
INTRODUCTION
Physis is an empirial siene. It is a popular belief that the ultimatejudge in physis is experiment and if for any reason a theory ontraditsan experiment, it is the theory that is to be blamed. However this is notexatly so. There are a lot of theories whih had ¾survived¿ although someexperiments testi�ed against them. Let us onsider an example.It is well known that Einstein's theory of Brownian motion had beomeruial for developing atomi theory of matter sine it was later on�rmedby brilliant experiments of J. B. Perrin. However the same theory appearedto be refuted by no less brilliant experiments of V. Henri. Why did theon�rmation by Perrin turn out to be more important than the refutationby Henri?Atually, any theory undergoes non-empirial heks and rossheksbefore being tested by an experiment. A theory must be onsistent, itmust not ontradit already established theories, and it must be in linewith a general wisdom of siene, i.e. be simple, elegant, et. Einstein'stheory of Browinian motion was aepted, in partiular, beause it wasin line with the kineti theory of gases and hemistry. As for the Henryexperiments, it was found later that they were inorretly interpreted.Thus, an experimental on�rmation is neessary but not su�ient ondi�tion for aepting a theory. This is always taken into aount in onfrontinga new theory with real data.Physis is not only empirial but also a theoretial siene that em�ploys the language of mathematis. The purpose of the latter is two-fold:it supplies tools of alulation and provides a oneptual framework. Math�ematial onepts represent the very essene of physial ideas. The oneptof veloity is inoneivable without the onept of derivative. The laws ofmehanis annot be properly formulated without di�erential equations.Quantum laws require operator equations. Every formal symbol in a phys�ial theory has mathematial meaning. However, despite the fat that alot of mathematial ideas stemmed from physis, mathematis is an inde�

INTRODUCTION 3pendent disipline. If it so, why is it possible to use the ideas of puremathematis to desribe reality?The answer is that mathematis studies very general and lear-ut mod�els of natural phenomena � a speial way of understanding reality. Andso does physis.Teahing physis an be ompared to advanement of sienti� knowl�edge. This viewpoint helps to understand the role of experiment in ageneral physis ourse. A founder of experimental method was GalileoGalilei. However experiment per se was not his invention: people relied onexperimental evidene from anient times. We are indebted to Galileo fora method whih has beome an integral part of physis researh.
Fig. 1

Aording to Galileo, a physiistshould design an experiment, repeatit several times in order to eliminateor redue irrelevant fators, onjeturemathematial relationships (laws) be�tween the quantities involved, developnew experimental tests for the onje�tured laws using available tehnis, and,�nally, when the laws have been on�rmed, make new preditions basedon these laws whih, in turn, must be experimentally tested.Aording to Galileo, observation, working hypothesis, mathematialtreatment, and experimental veri�ation are the four stages in a study ofnatural phenomena.
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Fig. 2

Consider a simple instrutive exam�ple. Suppose we have several hunksof a metal sheet (ardboard, plywood,et.), whose shape is shown in Fig. 1.Assume also that we have tools for mea�suring weight, length, and angle. Bymeasuring the weight of several trian�gles ut from the same sheet, one �ndsa formula for the weight of a triangle(ABC):
MABC = c2f(α),where f(α) is a universal funtion plotted in Fig. 2.Now let us ut a triangle (ABC) in two piees as in 3 and verify that

∠BCD = ∠BAC. It is already found that

MCBD = a2f(α), MACD = b2f(α).



4 INTRODUCTIONUsing the sale one an hek that the weights are additive:

MABC = MCBD + MACD.Then using the assumed universality of funtion f(α) one �nds that

c2 = a2 + b2.This equation ould be veri�ed by further experiments.

Fig. 3
Does our result ontradit Eu�lidean geometry? Of ourse, not. In�deed, one an see that

MABC = ρhSABC ,where ρ is the metal density, h is thesheet thikness, and SABC is the areaof the triangle ABC. Obviously,

SABC =
1

2
ab =

1

2
c2 sin α cosα =

1

4
c2 sin 2α,i. e.

f(α) =
1

4
ρh sin 2α.This thought experiment, in our opinion, is an exellent example ofGalileo's experimental method. It is amazing that using measurement in�struments and proedures, whih by themselves introdue large unertain�ties, and only a limited amount of the triangles it is possible to derive anexat mathematial relationship (Pythagoras' theorem). As Einstein said,the greatest mystery of the universe is that it is oneivable.The main purpose of the laboratory ourse is to teah students a phys�ial way of thinking. Firstly, they should learn how to reprodue andanalyze simple physial phenomena. Seondly, they should get a basihands-on experiene in the laboratory and beome aquainted with mod�ern sienti� instruments.A student working in the laboratory should know:- basi physial phenomena;- fundamental onepts, laws and theories of lassial and modern physis;- orders of magnitude of the quantities spei� for various �elds of physis;- experimental methodsand know how to:- ignore irrelevant fators, build working models of real physial situations;

INTRODUCTION 5- make orret onlusions by omparing theory and experimental data;- �nd dimensionless parameters spei� for a phenomenon under study;- make numerial estimates;- onsider proper limiting ases;- make sure that obtained results are trustworthy;- see physial ontent behind tehnialities.A laboratory assignment should be regarded as a researh projet inminiature. An inlination to doubt and ross-heking is invaluable forany researher. We hope that our pratium would help to develop thisquality.



Chapter IMEASUREMENTS IN PHYSICS
Measurements in PhysisNumerial value of physial quantity. We say that a quantity x ismeasured if we know how many units the quantity ontains. A number ofthe units ontained is alled a numerial value {x} of the quantity x. If [x]is a unit of quantity x (e.g. a unit of time is 1 seond, a unit of eletriurrent is 1 ampere, et.), then

{x} =
x

[x]
. (1.1)For example, if a urrent i = 10 A, then {x} = 10 and [i] = 1 A.Equation (1.1) an be written as

x = {x}[x]. (1.2)If a unit is redued by a fator of α:

[x] → [X ] =
1

α
[x], {x} → {X} = α{x}.The physial quantity remains the same beause

x = {x}[x] = {X}[X ]. (1.3)Too large or too small numerial values are inonvenient. Thereforenew units are often used by taking a standard unit with a pre�x, e.g.
1 mm3 = 1 · (10−3 m)3 = 10−9 m3. The deimal pre�xes spei�ed by theInternational System of Units (SI) are listed in Table 1.It is essential to avoid double or multiple pre�xes, e.g. instead of 1 µµFone should write 1 pF .

Chapter I 7T a b l e 1SI pre�xesPre�x Symbol ExponentLatin Cyrilli of 10exa E Ý 18peta P Ï 15tera T Ò 12giga G � 9mega M Ì 6kilo k ê 3heto h ã 2dea da äà 1dei d ä −1enti  ñ −2milli m ì −3miro µ ìê −6nano n í −9pio p ï −12femto f � −15atto a à −18Dimension. In priniple, any physial quantity an be measured usingits own units unrelated to the units of other quantities. In this ase theequations that express laws of physis would be obsured by many numer�ial oe�ients. The equations would beome ompliated and di�ult tounderstand. To avoid this issue physiists have long ago abandoned a pra�tie of introduing independent units for all physial quantities. Insteadthey use systems of units organized aording to the following priniple.Some quantities are taken as the base ones and the orresponding units areindependently established. For instane, in mehanis the system (l, m, t)is used, the base units are length (l), mass (m), and time (t). A hoieof the base units (and their number) is onventional. In the internationalsystem of units (SI) nine quantities are taken as the base ones: length,mass, time, eletri urrent, thermodynami temperature, luminous inten�sity, amount of substane, angle, and solid angle. The units whih are notbase are alled derived units. The latter are derived from the equations



8 Measurements in Physisused to de�ne them. It is assumed that numerial oe�ients in the equa�tions are already �xed. For instane, the veloity v of a point-like objettraveling at a onstant speed is diretly proportional to the distane s andinversely proportional to the time of travel t. If the units for s, t and v areindependent, then

v = k
s

t
,where k is a numerial oe�ient whih partiular value depends on thehoie of the units. For simpliity it is usually set k = 1, so that s = vt.If the base units are length s and time t, veloity beomes a derived unit.In this ase the unit of veloity orresponds to uniform motion when theunit distane is traveled per the unit of time. It is said that the dimensionof veloity equals the dimension of length divided by dimension of time.Symbolially,

dim v = lt−1.Similarly, for aeleration a and fore F we have:

dim a = lt−2, dimF = mlt−2.Now, let physial quantities x and y be related as

y = f(x). (1.4)Together with equation (1.3) this equation gives

Y = f(X), (1.5)where X = αx and Y = βy. Let us �nd the value of β assuming that theargument x and parameter α an take any values. Di�erentiating Eqs. (1.4)and (1.5) at onstant α and β gives

dy

dx
= f ′(x),

dY

dX
= f ′(X).The seond equation an be rewritten as

β

α
· dy

dx
= f ′(X),i. e.

β

α
f ′(x) = f ′(X).Sine

β

α
=

xY

yX
,

Chapter I 9it follows that

xY

yX
f ′(x) = f ′(X)or

x
f ′(x)

f(x)
= X

f ′(X)

f(X)
. (1.6)The right-hand side of Eq. (1.6) depends only on X and the left-handside depends only on x. This is possible only if both sides are equal to aonstant, say c. This observation allows one to write a di�erential equation:

x
f ′(x)

f(x)
= cor

df

f
= c

dx

x
.Then

f(x) = f0x
c,where f0 is a onstant of integration.Similarly,

Y = f0X
c,or

βy = f0 · (αx)c.Sine
y = f0x

c,This gives
β = αc. (1.7)Thus invariane of a physial quantity with respet to rede�nition of its unit(see Eq. (1.3)) results in Eq. (1.7). Let us disuss its physial meaning.Obviously, if quantity x is hosen as a base one, the dimension of quantity

y is
dim y = xc.The above reasoning an be extended to a ase when a quantity dependson several base units. Let, for instane, the number of the base units beequal to three and these are length (l), mass (m), and time (t). Then thedimension of any quantity y is

dim y = lpmqtr, (1.8)
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σFig. 1.1. De�nition of anglewhere p, q, and r are onstants. Equation (1.8) shows that if the units oflength, mass, and time are redued by fators of α, β, and γ, respetively,the unit of y will be redued by a fator of αpβqγr. Therefore its numerialvalue will be inreased by the same fator. This is a meaning of the oneptof dimension. The values p, q, and r are atually rational numbers, whihfollows from the de�nition of physial quantities.Often the dimension of a physial quantity is identi�ed with its unit insome system of units. For example, it is usually said that the dimension ofveloity is m/s and the dimension of fore is kg ·m/s2. Although inorretthis is not a bad mistake.Units of angles. Angular units require separate onsideration. An angleis measured in degrees or using an ar measure. The latter is de�ned as thelength of a segment of a unit irle (see Fig. 1.1). Both units are basiallya ratio of ar length to radius:

