

In the lab micrometer-type manometerMTM (Fig. 3) is used; it allows
one to measure the pressure difference up to 200 mm of water. To increase
the manometer sensitivity its pipe is slanted. The marks 0.2, 0.3, 0.4, 0.6,
and 0.8 on the stanchion 4 are the coefficients which must be multiplied
by the manometer readings to obtain the pressure in millimeters of water
(at a given slope). The working liquid is ethanol. The manometer zero is
adjusted by shifting ethanol level in the vessel 1 using the instrumentality
of cylinder 6. A driving depth of the cylinder is controlled by the screw 7.

The manometer is supplied with two inclinometers 9 placed on the
plate 3 orthogonal to each other. Level adjustment is performed by two
legs 10. The three-way cock 8 is mounted on the gauge top; it has two
operating positions: «0» and «+» (see Fig. 3). Position «0» is used for
adjusting the zero level of the meniscus. Position «+» is used for the
pressure measurements. The rod 5 is used to switch between the positions
(Fig. 3), this does not change a level of the working liquid in the reservoir.

The gas flow meter (shown in Fig. 4) is used for measuring small
amounts of gas. Its casing is a cylinder with a mechanical counter and
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Fig. 3. Micrometer-type manometer MTM

a dial on its front face. One revolution of the pointer corresponds to 5
liters of gas passed through the meter.

The gas flow meter is filled with water up to a level determined by the
gauge 1. The gas inlet and outlet pipes 2 and 3 are located on the rear and
top sides of the meter, respectively. The U-shaped manometer is connected
to the pipe sockets 4, the socket 5 is used for the thermometer. The valve
6 is used as a drain. The meter has an inclinometer and retractable legs
for level adjustment.

The operating principle of the gas flow meter is illustrated in Fig. 5.
Several light cups are attached to the shaft on the cylinder axis line (for
simplicity only two cups are shown). Incoming air from the pipe 2 fills a
cup located above the pipe. The air-filled cup rises to the surface while
the next cup takes its place and so on. Shaft rotation is transmitted to the
counter.

LABORATORY ASSIGNMENT

. Check the setup and make necessary level adjustments, check water level
in the gas flow meter and adjust the zero of the manometer meniscus.
Choose one of the pipes for the complete set of measurements (the pipe of
d = 4 mm is preferable).
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Fig. 5. Interior of the gas flow meter

. Using Eq. (3) estimate the length of the region of flow formation. Take

Re = 1000.

. Connect the manometer inlets to a pair of adjacent openings in the selected

pipe (in the region of the formed flow). Uncap the pipe outlet; all the other
outlets should be sealed.

. Gradually open the valve V (Fig. 2) feeding the setup with air. Carefully

track the manometer readings since at a high pressure difference the ethanol
can spill out from the manometer through the pipe 11.

This undesirable situation often occurs when working with thin pipes.
In this case ethanol not only floods an elastic pipe which connects the
manometer pipe 11 with the three-way cock, but it can also leak into the
pipe connected with (). Drops of liquid in the pipe result in incorrect
measurements of AP = P; — P,. For this reason before the measurements
(or if the ethanol has flooded the pipes) one should ascertain that there
are no drops of liquid in the connecting pipes. The drops can be detected
by observing sudden leaps of manometer readings when slowly moving the
connecting pipes. If this is the case the pipes should be removed and dried
out.

. Determine the air viscosity. For this purpose measure the dependence

of the pressure difference AP on the air flow rate Q = AV/At. The
gas volume AV is measured with the gas flow meter and At - with the
stopwatch. Set the slope coefficient on the manometer stanchion equal to
0.2. Start the measurements from small pressure differences (2-3 mm of
water) and gradually increase the gas flow rate Q.

Within the range from 0 to 100 of the manometer dial (Fig. 3) one
should perform not less than 5 measurements to survey the laminar regime.
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Subsequent measurements could be sparse but they should cover a wider
pressure range to examine the turbulence regime. Using the data obtained
plot the dependence AP = f(Q) which should be linear in the laminar
regime (see Eq. 2). The dependence becomes non-linear for a turbulent
flow since the pressure difference grows faster than the gas flow rate.

. Calculate the slope of the curve AP = f(Q) in the linear domain and
determine the air viscosity 7. Estimate the error of the slope and find the
error of the obtained value of the viscosity.

. Calculate the Reynolds number Re corresponding to transition between
laminar and turbulent regimes.

. Measure the pressure distribution along the pipe in the laminar regime.
Connect the manometer to all pipe openings one by one (including the
opening «0», see Fig. 2). Plot the pressure vs. the distance from the pipe
inlet (P = f(1)). Using the plot estimate the length of the flow formation
region. Compare the result with Eq. (3).

. Measure the dependence @ = f(P) for all pipes in the formed flow region
(at the end of a pipe) in the laminar regime (Re < 500). Using the data
calculate the following quantity:

8inQ@
7T(P1 —PQ) o )

Plot the obtained function on a log-log graph, i.e. plot the values of
In(8inQ/m(Py — P»)) on the Y-axis and Inr on the X-axis. Obviously
the curve slope equals n and for the Poiseuille equation n = 4. Verify it.
Estimate the error of the result.

Questions

. Write the equation which describes the radial distribution of laminar flow velocity
in a circular pipe. What is the ratio of the average and maximum velocities?

2. How is the Reynolds number defined? How can it be determined experimentally?

3. Describe the method of graphical treatment of the experimental data (see 8) that

allows one to distinguish the regions of formed and non-formed flow clearly.
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Lab 1.3.4

Study of stationary flow of liquid through pipe

Purpose of the lab: to measure liquid flow velocity using Venturi and
Pitot methods and to compare the results with those obtained by direct
measurement of volumetric flow rate.

Tools and instruments: a setup that includes venturi and pitot tubes
and a stopwatch.

A flow of liquid through a pipe of constant cross-section is studied in
the lab.
The main purpose of experimental study of My
fluid flow through a pipe is the measurement of
flow velocity and volumetric (mass) flow rate. Ac-
curate measurement of the flow rate is important
in practical applications: operation of oil and gas
pipelines, plumbing, and central heating.
A lot of different methods have been devel-
oped to measure fluid flow rate and flow velocity,. ————" ~——
The most simple and accurate ones rely on mea- Sy Sy
surement of the pressure difference due to detec- Fig. 1. Venturi tube
tor positioning (toward or along the flow in the
pitot tube) or due to an obstacle impeding the
flow (the narrowing of Venturi tube or a washer).
A venturi tube (see Fig. 1) is a horizontal tube
which cross-sectional area gradually changes along the tube. Wide (S1) and
narrow (S2) sections are connected to water manometer M;. The pressure
in a section is determined by the height of the corresponding water column.
Since water is incompressible (v1.57 = v2.53) M,
and the tube is horizontal (z; = z2) Bernoulli’
equation (3.14) allows one to express the flow ve-
locity in section S in terms of the pressure in 1 2
sections S7 and Ss:

2(p1 — p2)
JT51/57 —1] - 4

—_—

v =

A pitot tube is shown in Fig. 2. Tube T is
connected to two tubes of water manometer M. Fig. 2. Pitot tube
Tube 1 is connected to the surface of the tube T
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while the tip of the tube 2 is bent toward the flow. Obviously the liquid is
at rest, vo = 0, at the opening of tube 2.

Let the pressures measured by means of the tubes 1 and 2 be p; and po,
respectively. Bernoulli’ equation (3.14) gives p; + pv?/2 = p2, so

v1 = \/2(p2 — p1)/p- (2)

Equation (2) relates flow velocity to the difference in liquid heights in
the tubes 1 and 2.

The pitot tube allows one to measure the local flow velocity at the tube
location. Using the venturi tube one can determine only the velocity aver-
aged over tube cross-section. Therefore the venturi tube is predominantly
used for flow rate measurements. The pitot tube is used to measure flow
velocity; more often it is an open flow rather than a flow in pipe. The pitot
tube is used for velocities ranging from those of viscous boundary layers to
supersonic velocities.

Operation of pipelines requires constant monitoring of volumetric or
mass fluid flow rate. The measurements are complicated by viscosity which
results in the fluid «sticking» to pipe wall, so fluid velocity next to the wall
vanishes. Therefore the velocity always increases along the pipe radius
from the wall to the center. For stationary flow and a low Reynolds number
one can apply the Poiseulle equation, so it would suffice to measure the
flow velocity at any point, e.g. at the pipe axis. Otherwise an accurate
measurement of the flow requires integrating the flow velocity over a pipe
cross-section, so the velocity must be measured at several points. In the
monograph «Hydrodynamics» by T. Ye. Faber it is recommended to use
20 pitot tubes located at different distances from the pipe axis in two
perpendicular directions.

One of physical methods of measurement of fluid flow rate is realized
in an ultrasonic flow meter. The method is based on the observation that
speed of sound propagating in a fluid is constant with respect to the fluid,
so the speed of sound is greater in the direction of fluid flow and it is less if
the sound propagates against the flow. An ultrasound emitter and receiver
are mounted on the opposite walls of the pipe although not facing each
other, so the sound propagates at some angle with respect to the flow.
Therefore the speed of sound in the direction of the fluid flow exceeds that
in the fluid at rest and vice versa. A difference between the speeds allows
one to determine the flow velocity even if the speed of sound itself is not
known. Operation of ultrasonic flow meter is not affected by fluid viscosity,
which is an advantage. However the meter measures some average velocity
on the path of the sound, so for precise measurements the device has to
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Fig. 3. Experimental installation for studying stationary flow of liquid
through pipe

be calibrated. The calibration depends on Reynolds number because it
determines a velocity profile of the flow.

There is also a turbine flow meter in which flow rate is directly pro-
portional to the number of revolutions of a turbine. However the meter
readings depend on fluid viscosity.

Laboratory setup. An experimental installation for studying liquid flow
is shown in Fig. 3. Water enters tube T from cylindric vessel I equipped
with glass tube B serving as a water meter. The vessel is filled with tap
water via tube A, the influx is controlled by tap K. Water flowing out of
tube T fills receiver vessel II which has siphon C mounted on the bottom.

The siphon preserves the receiver from overflowing by emptying it as
soon as water level reaches the height h. Tube T is equipped by venturi
and pitot meters.

The flow rate averaged over the tube cross-section can be determined by
measuring the time required to fill the receiver II which volume is known.
On the other hand the rate can be found using the readings of the manome-
ters with the aid of Eqgs. (1) and (2). Comparison of the rates found by
different methods allows one to check whether Bernouilli’ equation can be
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applied and to assess a role of viscosity that changes velocity profile across
the flow. It is convenient to compare the flow rates by plotting the rate of
filling the receiver on abscissa and the venturi and pitot rates on ordinate.
For ideal liquid the plot would be a straight line at 45° to the abscissa.

Viscosity can be estimated by observing the water levels in the reservoir
and two manometer tubes. For ideal liquid the levels would be the same.
Due to viscosity the levels decrease along the flow.

Up to this point we assumed that the liquid is ideal, so there is no
friction due to viscosity in tube T and no associated losses. The following
experiment allows one to estimate viscosity quantitatively. Fill the reser-
voir I to some level z;, measure the flow velocity in tube T using receiver II
(since water is essentially incompressible it enters and leaves the tube at
the same speed). Using Torricelli’s law evaluate the height zo that results
in the same speed for an ideal liquid. The difference z; — z5 is a measure
of internal losses due to viscosity. Moreover it is safe to assume that the
losses occur mostly in tube T since velocity of water in reservoir I is much
less.

Viscosity changes the readings of the venturi manometer by a quan-
tity Ah which can be estimated as the product of the difference z; — 2o
and the ratio of the distance Al between the manometer entries to the tube
length L. If
Al
L )
water can be considered as ideal liquid at the scale of Al. If Ah is compa-
rable to (21 —22) % one should subtract the quantity Az%pg from p; — po.
The same applies to the pitot tube. In addition, one should estimate the
correction to manometer readings due to a finite size of the bent section of
tube 2 inserted in the flow.

It is important to ensure that the flow remains stationary during the
experiment. This is achieved by maintaining water level in the reservoir I
at the same height H by adjusting tap K. The glass tube used as a meter
has millimeter graduations for convenience. Before the experiment one
should make sure that the manometer tubes are not clogged.

Ah > (21 — 22)

LABORATORY ASSIGNMENT

. Pour some water in reservoir 1. Plug tube T and make sure that water lev-
els in manometer tubes and in the reservoir are the same. Make necessary
adjustments if this not so.

. Measure the flow rate for several water levels H in reservoir I starting from
~1 cm. A flow must be stationary, so a water level should be maintained
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constant during the measurement. The rate is determined by the time ¢
required to fill reservoir II. Estimate the error of ¢. For every H record the
readings of the venturi and pitot manometers.

. Calculate average flow velocity v, = V;/(tS1), where Vp is the volume

of reservoir II, ¢ is the time required to fill the reservoir, and S; is the
cross-sectional area of tube T. Estimate the error of vp,.

. Measure the length L of tube T and Al of the venturi and pitot manome-

ters.

. Plot the quantity v? versus water level H. Plot the errors as cross-bars.

1%
Plot also the height calculated according to Torricelli’ equation, zo =

= vf,/(2g), on the same graph. Do the points coincide? What is the
reason of the discrepancy?

. Using Egs. (1) and (2) and the readings of venturi and pitot manometers

calculate velocities vy and vp (taking the losses into account and without
them). Estimate the errors of the velocities. Compare the velocities with
vp and plot them versus v,. How do the errors of Sy and S in Eq. (1) and
the narrowing of the tube cross-section where the pitot tube 2 is inserted
affect the dependence obtained?

. Plot v, versus H. Determine graphically the regions of laminar and turbu-

lent flow. Determine the Reynolds number at the point of transition from
the laminar to turbulent regime:

Re = »°
n

)

where p is the water density, 7 is the radius of tube T,n = 1-1073 kg/m-s -is
the water viscosity.

Questions

. Specify the assumptions used to derive Bernouilli’s equation.
2. How does viscosity affect the readings of venturi and pitot flow meters?
. Which water levels H in reservoir 1 correspond to laminar or turbulent flow in

tube T?

. Suppose there is a laminar fluid flow through a tube and the viscosity decreases

gradually while other flow parameters remain constant. How does the flow
change?

. Which flow regime, laminar or turbulent, provides a better agreement between

the values of flow velocity determined by venturi and pitot tubes and that one
obtained by using reservoir 11?7

. Derive Torricelli’s equation and use it to estimate the velocity of liquid flowing

out a very short pipe for different levels H. Why are the experimental values of
the velocities of water flowing out a long pipe sufficiently less?
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. Estimate the difference of water levels Ah in the left tubes of the manometers
(see Fig. 3) attached to tube T where the cross-sectional areas are the same. How
can the pressure difference be explained? Can the pressure difference between
the inlet and outlet of tube T be found by linearly extrapolating the pressure
difference between the tubes?
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Chapter IV

MECHANICAL OSCILLATIONS AND
WAVES

Free harmonic oscillations. Mechanical motion and the processes which
can be regarded as periodical are usually called oscillations. Such processes
can be related to different phenomena of nature, economics, or society.
Oscillation takes place provided there is a process that returns perturbed
system to equilibrium (restoring force). This feature makes it possible to
give universal mathematical description of oscillations. Some examples of
restoring force in mechanics include elastic force of spring, gravity force,
elastic force of twisted rod or wire, etc.

A simple example of oscillation is the motion of a weight suspended
on elastic spring. But we start with even a simpler system. Let us put
a weight and a spring on a horizontal smooth (frictionless) surface. One
end of the spring is fixed while the weight of mass m is attached to the
other end. Let the length of the undeformed spring be ly. The weight
starts moving along the spring axis (let it be x-axis) if it is displaced from
the equilibrium or it receives some initial velocity along the axis. Now let
us assume that the reaction force F' of the spring is proportional to its
elongation [ — [y which is equal to the displacement = = [ — [ of the weight
from the point of equilibrium:

F=—kx. (4.1)

The minus sign indicates that force is opposite to displacement. The con-
stant k is the so called spring elastic constant. It should be noted that for
large deformations spring rigidity depends on the deformation magnitude.
This results in non-linearity discussed later in this chapter.
Equation of motion of mass m follows from Newton’s second law of
motion:
mi = —kax. (4.2)

Hereinafter the dots over variables stand for time derivative.
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Let us introduce the notation
k
2
wi = —. 4.3
0 m ( )

Then Eq. (4.2) becomes
i+ wir =0. (4.4)

This is an ordinary differential equation of the second order. The gen-
eral solution of Eq. (4.4) depends on two constants determined by two
conditions. In particular one can impose initial (i.e. at ¢ = 0) conditions.
For instance, at t =0: x =29 and £ =0 or z =0 and & = vg.

To integrate Eq. (4.2) let us multiply it by 4. Since & = di/dt and
% = dx/dt, this gives

.dx dx d (mi? kz?
Then 2 g
mi T
—+ —=F. 4.6
5 T (4.6)

Here the first term is kinetic energy of mass m and the second term is
elastic energy of the deformed spring. Constant of integration E is the
total mechanical energy of the weight and the spring. Equation (4.6) shows
that F is a positive quantity which can be found from initial conditions.
If the initial velocity vanishes,

k 2
E = %_ (4.7)
If the initial displacement vanishes,
2
E= % (4.8)

Thus the first integral (4.6) of Eq. (4.2) is the law of conservation of me-
chanical energy. For further integration let us write Eq. (4.6) as

i=4y =01 = —=a2. (4.9)

Let us introduce the notation

| k :
2\ 5 = siny. (4.10)
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Using Egs. (4.9), (4.10), and (4.3) one obtains

k
y:i\/aziwo.

Integration of this equation gives

2F
r1 =1/ - sin(wot + a),
2F 2F
Ty = —4/ YSin(wot—kﬂ) =1/ TSiH(wot +m+ ).

Both solutions can be written in the same form:

2F
T = \/?sin(wot—l-gpo), (4.11)

where g is the constant determined from initial conditions. It is often
convenient to write Eq. (4.11) as

2F
x =1/ - cos(wot + ¢p). (4.12)

The argument of the sine, wot + o, is called oscillation phase and the
constant g is called initial phase of oscillations. The value of sine is the
same for two phases which differ by a multiple of 27, so Eq. (4.12) describes
a periodic process. The period T is determined by the relation

2 = a)o(t + T) + Yo — (a}ot + (,00) = WOT.

The quantity wp introduced in Eq. (4.3) is called cyclic frequency of
oscillations. It is related to the number of oscillations per second (temporal
frequency or frequency for short) and to period T as

1 wo

v=—=

7= g (4.13)

Equation (4.6) shows that velocity & decreases when displacement x
grows. A halt (¢ = 0) occurs at the maximum displacement = a which
is called amplitude of oscillations:

» _E (4.14)
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The amplitude a is positive by definition. Substitution of Eq. (4.14)
to (4.12) gives
x = asin(wot + ©o). (4.15)

Therefore the velocity is
& = awg cos(wot + o). (4.16)

Obviously the maximum displacement in the positive direction of x lags
behind the maximum velocity in the same direction by a phase of 7/2 (or
90°).