ϕ =
l

1 m
= ϕ2 − ϕ1 =

l2
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Fig. 1.2. De�nition of solidangle
Here the angle ϕ is measured between two ra�dial vetors OO1 and OO2. Here l1 and l2 arethe ars of the unit irle and L1 and L2 arethe ars of the irles with radii R1 and R2,respetively. To emphasize the di�erene be�tween the ar and degree units, the numerialvalue ϕ is alled ¾rad¿ (radian). For example,if l = 1 m then ϕ = 1 m/1 m = 1 rad whihorresponds to 57◦17′44,80625′′.Similarly for a solid angle we have (see

Chapter I 11T a b l e 2The base units of SIQuantity name Unit name Quantity symbolLength Meter mMass Kilogram kgTime Seond sEletri urrent Ampere ATemperature Kelvin KLuminous inten�sity Candela dAmount ofsubstane Mole molAngle Radian radSolid angle Steradian srFig. 1.2):
Ω =

S0

1 m2
.Here S0 is an area on a sphere (in m2) whih radius is equal to 1 m. If S isan area on sphere of a radius R, then

Ω =
S0

1 m2
=

S

R2
.The unit of solid angle is determined in the following way. For S0 = 1 m2

Ω =
1 m2

1 m2
= 1 sr (steradian).Thus the total angle (360◦) is equal to ϕ = 2π rad and the total solidangle (S0 is the total area of a sphere) is equal to Ω = 4π sr. Often theabbreviations ¾rad¿ and ¾sr¿ are dropped whih sometimes is a soure ofonfusion.The base units of SI. The base units of the International System ofUnits are shown in Table 2. The units are de�ned as follows.Meter is the length of the path travelled by light in vauum in1/299,792,458 of a seond.Kilogram is de�ned as being equal to the mass of the International Pro�totype Kilogram. The IPK is made of a platinum alloy known as �Pt?10Ir�,



12 Measurements in Physiswhih is 90% platinum and 10% iridium (by mass) and is mahined into aright-irular ylinder (height = diameter) of 39.17 mm. The hosen alloyprovides durability, uniformity, and high polishing quality of the prototypesurfae (whih allows for easy leaning). The alloy density is 21,5 g/m3.The prototype is stored at the International Bureau of Weights and Mea�sures in Sevres on the outskirts of Paris. The relative error of a omparisonproedure with the prototype does not exeed 2 · 10−9.Seond is the unit of time de�ned as the duration of 9 192 631 770 pe�riods of the radiation orresponding to the transition between the twohyper�ne levels of the ground state of 133Cs atom.Ampere is the unit of steady eletri urrent that will produe an at�trative fore of 2 · 10−7 newton per metre of length between two straight,parallel ondutors of in�nite length and negligible irular ross setionplaed one metre apart in a vauum.Kelvin is the unit of temperature that is de�ned as the fration 1/273.16of the thermodynami temperature of the triple point of water.Mole is the unit of amount of substane de�ned as an amount of asubstane that ontains as many elementary entities as there are atoms in12 grams of pure arbon 12C.Candela is the unit of luminous intensity that is equal to the luminousintensity, in a given diretion, of a soure that emits monohromati radi�ation of frequeny 540 · 1012 Hz and that has a radiant intensity in thatdiretion of 1/683 watt per steradian.The derivative units of SI are listed in Table 3. The base units listedabove together with the derived units onstitute the international systemof units SI. The units of angle and solid angle an be onsidered either likethe base or the derivative units. In physis radian and steradian are usuallyregarded as derivative units. However in some �elds of physis steradianis onsidered as the base unit. In that ase the symbol ¾sr¿ annot bereplaed by 1.Measurements and data treatmentA goal of the majority of physial experiments is to determine a numer�ial value of some physial quantity. A numerial value shows how manytimes a quantity ontains a unit. Measured values of di�erent quantities,e.g. time, length, veloity, et, ould be related. Physis �nds the rela�tionships and interprets them as equations whih an be used to determinesome quantities in terms of others.Getting reliable numerial values is not an easy task beause of exper�imental errors. We onsider errors of di�erent types and introdue some
Chapter I 13T a b l e 3SI derived unitsQuantity name Unitname Symbol Expression interms of otherSI unitsFore Newton N 1 Í = 1 kg · m · s−2Pressure andstress Pasal Pa 1 Pa = 1 N · m−2Energy andwork Joule J 1 J = 1 N · mPower Watt W 1 W = 1 J · s−1Charge Coulomb C 1 C = 1 A · sVoltage Volt V 1 V = 1 W · A−1Eletriapaitane Farad F 1 F = 1 C · V −1Eletriresistane Ohm Ω 1 Ω = 1 V · A−1Eletriondutane Siemens S 1 S = 1 Ω−1Magneti �ux Weber Wb 1 Wb = 1 V · sMagneti �uxdensity Tesla T 1 T = 1 Wb · m−2Indutane Henry H 1 H = 1 Wb · A−1Luminous �ux Lumen lm 1 lm = 1 cd · srIlluminane Lux lx 1 lx = 1 lm · m−2Frequeny Hertz Hz 1 Hz = 1 s−1Optial power Dioptre dpt 1 dpt = 1 m−1methods of data treatment. The methods allow one to derive the bestapproximation to the true values using experimental data, to spot inon�sistenies and mistakes, to design a sensible measurement proedure, andto estimate orretly auray of a measurement.Measurements and errors. Measurements are divided into diret andindiret ones.A diret measurement is performed with the aid of instruments whihdiretly determine a quantity under study. For example, the mass of anobjet an be found with a sale, the length an be measured with a ruler,and a time interval an be measured with a stopwath.



14 Measurements in PhysisAn indiret measurement is a measurement of a quantity determined viaits relation to the quantities measured diretly. For example, the volumeof an objet an be evaluated if the objet dimensions are known, theobjet density an be found via the measured mass and the volume, andthe resistane an be determined via voltmeter and ammeter readings.A quality of measurement is spei�ed by its auray. A quality ofdiret measurement is determined by the method used, the instrumentauray, and how reliably the results an be reprodued. The auray ofindiret measurement depends both on the data quality, and on equationswhih relate the desired quantity and the data.The auray of a measurement is spei�ed by its unertainty. Theabsolute error of a measurement is a di�erene between the measured andtrue values of a physial quantity. The absolute measurement error ∆x ofa quantity x is de�ned as

∆x = xmes − xtrue. (1.9)Besides the absolute error ∆x it is often neessary to know the relativemeasurement unertainty εx whih is equal to a ratio of the absolute errorto the value of a measured quantity:

εx =
∆x

xtrue
=

xmes − xtrue

xtrue
. (1.10)The quality of measurements is usually spei�ed by the relative errorrather than the absolute one. The same 1 mm unertainty does not matterwhen it refers to the length of a room but it is not negligible in the lengthof a table and it is ompletely intolerable as an unertainty of the boltdiameter. Indeed, the relative error is ∼2 · 10−4 in the �rst ase, in theseond it is ∼10−3, and in the third ase the error is about 10 perent ormore. Absolute and relative errors are often alled absolute and relativeunertainties, respetively. The terms ¾error¿ and ¾unertainty¿ whenreferred to measurement are ompletely idential and we will use themboth.Aording to Eqs. (1.9) and (1.10) the absolute and relative errors of ameasurement an be determined if the true value of a measured quantity isknown. However, if the true value is known no measurement is neessary.The real goal of a measurement is to determine a priory unknown true valueof a physial quantity, at least, a value whih does not deviate signi�antlyfrom the true one. As for the errors, they are not alulated, rather theyare estimated. An estimate takes into aount the experimental proedure,the auray of a method, the instrument preision, and other fators.

Chapter I 15Systemati errors and random errors. First of all, we should mentionfaults whih take plae beause of a human error or instrument malfun�tioning. Faults should be avoided. If a fault is deteted, the orrespondingmeasurement should be ignored.Experimental unertainties whih are not related to faults an be eithersystemati or random.Systemati errors retain their magnitude and sign during an experiment.They ould be due to instrument imperfetion (non-uniform sale gradu�ations, a varying spring onstant, a varying lead of a mirometer srew,unequal arms of a weighing sale, e t..) and to the experimental proe�dure itself. For example, a low density objet is being weighed withouttaking into aount the buoyant fore that e�etively dereases its weight.Systemati errors ould be studied and taken into aount by orretingthe measurement results. If a systemati error turns out to be too large,it is often simpler to use up-to-date instruments rather than to study un�ertainties of the old ones.Random errors hange their magnitude and sign from one measurementto another. Repeating the same measurement many times, one ould notiethat often the results are not exatly equal but ¾dane¿ around someaverage value.Random errors ould be due to frition (for example, the instrumenthand halts and does not point to a orret reading), due to baklash ofmehanial parts, due to vibration whih is not easy to eliminate in urbansettings, due to imperfetions of the objet under study (for example, whenmeasuring the diameter of a wire it is assumed that it has irular ross-se�tion, whih is an idealization), or �nally due to the nature of a measuredquantity itself (for example, the number of osmi partiles deteted bya ounter per minute). In the last ase one an �nd that di�erent mea�surements produe lose values distributed randomly around some averagevalue.Random errors are studied by omparing results obtained in severalmeasurements under the same onditions. If the results obtained in two orthree equivalent measurements are idential, further measurements are notneessary. If the results disagree, one should try to understand the reasonof the disagreement and eliminate it. If the reason annot be found, oneshould perform about 10-12 measurements and treat the results statisti�ally.The di�erene between systemati and random errors is not absoluteand is related to the experimental proedure. For example, when eletriurrent is measured by di�erent ammeters, the systemati error of the am�meter reading sale beomes a random error whih magnitude and sign



16 Measurements in Physisdepend on the partiular ammeter. However, one should learly under�stand the di�erene between systemati and random errors for any givenexperiment.Systemati errors. It has been already mentioned that systemati errorsare due to some permanent fators whih, in priniple, ould be alwaystaken into aount and therefore exluded. In pratie this task is di�ultand requires a lot of skill on the part of an experimenter.Systemati errors are estimated by analyzing the experimental proe�dure, aounting for auray and preision of the measuring instruments,and doing test experiments. In this pratium we usually aount only forthe systemati errors due to the instrument inauray. Let us onsidersome typial ases.A systemati error of an analog eletroni instrument (ammeter, volt�meter, potentiometer, et.) is determined by its auray lass whih de��nes the instrument absolute error as a perentage of the maximal valueof the sale used. For instane, let a voltmeter sale have a range from0 to 10 V and a printed sign that shows the �gure 1 inside a irle. The�gure indiates that the voltmeter has the auray lass 1 and the al�lowed unertainty is 1% of the maximal value of the sale, i.e. in this asethe unertainty is ±0.1 V. Also one should take into aount that salereadings are ustomarily separated by an interval that does not exeed theinstrument auray by a fator of two.An auray lass of analog eletroni instruments (and one half ofthe sale reading as well) determines the maximal absolute unertaintywhih is the same along the sale. However a relative unertainty hangesdrastially, so an analog instrument provides the best auray when thepointer is near the maximal value. Therefore an instrument or its saleshould be seleted so that the pointer remains on the seond half of thesale during the measurement.Nowadays digital multi-purpose eletroni instruments are widely used,they have a high auray. Unlike analog devies, the systemati error ofa digital instrument is evaluated using the formulas listed in the manual.For example, the relative auray of the multi-purpose voltmeter B7-34with the 1 V sale, an be evaluated as
εx =

[

0.015 + 0.002

(

Ukx

Ux
− 1

)]

·
[

1 + 0.1 · |t − 20|
]

, (1.11)where Ukx is the maximal value, V,
Ux is a voltage measured, V,
t is the ambient temperature, ◦C.