In general, when both xg and vy are non-zero at t = 0 we have

a=/xg+v5/wg,  po = arctan (wf}:O) . (4.17)

Oscillations described by Eq. (4.15) are called harmonic (or sinusoidal),
since sine and cosine are harmonic functions. Harmonic oscillations are
isochronous, i.e. their period does not depend on amplitude. A system
which executes harmonic oscillations described by Eq. (4.4) is called har-
monic oscillator. Notice that circular motion at constant speed can be
considered as the sum of two harmonic perpendicular oscillations which
have the same amplitude and the phases differing by /2. The cyclic fre-
quency in this case coincides with angular velocity of the circular motion,
therefore the name. In general, addition of two perpendicular oscillations
with different amplitudes and phases results in a complicated trajectory
called Lissajous curve.

Equation (4.15) can be written as

x = Asinwyt + B cos wot. (4.18)

This relation depends on two constants of integration determined from
initial conditions as in Eq. (4.15).

Using Eqs. (4.15) and (4.16) one can obtain the following expressions
for kinetic and potential (elastic) energy of the oscillator:

ma? mwia? mwia?®
K= = cos? (wot + o) = o [1 4 cos(2wot + 2¢0)],
kx2 2 2 2 2
U = % = mw20a Sin2(w0t + (PO) = muiloa [1 — COS(2W0t + 2(,00)].
Notice that
mw§a2

K+U=F=

2
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The values of K and U averaged over the period are

lT 1T
K=—|K({tdt U=—=|U(t)adt.
Hrwa o= v
0 0
Integration gives
_ — mw2a? FE
K=U=—"_=—, 4.19
1 5 (4.19)

Therefore the average kinetic and potential energies of the oscillator are
equal.

Now consider oscillations of the weight of mass m suspended on a spring
with elastic coefficient k in gravitational field with free-fall acceleration g.
In this case instead of Eq. (4.2) one gets

mi = —kx + mg. (4.20)

Here the z-axis is directed downwards along the gravity force.
Let zg be the spring elongation in equilibrium, then

mg = kxg. (4.21)

Using Eqgs. (4.20) and (4.21) one obtains for deviation { = z — zo from
the equilibrium: )
m& = —k&. (4.22)

This is the equation of harmonic oscillator (4.4).

Phase portrait of harmonic oscillator. There is a remarkable repre-
sentation of harmonic oscillations in the so-called phase plane. Coordinate
axes on the plane are coordinate z and a quantity proportional to its time
derivative, e.g. momentum ma. A point on the phase plane specifies the
state of a mechanical system with one degree of freedom at a given time.
Now consider the phase plane of a harmonic oscillator which executes the
motion
x = acos(wot + ).

Let the abscissa represent the coordinate  and the ordinate represent the
quantity y = &/wg. This choice is convenient since both z and y have the
same dimension. Obviously

y = —asin(wyt + ¢).

One can see that
z® +y? = ad’ (4.23)
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X This is the equation of the circle of radius a.
®, A point (z, y) on the plane represents the

state of oscillator at a given time. Let us re-

fer to this point as representing point. There

is one-to-one correspondence between the mo-

X tion of oscillator and the motion of represent-

ing point along the phase trajectory which is

circular in our case. Oscillations of different

amplitudes are represented by a family of cir-

cles centered at the origin. Figure 4.1 shows

Fig. 4.1. Phase portrait of the portrait of harmonic oscillator.

harmonic oscillator Oscillations of the same amplitude but of

different initial phases are represented by the same circle, however simulta-

neous positions of the representing points on the circle are different. The

phase difference is equal to the angle between radius vectors of the points.

It is easy to verify that representing points run clockwise. A full revolution
is completed for oscillation period T' = 27 /wy.

Free motion of damped harmonic oscillator. Consider oscillations
which in addition to restoring force are also subjected to a force impeding
the motion, i.e. the force directed opposite to velocity. Such a force arises
when the oscillation proceeds in a medium that resists motion. At a small
velocity the force is directly proportional to it:

F, = —bi. (4.24)
In this case instead of (4.2) one obtains:
mi = —kx — bx. (4.25)

Let us introduce the notation

— = 20. 4.2
b9 (4.26)
Then Eq. (4.4) can be rewritten as
i+ 2Bi + wiz = 0. (4.27)

Let us check that the solution of this equation has the form
x = ape Pt sin(wt + o). (4.28)

Indeed, substitution of this ansatz to Eq. (4.27) shows that the equation
holds provided
w? =wi - B2 (4.29)
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Therefore increase in the viscous damping coefficient decreases the os-
cillation frequency, so the period which is inversely proportional to the
frequency grows. Strictly speaking, this motion is not periodic. Neverthe-
less the period of damped oscillations can be defined as the time interval
between two consecutive passages in the same direction through the equi-
librium:

2w

T
w

For small damping (8 < wp) it is reasonable to assume that the maximum
deviation occurs whenever the sine in Eq. (4.28) equals unity:

a = age L. (4.30)

The ratio of two consecutive maxima of deviation in the same direction is
called decrement:

D=1 _ A7 (4.31)
Qi+1

The natural logarithm of this ratio § is called damping ratio:
0= pT. (4.32)

For some systems oscillation amplitude increases and the ratio is neg-
ative, then it is called increment. For small positive § the amplitude de-
creases slowly and damping is small. It follows from Eq. (4.29) that for
8 < wy the oscillation frequency is close to wy.

Let us determine the rate of energy dissipation of the oscillator for
small damping. It follows from Eq. (4.19) that the energy depends on the
amplitude as

E = %mw%az. (4.33)
Substituting Eq. (4.30) in Eq. (4.33), taking logarithm, and differentiating
one obtains the relative change in the energy averaged over the period:

dE
— = —2p4dt. 4.34
= =25 (434)

Therefore the energy decrement AE during the period T is:

AFE
— = 26T = 26. (4.35)
E
The important parameter of damped oscillations is @Q-factor which is
defined as the ratio of oscillation energy to its losses per period multiplied
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by 27. Several useful expressions of @-factor in terms of oscillation param-
eters at small damping are given below:

LI L E——n
AE o BT 28 b b bwo

Q

Here n is the number of oscillation cycles executed before the amplitude
decreases by a factor of e (e = 2.71828...).

Phase portrait of damped oscillations is a spiral approaching the origin
as it revolves around. The motion becomes aperiodic for strong damping,
B > wp. When 8 = wg the damping is called critical.

Compound pendulum. Any rigid body that executes oscillations around
a pivot or a rotation axis due to restoring force is called compound pendu-
lum. Consider, for example, a case when the restoring force is due to
gravity. The center of mass of the pendulum is below the pivot on the
same vertical. During oscillations the line connecting the pivot and the
center of mass deflects from the vertical. Let the instantaneous value of
the deflection angle be . Then according to Eq. (2.35) the equation of
motion for this angle is

Iy = —mgasinp. (4.37)

Here I is the moment of inertia around the pivot (rotation axis), a is the
distance from the rotation axis to the center of mass.

If the deflection angle remains small, so that sin ¢ & ¢, the equation of
harmonic oscillator follows which gives the period of compound pendulum

as
T:%U/I. (4.38)
mga

If the size of the body suspended on a thread or a weightless rod of
length [ is much less than the length, the body is called point particle and
the pendulum is called simple gravity pendulum. In this case I = mli?
and a = [ and the expression for the period of simple gravity pendulum is

reproduced:
l
T =2m[—. (4.39)
g

If the period of simple gravity pendulum coincides with the period of
compound pendulum, [ is called equivalent length l.4:

log = —. (4.40)
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Center of oscillation of a compound pendulum (Fig. 4.2) is the point O’
located at the distance [, from the pivot O on the vertical passing through
the pivot and the center of mass. If the pendulum mass is concentrated at
the center of oscillation the compound pendulum becomes simple gravity
pendulum with the same period. Let the moment of inertia of compound
pendulum around the center of mass be Iy. Then according to Huygens-
Steiner theorem (2.31) the moment of inertia around the pivot is

I = Iy +ma®. (4.41)

Substitution of Eq. (4.41) to (4.40) gives
leg=a+ —. (4.42)

Obviously the center of oscillation is far- |
ther away from the pivot than the center of i
mass. It also follows from the above equa-
tions that the equivalent length l’eq of the pen-
dulum suspended at the center of oscillation
coincides with ;. To prove this statement
notice that the distance from the center of os-
cillation, which is now the pivot, to the center
of mass is

I
a'=lgg—a= m_oa' (4.43)
Then
Iy = IO/ +ad =a+leg—a=lyg (4.44)
ma
Since the equivalent lengths are the same, FigA. 4.2. Compound
the period of compound pendulum does not pendulum

change if the pendulum is suspended at the center of oscillations.

When deflection angle is large oscillations of simple gravity pendulum
become non-linear, i.e. the oscillation period exhibits dependence on am-
plitude (the maximum deflection angle). Equation (4.37) is integrated in
the introduction to the lab 1.4.3. For small amplitudes it reads:

902

Here Tp is the period at zero amplitude given by Eq. (4.38) and ¢, is the
maximum deflection angle.
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A

Fig. 4.3. Phase portrait of pendulum

Equation (4.37) represents the law of conservation of mechanical energy
(the first integral of motion) for non-linear oscillations:
Sb2 2 Eo 2

5 TWoeosp = —up.

Here w2 = mga/I is the oscillation frequency for small amplitudes when

nonlinearity can be neglected and Ej is total energy (the potential energy
is zero at the equilibrium). The phase portrait of the pendulum is shown
in Fig. 4.3. The elliptic trajectories at small angles become the circles of
Fig. 4.1. The trajectories cease to be ellipses when the energy (or ampli-
tude) gets large because oscillation becomes rotation. The trajectory that
separates finite (bounded) motion of pendulum from rotation is called sep-
aratrix. A trajectory corresponding to infinite motion is called a runaway
trajectory.

Driven oscillator with viscous damping. Stationary oscillations of a
system subjected to external periodic force are called driven. We consider
the most important case of a force which time dependence is described by
harmonic function, F' = Fj sinwgt. Any force can be represented as a linear
superposition of harmonic forces using Fourier series. Since the equation
of harmonic oscillations is linear we can use the principle of superposition.

An external force initiates oscillations of different frequencies. During
the transition process only those oscillations survive which frequency coin-
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cides with the frequency of the driving force. The rest of the oscillations
decay during the transition.

When the driving force depends on time harmonically, the equation of
motion reads:

2
i+ 200 + wiz = 2 sinwt. (4.46)
m

To solve Eq. (4.46) for stationary oscillations let us substitute the oscilla-
tion which has the same frequency as the driving force:

x = xosin(wt + ). (4.47)

Here ¢ is the phase shift between the displacement = and the force F. The
phase shift is to be found from Eq. (4.46). Notice that the phase shift in
Eq. (4.15) is determined by the initial conditions which are not essential
for the stationary driven oscillations.

Differentiation of Eq. (4.47) and substitution to (4.46), gives

F
{ [(wg—wQ) cos p—2fwsin gp} zo——2 } sin wt+ {(wg —w?) sin p+2Bw cos p | zg coswt =
m

(4.48)
Since functions sinwt and coswt are linearly independent,
F
{(wg — w?) cos p — 2Bwsin gp} z0 = —2,
m
(4.49)
{(w% — w?)sin + 2fw cos gp} zo = 0.
The second equation of (4.49) can be rewritten as
28w
t =———. 4.50
e Jy (4.50)
Using the trigonometric formulae
1 1
cos?a = ——— sin? a =

1+ tan?a’ 1+ cot?a’

one can derive from Eq. (4.50) that
wi — w? . 20w
, sinp = — .
VR =) + P V@R — ) + AP
Substituting these expressions to the first of Eqgs. (4.49) one can find the
amplitude z( of the stationary oscillations:
Fo/m
\/(wg —w?)2 + 4ﬂ2w2.

cosp =

z0 = (4.51)
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Equations (4.50), (4.51), and (4.47) give the desired solution for driven

oscillations. .
Figures 4.4 and 4.5 show the amplitude and phase shift of driven oscil- 0 A
lations versus the frequency of external force. Tom

When the frequency of driving force tends to zero the amplitude tends

to the constant
Tom

Fo _ 5o (4.52) —

5 .
mw; k

Thus for slow motion, i.e. at small frequency (or large period), the dis-
placement is determined by the spring constant.

At high frequency
Iy

— 4.53

0 w?’ (4.53)
i.e. the amplitude falls when the frequency grows. The larger the oscillator Fo
mass, the greater the rate of the fall. k

Calculating the extremum of Eq. (4.51) one can find the maximum
amplitude of the oscillations and the corresponding frequency of the driving

force: Fy) Fig. 4.4. Amplitude-frequency response (Q = 10)
— 2 2 _ 0/m
Wmax = Wy — 26 5 TOmax — — —=- (454)
208/ ws — 32 .
For small damping A
Fy -
Wmax =~ Wo, Lomax ~ 26&.}07’)@ (455) w

The less the damping, the greater the amplitude. Amplitude enhance-
ment of driven oscillations at frequencies close to the eigenfrequency is
called resonance. As it follows from Eqgs. (4.55), (4.52), and (4.36) the ra-
tio of the amplitude at the resonance to the amplitude at small frequencies
is equal to @Q-factor.

The Q-factor specifies the function (4.51) close to the resonance fre-
quency and also the width of resonance peak. For small difference wy — w
and using Eq. (4.36) one can obtain from Eq. (4.51) :

F, max
zo(w) = 0 = Oma . (4.56)

2 2
2m6w0\/1 + (22 \/1 (2 e

The function

Fig. 4.5. Phase-frequency response (Q = 10)
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is called Lorentz function. It is often used to analyze spectral lines.
Equation (4.56) gives the width of the peak at xo = xomax/\/i as
wo

Aw = —. .
2 0 (4.57)

Equation (4.50) shows that the phase shift between displacement and
driving force tends to zero for vanishing force frequency. The phases are
the same. At resonance the displacement lags behind the driving force by
/2, but the phase of velocity and the phase of force coincide. It should
be clear that maximum amplitude is attained when the maximum force is
collinear with the maximum velocity. At high frequency of the force the
displacement lags behind by 7 (they are in antiphase).

Resonance dependences of velocity amplitude vy and acceleration ag
can be figured out similarly. Since vy = xow and ag = zow?, then vy = 0
and ag = 0 at w = 0. The maximum velocity amplitude is attained at w =
= wp and the maximum acceleration amplitude at w?/\/wi — 262. When
the frequency of the driving force grows the velocity amplitude decreases
while the acceleration amplitude tends to Fy/m.

Energy of oscillator driven by external force remains constant. At the
same time the oscillator consumes energy from external source. The energy
is converted to work against friction and dissipates into heat. The rate of
energy consumption per unit time is

_ 1
I(w) = F - & = Fywapcos(wt + @) sinwt = —§F0wxo sin . (4.58)

Suppose that the system is close to resonance, i.e. |w —wp| = |[Aw| < wp.
Then
1 N Q
V(Wh = w?)? + 4572 20w\ °
wit[1+ Q2 (_w)
wo
which gives
FoQ
Zo = 5’
2A
mwg\/l + Q2 (_w)
wo
. 1
sing = —
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Substitution of these expressions in (4.58) yields

I(Aw) = i) o (4.59)
2mwg |1+ Q2 (_w) ]
wo
or 10)
I(Aw) = SAN T
e ()
where 2
1(0) = %

Equation (4.59) shows that the energy consumption versus the frequency
of external force is also of resonant nature. Let us determine the width of
the curve. At 1/2 we have

Therefore A )
Aw_ 1
wo 2Q

i.e. the width of the resonant curve is

wo

Q

Thus both the maximum of energy consumption and the width of the curve
is determined by @-factor.

2|Aw| =

Free oscillations of coupled pendulums. Up to this point we dis-
cussed only the systems with one degree of freedom. Now consider the
simplest system with two degrees of freedom, namely, two identical pendu-
lums connected by a spring which execute oscillations in the same plane
(see Fig. 4.6). A pendulum consists of a massless rod with a small massive
bob at the end.

The notations are shown in the figure. If the deflection angles from the
vertical are small (sing ~ ¢, cosp ~ 1 — ©?/2), the torque on the first
pendulum due to the spring is

Moy = ka®(2 — ¢1).
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m m

Fig. 4.6. Coupled pendulums

The torque on the second pendulum has the same magnitude and the
opposite sign:
M12 = —kaQ(gog — ng).
The pendulums are coupled via these torques.
Equations of motion of the pendulums are

2 d*p1 9
ml”— 5= = —mgler + ka(p2 = @1), (4.60)
d2
mi* dt? = —mglps — ka*(p2 — ¢1). (4.61)
Adding the equations one obtains:
d2
mi® 23 (p1+ ) = —mgl(p1 + 2). (4.62)

Subtracting Eq. (4.61) from (4.60) gives
d2
mi 25 (1 = p2) = —(mgl + 2ka®) (1 — ¢2). (4.63)
Notice that addition and subtraction of Eqs. (4.60) and (4.61) allows
one to decouple them. Solutions of Egs. (4.62) and (4.63) are

01+ 2 = Acos(w™t + a), (4.64)
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= Bcos(w™t+ ), (4.65)

lg = 2ka?
wt = S
\/7 + mi2’

where A, B, a, and (§ are some constants. Adding and subtracting
Egs. (4.64) and (4.65) one obtains

1 1
p1 = §A cos(wt +a) + §B cos(w™t+ ), (4.66)
1 n 1 _
2 = §A cos(w™t+ ) — §B cos(w™t + ). (4.67)
Therefore the angular velocities are
1 1
1= —§w+A sin(wt + a) — §w_B sin(w™t + (), (4.68)
. L T
$2= 5w Asin(wTt + a) + v Bsin(w™t + 9). (4.69)

Let us analyze the obtained solutions. Suppose the pendulums have
the same initial (at ¢ = 0) deflections and zero velocities:

©1(0) = v2(0) = o,  ¢1(0) = $2(0) = 0.
Then from Egs. (4.66) — (4.69) one gets
sina = 0, A =20, B =0,

i.e.

@1 = pocoswt, 2 = o coswt. (4.70)

Therefore the pendulums oscillate with the same amplitude and phase
(in-phase oscillations).
Ifatt=0

©1(0) = —2(0) = o,  $1(0) = $2(0) =0,
then it follows from Eqgs. (4.66) — (4.69) that
sin 8 =0, A=0, B = 2y,
ie.

1 = o cosw t, w2 = —@p cosw ™t = g cos(wt+ ). (4.71)
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The relations show that the pendulums oscillate with the same amplitude
but their phases differ by 7 (antiphase oscillations). Two types of motion
described by Egs. (4.70) and (4.71) are called normal modes of coupled
oscillators. Normal mode of oscillation is a collective motion in which the
amplitude of oscillation of each degree of freedom remains constant. The
concept of normal mode is very important for modern physics.

Now consider the case when only one pendulum is initially deflected,
i.e.

©1(0) =0, ¢2(0)=0,  ¢1(0) =2(0) =0.

It can be shown that in this case

%)

01 = 7(cos wht 4+ cosw™t), (4.72)
%o + _
P2 = 7(cosw t —cosw™t). (4.73)
Using trigonometric formulae
cosoz—l—cosﬁ:?cosa cosa_ﬁ,
2 2
cosa —cos 3 = 2sina+6 sinﬁ_ a,
2 2
one can write Egs. (4.72) and (4.73) as
+ _ - + -
Sﬁl = 900 cos ut - COS &t, (4'74)
2 2
cpgchosinw 2w t-sin 2 —;—w t. (4.75)

Let us analyze Eqs. (4.74) and (4.75). Notice that the oscillation fre-
quency of the even mode (labeled by «+»), wt = \/g_/l, equals wg where
wo is the eigenfrequency of a solitary pendulum (the so-called partial fre-
quency). On the other hand, the frequency of the odd mode (labeled by

«—») is
w- =wov1+ 2,

where the parameter ¢ = ka?/mgl specifies pendulum coupling. For small
coupling, ¢ < 1,

w” mwi(l+e),

i.e.
wT —wt & we, w™ +wt & 2w.
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In this approximation Eqgs. (4.74) and (4.75) become

p1 = o oS %Ogt cos wot, (4.76)

P2 = g sin %Ogt sinwot = g sin %Ogt cos (wot — g) . (4.77)

Thus we deal with harmonic oscillations of frequency wg which amplitude
varies periodically with time at a much less frequency woe/2. This is the
so-called amplitude modulated oscillation or beat. The phase shift is /2.
The modulated amplitude of oscillations of the first pendulum is

A1(t) = po cos %Ogt. (4.78)
Similarly the oscillation amplitude of the second pendulum is
™

€ €
As(t) = o sin w%t = o cos(wit - =).

Initially, at ¢ = O:

At t= L.
wo€
Ay =0, Ay = q.
At t=2"_:
wo€&

Ay = —o, Ay =0.

Notice that the amplitude of harmonic oscillation is positive by definition.
The negative sign here means that the phase shift changes by 7. At t =

s

UJ()E'

A =0, Az = —¢o.
At t=4=

wpe
Al = Y0, A2 =0.

Thus pendulums exchange energy of oscillations. At ¢ = 0 the energy is
accumulated in the first pendulum. Then the energy is gradually transfered
via the spring to the second pendulum until it accumulates all the energy.
The time 7 of the transfer can be estimated as

ie.
T=—. (4.79)
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The frequency of the energy exchange between oscillators is

27 _
= —we=w —wt.
T

Notice that oscillations in a system consisting of a large number of
coupled oscillators can be regarded as propagation of waves of a certain
kind.

Plane wave. In physics any time variation and spatial alternation of
maxima and minima of any quantity, e.g. matter density, pressure, tem-
perature, electric field, etc., is called a wave. Such alternation is essentially
an oscillation process in a system with infinite number of degrees of free-
dom. However, propagation of a short time perturbation, a «pulse», is
often called a wave as well. The simplest mathematical model of a wave
process is a plane wave.

Suppose that some scalar quantity s depends on time ¢ and position x
(but it is independent of y and z) as

s = f(z — ut), (4.80)

where f is an arbitrary function and v = const. Consider a snapshot of
the wave process at t = 0. In this case

s(0,z) = f(x). (4.81)

Then consider a snapshot of the same wave at t = ¢1. It is described
by the equation
s(ty,x) = fz — uty). (4.82)

Comparing Egs. (4.81) and (4.82) one can see that two snapshots differ
by the displacement ut; in the positive direction of z. Therefore the wave
propagates to the right at the speed w while retaining its shape. A wave
process described by the function (4.80) is called plane wave. The wave
specified by

s = f(x + ut),

propagates in the opposite direction.

Plane sinusoidal wave. A case of sinusoidal function f is of special
interest. Consider

s = Acos(wt — kx) = Acos|k(z — ut)], (4.83)

where u = w/k is the velocity of wave propagation. At any point x the
value of s executes simple harmonic motion with the amplitude A and the
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circular frequency w. Both quantities are the same for all . The oscillation
period is T' = 27/w and the phase is kz.
A snapshot of (4.83) is a spatial sinusoid. For instance, at t =0

s = Acoskzx.
The minimum distance A, so that
s(@+A) = s(a)

for any z, is called wavelength. The quantity % is called wave vector or
spatial frequency. Obviously
A= —.
k
Standing wave. Let a scalar quantity s depend on position coordinates
x, y, and z and time t as

s = F(x,y, z) cos(wt + ¢),

where F(x,y,z) is an arbitrary function and w and ¢ are constants. Ac-
cording to the equation s executes simple harmonic motion of the same
frequency and phase at any point in space. But the oscillation amplitude
varies. Such a process is called standing wave.

Let us show that superposition of two plane waves of the same ampli-
tude, wavelength, and phase and propagating in opposite directions is a
sinusoidal standing wave.

Indeed let

s1 = Acos(wt — kz + 1), sg = Acos(wt + kz + az2).

Their sum
S =81+ 82

in accordance with the trigonometric formula

cosT + cosy = 2cosx+ycosx_y
2 2
can be written as
o] — Qo a1+ Qo
s =2Acos | kx — —5 cos | wt + —5 ) (4.84)

This equation describes a sinusoidal standing wave.



212 Mechanical oscillations and waves

Now consider
s1 = Ay cos(wt — kx + aq), $9 = Ag cos(wt + kx + ag).

It can be shown that in this case

s = 2A5 cos (kw — %) cos (wt + w> + acos(wt — kx + aq).

Here a = A; — Ay. The quantity a/As is called coefficient of running.

Wave equation. Consider a function which describes plane wave:

f(z,t) = f(x — ut). (4.85)
Differentiating it with respect to time t one gets:
af gt 62f Y/ 2
E—f(:v—ut)-(—u), W_f (x — ut) - u”. (4.86)

Here the prime stands for derivative with respect to x — ut. Now let us
differentiate the function (4.85) twice with respect to x:

of _
or

f(x —ut) 82—f = f"(z — ut) (4.87)
’ 0x? ' '
Comparing Eqgs. (4.86) and (4.87) one can see that the function (4.85)
satisfies the following equation
Y
L 2L 4.
oz~ " o2 (4.88)
Equation (4.88) is the partial differential equation termed wave equation
which plays an important role in physical applications. It can be proven
that the general solution of the equation is

fz,t) = fi(z — ut) + fa(x + ut),

where fi and fy are arbitrary functions determined by initial or boundary
conditions.

Longitudinal waves in elastic body. Consider dynamics of longitudinal
waves in elastic rod. Let z-axis be directed along the rod. Assume that the
rod elements which lie in a plane perpendicular to  at t = 0 also remain
in a plane perpendicular to x at any ¢t # 0. A cross-section with coordinate
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x at ¢ = 0 has a different coordinate 2’ at ¢ = ¢’. In the following the
quantity (positive or negative)

s=1xz —=x

is called the displacement of . Now consider the cross-section between the
planes z and = + Az. In the non-deformed rod the cross-section thickness
is Az. A deformation displaces the planes which coordinates become z’
and 7’ + A/, respectively.

Let

¥ =+ s(x),
¥+ Ar' =z + Az + s(z + Az),

where s(x) is the displacement of the plane x and s(z 4+ Ax) is the dis-
placement of the plane x + Axz. Then the thickness of the rod section
equals

(2" + Az') — 2’ = A,
The increment of the section thickness is
Az’ — Az = s(x + Azx) — s(z).

The average longitudinal strain of the rod section between z and = + Az
is
s(z + Az) — s(x)
Az ’

The longitudinal strain € at a given plane is defined as the limit

s(x+ Az) —s(x)  0Os

= 1. = . 4.
° 7 Aeso Ax ox (4.89)
According to Hooke’s law
o= Fe, (4.90)

where o is the stress and F is the bulk modulus. Now let us apply Newton’s
law of motion to the rod section between the planes x and = + Az. The
section mass is pSAx where p and S are the density and the cross-sectional
area in the absence of deformation. Let s be the displacement of the center
of mass of the section. Then

0?s

pSAxW = So(z + Azx) — So(x).
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The left-hand side is the mass multiplied by acceleration while the right-
hand side equals the net force exerted on the section. Let us divide the

equation by SAx:
0?s  o(x+ Ax) —o(x)

Pz ~ Az
Taking the limit Az — 0 one obtains the equation
9%s  Oo
— = . 4.91
Porz =~ oz (4.91)
Substitution of Eq. (4.90) to (4.91) gives
9?s Oe
e _pZ&.
Porz = " ox
According to Eq. (4.89)
o _ s
oxr 022’
ie. 92 £
s s
=" 4.92
ot p 0x? (492)

This is wave equation. Therefore a deformation propagates along the rod
either as a plane wave s = f(z F ut) or a superposition of such waves. The
speed of wave propagation (speed of sound) is

For steel © = 5200 m/s, for copper v = 3700 m/s, for aluminum u =
= 5100 m/s, and for rubber u = 46 m/s.

Notice that the wave equation is derived under assumption that the
wavelength is large compared to the rod cross-section. The opposite limit
corresponds to unbounded elastic medium. It can be shown that the speed
of longitudinal elastic wave in that case is

. \EV E(L— p)
Ve ez

where p is the Poisson ratio.

Energy density. Consider a small section of the rod which volume in the
non-deformed state is SAz, so its mass is pSAz. Kinetic energy of the
section moving in z-direction is

1 s\ ?
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where 0s/0t is the instantaneous velocity of the section. Then the kinetic

energy per unit volume is

L o
wK—2pv.

This quantity is called kinetic energy density.
It can be shown that the section has also the potential energy which
density equals (consult the derivation of Eq. (3.4)):

1
W= = EBe?
w D) 3

The total energy density is
1
W= Wi + Wy = §(pv2 + Ee?).

The total mechanical energy of the rod section bounded by the planes
r =21 and x = x5 is:

T2 2
S
W = Jdem =3 J(pwz + E<?) dx.
1 1

An energy change equals the work done by the forces exerted by the adja-
cent sections. Let indices 1 and 2 refer to quantities related to the sections
x = 1 and = x9, respectively. The force acting on the left is F; = —Soy
(the sign is negative since for o1 > 0 the force Fy is directed to the left).
The force acting on the right is F» = Soq (if 03 > 0 the force is directed
to the right). The work done by the forces F; and F» during the time dt
equals Fiuidt and Fhvodt, respectively. Therefore the net work is

(Fl’Ul + FQ’UQ)dt = —(0’11}1 - O'gUg)Sdt.

According to the law of conservation of mechanical energy this work is
equal to energy increment dW, therefore

aw
TR =Q1— Q2,

where
Q1= —So1v1, Q2 = —Soavs.

It should be clear that the quantity ¢ = —Sov specifies energy flow
through a given cross-section. The corresponding unit of measurement
is[Q=1lerg/sorl J/s=1W.
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Energy flow density is defined as
q = —ov = Puv,

where —o = P is the pressure in a given cross-section. The corresponding
unit of measurement is [¢] = 1 erg/(cm? - s) or 1 W/m?2. Let us calculate
the density of energy flow of the plane sinusoidal wave described by the
equation

s = Acos(wt — k).

Obviously
o=Fe= Eﬁ = FkAsin(wt — kz),
ox
0s .
V=g = —Awsin(wt — kz).
Therefore

1
q = —ov = BkwA?sin*(wt — kzx) = §EkwA2 (1 — cos(2wt — 2kz)).

One can see that the energy flow attains its maximum twice per period
and its frequency is 2w at any point of the rod. The value of ¢ averaged

over the period is
T

_ 1 1 9
q= TJq(t)dt— 2EkwA .
0

In acoustics the value ¢ is called sound volume. Usually the volume is
measured in decibels (dB) according to

W
D=10lg (qM—Q) +100 (dB).
cm

For example, if § = 107 uW /cm? then D = 0 (the initial value). For
g =107% W/cm?, D = 100 dB. The threshold of pain, i.e. the value of ¢
at which sound becomes painful for a listener is

B W
g=10"" = =10* £=.
CM cm

This corresponds to D = 120 dB.
Now consider a standing wave

s = Asinkx cos(wt + ),
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so that
o = EkA cos kx cos(wt + ),

v = —Awsin kz sin(wt + ¢),
1
q= ZEk:wA2 sin 2k sin(2wt 4 2¢p).

One can see that the density of energy flow through the cross-sections
with coordinates
A s A 7r A s
= =_— =2-=2— =3-=3—
172k BT Tt MPTUU T Yo
is always zero. Therefore any section of the rod of the length A/4 enclosed
between a stress nod and a velocity nod next to it does not exchange energy
with the neighbors. Its energy is constant.

Transversal waves on string. In acoustics a uniform elastic thread
tightened by an external force is called a string. It can be a stretched wire,
cable, or a violin string.

Consider a string which equilibrium position coincides with abscissa.
Assume that the string elements move only in the plane (x, y). Let s(x,t)
be the displacement of the element which position in equilibrium is . Now
let us write Newton’s law of motion for the element enclosed in the interval
z,z+ Azx. The element mass is pSAxz where p is specific mass of the string
material and S is cross-sectional area. The product of the element mass
by its acceleration 9%s/0t? is equal to the y-component of the net force
applied to the ends of the element:

0?s . )
pSAxW = —So(z)sina(z) + So(x + Az)sina(z + Ax). (4.93)
Here o(x) is tension at = and «(z) is the angle between the tangent to the
string at = and the abscissa. Obviously,

; _ 0Os
ana = o
Now suppose that displacement s(z,t) is small, so it is safe to assume
that: 1) the string tension o(z) is approximately equal to the tension o in
equilibrium, 2) sin « approximately equals tan «.
Then Eq. (4.93) is simplified and becomes:

9?s s Os
s = | ()0, (3] o
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Dividing Eq. (4.94) by Az and taking the limit Az — 0 one obtains the

wave equation:
0%s o 0?%s
— = —=. (4.95)
o2 p Ox?
According to the equation a transversal wave propagating on string
retains its shape, the wave speed is

wm 2o \fE
S p pS’

where F is string tension and pS is the mass per unit length.

String eigenmodes. Under certain conditions string vibration becomes
standing transversal wave which is described by the equation

s = Asinkx cos(wt + ), (4.96)

where k = w/u. Let us separate a string segment by fixing the string at the
points = 0 and & = n(A\/2) = nw/k. Since the points are at rest (these
are the nodes of s), their fixing does not change the vibration pattern.
Therefore a string of length [ with its ends fixed can execute sinusoidal
standing vibrations with nodes at the ends. The string length is then a
multiple integer of half-wavelengths:

A U
l=n—-—=n—

, n=1,2,...
2 w

The frequency of n-th eigenmode can be easily found:

nrt | F n F
n — —/ =) n — — — :172,... 4-97
“ L\ pS g 21 V pS " ( )

If the frequency of external transversal sinusoidal force coincides with
the frequency of an eigenmode, resonance occurs. The resulting wave is
the standing wave corresponding to the vibrational eigenmode.

Passage of longitudinal wave through boundary between two me-
dia. Let the plane x = 0 be the boundary between two different elastic
media. The quantities referred to the media on the left and on the right
with respect to the boundary will be labeled with indices 1 and 2, respec-
tively. Suppose an elastic wave is coming from the left:

s1 = Aj cos(wt — k1), (4.98)
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Here s; is a displacement in the z-direction. What happens on the bound-
ary?

To answer this question one should invoke physical properties of the
boundary. Firstly, continuity requires the displacement on the both sides
of the boundary (z = 0) to be the same:

Sl(o,t) = Sg(o,t), (499)

Secondly, according to third Newton’s law the stress on the both sides must
be equal as well:

01(0,1) = 03(0, 1). (4.100)

Now suppose that the wave penetrates from the first medium to the
second,

Sg = Ag cos(wt — ko), (4.101)

but this process does not affect the first medium, so that Eq. (4.98) holds.
Substitution of Egs. (4.98) and (4.101) to (4.99) and (4.100) yields

Ay :A27 Ay :’YA2,

where
_ Eskas  Escin \E2po

T Bk Eiew VEip1
Here ¢; is the speed of longitudinal wave. Notice that the quantity v FEp =

= pc; is often called acoustic impedance. However the above equations are
incompatible unless there is no boundary,

v=1.

Equations (4.99) and (4.100) can be simultaneously satisfied by taking into
account the experimental observation that there is also a reflected wave in
the first medium,

Al cos(wt + k1),

so that
s1 = Aj cos(wt — ki1x) + A} cos(wt + k). (4.102)

Substituting Eqs. (4.101) and (4.102) to (4.99) and (4.100) one obtains:

Ay + A] = As, }

A Al — (4.103)
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Equations (4.103) can always be solved for A} and As. For a given ampli-
tude A; of the incident wave Eqs. (4.103) determine the amplitudes of the
reflected and refracted waves:

1-— 2
Al=""T A, Ay=—" A (4.104)
1+~ 147
Notice that
ko _ M _en
ki XA oo

Wavelengths are different in both media. The wavelength is greater in
the medium in which the speed of sound is greater. Let us introduce the
notations: .

; _
4 r=Z
q1 a1
The quantities R and T are called reflection and transmission coefficient,
respectively. It is not difficult to show that

R =

1—7v 2 4y
R=(—21), 17=—HL_ 4.105
<1+7> (1+7)? (4.105)
As expected,
R+T=1.

This relation follows from the law of conservation of mechanical energy:
G +a=q

For v =0 and v = oo we have R = 1, T' = 0: the energy is reflected back
to the first medium. Notice that Eqgs. (4.105) are invariant under replace-
ment of v with 1/v. Therefore the introduced reflection and transmission
coefficients are the same regardless of the direction of propagation of the
incident wave.
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Lab 1.4.1

Compound pendulum

Purpose of the lab: to study the dependence of oscillation period of
compound pendulum on its moment of inertia.

Tools and instruments: a compound pendulum (uniform steel rod),
a knife edge, a simple gravity pendulum, an oscillation counter, a ruler,
and a stopwatch.

A compound pendulum is a rigid body
which can freely swing about a stationary
horizontal axis in the gravitational field.
The motion of pendulum is described by
the following equation:

d?p

@ =M )
where I is the moment of inertia of the
pendulum, ¢ is the deviation angle mea-
sured from the equilibrium position, ¢ is
time, and M is the torque acting on the
pendulum.

A uniform steel rod of length [ is used
as a compound pendulum in this lab (see
Fig. 1). A knife edge is fixed on the rod, so
its arris is the pivot axis. The knife edge
can be shifted along the rod thereby alter-
ing the distance OC' = a between the pivot
of the pendulum and its center of gravity.
Using the Huygens-Steiner theorem (2.31)
one can find the moment of inertia of the pendulum:

Fig. 1. Compound pendulum

l2
1= Tr1L_2 + ma?,

where m is its mass. The torque on the pendulum is due to the gravitational
force:
M = —mgasin p.

If the deviation angle ¢ is small one can set sin ~ ¢ and hence obtain

M ~ —mgap.
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The pendulum can exhibit hundreds of oscillations without notable damp-
ing provided the experimental setup is in good order. In this case friction
can be neglected. Substituting the expressions for I and M into Eq. (1)
one obtains

¢+ w?o =0, (2)
where ga
w? = — (3)
2, 7
a® + 9

The solution is given by Eq. (4.15):
(t) = Asin(wt + ).