Chapter I 17When the voltmeter is used to measure a onstant voltage of 0.5 V atthe ambient temperature of t = 30 ◦C the auray is
εx =

[

0.015 + 0.002

(

1

0,5
− 1

)]

·
[

1 + 0.1 · |30 − 20|
]

= 0.034%,that is ±0.00017 V of the measured 0.5 V.When the voltmeter range is 0-100 or 0-1000 V or it is swithed toanother kind of measurement (eletri urrent or resistane) the formularemains the same but the numbers are di�erent. The voltmeter auray isreliable under the following onditions: an ambient temperature of 5-40 ◦C,a relative humidity below 95% at 30 ◦C, and a power supply of ∼220±22V.Some words should be said about the auray of rulers. Metal rulersare relatively preise: the millimeter graduations are engraved with anerror less than ±0.05 mm, and the entimeter graduations with an errorless than 0.1 mm, so the measurement results an be read with the aid ofa hand lens. It is better not to use wooden or plasti rulers sine theirunertainties are not known and ould be large. A mirometer providesthe auray of 0.01 mm and the auray of a aliper is determined bythe auray of its vernier sale whih is usually 0.1 or 0.05 mm.Random errors. Random quantities (random error is an example) arestudied in the probability theory and mathematial statistis. Below wedesribe without giving a formal proof the basi properties of random quan�tities and the rules of statistial treatment of experimental data.It is not possible to eliminate random errors. However they obey thelaws of statistis, so one an always determine the limits in whih a mea�sured quantity an be found with a given probability.The theory that desribes the properties of random errors agrees withexperiment. The theory is based on the following properties of the normaldistribution:1. In a large pool of random errors, the errors of the same magnitude butof di�erent sign are equally probable.2. Large errors are less frequent than small. In other words, large errorsare less probable.3. Measurement errors an take ontinuous values.To study random errors it is neessary to introdue a onept of prob�ability.The statistial probability of an event is de�ned as the ratio of thenumber n of ases when the event happens, to the number N of all equallypossible ases:

P =
n

N
. (1.12)



18 Measurements in PhysisLet 100 marbles be in a bin and assume that 7 marbles are blak andthe rest are white. The probability of randomly piking a blak marbleis 7/100 and the probability to pik a white one is 93/100.Now let us apply the probability onept to estimate the dispersion ofrandom errors.Suppose n measurements of some quantity (e.g. the diameter of arod) have been done and assume that faults and systemati errors areeliminated, so only random errors remain. The results of the measurementare numerial values x1, x2, ..., xn. If x0 is the most probable value ofthe measured quantity (we assume that it is known), the di�erene ∆xibetween a measured value xi and x0 is alled the absolute random error ofthe measurement. Then

x1 − x0 = ∆x1

x2 − x0 = ∆x2. . . . . . . . . . . . . . .

xn − x0 = ∆xnBy summing up the equations we obtain:

x0 =

n
∑

i=1

xi −
n
∑

i=1

∆xi

n
, (1.13)where ∆x an be either positive or negative. Aording to the normaldistribution the errors of equal magnitude but of opposite sign are equallyprobable. Therefore the greater the number of measurements n, the moreprobable a mutual anellation of the errors under averaging, so

lim
n→∞

1

n

n
∑

i=1

∆xi = 0.Then

lim
n→∞

xav = lim
n→∞

1

n

n
∑

i=1

xi = x0. (1.14)Therefore the arithmeti mean xav of the results of di�erent measurementsfor a very large n (i.e. n → ∞) is the most probable value x0 of themeasured quantity. In pratie n is always �nite and xav is only approx�imately equal to the most probable value x0. The larger the number ofmeasurements n, the loser xav to x0.
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Fig. 1.3. The normal distributionThe arithmeti mean of the obtained results is usually taken as the bestapproximation to the value of a measured quantity:
xñð =

1

n

n
∑

i=1

xi =
x1 + x2 + . . . + xn

n
. (1.15)To estimate the reliability of a result it is neessary to examine a dis�tribution of random errors of di�erent measurements. The distribution oferrors often obeys the normal distribution (Gaussian distribution):

y =
1√
2πσ

e−
(x−x0)2

2σ2 , (1.16)where y is the probability distribution (probability density funtion) of theerrors:
y =

dn

n · dδ
,where dn/(n·dδ) is the fration of the errors in a given in�nitesimal interval

dδ,
x0 is the most probable value of the measured quantity,

δ = (x − x0) is a random deviation,

σ is the mean of the squared deviation. The quantity σ2 is also alledstandard deviation.The normal distributions orresponding to di�erent σ are plotted inFig. 1.3.The points |δ| = |x − x0| = σ are in�etion points of the Gaussianurves. Parameter σ spei�es the measure of dispersion of random errors
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δ. If the measurement results x are loated lose to the most probablevalue x0 and the values of random deviations δ are small, the value of σis small as well (urve 1, σ = σ1). If the random deviations are large andwidely dispersed, the urve beomes more widespread (urve 2, σ = σ2)and σ2 > σ1. The quantity σ is a measure of dispersion of the measuredquantity.A ratio of the area under a Gaussian urve between the values δ = ±σ(the area is shadowed in Fig. 1.3 for σ1 = 0.5) to the total area under theurve is 0.68. Therefore the equation x = x0 ± σ says that the probabilityto obtain a result x in this interval is 0.68 (68%).If an equation reads x = x0 ± 2σ, the probability to obtain a resultwithin this interval is 0.95. For x = x0 ± 3σ the probability is 0.997.In dealing with experimental unertainties we always refer to Gaussiandistribution. There are serious reasons in favor of using the normal dis�tribution. The most signi�ant one is the entral limit theorem: if a netunertainty is a result of several fators ontributing independently to itthen the distribution of the net unertainty will be Gaussian regardless ofthe partiular distribution of eah of the fators.For a �nite number of measurements n the deviation of the result fromthe most probable value x0 is estimated as the mean of the squared devia�tion σsep:

σsep =

√

√

√

√

1

n

n
∑

i=1

(xi − x0)2. (1.17)In pratie this equation is useless sine the most probable value of x0is unknown. However we get a reasonable estimate for σsep by replaing
x0 in (1.17) with arithmeti mean xav:

σsep =

√

√

√

√

1

n

n
∑

i=1

(xi − xav)2. (1.18)If n is small, xav an di�er signi�antly from x0 and Eq. (1.18) gives arough estimate of σsep. Aording to mathematial statistis the followingequation gives a better estimate:

σsep =

√

√

√

√

1

n − 1

n
∑

i=1

(xi − xñð)2. (1.19)Here σsep is the mean of the squared deviation of a measurement resultand/or the standard deviation derived from the experimental data. Thereliability of σsep improves for a greater number of measurements n.
Chapter I 21The unertainty of the arithmeti mean. In pratie we are notusually interested in how the result of any of n individual measurementsdeviates from the most probable value. Rather the question is what is anunertainty of the arithmeti mean. To �nd a reasonable estimate let usperform a series of measurement sets with n measurements of quantity xper set and �nd xav for every set. The obtained values xav are randomlydistributed around some entral value x0, their distribution approahingthe normal distribution. The standard deviation of xav from x0 an beestimated as the mean of the squared deviation σav (in the same wayas we determined σsep for n values of x.) In the probability theory itis proven that the standard deviation σav is related to the mean of thesquared deviation σsep as

σav =
σsep√

n
=

√

√

√

√

1

n(n − 1)

n
∑

i=1

(xi − xav)2. (1.20)Therefore the measured quantity x an be presented as

x = xav ± σav. (1.21)This notation says that the probability to �nd the most probable value

x0 of the measured quantity in the interval xav ± σav is equal to 0.68 (68%)(assuming n is large).The unertainty σav (or its square) is usually alled the standard devi�ation.It an be shown that usually the deviation of a measurement exeeds

2σav only in 5% of all ases and it is almost always less than 3σav.One ould naively onlude from above disussion that even using low�quality instruments it is possible to obtain better results by simply inreas�ing the number of measurements. Of ourse, this is not so. Inreasingthe number of measurements redues a random error. Systemati errorsrelated to imperfetions of the instruments persist, so one should betterhoose an optimal number of the measurements.If the number of experiments is small (less than 8) it is reommendedto use more sophistiated estimates. It should be noted that for n ≈ 10 thevalue of σav ould be determined with an auray of 20�30% Therefore theerrors should be alulated with an auray of no more than two digits.Addition of random and systemati errors. In real experiments bothsystemati and random errors our. Let the orresponding errors be σsysand σran. The net error is given by

σ2
net = σ2

sys + σ2
ran. (1.22)



22 Measurements in PhysisThis equation shows that the net error is greater than both the randomand systemati errors.An important feature of the equation should be mentioned. Let oneof the errors, say σran, be less than the other one (σsys) by a fator of 2.Then

σnet =
√

σ2
sys + σ2

ran =

√

5

4
σsys ≈ 1,12σsys.In this example an equality σnet = σsys holds with 12% preision. Thusa smaller error almost does not ontribute to the net error even if the latteris only twie as large as the former. This observation is very important. Ifa random error is only one half of the systemati error, it is not pratialto repeat the measurements anymore sine this will almost not redue thenet error. It would be enough to repeat the measurements two or threetimes in order to onvine yourself that the random error is indeed small.Treatment of the results of indiret measurements. If a measuredquantity is a sum or di�erene of a ouple of measured quantities:

a = b ± c, (1.23)then the expeted value of the quantity a is equal to the sum (or thedi�erene) of the expeted values of eah term: aex = bex ± cex, or, as itwas already reommended

aex = 〈b〉 ± 〈c〉 . (1.24)Hereinafter the angular brakets (or the bar over a symbol) mean an aver�age: instead of writing aav, we will use the notation 〈a〉 (or ā).If the quantities a and b are independent the standard deviation σa isgiven by

σa =
√

σ2
b + σ2

c , (1.25)i. e. the squares of the errors or, in other words, the standard deviationsof the results are added.If the measured quantity is equal to produt or ratio of two errors
a = bc or a =

b

c
, (1.26)then

aex = 〈b〉 〈c〉 or aex =
〈b〉
〈c〉 . (1.27)

Chapter I 23The relative standard error for a produt or ratio of two independent quan�tities is given by

σa

a
=

√

(σb

b

)2

+
(σc

c

)2

. (1.28)Let us give expliit formulae for the ase when
a = bβ · cγ · eε . . . (1.29)The expeted value of a is related to the expeted value of b, c and e,et. by the same equation (1.29) in whih the spei� values are replaedby their expeted values. The relative standard error of a is expressed interms of the relative errors of independent b, c, e, . . . as

(σa

a

)2

= β2
(σb

b

)2

+ γ2
(σc

c

)2

+ ε2
(σe

e

)2

+ . . . (1.30)For the referene let us give an expliit general formula. Let

a = f(b, c, e, . . .), (1.31)where f is an arbitrary funtion of the quantities b, c, e et. Then

aex = f(bex, cbest, eex, . . .). (1.32)Equation (1.32) is valid both for the diretly measured bex, cex et. andfor the indiretly measured quantities. In the �rst ase the values bex, cexet. are equal to 〈b〉, 〈c〉 et.The error of a is given by

σ2
a =

(

∂f

∂b

)2

· σ2
b +

(

∂f

∂c

)2

· σ2
c +

(

∂f

∂e

)2

· σ2
e + . . . (1.33)Here ∂f/∂b is a partial derivative of f with respet to b, i.e. the derivativewith respet to b is alulated provided the rest of the variables (c et.) areheld �xed. The partial derivatives with respet to c, e et. are de�ned inthe same way. The partial derivatives must be evaluated at the expetedvalues bex, cex, eex et. Equations (1.25), (1.28) and (1.30) are the spei�ases of Eq. (1.33).The analysis of the equations disussed in this setion leads naturally toseveral reommendations. First of all one should avoid the measurementsin whih a desired quantity omes out as a di�erene of two large numbers.For example, it is better to measure diretly the thikness of a pipe wallrather than to determine it by subtrating the inner diameter from the



24 Measurements in Physisouter one (and dividing the result by two). In the latter ase the relativeerror grows signi�antly sine the measured quantity (the wall thikness)is small while its error is determined by adding up the diameter errorsand therefore inreases. One should keep in mind that the measurementerror of 0.5% of the outer diameter ould be 5 or more perent of the wallthikness.The quantities whih are treated with the aid of Eq. (1.26) (e.g., whenthe density of an objet is evaluated using its weight and volume) shouldbe measured with approximately the same relative error. For instane, ifthe volume of an objet is determined with an error of 1% and the objetweight is known with an error of 0.5%, the objet density is determinedwith an error of 1.1%. Obviously it does not make sense to waste one'stime and e�ort on measuring the objet weight with an error of 0.01%.For measurements whih results are treated by means of Eq. (1.29)one should pay attention to the error of the quantity with the greatestexponent.When planning an experiment one should always remember about asubsequent treatment of the results and write down the expliit expres�sions for the errors in advane. The equations help to understand whihquantities must be measured more arefully than others.Some laboratory guidelinesAny laboratory experiment should be regarded as a researh projet inminiature. A lab desription provides only a guideline of the experiment. Aspei� ontent, skills, and knowledge whih a student would gain from theexperiment are mostly due to student' attitude rather than the lab desrip�tion. The most valuable skills whih a student is able to develop during thelaboratory ourse are: thinking about an experiment, applying theoretialknowledge in the laboratory setting, areful planning of the experimentand avoiding mistakes, and notiing often insigni�ant little things whihould potentially initiate an important researh projet.The experimental results are summarized in a lab report whih mustinlude the following1) theoretial motivation of the experiment inluding a brief derivation ofthe required equations;2) a diagram of the experimental setup;3) a plan of the experiment and tables with experimental data;4) data treatment: alulations of intermediate quantities, tables, plots,and diagrams of the results, alulations of the �nal result;

Chapter I 255) omparison of the obtained results with referene data (in handbooksand manuals), disussion of possible mistakes, suggestions of future exper�iments.Preparation to experiment. Firstly, it is neessary to read an experi�ment desription and the orresponding theoretial material. It is nees�sary to have a lear aount of the phenomena, physial laws, and ordersof magnitude of the quantities under study, as well as the experimentalmethod, instruments, and a measurement proedure.The lab reports should be written in a su�iently large workbook so itan be used, at least, during one semester. A report should start with anumber and the title followed by a theoretial introdution, a diagram ofthe experimental setup, and a desription of the experiment proedure.Before an experiment it is neessary to think over the proedure sug�gested in the lab desription and determine a required number of measure�ments. This will help to prepare the tables for the experimental data.It is desirable to �gure out in advane the range in whih the measuredquantities will reside and to hoose the appropriate units. At least, thismust be done at the beginning of the experiment. Also it is neessaryto estimate measurement auray. If a quantity is expressed in termsof powers of quantities measured diretly one should make sure that therelative errors of the quantities with greater exponents are small, i.e. thesequantities should be measured with a better auray. When possible oneshould avoid measuring a quantity as a di�erene between two numeriallylose quantities . As it was already mentioned, the thikness of a pipe wallshould be measured diretly rather than alulated as a di�erene betweenthe outer and inner diameters.Beginning. At the beginning of the experiment one should arefully ex�amine the experimental setup, �gure out how to swith the instruments onand o�, how to handle them, and hek that the equipment is in order.Measurement instruments must be handled with are. It it is not agood idea to unsrew the asing of a sensitive instrument and hange thesettings.It is neessary to write in the workbook the spei�ations of the instru�ments (�rst of all, an auray lass, the maximal value on the sale, andthe sale graduation) sine they are used for data treatment.When assembling eletri iruits a power supply must be onnetedno sooner than the iruit is ompletely assembled.Operation of the experimental setup must be heked before the mainmeasurements. The �rst measurements are done to make sure that ev�erything is in order and the range and auray of the measurements are



26 Measurements in Physisorretly hosen. If the dispersion of the �rst results does not exeed asystemati error, multiple measurements are not neessary.The malfuntions of instruments or the installation must be dou�mented in the workbook and reported to the instrutor.Measurements. The results of the measurements should be written indetail with neessary explanations.It is useful to plot the measured quantities during the experiment. Ithelps to see the regions where the values hange rapidly. In these regionsthe quantity must be measured with a better preision (more measurementpoints) than in the regions where the urve is smooth. If the quantityis assumed to exhibit a priori dependene (e.g. linear) in some interval,the measurements should over a wider range in order to determine theboundaries of the interval where the dependene holds.Signi�ant dispersion of the results at the beginning of an experimentshould alert the experimenter. Often it is better to interrupt the exper�iment and try to eliminate the soure of the dispersion rather than todo a large number of measurements in order to reah the required au�ray. If a quantity measured depends on some parameter or another quan�tity that hanges gradually, one must make sure that the onditions havenot hanged during the experiment. To this end the initial measurementsshould be repeated at the end of experiment or the whole measurementrepeated in reversed order.Before eah table one should write down the unit of sale graduationsand auray lass of every measurement instrument. It is better to writedown the graduations of an instrument rather than the orresponding valueof the measured quantity, e.g. urrent or voltage. This will spare you somemistakes when writing down the readings. At the end of the day, the datatreatment is always possible while repeating the experiment is sometimesdi�ult or even impossible.The units should be hosen appropriately so that the results be rep�resented by values in the range from 0.1 to 1000. In this ase the tableswould be readable and the plots would be onvenient to use. For instane,Young' moduli (E) of metals are represented by very large numbers in theSI, so it is onvenient to use the unit 1010 N/m2. (For aluminum the nu�merial value is 7.05.) The orresponding olumn in the table or a plot axiswill be labeled as E, 1010 N·m−2. The omma is important: it separatesthe quantity from its unit. Numerial fators in front of the units an bereplaed by words or their abbreviations.Sometimes another onvention is used. A quantity to be displayed in atable or next to a plot axis is measured in ordinary units and representedas a produt of the quantity multiplied by some numerial oe�ient. For
Chapter I 27Young' modulus this onvention reads: E · 10−10, N·m−2. Although thenumerial value listed in the table remains the same (7.05 for aluminum)this onvention is less ommon sine the oe�ient ould be inorretlyreferred to the measurement unit.Evaluation, analysis, and presentation of the results. The resultsof diret measurements presented as tables and plots are then used for eval�uating the desired quantities and their errors and for �nding relationshipsbetween the quantities. It is onvenient to use the same workbook for thealulations and write the results in blank olumns of the tables togetherwith raw experimental data. This would help to hek and analyze theresults of alulations and ompare them with the data.Finally a measured quantity must be presented in the following form:the average, the error, and the number of measurements. The �nal resultof indiret measurements is determined via their funtional dependene onthe diretly measured quantities whih are used for evaluating the averagesand the errors.Sine an error itself is seldom known with a better auray than 20%the numerial value of the error in the �nal result should be rounded to oneor two signi�ant digits. For example, it would be orret to write errors as

±3, ±0.2, ±0.08, and ±0.14; and inorret ±3.2, ±0.23, and ±0.084. It isnot orret to round the value ±0.14 to ±0.1 sine the rounding dereasesthe error by 40%. The last digit of the average value of a quantity and thelast digit of the error must be in the same position. For example, a resultwritten as 1.243± 0.012 for the error of ±0.012 takes the form 1.24± 0.03for a larger error of ±0.03 and 1.2 ± 0.2 for 0.2. Extra signi�ant digitsould be kept in intermediate alulations for better rounding of the result.Depending on the hosen units the error ould be tens, hundreds, thousandsof the units or more. For example, if the weight of an objet is 58.3±0.5 kgits expression in grams must be (583 ± 5) · 102 g. It would be inorret towrite 58300± 500 g.Finally the obtained results are ompared to the tabulated values fromreferene books in order to estimate their quality.Plotting graphs. Graphs should be plotted on a speial graphing paper:regular graph paper, millimeter paper, or logarithmi paper. The plot size(and the paper size) should not be too large or too small. The optimal sizeis between a quarter and a full workbook page.Before starting to plot the graph it is neessary to hoose an appropriatesale and the origin on the axes, so that the points are spread over the wholeplot area.Figure 1.4 shows two plots. The experimental points oupy the lowerright orner of the plot on the left, whih is a poor hoie. On the right plot
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Fig. 1.4. Examples of orret and inorret plotsa larger sale of the Y axis is hosen and the absissa origin is displaed,so the points are evenly spread over the whole plot area.The names and units of the plotted quantities should be learly written.Labeling all the graduations on the axes is not neessary, there should beenough labels to make the plot omprehensible and easy to use. It isbetter to plae the labels on the outer sides of axes. If a graph paper hasa network of lines of di�erent thikness, the solid lines should be used forround values. It is onvenient when the network square orresponds to 0.1,0.2, 0.5, 1, 2, 5, or 10 units of a quantity and it is usually inonvenientwhen a square orresponds to 2, 5, 3, 4, 7, et. units. An inonvenient saleof axis graduations makes it di�ult to determine oordinates of a point,whih leads to frequent mistakes. The name of a quantity on absissa isusually written below the axis at the right end and the name of quantity onthe ordinate is written at the top left to the axis. A unit of measurementis separated by omma.Points on a plot should be marked learly. The points should be drawnby penil, so that possible mistakes ould be orreted. Explanatory notesshould not obsure the plot; the oordinates of the points written next tothem are not neessary. If an explanation is in order the orrespondingpoint or the urve is labeled by a number explained in the text or inthe aptions. It is advisable to plot the points obtained under di�erentonditions, e.g. heating/ooling or inreasing/dereasing a load, by usingdi�erent marks or olors.The known errors of experimental points should be drawn as vertial
Chapter I 29