The amplitude A and the initial phase o depend on the way the oscillations
started, i.e. they are determined by initial conditions; the frequency w
according to Eq. (3) depends only on the free fall acceleration g and the
pendulum parameters [ and a.

The oscillation period equals

l2
2
2 @+ 1
T="=or | —A2, (4)
w ag

We can see that the period of small oscillations of a compound pendu-
lum depends neither on the phase nor on the amplitude. This statement
manifests the isochronism of oscillations, it is valid for processes described
by Eq. (2). In fact, this description of the pendulum motion is approximate
since the equality sin ¢ & ¢ used in the derivation of Eq. (2) is approximate
as well.

The oscillation period of a simple gravity pendulum is given by (4.39):

/ l/
T =214/ —,
g

where I’ is the pendulum length. For this reason the quantity

2
leg=a+ — (5)

is referred to as the equivalent length. The point O’ separated by the
distance l.4 from O is called the center of oscillations. The pivot point and
the oscillation center are reversible, i.e. the periods of oscillations about
O’ and O are the same.
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An experimental verification of the Cronoprsiit

BHHT

above statement is a good way of testing
the theory. Another way is to test valid-
ity of Eq. (4). The latter contains the
quantity a which changes when the edge
is moved along the rod. In this lab a lead
ball suspended on two diverging wires (as
shown in Fig. 2) is used as a simple grav- /
ity pendulum. The wires are wound on /

a horizontal axis and their length can be
varied.

Fig. 2. Simple gravity pendulum

LABORATORY ASSIGNMENT

. Set, the working range of the amplitudes so that the oscillation period 7T is

approximately amplitude-independent. For this purpose deflect the pendu-
lum from its equilibrium position by the angle ¢; (~10°) and measure the
time of 100 full swings. The number of oscillations is counted by an elec-
tronic or mechanical counter and the time is measured with a stopwatch.
To decrease the error of time measurements start and stop the stopwatch
at the moment of pendulum crossing the point of equilibrium. Using the
data obtained calculate the oscillation period T;.

Repeat the experiment for the initial deflection angle of 1.5-2 times
less than that in the first experiment. If the periods are equal within the
experimental error the working range of the amplitudes lies within (0,¢1).
If the periods differ one should repeat the experiment for smaller angles.

Identify the source of the largest error of the measurement of the period
and try to reduce it.

. Shift the knife edge along the rod and study the dependence of the oscil-

lation period T on the distance a between the pivot point and the center
of mass. Plot the values T2 vs a? and obtain the values g/472 and 1%/12
by performing a linear fit (use Eq. (4)). Compare the obtained value of g
with the tabulated one and verify the value of | by direct measurement.

. Find the appropriate length of the simple gravity pendulum for a particular

position of the knife edge so that the periods of both pendulums coincided
within the error. Measure the length of the simple gravity pendulum and
compare it with the equivalent length calculated from Eq. (5).

. Verify experimentally reversibility of the pivot point and the oscillation

center. What pivot position ensures the most accurate verification?

Questions

. What are the simplifications used in deriving Eq. (4)?
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. What distance between the pivot point and the center of mass corresponds to
the minimum period of oscillations?

. Describe the behavior of the compound pendulum which pivot point and the
center of mass coincide.

. Why is the simple gravity pendulum suspended on two wires?

. Formulate and prove the Huygens-Steiner theorem.

Literature
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Lab 1.4.2

Measurement of gravitational acceleration by
means of Kater’s pendulum

Purpose of the lab: to determine the local acceleration of gravity using
Kater’s pendulum

Tools and instruments: Kater’s pendulum, an oscillation counter, a
stopwatch, a caliper with 1 m scale.

Free fall is a motion near Earth’s surface such that forces resisting
the motion can be neglected. The gravitational acceleration near Earth’s
surface which is usually called g is then determined by gravity force F
exerted on a body of mass m,

: (1)

A reference frame related to the Earth is not inertial. In such a frame
there are also centrifugal force and Coriolis force in addition to gravity
force. The Coriolis force is always perpendicular to the velocity of the
body, so the force changes only the velocity direction while the magnitude
remains intact. Usually the gravitational acceleration is identified with
the acceleration component which is tangential to the body trajectory, so
the Coriolis force does not contribute. Obviously the normal force exerted
on a body that rests upon Earths’ surface equals the sum of gravity and
centrifugal forces (the body weight).

A gravity pull exerted on a body by the Earth is equal to the product
of the body mass m by gravitational acceleration g:

g:

3|

ﬁo = mgy- (2)
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Gravitational acceleration is determined by distribution of mass inside
the Earth. If the Earth were a solid sphere of constant density, the ac-
celeration inside the sphere would be directly proportional to the distance
towards the Earth center and the acceleration outside would fall according
to the inverse-square law. Actually the Earth mass density is not uni-
form and grows with depth. Because of that the gravitational acceleration
slightly increases up to the depth of 2800 km (which corresponds to the
distance towards the center of 3600 km) and then falls linearly with the
distance to the center. Above the surface and close to it the gravitational
acceleration is well approximated by that of the uniform sphere. The ac-
celeration decreases by 10% at the height of 300 km which corresponds
approximately to a satellite orbit. Observation of satellite motion allows
one to determine the distribution of mass inside the Earth, which is used,
e.g. for search of ore bodies.

The net gravity force also includes gravitational attraction to the Moon
and the Sun. Although their contribution to the net force is small these
forces are responsible for global effects such as tides.

Earth rotation around its axis resulted in the Earth deformation be-
cause of centrifugal force. The distance from the Earth center to a pole
is approximately 21 km less than the distance to equator which is equal
to 6378140 m. As it was already mentioned the centrifugal force is com-
bined with the gravity force for a body residing on the Earth surface. It is
called the net gravitational acceleration g and its values are given in the
tables of local acceleration of gravity. On a pole g = 983.2155 cm/s? and
it decreases towards the equator where g = 978.0300 cm/s?. Therefore a
pendulum clock on the equator lags behind the one on a pole by 3.8 min.
The direction of the gravitational acceleration is always perpendicular to
the surface of a body of water and does not deviate significantly from the
direction to the Earth center.

The mass distribution inside the Earth is not spherically symmetric,
which also results in local variations of g. Extensive and precise measure-
ments of g on the Earth surface showed that gravitational acceleration
depends on time as well. Periodic variations related to the Moon and Sun
tides are approximately 2.49-107* ¢cm/s? and 9.6-10~° cm/s?, respectively.
There are also periodic variations of the same order due to geological pro-
cesses inside the Earth (the so-called secular variations).

Measurements of g on the Earth surface are recorded on the gravi-
metric maps to be used in searching for ore bodies and studying internal
composition of the Earth.

The first measurements of g with an accuracy of up to 1072 c¢m/s?
(milligal) were performed at the beginning of the 20-th century by means
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of Kater’s pendulums. Such an accuracy requires the accuracy of pendulum
periods of 1076 s and the accuracy of equivalent length of 1um. Modern
methods of measurement of g are divided into dynamic and static. The
dynamic methods include the measurements with the aid of pendulums, in
particular, Kater’s pendulums. However these measurements can be made
precise only in laboratory conditions and take a lot of time. This is also
true for string gravimeters in which the frequency of string oscillations is
determined by its tension due to a suspended weight.
Recently the accuracy of measurement of
% L length and time intervals has been significantly
—F 11 improved, so it becomes possible to measure
I—Q free fall acceleration directly. For example, us-
ing a laser interferometer and an atomic clock
to measure the path and time interval covered
by a body equipped with a corner reflector
which falls in an evacuated tube allows one to
=~ reach the accuracy of 31076 ¢cm/s?. The dy-
namic methods are used to measure the abso-

L

V) . .
lute value of free fall acceleration. Static meth-
ods allow one to measure a relative difference in
~ the gravitational acceleration with an accuracy
of up to 1.5-107% cm/s?. The static methods
1, employ measurements of spring deformations
L or torsional deformations of horizontal strings
D o due to suspended weights. To reduce temper-
L ature effects the springs and strings are made
INY of quartz. The static method is difficult to use
R R | for precise measurements of the absolute value

C of gravitational acceleration because a depen-

Fig. 1. Kater’s pendulum dence of the load on deformation deviates from

Hooke’s law. The relative variations of g mea-

sured by a static method are then compared to the reference points in

which the absolute values are obtained by dynamical methods. This is
how gravimetric maps are produced.

The equivalent length of a compound pendulum is determined by

Eq. (4.38):
[ I
T =27 mga (3)

Here I is the moment of inertia of the pendulum about the pivot, m is the
pendulum mass, and a is the distance from the pivot to the center of mass.
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The pendulum mass and oscillation period can be measured with a high
accuracy while the moment of inertia cannot. Usage of Kater’s pendulum
allows one to exclude the moment of inertia from the equation for g.

The method of Kater’s pendulum is based on the observation that the
period of a compound pendulum remains the same when the pivot is placed
in the center of oscillation, i.e. the point separated from the pivot at the
distance equal to the equivalent length and located on the same vertical
with the pivot and the center of mass.

The pendulum used in the lab (see Fig. 1) consists of a steel plate (or a
rod) to which two identical prisms II; and Il are attached. The oscillation
period of the pendulum can be varied by means of movable weights I'1, s,
and Fg.

Suppose one has attached the weights so that the periods 77 and T5 of
pendulum oscillations on the prisms II; and Il are the same, i.e.

I | I
Ty=Ty=T=2m | —— =2m | ——, (4)
mgl1 mglg

where [; and [ are the distances from the center of mass to prisms II; and
Il,.

This condition is met providing the equivalent lengths, I;/ml; and
I5/mls, are the same. According to Huygens-Steiner theorem

L=Ig+ml  Iy=Iy+mi (5)

where I is the moment of inertia of pendulum about the axis through the
center of mass and parallel to the pivot. Excluding Iy and m from Egs. (4)
and (5) one obtains the equation for g:

47 L
Here L = [ + l5 -is the distance between prisms II; and Il which can
be measured with an accuracy of 0.1 mm with the aid of a large caliper.
Summation of the lengths [y and I5 is less accurate since the corresponding
error is several millimeters.

Notice that Eq. (6) follows from Eqgs. (4) and (5) providing

Iy # I, (7)

since Egs. (4) and (5) become identities for [; = ls.
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Equation (6) is derived under assumption that T3 = T». Actually it is
not possible to equate the periods precisely. In general

|1 3 |1 12
T1:27T 704—771,17 T2:27T 704—771,2'
mgly mgla

Then
Tiglh — Tsgly = 4w (1 — 13),
and 2 I
—Yp2 L2 y2 8
=L T T T ®
where e l
TP=21 22 24 L (T + To)(Ty — Ta). (9)
ll _ZQ ll _l2

The error of g can be found from Eq. (8):

2
%g _ ("_L)2 42k 10
To evaluate the error o7, let us examine how the period of oscillation

depends on the distance [ between the center of mass and the pivot. To do
so we express moment of inertia I via I using Eq. (5):

T = op, |t (11)
mgl
This function is shown in Fig. 2. When [ — 0 the period goes to infinity as
1='/2. When | — oo the period goes to infinity as (/2. The minimum of
the period is at lmin = v/Io/m. Every value of T for T' > Ty, is repeated
twice for two different values of [, one of them is greater than l,;, and the
other is less. These values were used in Eqgs. (4) — (6). The plot shows that
the values of the quantities I; and ls diverge when T grows.
Let us determine how the error of Ty depends on the difference I; — I5.
To this end let us find how op, depends on the error of 7. Differentiating
the first equation of (9) at constant 75 we obtain:

ll ll Tl
2To(dT = 2T dT; dT; = - —dT7.
0(dTo), LY (dTo) 1, L1 T,
Similarly we obtain at constant 77:
lo Ty
dT, =— - == dT5.
R
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Tmin

l

Fig. 2. Oscillation period versus distance between center of mass and
pivot

Now consider the case when [; and [l are close. The denominator is
small and the error of Ty grows sharply. Therefore the period of oscillations
must be chosen so that I; and [y are significantly different. If they differ
by a factor of 1.5 the error of T exceeds the error of 77 by less than an
order of magnitude.

Let us derive the equation for dTj. Consider the second equality in
Eq. (9). Notice that T7 ~ T, so the difference T3 — T5 is small. Therefore
the second term in the equation can be regarded as a minor correction as
long as [y — I3 is not large.

Therefore the errors of [; and I, if taken into account, will be multiplied
by a small difference T7 — 7> and can be neglected in calculation of o7, .
This is true even for the errors of several millimeters typical for this lab.
Now, since the errors of 77 and 75 are independent and approximately
equal the general formula (1.33) gives finally:

/12 1 12
o, & ﬂUT, (12)
li—1s
where or is the error of the period.

One can see that the error does not significantly depend on the accuracy
of the equality 77 = T». Therefore, as soon as the equality holds within
several percent, a further improvement is not necessary.

Finally notice that the ratio l3/ls should not be too large. Indeed Iy
is always less than the distance L between the prisms. The quantity ls
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becomes small for large l;/l> and the period of oscillations grows sharply
(recall that I is always greater than Iy). This increases the duration of
experiment and an uncertainty due to friction which is not taken into
account in derivation of Eq. (3).

Let us quantify this statement. The contribution due to friction can be
determined as the ratio of the work done by friction forces to the energy
of oscillation. The work of friction depends on ls only slightly because
the work is the product of the torque due to friction (which is almost
independent of ls) and deflection angle which is completely independent of
l2. The energy of oscillation equals the potential energy of the pendulum,
ie.

Wose = mgla(1 — cos p),

where ¢ is the deflection angle of the pendulum. So, the less I, the less
WOSC‘

Thus we conclude that the ratio of I; to l5 should be neither too small
nor too large. A preferred value lies in the range:

l
15< =+ <3. (13)
l2

Laboratory setup. The design of Kater’s pendulum is shown in Fig. 1.
The distance L between the prisms II; and II5 is fixed. Distances /1 and Iy
can be varied by moving weights I'1, I's and I's.

The number of oscillations is measured by a counter which consists of
a spotlight, a photocell, and a digital counter. A light rod attached to the
pendulum end crosses the beam of light twice a period. Pulses generated
by the photocell are registered by the digital counter. If n; and no are
the initial and final readings of the counter during time ¢, the number of
periods is, obviously, equal to N = (ny — n1)/2 and the oscillation period
is T =t/N. Time t is measured by the stopwatch mounted on the counter.
To measure [; and l> one should remove the pendulum from its support
and place it on the special horizontal bar which has a sharp edge. Then one
should find the position of the center of mass by balancing the pendulum
on the bar. The distances from the bar to the prisms are l; and l5. If
they differ significantly (see Eq. (13)) and the periods T; and T are close,
the accuracy of measurement of I3 and [ need not be high according to
Eq. (9).

LABORATORY ASSIGNMENT

1. Study Kater’s pendulum design.
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. Find the working range of oscillation amplitudes in which oscillation period

can be considered as independent of the amplitude. To do so put the
pendulum on a prism, deflect it from the vertical by an angle 1 (~10°),
and measure the time of 100 full swings. Find the period T;. Repeat the
experiment by decreasing the initial deflection by a factor of 1.5-2 and find
the period Ty. If the periods coincide within the measurement accuracy,
any initial amplitude ¢ which does not exceed ¢; can be chosen for further
measurements. If it turns out that 77 # T7, take the second value of the
initial amplitude as ¢; and repeat the experiment. It is not recommended
to take the initial amplitude greater than 10° since the prism can possibly
slide on the support.

. Figure out how the oscillation periods 77 and 7% (the pivot point on the

prism II; and IIy, respectively) depend on the position of weights I'1, I'y
and I's. It would suffice to measure the time of 10-15 full swings. It is
necessary to determine

a) which of the weights has the greatest effect on 77 and T», and which
one has the least;

b) which of the weights has the greatest effect on the difference |T} —T5|.
Does a weight displacement changes the periods 77 and 7% in the same
direction? Do the experiments for all the weights.

. By moving the weight which has the greatest effect on the difference

|T1 —T5| (usually it is I'y) make the periods roughly coincide. Determine T}
and T, by 10-15 full swings. Remove the pendulum from the support, lo-
cate its center of mass, and measure the distances [ and l5. As it was
already mentioned, they should differ by a factor of no less than 1.5 and
no more than 3.

. By moving the weight which has the least effect on the periods, make T;

and Ty coincide within one percent accuracy. Check whether the values [y
and [ satisfy inequalities (13). The final measurement should be performed
using 200-300 full swings. By the way make sure that friction has no signif-
icant effect on the oscillations, i.e. the amplitude of oscillations decreases
no more than by a factor of 2-3 during the 200-300 full swings.

. Using Egs. (8) and (9) calculate the gravitational acceleration. Evaluate

the error and compare the result with the tabulated value.

Questions

. How do temperature variations, friction, and the amplitude of oscillations affect

the accuracy of the experiment?

. What distance from the pivot to the center of mass corresponds to the minimum

oscillation period?

. Show that the center of mass lies between the pivot and the center of oscillations.
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. Prove Huygens-Steiner theorem.
. Show that if the pivot is placed in the center of oscillations the period of oscilla-
tions remains the same.

Literature

. Cusyzun J.B. Obmuit kypc dusuku. T. I. — M.: Hayka, 1996. §§ 35, 36, 41,
66.

. Cmpeaxos C.II. Mexanuka. — M.: Hayxka, 1975. §§ 50, 124.

Lab 1.4.3

Study of non-linear oscillations of a long-period
pendulum

Purpose of the lab: determination of the dependence of oscillation
frequency on amplitude

Tools and instruments: long-period pendulum, stopwatch

Equation of the pendulum motion. A pendulum used in the lab
consists of two identical weights fixed on a rigid rod; the rod can rotate
about a horizontal axis which is slightly off the center of mass of the system.
An arrangement of the rod and the weights is shown in Fig. 1, the names
of the variables used are indicated in the same figure.

The pendulum oscillations are due to the
torque of the gravitational force. The motion of
the pendulum is specified by the dependence of
the deviation angle ¢ (measured from the equi-
librium position) on time. The torque M, due
to the gravitational force, which tends to return
the system to the equilibrium, can be written as

M, =— (m + p%) g(L —1)sine.
Fig. 1. Long-period

pendulum In what follows we shall assume that the drag
force, which is responsible for the oscillation damping, is directly propor-
tional to the velocity. This fact is consistent with the experimental data
providing the velocity is not large. In the case considered the drag force
depends on the air viscosity and on the friction in the bearings of the pen-
dulum axis which is too small to be taken into account. Thus the torque
M, of the drag force equals
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My = —b(L* +1?)¢,

where b is a constant.

The pendulum moment of inertia I about the rotational axis is equal
to the sum of the moments of inertia of its constituents (the weights and
the rod) about the same axis:

LP+ 1P
3 )

I=m(L*+1*)+p

where m is the mass of each of the weights (considered as point masses)
and p is the linear density of the rod.
Consequently, the equation of the rotational motion of the pendulum,

I¢:Mq+Md>
becomes
L+1
Ij=— (m—i—p%) g(L —1)sing — b(L* +1?)¢,
or
@ + 20 + wising =0, (1)
where 124 I L1

Neglecting the rod mass compared to the masses of the weights one can

write down I
_ 2 __ —
W= =8y

Small-amplitude oscillations. For small deviation angles sing ~ ¢;
when plugged into Eq. (4.27) it gives the equation of small-amplitude
damped oscillations

¢ +26¢ +wip =0. (2)
The solution of the equation is given by (4.28)
¢ = ae P cos(wt + @), (3)

where (see eq. (4.29))
w? =wi - B2 (4)
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The constants a and « are determined by initial conditions.