Fig. 1.5. Drawing line through experimental pointsand horizontal bars whih lengths are proportional to the orrespondingerrors. In this ase a point is represented by a ross. Half of the horizontalbar is equal to an error of absissa quantity and half of the vertial baris equal to an ordinate quantity error. If an error is too small to be rep�resented graphially, the orresponding points are drawn as bars ±σ longin the diretion where the error is not negligible. Suh a representation ofexperimental points failitates the analysis of the results. In partiular, itwould be easier to �nd the best mathematial relation desribing the dataand to ompare the results with theoretial alulations and other results.Figures 1.5a, b show the same data points with di�erent errors. Theplot in Fig. 1.5a undoubtedly orresponds to a non-monotonous funtion.The funtion is shown by a solid urve. The same data set for a largerexperiment error (Fig. 1.5b) is well desribed by a straight line: only asingle point deviates from the line by more than one standard deviation(and less than two standard deviations). It is only when the points aredrawn with their errors shown expliitly it beomes lear that the datain 1.5a requires a urve to be drawn and the data in 1.5b does not.Often measurements are performed in order to obtain or on�rm a spe�i� relation between the measured quantities. In this ase the orrespond�ing urve should be drawn through the experimental points. If neessary,the errors of the measured quantities are then found using deviations ofthe points from the urve. It is not di�ult to draw a straight line throughthe data points. Therefore if a relation between the plotted quantities ishypothesized or already known from theory it is better to plot some fun�tions of the quantities, so that the relation between the funtions beomes
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 Fig. 1.6. Graphial method of data treatment. Estimatingrandom error of parameter alinear. For example, onsider an experiment that veri�es the relation be�tween a time interval it takes an objet to fall in the gravitational �eld andthe initial height from whih the fall starts. In this ase one should plotthe height versus the time squared beause these quantities are diretlyproportional to eah other if the �eld is uniform and the air drag is neg�ligible. It would be less onvenient to plot the time versus square root ofthe height although the relation between them is also linear. Notie thatlogarithms of the time and the height are also proportional in this ase butthe linearity is signi�antly violated by relatively small errors of heightand time at the beginning of the fall. Logarithmi sale is onvenient forpower laws and large ranges of hanges of variables. In this ase a lineardependene allows one to determine the power law exponent.There are di�erent methods of drawing straight lines through experi�mental points. The most simple method, whih is useful for estimatingerrors although too rough for getting the �nal result, requires a transpar�ent ruler or a sheet with a straight line drawn on it. A transparent rulerallows one to determine how many points there are on both sides of theline. The latter should be drawn so that there is an equal number of thepoints on both sides. The line parameters (a slope and an interept) aredetermined from the plot. This gives an analyti expression of the form:
y = a + bx, whih for a nonzero a, does not pass through the origin.Random errors of the parameters a and b ould be estimated from the
Chapter I 31

 Fig. 1.7. Graphial method of data treatment. Estimatingrandom error of parameter bplot as follows. To estimate the error of a one determines how muh theline is displaed so that the ratio of the numbers of points on both sidesbeomes 1 : 2 (see Fig. 1.6). Expliitly, the line is displaed upward by

∆a1, so that one third of the points is above the urve and two thirds isbelow. When the urve is displaed downward by ∆a2, two thirds of thepoints is above and one third is below. If there are n points, an estimateof the standard deviation a is
σa =

∆a1 + ∆a2√
n

.To estimate the error of the slope b one should divide the whole rangeof absissa values x into three equal parts (see Fig. 1.7). The line is thendrawn so that the ratio of the numbers of the points on both sides of theline in the external parts is 1 : 2. In other words, inrease the slope untilthe number of points in the left part above the line is twie as large asthe number below it and the number of points in the right part below theline is twie the number above, let the orresponding slope be b1. Thenderease the slope until the number of points below the line in the left partis twie as large as above and in the right part the number above is twie asbelow, let the orresponding slope be b2. Then the error of b is estimatedas

σb =
b1 − b2√

n
.



32 Measurements in PhysisIf the relation is y = kx, so that the line goes through the origin, theerror of k is estimated as follows. The range of absissa values x is dividedinto three equal parts. The points lose to the origin are ignored. Oneshould determine the value k1, for whih the number of the points abovethe line is half the number of the points below (for all the points in theentral and right parts), and k2 for the opposite ratio. The slope k isestimated as

σk =
k1 − k2√

n
.The method of least squares is a more preise and better justi�edmethod of drawing a straight line through a set of points. The line isdrawn so that the sum of squares of the point deviations from the line isminimal. This means that the oe�ients a and b of y = a + bx are foundby minimizing the sum

f(a, b) =

n
∑

i=1

[

yi − (a + bxi)
]2

. (1.34)Here xi and yi are the oordinates of experimental points.Now let us give the expliit equations for a, b and their errors in termsof the arithmeti means of xi and yi:

b =
〈xy〉 − 〈x〉 〈y〉
〈x2〉 − 〈x〉2

, (1.35)
a = 〈y〉 − b 〈x〉 . (1.36)The orresponding errors are given by

σb ≈ 1√
n

√

〈y2〉 − 〈y〉2

〈x2〉 − 〈x〉2
− b2, (1.37)

σa = σb

√

〈x2〉 − 〈x〉2. (1.38)If it is known that the points are desribed by a linear dependene
y = kx, the slope k and its error are given by

k =
〈xy〉
〈x2〉 , (1.39)

σk ≈
√

〈x2〉 〈y2〉 − 〈xy〉2

n 〈x2〉2
=

1√
n

√

〈y2〉
〈x2〉 − k2. (1.40)

Chapter I 33T a b l e 4Some approximation formulaeEquation Auray of 5% Auray of 1% Auray of 0.1%
|a| is less |a| is less |a| is less

1

1 + a
≈ 1 − a 0.22 0,1 0.032

√
1 + a ≈ 1 +

1

2
a 0.63 0.28 0.09

1√
1 + a

≈ 1 − 1

2
a 0.36 0,16 0.052

ea ≈ 1 + a 0.31 0.14 0.045
ln(1 + a) ≈ a 0.10 0.02 0.002

sina ≈ a 0.55 0.24 0.077

tana ≈ a 0.4 0.17 0.055

cos a ≈ 1 − a2

2

0.8 0.34 0.11

(1 + a)(1 + b) . . . ≈ 1 + a + b + . . .

sin(θ + a) = sin θ + a cos θ

cos(θ + a) = cos θ − a sin θThis method is the most time onsuming but if a alulator or omputeris available the method must be preferred.Sometimes one is not interested in a funtional dependene approximat�ing a data set, rather the experimental points are used to �nd numerialvalues between them. If so, interpolation methods are employed. In thesimplest ase a linear interpolation between two neighboring points is used.Interpolating by parabola requires three points.It should be emphasized that the plots provide a graphial representa�tion of the experimental data. They are very useful for omparing theoryand experiment, understanding qualitative features of relations, and for es�timating quantity dynamis. However, the �nal results of any experimentare doumented in a table.Usually the �nal results are obtained from experimental data by meansof alulation. An auray of the latter should not exeed an auray ofthe data. Often the alulations are simpli�ed by means of approximationformulae given in Table 4. The numerial entries are the values for whihthe approximations in the left olumn provide the auray laimed in thetable upper row.It should be noted that our reommendations on data treatment are



34 Measurements in PhysisT a b l e 5Synopsis of basi equationsArithmeti mean ofmeasured quantity xav = 〈x〉 =
1

n

n
∑

i=1

xiStandard deviation ofarithmeti mean ofmeasured quantity σ =

√

√

√

√

1

n(n − 1)

n
∑

i=1

(xi − 〈x〉)2Propagation of(independent) errors σ2 = σ2

1
+ σ2

2
+ . . .

A = B ± C ⇒ σ2

A = σ2

B + σ2

CError of alulated result A = B · C

A = B/C

}

⇒
( σA

A

)2

=
( σB

B

)2

+
( σC

C

)2

A = Bβ · Cγ ⇒
( σA

A

)2

= β2

( σB

B

)2

+ γ2

( σC

C

)2Reommended sales 1:1; 1:2; 1:5; 1:10; 1:20 ... 2:1; 5:1; 10:1; 20:1 ...Drawing the best straightline y = a + bx
b =

〈xy〉 − 〈x〉 〈y〉

〈x2〉 − 〈x〉2

, a = 〈y〉 − b 〈x〉Drawing the best straightline y = kx
k =

〈xy〉

〈x2〉neither omplete nor strit sine they are designated for the freshmen whosemathematial bakground is not su�ient to onsider the questions relatedto mathematial statistis in detail. More elaborated treatment will bepossible after �rst two years of study when enough experiene in the labis gained and su�ient mathematis is learned. Therefore some equationsused for data treatment were given without proof, some of them are shownin Table 5.Finally, several reommendations on the data treatment.When proessing the data it is neessary to onsider possible souresof mistakes. Auray of intermediate alulations should exeed the dataauray to eliminate errors related to alulations. Usually it is enoughif the auray of intermediate alulations will exeed the auray of the�nal result by one signi�ant digit.Literature1. Ëàáîðàòîðíûå çàíÿòèÿ ïî �èçèêå / Ïîä ðåä. Ë.Ë. �îëüäèíà. � Ì.: Íàóêà,1983.2. Ëàáîðàòîðíûé ïðàêòèêóì ïî îáùåé �èçèêå. Ò. 3 / Ïîä ðåä. Þ.Ì. Öèïåíþ�êà. � Ì.: Èçä-âî ÌÔÒÈ, 1998.3. Ñêâàéðñ Äæ. Ïðàêòè÷åñêàÿ �èçèêà. � Ì.: Ìèð, 1971.

1.1.1 35PSfrag replaements EE
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RARA

Rwi

Rwi

RVRVFig. 1. Ciruits for measuring resistane by means of ammeter andvoltmeterLab 1.1.1Determination of systemati and random errorsin measurement of spei� resistane ofnihrome.Purpose of the lab: determination of spei� resistane of nihromewire and alulation of systemati and random errors.Tools and instruments: ruler, aliper, mirometer, nihrome wire,ammeter, voltmeter, power supply, Wheatstone bridge, rheostat, swith.The spei� resistane of the material of a uniform wire with a irularross-setion an be determined aording to the following equation

ρ =
Rwi

l

πd2

4
, (1)where Rwi is the resistane, l is the length, and d is the diameter of thewire. Therefore to determine the spei� resistane of the wire materialone should measure the following parameters of the wire: the length, thediameter, and the eletrial resistane.One should take into aount that the diameter of a real wire is not on�stant but varies slightly along the wire. The diameter variation is random.Therefore in equation (1) one should substitute a value of the diameteraveraged along the wire and take into aount its random error.The resistane Rwi is measured using one of the iruits shown in Fig. 1.In the �gure R is a variable resistane (rheostat), RA is the resistane of anammeter, RV is the resistane of voltmeter, and Rwi is the wire resistane.