From Eq. (4) one can see that damping decreases the oscillation fre-
quency and thus increases the period. To estimate the magnitude of the
effect (assuming a small damping: 3? < w?) we rewrite Eq. (4) as Aw? =
= —3? and obtain

g__%__&qu _Aw2_6_2_ﬁ2T2
T w 202 T 22 w2 8x2

Using Egs. (4.31) and (4.32) one finally obtains

AT 52 a;
_— — h 5 == T == 1 ‘ .
T PR where 0 n o~

()

Equation (5) allows one to estimate the influence of the damping on the
oscillation period as the amplitudes a; can be easily measured. We assume
that the correction (5) due to damping is small compared to the correc-
tion due to the non-linearity of the oscillations. However, this assumption
should be experimentally verified.

Non-linear oscillations. An equation of large-amplitude undamped os-
cillations can be obtained by setting 5 =0 in (1)

@+ wd sinp = 0. (6)

This equation is non-linear!. For small deviation angles sinp ~ ¢ eq. (6)
is linear and coincides with the equation of the harmonic oscillator (4.4).

The dependence of the period of non-linear oscillations on the amplitude
can be obtained by integrating the relation

dy
dt = — 7
; (7

from t = 0 to, e.g. ¢ = T/4. To find the angular velocity ¢ and the
deviation angle ¢ one should multiply Eq. (6) by ¢
p + puising =0

and integrate once:?:

¢2
o + w3 (cos @ — cosp) = 0, (8)

1 We remind that linear equations are those in which all terms are the first powers of
functions and their derivatives. In eq. (6) the non-linearity is due to the sine function.

In other cases there could be polynomial or more complicated functions
2 One can also obtain (8) from the energy conservation law
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where ¢, is the maximum deviation angle. From here it follows that

@? = 2wE (cos @ — cos Py, ) = 4w (sin2 <,07m — sin? %) ,
. 2
m sin“ £
¢ = 2wpsin 2 [1 - —— 2 (9)
2 sin® £
Using Egs. (9) and (7) one obtains
T/4 Pm J 1 ©m J
T:4Jdt=4j—.‘0= : MJ d (10)
) ) %) 2wp sin £ ) L snf £
sin” £
Introducing a new variable 6
29
i sin“ £
sin® 0 = — ;m (11)
Sin 5
we can rewrite an expression for the oscillation period T as
w/2
2 de
T="T — J . (12)
L \/1 — sin® €2 sin* 0
Here Ty = 2m/wp is the period of small-amplitude (linear) oscillations.

The integral (12) is not expressed via primitive functions but it can be
worked out by Taylor expanding of the integrand. This gives the following
dependence of the oscillation period on the amplitude

T Loo®m 9 . 4Pm

— =1+ —sin” — + — — 4 ... 13
T +4sm 5 +64sm 5 + (13)

For relatively small angles one obtains:

QOQ

In Fig. 2 the rigorous solution (13) (solid line) and the approximate one
(14) (dashed) are depicted. At 90°-amplitudes the discrepancy between the
solutions is about 2% while a non-linear contribution to the period is about
15-20% and can be measured with a simple stopwatch if the oscillation
period is about 10 seconds.
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027 AT
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Fig. 2. Dependence of oscillation period on amplitude

Both non-linearity and damping affect the pendulum oscillation pe-
riod (6). We have considered the contribution of each of the factors in-
dependently assuming that the other one is negligible. In fact these factors
act simultaneously and the oscillation period is a complicated function of
the damping decrement and the amplitude. But if the correction to the
period is small, one can use the Taylor expansion of the function of two

variables: 9£(0.0) 9F(0.0)
0,0 0,0
which gives for egs. (5) and (14):
52 <P2
2 02 ) — 4 rm
T(6%,¢;,) ~Tp <1+87r2 + 16)' (15)

One can see that in the first order the damping and the non-linearity
contributions are independent.

LABORATORY ASSIGNMENT

. Adjust the position of the weights on the rod so that the pendulum oscil-
lation period is 5-10 seconds.
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. Release the pendulum without pushing from the initial 80-90° and devia-

tion angle and start the stopwatch simultaneously.

. Each time the angle reaches its maximum value tabulate the number of the

periods n passed from the start of motion, the maximum deviation angle
©n, and the stopwatch readings.

. Repeat the experiment several times for various oscillation periods.
. Estimate the effect of damping on the pendulum oscillations. For this

purpose plot the values Iny, vs n, calculate the slope of the line and
extract the value of the logarithmic decrement § (see Eq. (5)). Using (5)
estimate the contribution of the damping to the oscillation period and
ascertain that it is small compared to the effect observed (or compared
to the expected value calculated from Eq. (14)). Otherwise one should
introduce the correction for the damping using Eq. (15) and use the value

To — 8‘% instead of the small-oscillation period Tp.

. Plot the dependence of the oscillation period T' vs. the maximum deviation

angle squared p? (measured in radians). Compare your result with the
theoretical prediction (14).

Questions

. How does the pendulum oscillation period depend on damping?
2. Discuss the design of a moderate size pendulum which has a large oscillation

period. Could a conventional pendulum be used in the lab instead?

. Discuss the dependence of the pendulum oscillation period on the amplitude.

Literature

. Kummenv 9., Hatum Y., Pydepman M. Mexanuxka. — M.: Hayka, 1983. C. 251.
. Kunecen A.C., Jloxwun I'.P.;, Oavzos O.A. Ocuosbt dusuku. T. 1. Mexanuka,
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Lab 1.4.4

Study of oscillations of coupled pendulums

Purpose of the lab: to study an oscillator with two degrees of freedom

Tools and instruments: a setup of two identical bifilar gravity pendu-
lums suspended on a tight horizontal string, a stopwatch, and a ruler

Prior to experiment read the paragraph concerning coupled pendulums
in the introduction to this chapter.
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The measurements are performed using the setup shown in Fig. 1.

One of the string ends is rigidly attached to the vertical support, while
the other end runs over the sheave and is kept tight by the weight of mass
M. Points A and B of the string are fixed. Points C' and D divide the dis-
tance between A and B into three equal segments of length a each; identical
gravity pendulums of mass m and length [ are suspended at these points.
Each pendulum is suspended on two threads (bifilarly) in the string plane,
so that oscillations occur in the plane orthogonal to the string. String ten-
sion is much greater than the weight of the pendulums provided M > m.
Vertical displacement of the string from equilibrium does not affect motion
of the pendulums if oscillation amplitudes are small. Although horizontal
displacement of the string is also rather small compared to the pendulum
displacements, it provides weak coupling between the pendulums.

The displacements of points C' and D of the string and both vertical
(Fig. 2a) and horizontal (Fig. 2b) displacements of pendulums are shown
in Fig. 2.

Assuming small displacements of the pendulums we obtain the following
expression for tension 7' (see Fig. 2a)

mg~T. (1)
Dynamic equations governing the horizontal components of pendulum
displacements are (Fig. 2):

_T,’El ;,’Eg ~ _mgl'l ;{E37 (2)

Q

mi; = =T sin ¢

T2 — Xq T2 — &4

mie = —Tsingy =~ =T N Mg ———. (3)

The relation between the string and suspension tensions can be obtained
from Fig. 2:

L1 — I3
l

T3 — Iq

T —FE 4 F , (4)
a a

T2 — T4
l
Let us introduce a dimensionless parameter

z3

T —pH g p T (5)
a a

Ta m a

C=FTT M
which is much less than unity in our case (weak coupling). Thus from
Egs. (4) and (5) we obtain

ox1 = (24 0)rg — x4,  ox2 = (24 0)z4 — 3. (6)
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Fig. 1. Scheme of experimental setup
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Fig. 2. Displacements of pendulums and string (a) view along the
string, (b) top view
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Neglecting o compared to 2 we arrive at

2x1 + x2 1 + 229
vy = ot ET g, TR 7

Then the equations of pendulum motion become:

i+ 81— o)z = 02 (2y — ), (8)
l 3l
iy + 3(1= 0)as = 02 (21 — 22). 9)

Notice that the system of equations (4.60)-(4.61) can be rewritten as

1+ %%01 = %5(802 - 1),

P2 + %Pz = %5(@1 — 2)
or

$1 + wapr = wie(p2 — v1), (10)

P2 + wip2 = wie(p1 — p2). (11)

Equations (10) and (11) coincide with Egs. (8) and (9) except for the
notations. One can introduce the quantities

g g

7(1—0)*w§, o3 = woe
and thus obtain -

=3
l1-0 ©
or
o(1+0) = 3¢,

ie.

o=~ 3 (for weak coupling).

Now Egs. (8) and (9) become

# Fwir = wie(xs — 21), (12)

B9+ wize = —wie(wy — 11). (13)
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Thus all theoretical results derived in the introduction to this chap-
ter are valid for this experiment. In particular, energy transfer from one
pendulum to another and vice versa takes the time (4.79):

2

(14)

T = .
woé&

One can see that the coupling parameter can be written as

g:%<1—“’?§l>. (15)

Using Eq. (15) one can rewrite the relation (14) as

6 Ml |1
= X — —. 1
T e " Tma\ g (16)

Equation (16) can be experimentally verified by measuring the partial fre-
quency of a pendulum, its length, and the time of energy transfer.

LABORATORY ASSIGNMENT

. Measure the pendulum lengths, the distance between fixed points of the

string and between pendulum suspension points. Write down the pendu-
lum masses and the weight which keeps the string tight.

. Measure the periods of normal oscillation modes. To measure the period

of in-phase oscillations 77 deflect the pendulums from the vertical by equal
angles (about 30°) in the same direction and release them simultaneously.
Time readouts should be taken when the pendulums pass through their
equilibrium positions (about 10 oscillations). Repeat the measurement
2-3 times and average the results. To measure the period of antiphase
oscillations T5 the initial deflections should be in the opposite directions.

. Measure the periods of partial oscillations. For this purpose one of the

pendulums should be detached or put on a support.

. Observe swinging of one pendulum by another. For this purpose deflect

only one pendulum and measurethe period of beatings .

. Check validity of the relation

1 1 1

= — 4+ —. 17
T T1+T2 ( )

. Repeat the previous measurements for different string tensions.
. Plot the dependence of the beatings period on the string tension.
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. Compare the results obtained with the theoretical predictions given by

Eq. (16).

Questions

. Give some examples of oscillators with two degrees of freedom.

. What are normal oscillations (normal modes)?

. What are partial oscillations?

. At which initial condition does the swinging of pendulums occur in turn?
. Derive the equation (17).
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Lab 1.4.5

Study of string oscillations

Purpose of the lab: to study the dependence of the frequency of string
oscillations on the tension; to study the formation of standing waves on
the string.

Tools and instruments: bar with a fixed string, audio-frequency
generator, constant magnet, weights

One of the main properties of a string is its flexibility which is due to a
large ratio of the string length to its diameter. Even strings made of stiff
materials almost do not resist a bending if the size of the bent section is
much greater than the string diameter. This fact allows us to neglect the
stress due to bending in this lab.

A horizontal string with fixed endpoints sags in a gravitational field
when poorly tightened. Increasing the tension will straighten the string
almost to a straight line; in this situation the tension is sufficiently greater
than the weight of the string. For this reason we will neglect the gravity
when considering straightly tightened strings.

A tight string with fixed ends is well suited for the study of oscillation
processes since it makes possible a direct observation of the simplest types
of oscillations and waves excited on the string. It is also possible to de-
termine the parameters of the oscillations and compare the results with
theoretical predictions.

1.4.5 243

o) —e
3
2 4
% s=sEIIIII oI I IEEEES ::::::::::::!-:
LA A AL -—J‘:E
1 100 90 80 70 0

Fig. 1. Experimental setup

Motion of string segments can be caused by a perturbation of the string
shape or by a transmission of momentum along the string. The string ten-
sion tends to restore its initial straight shape, which results in the motion
of string segments. The perturbation propagates along the string.

From eq. (4.95) one obtains an expression for the speed of a transverse
wave propagating along a string

u =

F
— (1)
Pl

where F' is the tension, p; is the mass of the string per unit length. For a
given frequency v the wavelength is

A=2 2)

1%
The frequencies of normal modes of the string are given by eq. (4.97):

U
n — N7, 3
v, n2l (3)

where [ is the string length, n is the number of half-wavelengths.

Laboratory setup. The experimental setup is shown in Fig. 1. Bearings
2 and 4 and magnet 3 are placed on massive bar 1, the bearing 2 and the
magnet 3 can be moved along the bar while the bearing 4 is fixed. One
of the string ends is fixed in the bearing 4. Then the string is threaded
between the poles of the magnet, the bearing 4 (which allows for horizontal
string displacements), and the fixed block. Plate 5 is suspended on the
loose end of the string; by placing different weights on the plate one can
vary a string tension.
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An alternating voltage generated by the audio-frequency generator 6 is
applied between the massive bar 1 and the string end fixed in the bearing 4.
An Ampere force due to the magnetic field acting on the current makes the
string vibrate. The frequency of the force swinging the string is equal to
the frequency of the current oscillations, i.e. the frequency of the generator.

The Ampere force results in string oscillations and wave propagation;
the waves are reflected by the bearings 2 and 4 and interfere, which results
in a standing wave provided the string length is an integer of half-wave-
lengths.

In real experiments there always exist losses of energy due to air friction,
transmission of energy to the bearings, irreversible processes in the string,
etc. To maintain the oscillations one needs to supply energy to the string.
In a stationary regime the amount of the supplied energy equals the amount
of the dissipated energy. In the experimental setup the Ampere force not
only excites the string oscillations but also maintains them.

In this situation the energy flux propagates along the string. But the
energy propagation in a pure standing wave is prohibited (see the introduc-
tion to this chapter). Therefore a traveling wave must exist, actually this
leads to the smearing of the standing-wave nodes. If the energy losses per
period are much less than the energy stored in the string a traveling-wave
factor is much less than unity:

AL — Ay

o < 1. (4)

Here A; and As are the incident and the reflected wave amplitudes, respec-
tively. In this case one can use the equations obtained for a pure standing
wave. It is worth mentioning that the quantity A; — As can be estimated
by observing the smearing of the nodes; it equals half of the smearing
amplitude. The wave amplitude in an antinode is 2A4s.

If inequality (4) is not well satisfied, one should decrease the output
power of the generator. This would decrease the rate of energy loss com-
pared to the energy stored in the wave.

One more fact should be mentioned. The Ampere force will excite
polarized waves with the plane of oscillations orthogonal to the direction
of the magnetic field. In real experiments it is not always possible to obtain
the linearly polarized waves.

LABORATORY ASSIGNMENT

. Examine the experimental setup. Place the bearing 2 (Fig. 1) so that the
length L of the oscillating part of the string is longer than 80 cm.

2. Turn on the power supply of the audio-frequency generator.

B~ W N =
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. Set, the harmonic output signal of the generator and the minimal range of

the output frequencies.

. Put some weights on the plate.
. Move the magnet and vary the generator frequency to obtain a pattern of

standing waves. (Moving the magnet along the string changes a location
of the point where the Ampere force is applied. The point must be close
to a node although they should not coincide.)

. Increase the generator frequency at a constant tension and obtain the pat-

terns of standing waves corresponding to n = 1, 2, 3, .... up to not less than
6. For each pattern write down the corresponding frequency; repeat the
measurement by increasing and decreasing the generator frequency. Carry
out this procedure for different values (at least five) of the string tension.

. While carrying out the experiment check if inequality (4) holds. For this

purpose one should measure a node smearing and the amplitude of oscil-
lations in an antinode. If (4) is not well satisfied the output power of the
generator must be reduced.

. For each value of the string tension I plot the resonant frequency v, vs n.

Calculate the slope of the curves and determine the wave velocity u using
(3) at a given value of the tension. Estimate the error of the results.

. Plot the wave velocity squared u? vs the string tension F. Calculate the

slope of the line and determine the linear density p; of the string using (1).
Estimate the error and compare the result with the value written on the
experimental setup.

Questions

. What are longitudinal and transverse waves? Write down the wave equation.
. Derive the wave equation. Give a definition of node and antinode of a standing

wave. Describe an energy propagation along an oscillating string.

. Prove that the velocity of transverse wave on a string equals u = \/F/p;. Com-

pare this value with the velocity obtained in the experiment.

. Describe the reflection of a wave from the fixed end and from the end which

moves freely in a plane orthogonal to the direction of the string tension. What
is the value of a phase shift between the incident and reflected waves?

. What condition must be satisfied for a traveling wave not to affect the oscillation

pattern? How can one check the condition experimentally?
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Lab 1.4.6

Measurement of speed of ultrasound in liquid by
means of ultrasound interferometer

Purpose of the lab: to measure wavelength of ultrasound in different
liquids by means of ultrasound interferometer and to calculate speeds of
ultrasound and adiabatic compressibility of the liquids.

Tools and instruments: an ultrasound interferometer, frequency gen-
erator ['4-42, and an ammeter.

Sound waves with a frequency greater than 20 kHz are called ultra-
sound. Unlike sound, ultrasound is not perceptible by human ear.

Ultrasound waves can propagate in solids and fluids just like ordinary
sound waves. In solids ultrasound propagates in the form of longitudinal
and transverse waves; in fluids there are only longitudinal waves. The speed
of ultrasound depends on elastic properties and density of the medium in
which ultrasound propagates. Therefore elastic properties of a medium can
be determined if the speed of ultrasound and the medium mass density are
known.

In the lab the speed of ultrasound in liquid is measured. There are
several methods of measuring the speed. The method of ultrasound inter-
ferometry used in the lab is one of the most precise.

A standing wave is excited between an emitter and a rigid reflecting
surface. (See the introduction to the chapter.) The distance between the
emitter and the reflector must be an integer multiple of half wavelengths:

A
l=n-, Cs = AUp, (1)
2
where ¢ is the speed of ultrasound and v, is the wave frequency.
The interferometer can be considered as a resonator tuned to the fre-

quencies derived from (1):
Cs

Un

These frequencies correspond to standing waves of the resonator, they are
called resonant frequencies. Two adjacent resonant frequencies correspond
to distances [ between the emitter and the reflector separated by

A

Al = —. 3

. 3)
Equation (3) is more general than (1). Indeed, Eq. (1) is derived on the
assumption that both ends of the column of liquid are closed by absolutely

1.4.6 247

elastic walls which completely reflect the sound. This assumption is never
satisfied, so a phase shift between the incident and reflected waves never
equals 7.

Equation (3), which specifies the distance between two consecutive res-
onances, is independent of the details of reflection from the top and bottom
of the container. As long as a resonance is detected, further increment of
the column height by \/2 increases the path of the wave between two con-
secutive reflections by A, so the phase changes by 27 and the next resonance
occurs.