36 Measurements in PhysisLet V and I be the readings of voltmeter and ammeter, respetively.The values of the wire resistane alulated using these readings, namely,

Rwi1 = Va/Ia for the iruit (a) and Rwi2 = Vb/Ib for the iruit (b)will di�er from eah other and from the true value Rwi due to internalresistanes of the instruments. However using Fig. 1 one an easily �ndthe relation between Rwi and the obtained values Rwi1 è Rwi2. In the �rstase the voltmeter measures a voltage aross the wire orretly, whereasthe ammeter does not measure the urrent through wire, rather it showsthe value of the total urrent �owing through the wire and the voltmeter.Therefore

Rwi1 =
Va

Ia
= Rwi

RV

Rwi + RV
. (2)In the seond ase the ammeter measures the urrent through the wirebut the voltmeter measures a total voltage aross the wire and the amme�ter. For this ase

Rwi2 =
Vb

Ib
= Rwi + RA. (3)It is onvenient to rewrite equations (2) and (3) as follows. For theiruit (à):

Rwi = Rwi1
RV

RV − Rwi1
=

Rwi1

1 − (Rwi1/RV )
≈ Rwi1

(

1 +
Rwi1

RV

)

. (4)For the iruit (b):

Rwi = Rwi2

(

1 − RA

Rwi2

)

. (5)The braketed terms in Eqs. (4) and (5) de�ne orretions whih shouldbe taken into aount during the measurement. (Although the orretionsdue to internal resistane of the instruments an be alulated at any time,usually this is not done. In our ase the alulation of the orretions turnsout to be very simple but for real iruits an aounting for the orretionsis time onsuming and should be repeated every time the instrument isswithed, whih seems impossible in pratie.) The alulation provides anexample of a systemati error due to simpli�ation of the exat equation.For the iruit (a) the resistaneRwi turns out to be less than the alulatedvalue and for the iruit (b) it is greater.The lassial method of measuring a resistane with the aid of a dbridge (Wheatstone bridge) is more preise. The standard bridge �4833 isused for the ontrol measurement of the wire resistane.In the assembly the nihrome wire strethed between two �xed planelamping ontats is used as a resistane. The length of a wire setionwhih resistane is measured an be varied by means of a mobile ontat.
1.1.1 37LABORATORY ASSIGNMENT1. Get familiar with the operation priniples of the measurement instruments.Pratie to measure dimensions of di�erent objets with the aid of a aliperand a mirometer.2. Measure the wire diameter at 8�10 di�erent loations and write down theresults in a table. Compare the results obtained by means a aliper anda mirometer. Average out the obtained diameter values. Calulate theross-setional area of the wire and estimate an auray of the result.3. Write down into a new table the basi parameters of the ammeter and thevoltmeter: the type of an instrument, the auray lass, the maximal valueof the sale xn, the number of sale graduations n, the sale fator xn/n,the sensitivity n/xn, the absolute error ∆xM , and the internal resistaneof the instrument (for a given maximal value of the sale).4. Using the indiated internal resistanes of the instruments and the knownapproximate value of the wire resistane, 5 Ohm, estimate the values of theorretions to Rwi orresponding to the iruits shown in Fig. 1 with theaid of Eq. (4) and (5). Choose the iruit that provides a minimal value ofthe orretion.5. Using a ruler measure the length of a wire setion to be explored (between�xed and mobile lamping ontats) and assemble the hosen eletrialiruit. Turn on the urrent. Varying it by means of the rheostat writedown in a new table the readings of the ammeter and the voltmeter for5�6 di�erent values of the urrent (usually during a diret measurement thereadings of the instruments are written diretly as the sale graduations):

Nmeas 1 2 3 4 5 6

V , äåë

I, äåë

V , Â

I, ÀRepeat the measurement by inreasing and dereasing the urrent. Plotthe dependene V = f(I) and alulate the value of R using the plot. Thenalulate the resistane Rwi. Estimate the error of Rwi.6. Measure the wire resistane using the d bridge (Wheatstone brigde)�4833. How muh does the result di�er from the value measured previ�ously? Does the result lie in the error interval of the result obtained withthe aid of the ammeter and the voltmeter?7. Carry out the measurements pp. 5, 6 for three di�erent values of the wirelength.



38 Measurements in Physis8. Determine the resistivity of the wire material using Eq. (1). Estimate theauray of the obtained value. Whih auray of the wire resistane isrequired for the attained auray of the wire length and the ross-setion?9. Compare the results with the tabulated values.Literature1. Ëàáîðàòîðíûå çàíÿòèÿ ïî �èçèêå / Ïîä ðåä. Ë.Ë. �îëüäèíà. � Ì.: Íàóêà,1983. Ñ. 53�66.2. Ñêâàéðñ Äæ. Ïðàêòè÷åñêàÿ �èçèêà. � Ì.: Ìèð, 1971.3. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. III. � Ì.: Íàóêà, 1996. �� 40, 41, 42.Example of lab report 1.1.1The instruments used: ruler, aliper, mirometer, nihrome wire, ammeter,voltmeter, power supply, d bridge (Wheatstone bridge), rheostat, swith.1. A aliper auray is 0.1 mm. A mirometer auray is 0.01 mm.2. Measure a diameter of the wire with a aliper (d1) and a mirometer (d2)at 10 di�erent loations (Table 1). T a b l e 1Wire diameter1 2 3 4 5 6 7 8 9 10

d1, mm 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4

d2, mm 0,36 0,36 0,37 0,36 0,37 0,37 0,36 0,35 0,36 0,37
d̄1 = 0,4 mm d̄2 = 0,363 mmThe table shows no random error in the aliper measurements. Therefore theauray of the result is due to the aliper auray (a systemati error):

d1 = (0.4 ± 0.1) mm.The measurement results obtained with the mirometer ontain both system�ati and random errors:

σsyst = 0.01 mm, σrand =
1

N

√

√

√

√

n
∑

i=1

(d − d̄)2 =
1

10

√
4.1 · 10−4 ≈ 2 · 10−3 mm,

σ =
√

σ2
syst + σ2

rand =
√

(0.01)2 + (0.002)2 ≈ 0.01 mm.Sine σ2

rand ≪ σ2

syst the wire diameter an be onsidered onstant along the wirewith an auray σd totally determined by σsyst of the mirometer:
d2 = d̄2 ± σd = (0.363 ± 0.010) mm = (3.63 ± 0.10) · 10−2 cm.

1.1.1 393. Determine the ross-setional area of the wire:
S =

πd2

2

4
=

3.14 · (3.63 · 10−2)2

4
≈ 1.03 · 10−3 cm2.The value of the error σS an be alulated as follows

σS = 2
σd

d
S = 2

0.01

0.36
· 1.03 · 10−3 ≈ 6 · 10−5 cm2.Thus S = (1,03 ± 0.06) · 10−3 cm2, i. e. the auray of the ross-setionalarea amounts to 6%.4. Write down the basi spei�ations of the instruments in Table 2.T a b l e 2Basi spei�ations of instrumentsVoltmeter AmmeterSystem Moving-oil EletromagnetiAuray lass 0.5 0.5Maximal sale value xl 0.3 V 0.15 ANumber of sale gradua�tions n

150 75Sale fator xï/n 2 mV/grad 2 mA/gradSensitivity n/xï 500 grad/V 500 grad/ÀAbsolute error ∆xM 1.5 mV 0.75 mAInternal resistane (forgiven maximal sale value) 500 Ohm 1 Ohm5. It is known that Rwi ≈ 5 Ohm, RV = 500 Ohm, and RA = 1 Ohm. UsingEqs. (4) and (5) estimate the orretions for Rwi:for the iruit in Fig. 1a Rwi/RV = 5/500 = 0.01, i. e. 1%;for the iruit in Fig. 1b RA/Rwi = 1/5, i. e. 20%.Conlusion: the iruit in Fig. 1à ensures the better auray in a measure�ment of a relatively small resistane.6. Assemble the iruit shown in Fig. 1a.7. Carry out the experiment for three values of the wire length written below:

l1 = (20.0 ± 0.1) m; l2 = (30.0 ± 0.1) m; l3 = (50.0 ± 0.1) m.Repeat the measurement for inreasing and dereasing urrent. Write downthe instrument readings in Table 3. Reord the results obtained by using the dbridge (Wheatstone bridge) �4833 in Table 4.8. Plot the dependenies V = f(I) for all three values of the wire lengthby drawing straight lines through the experimental points (Fig. 2). From theplots one an onlude that there is no di�erene between the values obtainedfor inreasing and dereasing urrent. One an also onlude that the randomsatter is negligible and ould be ignored.



40 Measurements in PhysisT a b l e 3Readings of voltmeter and ammeter

l = 20 m l = 30 m l = 50 m

V ,grad

2 mV
grad

I ,grad

2 mA
grad

V ,mV I ,mA V ,grad

2 mV
grad

I ,grad

2 mA
grad

V ,mV I ,mA V ,grad

2 mV
grad

I ,grad

0.5 mA
grad

V ,mV I ,mA26.0 12.5 52.0 25.0 26.0 8.5 52.0 17.0 34.5 28.0 69.0 14.032.5 15.5 65.0 31.0 35.0 11.5 70.0 23.0 44.1 35.6 88.2 17.863.2 31.1 126.4 62.2 62.5 20.4 125.0 40.8 67.1 54.5 134.2 27.382.8 40.5 165.6 81.0 91.1 30.1 182.2 60.2 98.0 79.6 196.0 39.8119.5 58.1 239.0 116.2 118.5 38.9 237.0 77.8 127.0 103.3 254.0 51.7137.8 67.0 275.6 134.0 150.0 49.5 300.0 99.0 147.3 120.0 294.6 60.0131.0 64.1 262.0 128.2 139.5 46.1 279.0 92.2 142.0 114.6 284.0 57.8101.5 49.5 203.0 99.0 130.0 42.9 260.0 85.8 116.2 94.0 232.4 47.088.1 43.0 176.2 86.0 103.1 34.0 206.0 68.0 85.0 69.2 170.0 34.678.2 38.1 156.4 76.2 74.2 24.5 148.4 49.0 61.1 49.5 133.2 24.851.0 24.9 102.0 49.8 42.5 14.1 85.0 28.2 41.3 33.2 82.6 16.629.1 13.9 58.2 27.8 23.0 7.5 46.0 15.0 31.0 25.2 62.0 12.6T a b l e 4Wire resistane

l = 20 m l = 30 m l = 50 m

R0 = 2,080 Ohm R0 = 3,062 Ohm R0 = 5.010 Ohm(using �4833) (using �4833) (using �4833)
Rwi = 2.060 Ohm Rwi = 3.030 Ohm Rav = 4.92 Ohm
Rwi = 2.068 Ohm Rwi = 3.048 Ohm Rwi = 4.97 Ohm
σRwi

= 0.008 Ohm σRwi
= 0.014 Ohm σRwi

= 0.04 Ohm9. Using the plots �nd the average values of the resistanes by alulatingthe slope of the orresponding straight line: Rav = V/I , where I and V are theurrent and the voltage taken at some point of the line lose to its end. Writedown the results in Table 4.10. Estimate the auray of Rav as follows
σRav

Rav
=

√

(σV

V

)

2

+
(σI

I

)

2

,where I and V are the maximal values of urrent and voltage obtained in theexperiment, whereas σV and σI are the standard deviations of the measurementsby means of the voltmeter and the ammeter. The error σV equals half of the
1.1.1 41

Fig. 2absolute error of the voltmeter:

σV =
∆x

2
=

1,5

2
≈ 0.75 mV.For the ammeter the result an be similarly obtained: σI = 0.75/2 ≈ 0.4 mA.An example of the alulation of σRav for a wire of the length l = 30 m;from Tables 3 and 4 Rav = 3.030 Ohm, V = 300 mV, I = 99 mA.