Consider a method of exciting the ultrasound. Usually one employs a
flat quartz crystal placed between the plates of a capacitor (the plates are
glued or thermally sprayed on the crystal). The size of the crystal changes
periodically due to electric field (piezo-effect) of a desired frequency. The
oscillations are then transferred to liquid.

Usually the quartz crystal is placed in the liquid to avoid extra surfaces
reflecting the sound. In our case the plate is rigidly fixed to the container
bottom. The oscillations are transferred to the liquid through the bottom
which in ideal case would coincide with a node.

However oscillations cannot be excited at the node because there is no
motion and no work can be done. This looks like a contradiction since
energy must be transferred from the emitter to the liquid to compensate
losses on the reflecting surfaces and due to internal friction. The bottom
coincides with an oscillation node only for an ideal liquid in which there
are no losses. No losses means no compensation. In a real liquid the energy
losses are imminent and the bottom needs not be immobile.

In resonance and in the absence of energy losses, the amplitudes of the
waves propagating in opposite directions are equal and their sum is a stand-
ing wave. In reality the amplitude A, of the wave propagating upward
from the emitter somewhat exceeds the amplitude Agpqn of the downward
wave. The sum of the waves is a standing wave with the amplitude of
2A40wn and a propagating wave with the amplitude of A,, — Ajown. The
propagating wave transfers energy and «blurs» the wave pattern at the
nodes.

Now let us discuss how to measure a sound wavelength. It should
already be clear that the measurement is essentially the measurement of
the distance between two consecutive positions of the reflector for which
a resonance occurs. According to Eq.  (3) one finds the wavelength by
doubling the distance obtained.

The speed of sound ¢, can then be found from Eq. (1). In addition to
the wavelength one should know the frequency of oscillations of the quartz
crystal which coincides with the signal frequency.
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Using the value of ¢; one could determine compressibility x of liquid:

[1 1 @)
Cs = ) X=—=
Xp pes

where p is the liquid density. Since propagation of sound is an adiabatic
process, this equation defines adiabatic compressibility x.q. The adiabatic
and thermal compressibility of liquid do not differ much, e.g. for water the
difference is 1%, the difference between them can often be neglected.

A strong electrolyte dissolved in water dissociates into ions. The electric
field of an ion aligns the nearby water molecules that drastically reduces
the compressibility. Roughly speaking, each ion becomes the center of a
sphere which compressibility is almost zero. As a result the compressibility
of the solution decreases and the speed of ultrasound rises sharply.

Laboratory setup. The interferometer
used in the lab consists of cylinder C (see
Fig. 1), quartz plate K is glued to its bot-
tom. The plate is cut in a special way (the
so called «X-cut») and possesses piezoelec-
tric properties. Charges of opposite sign
accumulate on the opposite crystal faces
to which stress or compression is applied.
The reverse effect is used in the interfer-
s N ometer: a periodic voltage applied to the
:L ~ horizontal crystal faces coated with silver
,,,,, ] c¢ makes the crystal oscillate. The alternat-
i ing voltage is generated by the standard
frequency generator I'4-42 which gradua-
5 T <]  tion scale has an error less than 1%. The
generator has a resonance amplifier tuned
to the eigenfrequency of the quartz plate
(1 MHz). A voltage applied to the crystal
is tens of volts.

The thickness of the container bottom
is chosen so that resonance occurs in the working range of frequencies.

The container bottom excited by the quartz crystal transmits ultra-
sound to the bulk of liquid. This prevents a contact between the liquid
and the quartz crystal and allows one to study even conducting liquids
which otherwise would damage or short-circuit the crystal.

The current supplied to the crystal is controlled by an ammeter. The
latter is connected in series with diode /I and in parallel with resistor

Fig. 1. Ultrasound interferometer
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R which is included in the crystal supply circuit. The ammeter serves
to detect resonance. A power consumed by the crystal rises sharply in
resonance and so does a current through the resistor.

Disk O made of stainless steel serves as the interferometer reflector. Its
lower surface is parallel to the container bottom. Micrometric screw M is
used to move the disk up and down. Spring IT lifts the rod III up there-
by maintaining mechanical contact between the rod and the micrometric
screw.

LABORATORY ASSIGNMENT

. Turn on generator '4-42 and let it warm up for several minutes. Empty

the container by unclamping a hose if there is any liquid inside. Set the
range of working frequencies of the generator, i.e. the range containing the
eigenfrequency 1 MHz of the quartz crystal.

Find the resonant frequency of the crystal by adjusting the frequency to
achieve a maximum of the current. Using the knob «output levels choose
the signal amplitude so that the ammeter readings are approximately 2/3 of
the scale. Using the micrometric screw move the reflector down and watch
the readings. If the readings exhibit periodic behavior make sure that it
is due to resonance (e.g. consecutive maxima are separated by equal dis-
tances). It could happen that it is not possible to detect a resonance. This
does not necessarily mean that the interferometer does not work properly
since detecting resonance in air column requires more sensitive instruments
than for liquids.

Small deviations of the readings can be due to touching the micromet-
ric screw. This changes the interferometer electrical capacitance and the
output generator frequency as well. One could avoid such deviations by
turning the screw carefully and keeping in touch with the screw knob.

. Clamp the hose and fill the container with water using a funnel. Raise

the reflector but keep its working surface under water. Make sure that
the surface is free of air bubbles. Check the resonant frequency. Move the
reflector down and watch the ammeter readings to determine how many
half-wavelengths fit the distance traversed by the reflector.

Plot the # of a maximum as abscissa and the maximum position as
ordinate. Verify that the points lie on a straight line. Using Eq. (3)
determine graphically the speed of ultrasound in water.

Using Eq. (4) calculate the adiabatic compressibility x,q of water. Re-
peat the experiment 4-5 times. Estimate the error of ¢; and xqq4.

. Repeat the experiment with NaCl water solutions with concentrations of 5,

10, 15, and 20%. Measure the solution density with a hydrometer. Plot c;
and yqq versus concentration. Using the plot determine the concentration



250 Mechanical oscillations and waves

and y,q of a standard solution. Rinse the container with the standard
solution before filling it.

At the end of the experiment the container must be rinsed with pure
water.

Questions
. Which mechanical oscillations are called ultrasonic?

2. What are longitudinal and transverse waves? In which media can the waves

propagate?
. Write down a mathematical expression for a plane wave.
. What conditions should be met to make wave interference possible?
. Derive an equation which specifies the condition of resonance in the interferom-
eter. How does the equation depend on boundary conditions?
. What conditions should be met to create a standing wave? Give definitions of
node and anti-node. How is energy transferred in the wave?
. Why is the speed of ultrasound greater in a solution of electrolyte than in the
pure liquid?
. Suppose the open surface of liquid is used instead of the metallic reflector. The
height of the liquid column can be gradually varied by slowly emptying the
container. What is the phase difference between the incident and reflected waves
on the air-liquid boundary?
. How should the interferometer be modified in order to do the same measurements
with gases?

Literature
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Lab 1.4.7

Determination of elastic constants of liquids and
solids via measurement of speed of ultrasound
Purpose of the lab: to measure the speed of sound in liquids and solids

and to calculate elastic constants of the studied media using the results
of measurements.

Tools and instruments: An ultrasound sensor, a gage post, a set of
samples, a millimeter ruler, and prism probes.
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Ultrasound is a mechanical oscillation
with the frequency exceeding 20 kHz. !
Plane waves are the simplest type of ul- '
trasound waves, they can be longitudi- Z
nal and transverse. In longitudinal waves g

5

particle displacement coincides with the
direction of wave propagation, in trans-
verse waves it is perpendicular. Longitu-
dinal ultrasound waves can propagate in
any medium. Transverse waves propagate
only in solids where shear stress is possi-
ble.

Under normal conditions, the speed
of ultrasound is about 300 m/s in air,
1500 m/s in water, 5700 m/s in quartz,
6000 m/s in steel.

Generation and detection of ultra- L
sound waves. Pulse method is one of
popular methods of ultrasound speed mea-
surement. A short pulse of ultrasound is
sent to the tested medium and the time ¢
of ultrasound propagation at some distance [ is measured. The ultrasound
speed is determined by the simple formula:

Pedexrop
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Fig. 1. Pulse method of
ultrasound speed measurement

ca =7 (1)

An ultrasound pulse is generated by a piezoelectric transducer. The
pulse is detected by a receiver, placed at some distance from the transducer.
As an alternative the receiver can be replaced by a reflector (see Fig. 1).
In this case the reflected pulse returns to the transducer, which not only
generates but also detects ultrasound. When a scheme with the reflector is
used the distance is passed twice, so the distance between the transducer
and the reflector in Eq. (1) should be doubled.

To measure the time of pulse propagation it is convenient to use an
oscilloscope which shows two pulses corresponding to the moment of signal
emission and its return. The time ¢ is determined from the distance be-
tween the pulses on the screen (the oscilloscope sweep is calibrated). The
ultrasound speed measured by this method is the group velocity which is
not the same as the phase velocity mentioned above. These two velocities
are equal if there is no dispersion (dispersion is a dependence of the phase
velocity on the wavelength).
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Usually barium titanate piezoelectrical plates are used as transducers.
(BaTiOs). To excite both longitudinal and transverse waves in the body
under study the so called prism probes are used. The transducer is located
at some angle « to the working surface of the rectangular prism probe
(see Fig. 2) which can be made of plexiglass. The transducer generates a
longitudinal wave in plexiglass which is incident at the angle o onto the
interface between the plexiglass and the studied body. At small angles of
incidence the wave diffracted on the interface contains both longitudinal
and transverse waves. As their speeds are different, two reflected pulses
can be seen on the oscilloscope beside the initial one.

The probe should be glued to the sample to transmit transverse waves,
a liquid lubricant will not do.

Fig. 2. Prism probe Fig. 3. Installation scheme

Laboratory setup. A standard ultrasound sensor is used to measure
speed of ultrasound in liquids. (The instrument is designated for measur-
ing the depth of defects under the surface of an object). A generator excites
short high-frequency oscillation pulses in the transducer (made of barium
titanate BaTi0s). A pulse is transmitted into the sample through a thin
layer of lubricant. After reflection from the opposite side of the sample
the pulse returns to the transducer which converts it back to electric sig-
nal. Then the amplified signal is applied to the sensor CRT. Signals on
the screen are seen as pulses: the transmitted one is at the beginning of
the sweep and the reflected ones are located to its right. The distance be-
tween the pulses is proportional to the time ¢ of ultrasound passage from
the transducer to the reflective surface and backwards. This distance is
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measured with the aid of a mark (a step on a sweep line) which can be
moved along the line by the depth gauge control.

The installation setup is shown in Fig. 3. The transducer 1, connected
to the ultrasound sensor 2 with a shielded cable is attached into the bot-
tom 3 of the gage post. A studied rod or the cylindrical stainless steel
vessel with liquid 5 is securely placed on the post in the support 4. A
contact between the transducer and the sample is maintained by a layer of
lubricant which transfers only longitudinal waves into the sample. In solid
samples, the pulse is reflected from the top free end; in liquids the piston 6
made of stainless steel serves as the reflective surface, its height above the
bottom is measured by the scale on the rod 7. Water is used to calibrate
the depth gauge scale (the propagation speed is ¢, = 1497 m/s at 25 °C
and the temperature coefficient dc,/dt = 2.5 m/(s-K)).

By measuring the ultrasound speed (and calibrating the device) one can
measure the time interval between the transmitted and reflected pulses or
between two sequentially reflected pulses. The latter method is preferable
because the result does not include the error due to passage of the ultra-
sound through the bottom of the vessel.

To measure the speed of transverse ultrasound waves (as well as longi-
tudinal ones), an installation with a prism probe should be connected to
the ultrasound sensor instead of the gage post. The sample has a shape
of a semicylinder. The probe is located on its axis (Fig. 2) so that the
distances passed by longitudinal and transverse waves in the sample are
the same (they are equal to the double radius of the semicylinder) and do
not depend on the angle at which the waves enter the sample. An acoustic
contact between the probe and the sample is achieved by means of a thin
layer of mineral wax or BPh-2 adhesive. These substances can transmit
tangential stress to the sample.

LABORATORY ASSIGNMENT

. Plug the ultrasound sensor in the AC supply. Switch it on by turning the

«Intensity» knob clockwise.

. Warm up the sensor for 1-2 minutes, then obtain a clean and sharp im-

age of the sweep line by turning the «Intensity» and «Focus» knobs. Set
the beginning of the sweep at the left side of the screen using the «Shift
X» knob. Set the «Frequency» switch to 5 MHz which corresponds to
the resonant frequency of the transducer. Set other switches to the fol-
lowing positions: «Electronic magnifiers to «Off», «Measurement type» to
«Smooth», «Automatic control area» to the outmost right position, «Sen-
sitivity» to the middle position, «Time corrected gain» to the outmost
right position, «Pulse power» to the outmost right position, «Cutoff» to
the middle position, and I and I+ II switches to I position.
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. Calibrate the scale of the depth gauge. For this purpose place a vessel
filled with water into the measurement gage. Before placing the vessel or
a sample do not forget to grease the emitter surface with light oil! Set the
«Measurement types switch to the «/I. IIp.» position. Using the «Sonic
range» switch set the necessary range (in accordance with the distance
t from the emitter to the surface of the reflective piston). Calibrate the
scale using several (5-6) distances between the emitter and the piston. Plot
the calibration curve in the coordinates of the depth scale marks and the
calculated time of the pulse passage. The distance [ is measured by means
of the scale on the piston rod. The speed of ultrasound in water is given
in the introductory section.

. Measure the speed ¢; of longitudinal ultrasound waves in the samples made
of different materials (steel, aluminum, brass, organic glass, and so on)
and liquids (tetrachloromethane and oil). Measure the length [ of the solid
samples using the millimeter ruler and the distance between the vessel
bottom and the reflector using marks on the piston rod. The time of
pulse passage can be determined by means of the depth gauge scale and
the calibration curve. Calculate the speed of ultrasound in the materials
under consideration.

Hint. When carrying out the experiment make sure that the pulses
chosen for the measurement correspond to two sequentially reflected pulses.
Various ghost pulses can appear on the oscilloscope screen, e.g. those due
to direct reflection from the sample bottom.

For the shortest samples there is a minor difference in the amplitudes
of reflected pulses, while for the longest samples the difference in the am-
plitudes of two sequentially reflected pulses can be quite large. Sometimes
it is necessary to increase the sensitivity of the amplifier («Sensitivity») to
be able to see the second reflected signal.

. Measure the speed of longitudinal ¢; and transverse ¢, waves in different
materials (steel, aluminum, brass and so on) by using the prism probe with
the angle of incidence o which ensures transmission of both types of the
waves into the studied medium (the value of the angle is indicated on the
probe prism). The time of passage of each pulse can be determined by
means of the depth gauge scale and the calibration curve. The ultrasound
path should be measured with the millimeter ruler.

. Calculate the Poisson ratio u, Young’s modulus £, and shear modulus G
for the studied solids by using the following formulae
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o = \/ E(l—p)
p(1+p) (1 —2p)’
E
2014+ p)

The material deunsity p can be taken from tables.

. Calculate the adiabatic compressibility for the liquids under study using

the formulae )

X=—3.
pc

. Evaluate the errors of the results obtained and compare the results with

the tabulated values.

Questions

. When measuring the speed of ultrasound by means of the ultrasound sensor one

can see ghost pulses on the screen in addition to sequentially reflected pulses.
Why are these pulses seen? How can one get rid of them?

. When measuring the ultrasound speed using the prism probe, a systematic er-

ror is introduced because there is a wedge-shaped part of the plexiglass probe
between the emitter and the material under study. Evaluate this error for given
sizes of the probe and the sample.

. Show that the reflection coefficient of the ultrasound wave on the interface be-

tween two media does not depend on the direction of wave propagation.
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Chapter V Table 1 (cont’d)
TABLES Quantity Symbgl or Value
equation
Electron rest energy mec? 0.510998902(21) MeV
Proton rest energy mpc? 938.271998(38) MeV
Neutron rest energy Mnc? 939.565330(38) MeV

Uncertainty of the last digits is shown in parenthesis.

Table 1 Table 2
Conversion of units
Length:
Physical constants Angstrom
1A=107Y9m=10"% em = 0.1 nm
Astronomical unit
Quantity Symbol or Value 1 AU =15-10" m =1.5- 10" em
equation Licht
- ight year
Speed of light in vacuum c 299 792 458 m/s (ei(ict) gl lyr = 95105 m = 9.5 - 1017 em
Planck constat h 6.62606876(52) - 1034 J-s
hi=h/2r | 1.054571596(82) - 1073* J-s Parsec » s
Boltzmann constant k 1.3806503(24) - 1023 J/K Lpc=3.1-10"m=3.1-10"° cm
Avogadro constant Na 6.02214199(47) - 10*® mol !
- B Y Pressure:
Atomic mass unit lu 1.66053873(13) - 10™“" kg
Gas constant R=FkNa | 8.314472(15) J/(mol K) Atmosphere (standard)
molar volume, ideal gas at 1 atm = 760 mm Hg = 101325 Pa (exact)
STP RTo .omB
Vo = =2 .10-3 M
(To = 273.15 K, 0= Tpy | 22413996(39) 1077 Energy:
Py = 101325 Pa) Fre
Gravitational constant G 6.673(10) - 107" N -m?/kg? lerg=10""J
Electron charge . 1.602176462(63) - 107° C Calorie
: 1n-10
](;ﬂ{l:cmgtnltude})1 : 4.8032042 - 10 esu 1 cal — 4.1868 J (exact)
ectron charge-to-mass
Latio e/me 1.758820174(71) - 10" C/kg Electron-volt
Electron mass e 0.910938188(72) - 10~ kg 1 eV =1.6021765- 1072 J = 1.6021765- 1072 erg
Proton mass mp 1.67262158(13) - 10727 kg Temperature corresponding to 1 €V,
Neutron mass mn 1.67492716(13) - 1027 kg 11605 K
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Table 3
Astrophysical constants
Solar mass
Mc=1.99-10% xr =1,99-10% ¢
Solar luminosity
Lc =3.86-10% W = 3.86 - 10 erg/s
Solar constant
FEc =1.35-10° W/m? = 1.35 - 10° erg/(s - cm?)
Solar radius
Rc = 6.96 - 10° km = 6.96 - 10° m
Solar angular diameter as viewed from Earth
ac=092-10"2 rad
Solar surface temperature
Tc=59-10° K
Earth mass
M3 =5.98-10* kg =5.98-10%" ¢
Earth mean density
pE = 5.52-10° kg/m® = 5.52 g/cm?®
Earth equatorial (a) and polar (b) radius
a = 6378 km, b= 6357 km

Mean radius of equivalent sphere
R =6371 km

Standard gravitational acceleration
g, = 9.80665 m/s?