σRav = Rav

√

(σV

V

)2

+
(σI

I

)2

= 3.03 ·
√

(

0.75

300

)

2

+

(

0.4

99

)

2

≈ 1.4 · 10−2 Ohm.Reord the results of the alulations in Table 5.T a b l e 5

l, sm 20 30 50

ROhm, Ohm 2.060 3.030 4.92

σRav , Ohm 0.008 0.014 0.04



42 Measurements in Physis11. For all three values of the length l take into aount the measurementorretion for the resistane as follows

Rwi = Rav +
R2

av

RV
.Due to a relatively small value of the orretion one an ignore it: σRwi

= σRav .The results are written down in Table 4.12. Compare the wire resistanes measured by the voltmeter and the ammeterwith the values obtained by using the d bridge (Wheatstone bridge) �4833. Theresults oinide within the auray of the experiment.13. Determine the wire resistivity aording to equation (1) and �nd theauray σρ as follows

σρ

ρ
=

√

(σR

R

)

2

+
(

2
σd

d

)

2

+
(σl

l

)

2

.The results are written in Table 6. T a b l e 6

l, m ρ, 10−4 Ohm·m σρ, 10−6 Ohm·m20 1.06 630 1.05 650 1.02 6Finally: ρ = (1.04 ± 0.06) · 10−4 Ohm·m.A major ontribution to the error σρ is due to an unertainty of the wirediameter; it amounts to ∼3%. This error doubles beause the diameter is squaredin the �nal formula, so it amounts to ∼6%. Therefore it is su�ient to measurethe wire resistane with an auray about 3�4%.The obtained value of the resistivity is ompared with a tabulated value. Forthe resistivity of nihrome at 20 ◦C the referene book (Physial magnitudes.M.:Energypublish, 1991. P. 444) gives the values from 1.12·10−4 Ohm·m to0.97·10−4 Ohm·m depending on the mass ratios of the alloy omponents. Thelosest value to that obtained in the lab is 1.06·10−4 Ohm·m for the alloy:70÷80% Ni, 20% Cr, 0÷2% Mn (mass ratios).
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Fig. 1. Optial path in mirosopeLab 1.1.2Measurement of linear expansion oe�ient of arod with the aid of mirosopePurpose of the lab: to measure the dependene of linear expansionof metal rod versus temperature and to determine its linear expansionoe�ient.Tools and instruments: a mirosope, an oular mirometer, a rulerwith millimeter graduations, a quartz tube, a metal rod, an eletriheater, a variable transformer, a resistane thermometer, the Wheat�stone bridge �4833, a power supply, and a galvanometer.Mirosope. Mirosope is an optial instrument designed to magnifyimages of small objets. The magnifying part of the mirosope onsists oftwo sets of lenses alled objetive and eyepiee (oular) whih are mountedin a tubus about 160 mm apart. We do not intend to study a mirosopedesign in detail, so we onentrate on its operation priniple. For simpliitywe replae the objetive and the eyepiee with two equivalent thin lenses.Optial path in mirosope is shown in Fig. 1. The objet l is plaednext to the front foal point (just before it) of the short-fous objetive



44 Measurements in PhysisË1 whih reates the large real image l1. The image is viewed through theeyepiee Ë2 whih serves as a magnifying glass. The eyepiee reates thevirtual image l2 at a onvenient distane from observer's eye. The positionof l2 an be varied by hanging loation of l1 relative to the front fous ofthe eyepiee. This is ahieved by a small displaement of the mirosopewith respet to the objet.Mirosope magni�ation is its most important parameter. There arelinear and angular magni�ations. Linear magni�ation equals the ratio ofa transverse size of the image l2 to that of the objet l:

Γ =
l2
l
. (1)Angular magni�ation equals the ratio of the tangent of the angle α1 sub�tended by the image l2 in the mirosope to the tangent of the angle α2subtended by the objet at the onventional losest distane of distintvision D = 25 m from unaided eye:

γ =
tan α1

tan α2

. (2)The notations l, l1, l2, α1, and α2 are those in Fig. 1.Consider �rst the linear magni�ation Γ. Let us write it as

Γ =
l2
l

=
l2
l1

l1
l

= ΓocΓob. (3)The �rst fator Γoc is alled oular magni�ation and the seond one Γîáis alled objetive magni�ation. It should be obvious from Fig. 1 that
Γîá =

l1
l

=
O1B

O1A
. (4)The distane O1A is approximately equal to the foal length of the obje�tive and the point B is lose to the foal point of the eyepiee, also f2 ≪ H ,whih gives

O1A ≈ f1, O1B ≈ H − f2 ≈ H. (5)The tubus length H is usually equal to 160 mm. Replaing the numeratorand denominator in (4) by their approximate values (5) one obtains:
Γîá ≈ H

f1

. (6)This value is not exatly equal to the objetive magni�ation, however itis independent of the eyepiee and the mirosope adjustment. It is thisvalue whih is engraved on the objetive asing.

1.1.2 45Now onsider the eyepiee magni�ation:
Γîê =

l2
l1

=
O2C

O2B
. (7)It was already mentioned that O2B ≈ f2. The value of O2C on the otherhand depends on the mirosope adjustment. Near-sighted observers set

O2C = 10 − 15 m and far-sighted plae l2 at a distane of 40 m, some�times even at in�nity. When alulating the eyepiee magni�ation it isustomary to set O2C = D = 25 m, whih orresponds to the onventionallosest distane of distint vision for normal human eye. Substituting thesevalues in (7) we get:
Γoc =

D

f2

. (8)This value is alled oular magni�ation and it is engraved on its asing.Now let us onsider the angular magni�ation:
γ = tanα1 : tanα2 =

l2
O2C

:
l

D
. (9)For O2C = D the angular and linear magni�ations are equal: Γ = γ.Equation (3) shows that to get a preliminary estimate of the miro�sope magni�ation it would su�e to multiply the eyepiee and objetivemagni�ations. The value obtained is only approximate. A better estimateshould be determined experimentally.In pratial measurements the objet size is ompared to some sale.The sale an be plaed in the plane of the objet but this is not alwayspossible. More often the sale is loated in the plane of the virtual image

l1. In this ase both the objet and the sale an be viewed simultaneouslyand therefore be more reliably ompared. However, in this setup the saleis ompared to the magni�ed image l1 rather than to the objet itself, soan additional alibration is neessary.
Fig. 2. Sale of oularmirometer

Oular mirometer. The mirosope usedin the lab is equipped with an oular mirome�ter. It onsists of an immobile glass plate withsale graduations and a mobile glass plate witha ross and two parallel marks loated in theeyepiee foal plane (see Fig. 2). The mobileplate an move relative to the immobile sale:one turn of the mirometer srew displaes themarks and the ross by one sale graduation(1 graduation = 1 mm). The irumferene of



46 Measurements in Physisthe srew knob is divided by graduations into100 parts. Turning the knob by one gradua�tion displaes the ross and the marks by 0.01 mm. Thus the sale in theimage plane l1 (the foal image of the eyepiee) is the sale of the oularmirometer.To determine the size of the objet l itself it is neessary to alibratethe mirometer sale by using another sale (objet sale) plaed instead ofthe objet. In so doing the mirosope adjustments should not be altered.The objet sale is a glass plate with graduations several hundredths ofmillimeter apart.Calibration of oular sale. The oular sale should be alibrated be�fore using the mirosope for the measurements. First of all, the saleshould be learly visible, this is ahieved by adjusting the outer lens ofthe eyepiee. Then the objet sale is plaed on the mirosope stage. Toahieve better visibility the objet sale must be illuminated at some angleto the glass plane and perpendiular to the marks. Then the lear imageof the sale must be obtained. To this end one moves the mirosope tubusdown almost to the plate by using the fous wheel of oarse adjustment.One should ontrol the distane between the objet and the mirosopeobjetive by wathing from the mirosope side when moving the tubusdown1. Then one should slowly lift the tubus until the objet sale omesinto sight and obtain the sharp image of the sale by using the fous wheelof �ne adjustment. Then the sale should be moved to the enter of the�eld of vision. The objet sale must be illuminated so that both the objetand oular sale are learly visible.The alignment of the oular and objetive sales is heked by themethod of parallax. If both images are in the same plane, a small lateraldisplaement of eye will not result in their mutual displaement. If thedisplaement is deteted the tubus position is orreted by the fous wheeluntil the parallax is eliminated.The objet sale should be plaed on the stage so that the graduationson both sales are parallel. Then the enter of the ross is aligned with agraduation on the objet sale. The sale graduation and the graduation onthe mirometer knob are reorded. Then one should move the ross alongthe objet sale by several millimeters and repeat the proedure for anothersale graduation. Using the results it is not di�ult to alibrate the oularsale, i.e. to determine the atual size in the objet plane orrespondingto one graduation of the oular sale. The alibration proedure must berepeated three or four times, the results must be tabulated and averaged.1 It should be emphasized that moving the tubus down without ontrol is prohibited.
1.1.2 47

Fig. 3. Experimental setup for measurement of linear expansion oe�ientLaboratory setup. The experimental setup for the measurement of linearexpansion oe�ient is shown in Fig. 3. The rod under study is plaed ina steel tube with eletri heater inside. The right end of the tube is �rmlyattahed to a support by a srew. The left end an freely move along thetube axis on the left support. The tube ends are sealed, the rod understudy is inserted inside the tube through the openings at the ends. Therod an freely move through the end 1 and it is �xed at the end 2 with thesrew 3. A quartz tube T2 with a mark on it is plaed between the end ofthe rod oming out of the tube end 1 and the spring stopper 4 mountedon the support 5.The eletri heater power supply is ontrolled by means of the variabletransformer. The rod temperature is measured by the resistane ther�mometer made of opper wire whih is wound around the rod and extendsbetween the rod ends.Usually the rod (and the resistane thermometer as well) is heated fromroom temperature tr, the orresponding wire resistane is Rr. The wireresistane depends on temperature as

Rt ≈ Rr(1 + Θ(t − tr)), (10)where Θ is the temperature oe�ient of resistane (for opper Θ =
= 4.3 · 10−3 ◦C −1 at 20 ◦C), whih gives

∆t = t − tr =
Rt − Rr

ΘRr
. (11)Otherwise the objetive ould press the objet and one of them an break down.2 Coe�ient of thermal expansion of fused quartz is negligible ompared to that oneof metal.