Average distance between Sun and Earth
Lp=1AU=15-10° km =15-10" m
Average temperature of Earth surface
T =300 K
Earth average orbital velocity
vep =30 km/s = 3-10* m/s
Angular velocity of Earth rotation
wg = 0.727 -107* rad/s
Earth escape velocities (1-st and 2-nd)

v1 =/GM3/Rg =79 km/s=709- 103 m/s,
va =v1v2 =112 km/s = 11.2-10°> m/s

Venus mass
My = 0.82Mp = 4.87-10%* kg =4.87-10*" ¢
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Average distance between Venus and Sun
Ly =1.08-10% km = 1.08 - 10" m
Venus year
Tv = 225 days
Venus radius
Ry =0,99Rg = 6.3-10° km =6.3-10° m
Venus mean density
pv = 4.7-10° kg/m® = 4.7 g/ecm®
Gravitational acceleration on Venus surface
gy = 0.84g, = 8.2 m/s?
Mars mass
My = 0.11Mg = 0.66 - 10%* kg = 0.66 - 10*" ¢
Average distance between Mars and Sun
Lar = (2.06 — 2.49) - 10® km
Distance between Mars and Earth
Ly = (0.55 — 4.0) - 10° km
Mars average density
par =4-10% kg/m® =4 g/em?
Gravitational acceleration on Mars surface
gy =0.37g, =3.6 m/s?
Moon mass
My, =74-102 kg=74-10% ¢
Moon diameter
Dy =3.48-10° km = 3.48 - 10° m
Average distance between Moon and Earth
Ly =384-10° km =3.84-10° m
Moon mean density
pr = 3.3-10° kg/m® = 3.3 g/em®
Gravitational acceleration on Moon surface
gy = 1.64 m/s®
Table 4

Gravitational acceleration at various latitudes

9, deg | g, cm/s® || 6, deg | g, cm/s? || 6, deg | g, cm/s?
0 978.0300 35 979.7299 70 982.6061
5 978.0692 40 980.1659 75 982.8665
10 978.1855 45 980.6159 80 983.0584
15 978.3756 50 981.0663 85 983.1759
20 978.6337 55 981.5034 90 983.2155
25 978.9521 60 981.9141
30 979.3213 65 982.2853




Properties of elements at 760 mm Hg

Table 5

p — density (at 20 °C); Cp — molar heat capacity (at 25 °C); ¢y, and tvep — melting and vaporization points; ¢ — molar
enthalpy of fusion; r — molar enthalpy of vaporization; A — thermal conductivity (at temperatures shown in parenthesis);
« — linear coefficient of thermal expansion of isotropic substances at 0 °C.

Element Sg(r)rll— P> mLs Cp, ﬁ tm,°C | tvap,°C 5;1 ) rﬁil A m—W}( 10,3’1{,1
Aluminum Al 2.70 24.35 660 2447 10.7 293.7 207 (27) 22.58
Barium Ba 3.78 26.36 710 1637 7.66 150.9 — 19.45
Beryllium Be 1.84 16.44 1283 24717 12.5 294 182 (27) 10.5
Boron (cryst.) B 3.33 11.09 2030 3900 22.2 540 1.5 (27) 8
Bromine Br 3.12 75.71 —-7.3 58.2 10.58 30.0 — 8.3
Vanadium \% 5.96 24.7 1730 3380 17.5 458 33.2 (20) —
Bismuth Bi 9.75 25.52 271.3 1559 10.9 151.5 8 (20) 16.62
Wolfram w 18.6-19.1 24.8 3380 5530 35.2 799 130 (27) 4.3
Germanium Ge 5.46 28.8 937.2 2830 29.8 334 60.3 (0) 5.8
Iron Fe 7.87 25.02-26.74 1535 — 15.5 — 75(0) 12.1
Gold Au 19.3 25.23 1063 2700 12.77 | 324.4 310(0) 14.02
Indium In 7.28 26.7 156.01 2075 3.27 226 88(20) 30.52
Iodine I 4.94 26.02 113.6 182.8 15.77 | 41.71 0.44(30) 93.0
Iridium Ir 22.42 25.02 2443 4350 — — 138(20) 6.5
Cadmium Cd 8.65 26.32 321.03 765 6.40 99.81 93(20) 29.0
Potassium K 0.87 29.96 63.4 753 2.33 77.5 100 (7) 84
Calcium Ca 1.55 26.28 850 1487 8.66 150 98 (0) 22(0)
Cobalt Co 8.71 24.6 1492 2255 15.3 383 70.9 (17) 12.0
Silicon (cryst.) Si 2.42 — 1423 2355 46.5 394.5 167 (0) 2.3
Lithium Li 0.534 24.65 180.5 1317 3.01 148.1 71 (0-100) —
Magnesium Mg 1.74 24.6 649 1120 8.95 | 131.8 165 (0) —
Manganese Mn 7.42 26.32 1244 2095 141.6 | 224.7 — 22.6
Copper Cu 8.93 24.52 1083 2595 130.1 304 395-402 (20) 16.62
Molybdenum Mo 9.01 23.8 2625 4800 27.6 594 162 (27) 5.19

Table 5 (cont’d)
Sodium Na 0.971 28.12 97.82 890 2.602 89.04 133 (27) 72
Neodymium Nd 6.96 27.49 1019 3110 14.6 — — 8.6
Nickel Ni 8.6-8.9 25.77 1453 2800 17.8 380.6 92 (20) 14.0
Tin (gray) Sn 5.8 25.77 231.9 2687 7.07 290.4 65 (20) —
Palladium Pd 12.16 25.52 1552 3560 17.2 — 76.2 (20) 12.42
Platinum Pl 21.37 25.69 1769 4310 21.7 447 74.1 (20) 9
Rhodium Rh 12.44 25.52 1960 3960 — — — 8.7
Mercury (liquid) Hg 13.546 27.98 —38.86 356.73 2.295 59.11 8.45 (20) —
Rubidium Rb 1.53 30.88 38.7 701 2.20 69.20 35.5 (20) 90
Lead Pb 11.34 26.44 327.3 1751 4.772 179.5 34.89 (20) 28.3
Selenium (cryst.) Se 4.5 25.36 217.4 657 5.42 — 0.13 (25) 20.3
Sulphur (octa.) S 2.1 22.60 115.18 | 444.6 | 1.718 | 90.75 | 0.2 (0) 74
Silver Ag 10.42-10.59 25.49 960.8 2212 11.27 254.0 418 (27) 19.02
Strontium Sr 2.54 25.11 770 1367 9.2 138 — 20.6
Antimony Sb 6.62 25.2 630.5 1637 20.41 128.2 23 (20) 9.2
Tantalum Ta 16.6 25.4 2996 5400 31.4 75.3 63 (27) 6.2
Tellurium (cryst.) Te 6.25 25.7 449.5 989.8 17.5 114.06 — 17.0
Titanium Ti 4.5 25.02 1668 3280 15.5 430 15.5 (20) 7.7
Thorium Th 11.1-11.3 27.32 1695 4200 15.65 544 35.6 (27) 9.8
Carbon (diamond) C 3.52 6.12 — — — — — 1.2
Carbon (graphite)! | C 2.25 8.53 3500 3900 - - 114 (20) -
Uranium (13 °C) U 18.7 27.8 1133 3900 19.7 412 22.5 (27) 10.7
Phosphorus (white) | P 1.83 24.69 44.2 — 2.51 — — 125
Chromium Cr 7.1 23.22 1903 2642 14.6 349 67 (27) 7.78
Cesium Cs 1.87 314 28.64 685 2.18 65.9 23.8 (20) 97
Zinc Zn 6.97 25.40 419.5 907 7.28 114.7 111 (20) 32
Zirconium Zr 6.44 25.15 1855 4380 20 582 21.4 (20) 5.1

I Reactor graphite, p = 1.65 — 1.72 g/cm3; the given value corresponds to A perpendicular to pressing direction, )\J_/)\H =1,5.
2 At 20 °C.
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Tables

Properties of solids (at 20 °C)

Table 6

p — density; a — linear coefficient of thermal expansion; A — thermal

conductivity.
Substance p, g/cm® | a, 1076 K™ | A\, W/(mn-K)
Alloys
Bronze (Cu, Zn, Sn, Al) 8.7-8.9 16-20 200
Duralumin (Al, Cu) 2.8 27 186
Invar (Fe, Ni, C) 8.0 ~1 11
Constantan (Cu, Ni) 8.8 15-17 21-22
Brass (Cu, Zn) 8.4-8.7 17-20 80-180
Manganin (Cu, Mn, Ni) 8.5 16 —
Platinum-Iridium 21-99 8.7 -
alloy (Pl Ir)
Steel 7.5-7.9 10-13 ~40
Wood (dried)!
Balsa (cork) 0.11-0.14 — 0.04
Bamboo 0.31-0.40 — 0.14-0.17
Beech 0.7-0.9 2.57 —
Birch 0.5-0.7 — 0.117
Oak 0.6-0.9 4.92 0.171
Cedar 0.49-0.57 — 0.08-0.09
Maple 0.62-0.75 6.38 0.12-0.13
Pine 0.37-0.60 5.41 0.08-0.11
Poplar 0.35-0.5 — 0.1
Ash 0.65-0.85 9.51 0.12-0.14
Mainerals
Diamond 3.01-3.52 1.5 628
Asbestos 2.0-2.8 — 0.1
Basalt 24-3.1 — 2.177
Plaster 1-2.3 — 0.18-1.05
Clay 1.8-2.6 8.1 1.05-1.26
Granite 2.34-2.76 8.3 2.7-3.3
Quartz (fused) 2.65 1.46 —
Lime 1.9-2.8 — 1.1
Marble 2.6-2.84 3-15 2.7-3
Mica 2.6-3.2 — —

! Thermal conductivity of wood is given for directions perpendicular to fibers;
thermal conductivity along fibers is greater by the factor of 2-3.
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Table 6 (cont’d)
Substance p, g/cm® | o, 1078 K™ | A\, W/(mK)
Mascellaneous substances
Cardboard 0.69 — 0.21
Brick 1.4-2.2 3-9 1-1.3
Ice 0.913 — —
Paraffine 0.87-0.91 — 2.5
Plexiglas 1.16-1.20 92-130 0.17-0.18
Cork 0.22-0.26 — —
Rubber 1.1 220 0.146
Glass 2.4-2.8 6 0.7-1.13
Flint glass 3.9-5.9 -8 0.84
Porcelain 2.3-2.5 2.5-6 1.05
Ebonite 1.15 84.2 0.17
Amber 1.1 57 —
Table 7

Properties of liquids (at 760 mm Hg)

o — surface tension at the temperature in the left column (a — liquid-air
surface, v — liquid-vapor surface); n — viscosity at 20 °C; A — thermal

conductivity at 0 °C.

Liquid t, °C | 0,107% & | p 1077 2L | ) M
Aniline 19.5 40.8 (v) 4.40 0.181
Acetone 16.8 23.3 (v) 0.324 0.170
Benzoyl 17.5 29.2 (a) 0.647 0.153
Water 20 72.75 (a) 1.0019 0.596
Glycerin 20 63.4 (a) 1495.0 0.290
Dichloroethane — — 0.146
Nitric acid 70% 20 59.4 (a) — —
Sulphuric acid 85% 18 57.6 (a) 27 —
Castor oil 18 33.1 (a) 986 —
Nitrobenzene 13.6 42.7 (v) 2.01 0.166
Tin 232 | 526.1 (COy) — 34.3
Mercury 20 487 (v) 1.552 8.45
Turpentine 20 26.7 (a) — —
Methanol 20 23.0 (v) 0.578 0.222
Ethanol 20 22.75 (v) 1.200 0.184
Carbon 20 27 (v) 0.972 0.112
tetrachloride

Diethyl ether 20 16.96 (v) 0.242 —




Table 8
Properties of liquids

p — density at 20 °C; t,, and tyqp — melting and vaporization points at standard pressure; t., — critical temperature;
P, — critical pressure; ¢ — specific heat capacity at 20 °C; g and r — specific latent heat of fusion and vaporization;
B — bulk coefficient of thermal expansion at 20 °C.

Liquid Formula 0, % im’ tgap’ i”’ Per, ?]’ ?,’ 7;’ B,
C C C atm TR 2 < 10-5 K1
Aniline CeH7N 10261 —6 184 426 52.4 | 2.156 | 87.5 | 458.9 85
Acetone C3HgO 792 -95 56.5 235 47.0 2.18 82.0 | 521.2 143
Benzoyl CsHe 897 +5.5 80.1 290.5 | 50.1 1.72 126 | 3944 122
Water H,O 998.2 0.0 100.00 374 218 4.14 334 | 2259 18
Glycerin C3HgO3 1260 +20 290 — — 2.43 176 — 51
Methanol CH4O 792.8 —-93.9 61.1 240 78.7 2.39 68.7 | 1102 119
Nitrobenzene CeH50.N | 1173.2%| +5.9 210.9 — — 1.419 — — —
Carbon disulfide CS, 1293 —111 46.3 275.0 | 77.0 1.00 — 356 —
Ethanol C2HsO 789.3 —117 78.5 243.5 | 63.1 2.51 108 855 112
Toluene CrHs 867 —95.0 | 110.6 | 320.6 | 41.6 | 1.616° — 364 114
Carbon CCly 1595 —23 76.7 | 283.1 | 45.0 — 16.2 | 195.1 122
tetrachloride
Acetic acid C2H402 1049 +16.7 118 321.6 | 57.2 2.6% 187 | 405.3 107
Phenol CsHsO 1073 +40.1 | 181.7 419 60.5 — 123 | 495.3 —
Chloroform CHCI; 1498.5' | —63.5 61 260 54.9 0.96 197 243 —
Diethyl ether C4H100 714 —116 34.5 193.8 | 35.5 2.34 98.4 355 163
Lat 15 °C; 2 at 25 °C; 3 at 0 °C; * at 1-8 °C.
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Solids

¢ — speed of longitudinal waves, c¢; — speed of transversal waves, ¢ — speed of

longitudinal waves in thin rod.
Solids ¢, m/s ci,m/s ¢, m/s
Aluminum 6400 3130 5240
Concrete 4250-5250 — —
Wolfram 5174 2842 —
Granite 5400 — —
Wood (oak, along fiber) — — 4100
Wood (pine, along fiber) — — 3600
Duralumin 6400 3120 —
Iron 5930 — 5170
Quartz crystal (X-cut) 5720 — 5440
Quartz fused 5980 3760 5760
Brass 4280-4700 | 2020-2110 | 3130-3450
Copper (oxidized) 4720 — 3790
Marble — — 3810
Nickel (oxidized, o . 4810
non-magnetic)
Tin 3320 — 2730
Polystyrene 2350 1120 —
Polyethylene 2000 — —
Silver 3700 1694 2802
Glass: crown 5260-6120 | 3050-3550 | 4710-5300

flint 3760-4800 — 3490-4550

Tool steel 5900-6100 — 5150
Stainless steel 5740 3092 —
Zinc 4170 — 3810
Ebonite 2500 — —
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Elastic properties of materials (at 18 °C)

Table 10

E and G — Young and shear modulus; ;4 — Poisson ratio; K — compressibility.

Material E, 10" X5 1 G, 10" ¥ m K, 10" X5
Metals
Aluminum 7.05 2.63 0.345 7.58
Bronze (66% Cu) 9.7-10.2 3.3-3.7 0.34-0.40 11.2
Bismuth 3.19 1.20 0.33 3.13
Iron 1920 7.7-8.3 0.29 16.9
Gold 7.8 2.7 0.44 21.7
Cadmium 4.9 1.92 0.30 4.16
Constantan 16.3 6.11 0.32 15.5
Brass 9.7-10.2 3.5 0.34-0.40 10.65
Copper 10.5-13.0 3.5-4.9 0.34 13.76
Nickel 20.4 7.9 0.28 16.1
Tin 5.43 2.04 0.33 5.29
Platinum 16.8 6.1 0.37 22.8
Lead 1.62 0.56 0.44 4.6
Silver 8.27 3.03 0.37 10.4
Steel 2021 7.9-8.9 0.25-0.33 16.8
Titanium 11.6 4.38 0.32 10.7
Zinc 9.0 3.6 0.25 6.0
Mascellaneous materials
Bamboo 3.3 — —
Oak 1.3 — —
Quartz fiber 7.3 — —
Redwood 0.88 — —
Rubber soft 0.00015— 0.00005- | 0.46-0.49 16.8
0.0005 0.00015
Pine 0.9 — —
Glass 5.1-7.1 3.1 0.17-0.32 3.75
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Table 11
Surface tension of water and aniline at
various temperatures
Interface: water — air, aniline — air.
t o,107% N/m t | o,107° N/m
°C | Water | Aniline °C Water
0 75.64 — 60 66.18
10 74.22 44.10 70 64.42
20 72.75 42.7 80 62.61
30 71.18 — 90 60.75
40 69.56 — 100 58.85
50 67.91 39.4
Table 12
Viscosity of liquids at various temperatures
(777 1073 N- S/mQ)
Sugar solution Castor
t, Water | Glyce- in water t, t, Mercury
°C rin 20% 60% °C oil °C
0 1.788 12100 | 3.804 238 5 3760 —20 1.86
10 1.306 3950 2.652 | 109.8 10 2418 0 1.69
15 1.140 — 2.267 74.6 15 1514 20 1.55
20 1.004 1480 1.960 56.5 20 950 30 1.50
25 0.894 — 1.704 | 43.86 25 621 50 1.41
30 0.801 600 1.504 | 33.78 30 451 100 1.24
40 0.653 330 1.193 | 21.28 35 312 200 1.05
50 0.549 180 0.970 | 14.01 40 231 300 0.95
60 0.470 102 0.808 9.83 100 16.9
70 0.406 59 0.685 7.15
80 0.356 35 0.590 5.40
90 0.316 21
100 | 0.283 13
Table 13
Viscosity of glycerin-water solution
(glycerine mass ratio is shown)
t 10% | 26% | 50% | 80% | 95% | 96% | 97% | 98% | 99% | 100%
20 | 1,31 | 2,09 | 6,03 | 61,8 | 544 659 802 971 | 1194 | 1495
25 | 1,15 | 1,81 | 5,02 | 45,7 | 365 434 522 627 772 942
30 | 1,02 | 1,59 | 4,23 | 34,8 | 248 296 353 423 510 662

Chapter V 269
Table 14
Compressibility of liquids
_ 1 (5_")
v\er),
Liquid Formula Pressure t, °C &
P, atm 10~ % atm—!
Aniline CeH5NHo 85.5 25 43.2
Acetone (CH3)2CO 0-500 0 82
Benzoyl CsHg 14 15.4 87
Water H>O 0-100 20 46.8
Glycerin C3HgO3 1-10 14.8 22.1
Kerosene — 1-100 16.5 69.6
Sulphuric acid H>S04 1-16 0 302.5
Nitrobenzene CsH5NO> 86.5 25 46.1
Sulphur dioxide CSq 1-2 20 80.95
Methanol CH3;O0H 1-500 0 79.4
Ethanol CH3CH>,OH 1-50 0 96
Carbon . CCly 0-98.7 20 91.6
Carbon dioxide CO» 60 13 1740
Chloroform CHCl3 1-2 0 87.27
Bromoethane CoH5Br 1-500 10.1 80
Table 15

Specific heat capacity of water and speed of sound
in water at various temperatures

t,°Cl e, J/(gK) | v,m/s || t,°C | ¢, J/(gK) | v, m/s
0 4.2174 1407 60 4.1841 1556
10 4.1919 1445 70 4.1893 1561
20 4.1816 1484 80 4.1961 1557
30 4.1782 1510 90 4.2048
40 4.1783 1528 99 4.2145
50 4.1804 1544
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270 Tables
Table 16
Boiling point of water at various pressures
P, torr | t,°C P, torr | t,°C P, torr t, °C
680 96.9138 725 96.6846 770 100.3666
685 96.1153 730 98.8757 775 100.5484
690 97.3156 735 99.0657 780 100.7293
695 97.5146 740 99.2547 785 100.9092
700 97.7125 745 99.4426 790 101.0881
705 97.9092 750 99.6294 795 101.2661
710 98.1048 755 99.8152 799 101.4079
715 98.2992 760 100.000
720 98.4925 765 100.1838
Table 17
Water density at various pressures
t,°C | p, g/cm?® || t,°C | p, g/cm® || ¢, °C | p, g/cm?
0 0.99987 12 0.99952 24 0.99732
1 0.99993 13 0.99940 25 0.99707
2 0.99997 14 0.99927 26 0.99681
3 0.99999 15 0.99913 27 0.99654
4 1.00000 16 0.99897 28 0.99626
5 0.99999 17 0.99880 29 0.99597
6 0.99997 18 0.99862 30 0.99567
7 0.99993 19 0.99843 31 0.99537
8 0.99988 20 0.99823 32 0.99505
9 0.99981 21 0.99802 33 0.99472
10 0.99973 22 0.99780 34 0.99440
11 0.99963 23 0.99757 35 0.99406
Table 18

Diffusion coefficient of saline (at 18 °C)

Concentration of NaCl,mol/l

D, 1075 cm?/s

0.05
0.40
1.00
2.0
3.0
4.0
5.0

1.26
1.2

1.24
1.29
1.36
1.43
1.49

Table 19
Diffusion coefficients of inorganic substance in water
solution
Solute Conc;r;tlrz;tion, t,°C 10751%1112 .

Bro 0.0050 25 1.18
CO, 0! 18 1,46
CaCly 1.5 9 0.84
CdSOy4 1.0 16.8 0.33
Cly 0.1 16.3 1.3

CoCly 0.0127 11 0.73
CuCly 1.5 10 0.5

CuS0Oy4 0.1 17 0.45
Hy 0! 18 3.6

HCl 0.2 25 3.0

HNOj3 3.0 6 1.8

KBr 1.0 10 1.2

KCl 0.1 25 1.89
KNO3 0.2 18 1.39
KOH 0.1 13.5 2.0

K2SO4 0.02 19.6 1.27
LiCl 1.0 18 1.06
MgSO, 1.0 15.5 0.53
Ny 0! 18 1.63
NHj; 0.683 4 1.23
NaBr 2.9 10 1.0

Na,CO3 24 10 0.45
NaCl 1.0 18.5 1.24
NaNOg3 0.6 13 1.04
0. 0! 25 2.60
NaOH 0.1 12 1.29

I Low concentration.



272

Tables

Diffusion coefficients of gases
Coefficients of self-diffusion (at t =0 °C, P =1 atm)

Table 20

Gas D, cm? /s Gas D, cm?/s
Nitrogen Ng 0.17 Xenon Xe 0.048
Argon Ar 0.156 Krypton Kr 0.08
Hydrogen Hs 1.28 Methane CHy 0.206
Water vapor 0.277 Neon Ne 1.62
Helium He 1.62 Carbon oxide CO 0.175
Oxygen Oq 0.18 Carbon dioxide COq 0.097

Coefficients of int

er-diffusion (at t =0 °C)
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System D, cm?/s System D, cm?/s
He — CHy4 0.57 H,; — air 0.66
He — 02 0.45 H2 — CH4 0.62
He — air 0.62 Hs — Oy 0.69
Ne — H2 0.99 CH4 - Ng 0.2
Ne — N2 0.28 CH4 - 02 0.22
Ar — CH,4 0.172 CH4 — air 0.186
Ar — air 0.165 Ny — COq 0.208
Ar — CO2 0.177 CO — Oq 0.175
Kr — Ny 0.13 CO — air 0.182
Kr — CO 0.13 02 - COQ 0.174
Xe — H, 0.54 air — COq 0.207
Xe — N, 0.106 H>0 — COq 0.41
Table 21
Thermal conductivity of air at various temperatures
(at P =1 atm)
o — o _ ° _ W
£,°C | A, 1072 B 1 ¢, °C | A, 1072 2|l ¢, °C | A, 1072 B
—-173 0.922 —23 2.207 27 2.553
—143 1.204 -3 2.348 37 2.621
—113 1.404 0.1 2.370 67 2.836
—83 1.741 7 2.417 97 3.026
—53 1.983 17 2.485

Table 22

The Joule-Thomson coefficients
(pg—r = AT /AP; in units of K/atm)

Carbon oxide (CO)

t, °C P, atm
1 50 100 200
0 | 0.295 | 0.240 | 0.190 | 0.093
25 | 0.251 | 0.206 | 0.162 | 0.084
50 | 0.213 | 0.175 | 0.137 | 0.072
100 | 0.150 | 0.122 | 0.095 | 0.049
Hydrogen (Hz)
T, K P, atm
R 20 100 180
60 | 0.391 | 0.287 | 0.035 —
70 0.287 | 0.234 | 0.059 | —0.039
80 | 0.220 | 0.192 | 0.061 | —0.037
Methane (CHy)
t°C P, atm
~ 17 o1 102.1
21.1 | 0.405 | 0.425 | 0.410 | 0.332
37.8 1 0.359 | 0.375 | 0.365 | 0.294
71.1 | 0.283 | 0.298 | 0.290 | 0.229
104.4 | 0.227 | 0.239 | 0.233 | 0.180
Ethane (C2Hg)
t°C P, atm
R 17 51 102.1
21.1 ] 0.939 | 1.217 — —
37.8 | 0.833 | 1.037 — —
71.1 | 0.657 | 0.760 | 0.890 | 0.353
104.4 | 0.498 | 0.572 | 0.586 | 0.399
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Table 22 (cont’d)

Argon (Ar) Helium (He)
t, °C P, atm P, atm
1 20 100 200 200
—150 1.81 — —0.025 —0.056 —0.052
—100 0.860 0.800 0.285 0.040 —0.058
0 0.431 0.406 0.305 0.192 —0.0616
25 0.371 0.350 0.264 0.175 —
100 0.242 0.224 0.175 0.127 —0.0638
200 0.137 0.126 0.095 0.068 —0.0641
Nitrogen (N2), Oxygen (O2)
t, °C P, atm
1 20 100 200
—150 1.265 1.128 0.020 | —0.027
—100 0.649 0.594 0.274 0.058
0 0.267 0.250 0.169 0.087
25 0.222 0.206 0.140 0.078
100 0.129 0.119 0.077 0.042
200 0.056 0.048 0.026 0.006
Carbon dioxide (CO2)
t, °C P, atm
1 20 100 200
—25 1.650 0.000 |[—-0.005 |—0.012
0 1.290 1.402 0.022 0.005
20 1.105 1.136 0.070 0.027
40 0.958 0.966 0.262 0.066
60 0.838 0.833 0.625 0.125
80 0.735 0.724 0.597 0.196
100 0.649 0.638 0.541 0.256
200 0.373 0.358 0.315 0.246
Air
t, °C P, atm
1 20 100 200
—100 0.5895 0.5700 0.2775 0.0655
—-50 0.3910 0.3690 0.2505 0.1270
—25 0.3225 0.3010 0.2130 0.1240
0 0.2746 0.2577 0.1446 0.1097
25 0.2320 0.2173 0.1550 0.0959
50 0.1956 0.1830 0.1310 0.0829
75 0.1614 0.1508 0.1087 0.0707
100 0.1355 0.1258 0.0884 0.0580

Waals equation

Table 23
Critical properties and parameters ¢ and b in Van der

a 27 RT.,
<P+ W> (V=)= RT;a= TR, b= Z5°
Substance Ter P, Per a b
Nitrogen (Nz) 126.25 | 3.399] 0.304 | 0.1368 | 38.607
Argon (Ar) 150.65 | 4.86 | 0.531 | 0.1361 | 32.191
Water (vapor) (H2O) | 647.30 |22.12 | 0.32 | 0.5524 | 30.413
Hydrogen (Ha) 33.24 | 1.297| 0.0310| 0.02484| 26.635
Air 132.45 | 3.77 | 0.35 | 0.1357 | 36.51
Helium (He) 5.20 | 0.229| 0.0693| 0.00344| 23.599
Nitrous oxide (NoO) | 309.58 | 7.255| 0.453 | 0.3852 | 44.347
Oxygen (O2) 154.78 | 5.081| 0.41 | 0.1375 | 31.662
Neon (Ne) 44.45 | 2.72 | 0.484 | 0.0211 | 16.948
Nitric oxide (NO) 180 6.54 | 0.52 | 0.1444 | 28.579
Carbon oxide (CO) 132.92 | 3.499| 0.301 | 0.1473 | 39.482
Methane (CH,) 190.60 | 4.63 | 0.160 | 0.2288 | 42.777
M(%}ﬁfg))l 513.15 | 7.95 | 0.272 | 0.9654 | 67.047
Eflgzlﬁ)elo) 516 6.4 | 0.276 | 1.2164 | 84.006
Sulphur dioxide (CS2) | 552 7.90 | 0.44 | 1.1243 | 72.585
Carbon dioxide (CO2) | 304.15 | 7.387| 0.468 | 0.3652 | 42.792
Chlorine (Cly) 417 7.71 | 0.573 | 0.6576 | 56.202
Carbon
tetrachloride | 556.25 | 4.56 | 0.558 | 1.9789 |126.78

(CCly)

Ethane (CoHg) 305.45 | 4.87 | 0.203 | 0.5571 | 64.997

Table 24

Temperature dependence of parameters a and

b of argon

Temperature, °C | a, 10° atm-cm®/mol® | b, cm®/mol
151 1.90 61
157 1.87 59,5
163 1.84 58
173 1.785 55,5
183 1.735 53
193 1.69 51
213 1.60 48
233 1.53 45
253 1.47 43
273 1.42 41




Table 25
Properties of gases

M — molecular mass; p — density (at ¢ = 0 °C, P = 1 atm); ¢.r — critical temperature; P., — critical
pressure; pxp — critical density; t,, — melting point (at P = 1 atm); tyep — boiling point (at P = 1 atm).

Substance Formula M p, kg/m® | ter, °C | Per, atm | per, kg/m® | tm, °C | toap, °C
Nitrogen N, 28.016 | 1.2505 147.1 33.5 311 —210.02 | —195.81
Ammonium NH; 17.031 | 0.7714 132.4 112.0 234 —T77.7 —33.4
Argon Ar 39.944 | 1.7839 122.4 48.0 531 —189.3 | —185.9
Hydrogen H, 2.0158| 0.08988 | 239.9 12.80 31,0 —259.20 | —252.78
Water vapor H.O 18.0156| 0.768 374.2 218.5 324 0,00 | 100.00
Dry air ! — 28.96 1.2928 140.7 37.2 310 —213 —193
Helium He 4.002 | 0.1785 267.9 2.26 69,3 —272.2 | —268.93
Nitrogen dioxide | N2O 44.013 | 1.9775 36.5 71.7 450 —90 —88.6
Oxygen 02 32.000 | 1.42896 | 118.8 49.7 430 —218.83 | —182.97
Methane CH4 16.04 0.7168 82.5 45.7 162 —182.5 | —116.7
Neon Ne 20.183 | 0.8999 228.7 26.9 484 —248.60 | —246.1
Nitric oxide NO 30.006 | 1.3402 92,9 64.6 520 —167 —150
Carbon oxide CcO 28.01 1.2500 140.2 34.5 301 —205 —191.5
Carbon dioxide | CO2 44.01 1.9768 31.0 73 460 —56.62 | —78.48°
Chlorine Clz 70.914 | 3.22 144 76.1 573 —100.5 —33.95

L Air composition (volume fraction): 78.03% N2, 20.99% Oz, 0.933% Ar, 0.03% COa2, 0.01% Ha, 0.0018% Ne etc..
2 At P = 5.12 atm (triple point).
3 Sublimation temperature.

Table 26
Thermal properties of gases

cp m Cp — specific and molar heat capacity (for given temperature ranges); v = cp/c, at 20 °C; n — dynamic viscosity
at 20 °C; A — thermal conductivity at 0 °C; 8 = (1/V)(0V/0T)p — coefficient of thermal expansion

Gas Formula | ¢, °C C;’ C:f’ vy _i\’ w _Z’ N t,°C 4
K —x 10720 | 10772 107K

Nitrogen N2 0-20 1.038 29.1 1.404 2.43 174 0-100 3.671
Ammonia (vapor) | NHs 24-200 | 2.244 38.1 1.34 2.18 97,0 — —
Argon Ar 15 0.523 20.9 1.67 1.62 222 100 3.676
Acetone (vapor) CsHeO | 26-110 | 1.566 90.9 1.26 1.70 73,5 — —
Hydrogen H, 10-200 | 14.273 28.8 1.41 16.84 88 100 3.679
Water vapor! H.O 100 1.867 34.5 1.324 2.35 128 1-120 4.187
Dry air — 0-100 0.992 29.3 1.40 241 181 — —
Helium He —180 5.238 21.0 1.66 14.15 194 100 3.659
Nitrous oxide N0 16-200 0.946 41.7 1.32 1.51 146 0 3.761
Oxygen (O 13-207 | 0.909 29.1 1.40 2.44 200 0-100 3.67
Methane CHy 18-208 | 2.483 39.8 1.31 3.02 109 —50 <+ +50 3.580
Nitrogen oxide NO2 13-172 | 0.967 29.0 1.40 2.38 188 0 3.677
Carbon oxide CO 26-198 1.038 28.5 1.40 2.32 177 0-100 3.671
Sulfur dioxide SO2 16-202 | 0,561 36,0 1,29 0,77 126 — —
Carbon oxide CO2 15 0.846 37.1 1.30 1.45 144,8 0-100 3.723
Chlorine Cla 13-202 | 0.519 36.8 1.36 0.72 132 0-100 3.830
Ethylene CoHy 15-100 1.670 46.8 1.25 1.64 103 — —

1 X is measured at 100 °C.

9.2
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Table 29
Emf of thermocouples at various temperatures
emf, mV
t, Platinum — pla- Chromel — Iron — Copper —
°C | tinum+10% Rhodium Alumel Constantan | Constantan
100 0.64 4.1 5 4
200 1.44 8.1 11 9
300 2.31 12.2 16 15
400 3.25 16.4 22 21
500 4.22 20.6 27
600 5.23 24.9 33
700 6.26 29.1 39
800 7.34 33.3 45
900 8.45 374 52
1000 9.59 41.3 58
1200 11.95 48.9
1400 14.37 55.9
1600 16.77
Table 30

Specific resistance and temperature coefficient of resistivity of

metal wires (at 18 °C)

278 Tables
Table 27
Viscosity of gases and vapors at various temperatures
n, 107 kg/(m-s)

o | Angon i | Wt |y | M| O | i
—75] 1285 | 1585 | 677 — 1312 | 1526 | 1452 1007
—50| 1419 | 1760 | 733 — 1445 | 1640 | 1612 1126
—25] 1542 | 1930 | 788 — 1582 | 1750 | 1753 1247

0] 1665 | 2085 | 840 883 | 1708 | 1860 | 1910 1367

20| 1766 | 2215 | 880 — 1812 | 1946 | 2026 1463

25| 1778 | 2248 | 890 975 | 1840 | 1968 | 2052 1486

50| 1883 | 2400 | 938 1065 | 1954 | 2065 | 2182 1607

75| 1986 | 2550 | 985 1157 | 2068 | 2175 | 2310 1716
100| 2086 | 2695 | 1033 1250 | 2180 | 2281 | 2437 1827

Table 28
Pressure and density of saturated water vapor at various
temperatures
t, P, 2 t, P, P, t, P, 3

o | torr g/m’ o | torr g/m’ o | torr P /m

—-30| 0.28 | 0.33 -2 3.88 | 4.13 26 25.21 24.4

—281 0.35 | 041 0 4.58 | 4.84| 28 | 28.35 | 27.2

—26| 043 | 0.51 2 529 | 5.60| 30 | 31.82| 30.3

—241 0.52 | 0.60 4 6.10 | 6.40| 32 | 35.66 | 33.9

—22| 0.64 | 0.73 6 701 | 7.3 34 13990 | 376

—20| 0.77 | 0.88 8 8.05 | 8.3 36 | 44.56 | 41.8

—18 1] 0.94 | 1.05 10 921 | 94 38 | 49.69 | 46.3

—-16| 1.13 | 1.27 12 | 10.52 | 10.7 40 | 55.32 | 51.2

—14| 1.36 | 1.51 14 11.99 | 12.1 50 92.5 83.0

—12] 1.63 | 1.80 16 | 13.63 | 13.6 60 [149.4 130

—10| 1.95 | 2.14 18 1548 | 154 70 |233.7 198

-8 2.32 | 2.54 20 | 17.54 | 17.3 80 [355.1 293
—6| 2.76 | 2.99 22 | 19.83 | 194 90 [525.8 | 424
—4| 3.28 | 3.51 24 | 22.38 [21.8 || 100 |760.0 598

Metal 10pie @ 394’
Ohm-cm K

Aluminum 3,21 38
Wolfram 5.5 51
Iron (0.1% C) 12.0 62
Gold 2.42 40
Brass 6-9 10
Manganin (3% Ni, 12% Mn, 85% Cu) 44.5 0.02-0.5
Copper 1.78 42,8
Nickel 11.8 27
Constantan (40% Ni, 1.2% Mn, 58.8% Cu) 49.0 —04-+0.1
Nichrome (67.5% Ni, 1.5% Mn, 16% Fe, 15% Cr) | 110 1,7
Tin 11.3 45
Platinum 11.0 38
Lead 20.8 43
Silver 1.66 40
Zinc 6.1 37
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Table 31 Literature
Work function 1. Jlabopamopnwie 3anarus no dusuke / Ilox pex. JLJI. Tompaura. — M.:

Hayxka, 1983.

Metal 4, eV 2. Tabauywss dusuueckux sesuuun / Iox pen. UK. Kukouna. — M.: Arom-

Aluminum 4.25 uzgar, 1976.

Barium 2.49 3. Qusuueckue Besmuunnl / Ilog pen. U.C. Cpuropsesa, E.3. Meitiuxosa. —

Wolfram 4.54 M.: Dueproaromusjar, 1991.

Tron 4.31 4. Landolt H., Bornstein R. Zahlenwerte und Funktionen aus Physik, Chemie,
Astronomie und Technik. — Berlin: Springer, 1960.

Copper 4.40 5. CODATA Recommended Values of the Fundamental Physical Constants:

Nickel 4.50 1998. (http://physics.nist.gov/constants)

Barium oxide 1.1

(thin film on wolfram)

Tin 4.38
Platinum 5.32
Mercury 4.52
Silver 4.3

Cesium 1.81

Zinc 4.24
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