48 Measurements in PhysisThe rod length inreases with temperature and the mark on the quartztube shifts. The displaement is measured with the aid of the mirosopeequipped with the oular mirometer. The oe�ient of linear expansionof the rod is determined by the equation:

α =
Lt − Lr

Lr(t − tr)
, (12)where Lt and Lr are the rod lengths at t and tr respetively. Substitutionof the temperature di�erene t − tr from eq. (11) �nally gives

α =
(Lt − Lr)Rr

Lr(Rt − Rr)
Θ =

Rr

Lr

∆L

∆R
Θ =

Rr

Lr

∆n

∆R
BΘ, (13)where B is the oular sale graduation in millimeters and ∆n is the dis�plaement measured in oular sale graduations.LABORATORY ASSIGNMENT1. Make sure that you understand the operation priniples of the mirosopeand the oular mirometer.2. Using the objet sale alibrate the sale of the oular mirometer (expressoular graduation in millimeters).3. Replae the objet sale on the mirosope stage with the quartz tube Tattahed to the rod end.Obtain the lear image of the mark on T . The initial position of themark on the oular sale must be hosen so that the mark remained in the�eld of vision during the whole experiment. Reord the initial position ofthe mark on the oular sale at room temperature.4. Make sure that you understand the operation priniple of the Wheatstonebridge �4833 and get it ready for the experiment.5. Connet the resistane thermometer to the bridge and measure its resis�tane Rr at room temperature. Reord the room temperature tr.Choose the operation mode of the bridge orresponding to the maxi�mum sensitivity.6. Determine dependene of the rod length on temperature (atually thelength vs the wire resistane). To this end onnet the eletri heaterto the transformer output. Set a moderate voltage and wait until the rodis uniformly heated. Measure the thermometer resistane using the bridge�4833 and reord the ross position on the oular sale.Gradually inrease the output transformer voltage and reord the resis�tanes and the orresponding positions of the ross.

1.1.2 497. Plot the experimental points in oordinates n (the ross position) and R(the resistane). Draw the straight line through the points and determineits slope ∆n/∆R. Find the error δ(∆n/∆R) using the method of leastsquares (see p. 32).8. Substitute the value of the slope in Eq. (13) and evaluate the linear expan�sion oe�ient α. The rod length is written on the setup.9. Evaluate the error of α.An example of the lab report is presented in the appendix.Questions1. For a given auray of ∆L determine the required auray of the rod lengthand the thermometer resistane.2. Determine the ontributions to the error of α: due to alibration of the oularsale, due to determination of the mark position, due to measurement of the roomtemperature, and due to the error of the temperature oe�ient of resistane.3. Near-sighted and far-sighted observers adjust the mirosope so that the image

l2 is either at small or at large distane, respetively, from the observer's eye. Isit linear or angular magni�ation that hanges less?Literature1. Ýëåìåíòàðíûé ó÷åáíèê �èçèêè. Ò. 1. Ìåõàíèêà. Òåïëîòà. Ìîëåêóëÿðíàÿ�èçèêà / Ïîä ðåä. �.Ñ. Ëàíäñáåðãà. � Ì.: Ôèçìàòëèò, 2000. �� 195, 197.Ò. III. Êîëåáàíèÿ, âîëíû, îïòèêà. Ñòðîåíèå àòîìà. �� 115, 116.2. Ëàíäñáåðã �.Ñ. Îïòèêà. � Ì.: Íàóêà, 1976. �ë. XIV, � 92.3. Êàëàøíèêîâ Ñ.�. Ýëåêòðè÷åñòâî. � Ì.: Íàóêà, 1977. �ë. VI, �� 59, 60.Example of lab report 1.1.21. Calibration of the oular mirometer sale using the objet sale. Theobjet sale has a length of 1 mm=100 graduations. T a b l e 1

n (# of oular sale graduations)for l = 0 for l = 0.5 mm ∆ni ∆n1.44 6.12 4.681.35 6.08 4.73 4,701.52 6.21 4.69The length of the oular sale graduation is

B =
∆l

∆n
=

0.50 mm

4.70 grad
= 1.06 · 10−1 mm/grad.



50 Measurements in PhysisThe relative error is

δB

B
=

√

(

δl

∆l

)

2

+

(

δn

∆n

)

2

,where δl ≈ 0.005 mm (one half of the objet sale graduation), and the overallerror of the oular sale,

δn =
√

(δn1)2 + (δn2)2,is determined by the systemati error δn1 = 0.005 (one half of the graduationsale of the mirometer) and by the random error

δn2 =

√

√

√

√

1

m(m − 1)

m
∑

i=1

(

∆ni − ∆n
)2

= 1.2 · 10−2 grad.Thus

δn =
√

(1.2)2 + (0.5)2 · 10−2 ≈ 1.3 · 10−2 grad,

δB

B
=

√

(

0.005

0.5

)2

+

(

0.013

4.7

)2

≈ 0.01 = 1%.Finally the graduation length of the oular mirometer sale is

B = (1.06 ± 0.01) · 10−1 mm/grad.2. The thermometer resistane is measured at room temperature tr = 22 ◦C.The Wheatstone bridge �4833 operates at the ratio N = 1; Rr = 49.29±0.01 Ω.The position of the mark on the oular sale is nr = 1.88 grad.3. The positions of the mark vs the thermometer resistanes are tabulatedin 2, the plot is shown in Fig. 4. T a b l e 2
R, Ω n, grad R, Ω n, grad R, Ω n, grad49.25 1.88 52.81 3.65 55.74 5.0549.85 2.17 53.11 3.73 56.06 5.1450.15 2.31 53.81 4.08 56.25 5.2450.93 2.75 54.51 4.46 56.58 5.4051.50 2.95 55.05 4.74 56.97 5.5852.18 3.28 55.29 4.82 57.11 5.67The slope of the urve is determined graphially:

∆n

∆R
=

5.67 − 1.88

57.11 − 49.25
= 0.482 grad/Ω.

1.1.2 51

Fig. 4. Position of the mark versus thermometer resistaneThe linear expansion oe�ient is found from Eq. (13). Sine Lr =
= (600 ± 1) mm, Θ = 4.30 · 10−3 ◦C−1 at tr = 20 ◦C, one gets

α =
Rr

Lr

∆L

∆R
Θ =

Rr

Lr

∆n

∆R
BΘ =

49.25 · 0.482 · 0.106 · 4.30 · 10−3

600
= 1.80·10−5 ◦C

−1
.It is impossible to estimate the error of ∆n/∆R using the plot beause thestraight line �ts the points well. Therefore one should use the method of leastsquares whih provides a better auray. The goal is to determine the best �tvalue b in the equation nt = a + bRt and the error δb of the oe�ient b. Thealulation (see (1.35) and (1.37)) gives

b =
〈Rn〉 − 〈R〉 〈n〉
〈R2〉 − 〈R〉2

= 0.477 grad/Ω,

δb =
1√
m

√

〈n2〉 − 〈n〉2

〈R2〉 − 〈R〉2
− b2 = 0.011 grad/Ω.The linear expansion oe�ient is determined by the Eq. (13):

α =
49.25 · 0.477 · 0.106 · 4.3 · 10−3

600
= 1.785 · 10−5 ◦C

−1
.



52 Measurements in PhysisThe relative error is

δα

α
=

√

(

δRr

Rr

)2

+

(

δLr

Lr

)2

+

(

δΘ

Θ

)2

+

(

δB

B

)2

+

(

δb

b

)2

≈

≈
√

(

1

106

)2

+

(

105

4771

)2

≈ 0.024 = 2.4%.The absolute error is

δα = α · 0.024 = 1.785 · 0.024 · 10−5 = 0.043 · 10−5 ◦C
−1

.Finally

α = (1.79 ± 0.04) · 10−5 ◦C
−1

.The value of α found diretly from the plot agrees with this value.Lab 1.1.3Statistial treatment of measurements.Purpose of the lab: to apply methods of proessing experimental datato measurement of eletrial resistane.Tools and instruments: a set of resistors (250�300) and the digitalvoltmeter V7-23 operating in the mode ¾Measurement of resistane todiret urrent¿.Industrial prodution of resistors is a ompliated tehnologial pro�ess. An atual value of resistane di�ers from the nominal. The erroran be both systemati and random. Inaurate adjustment of a resistormanufaturing mahine results in systemati errors. Random errors aredue to non-uniformity of the wire (in width and hemial omposition)used in resistor prodution, random hanges of temperature, and mahinebaklashes.Measurement of resistane in this lab requires a preise instrument be�ause of relatively small di�erenes from the nominal. An appropriate in�strument is ¾universal digital voltmeter V7-23¿ used in the ¾Measurementof resistane to diret urrent¿ mode whih provides a relative measure�ment auray of hundredths of perent. Exat values an be found in thedevie manual.Thus the error due to the measurement instrument is negligible in om�parison with the deviations from the nominal arising in the proess ofresistor manufaturing.

1.1.3 53The main part of the lab is measurement of all resistanes of a givenset (about 250�300) and alulation of the mean value (1.15):
〈R〉 =

1

N

N
∑

i=0

Ri. (1)If the number of resistors is large enough one ould obtain a spei�ationof the set that no longer depends on the number of resistors.To desribe random errors arising in resistor prodution one should plota histogram. To this end one should �nd the maximum Rmax and the min�imum Rmin values of the obtained results. The di�erene Rmax −Rmin isdivided into m parts. The obtained value is alled the interval of resistanevariation:
∆R =

Rmax − Rmin

m
. (2)The histogram is plotted as follows. The intervals of resistane variation areplotted on the absissa. The number ∆n of the measurements whih belongto a given interval is plotted on the ordinate. However it is onvenient todivide ∆n by the total number of measurements N (whih is the absoluteprobability of ourrene in the orresponding interval) and by the intervalwidth ∆R (whih gives probability density). So the quantity plotted onthe ordinate is

y =
∆n

N∆R
.It is interesting to observe how the histogram hanges as the number ofpartitions m inreases. In the proess m must remain muh less than N .One should also plot the mean value of the resistane on the absissaand notie how it is loated relative to the histogram.Standard deviation spei�es dispersion of a random quantity (1.18):

σ =

√

√

√

√

1

N

N
∑

i=1

(Ri − 〈R〉)2. (3)It is instrutive to plot the points 〈R〉− σ and 〈R〉+ σ on the absissa andnotie how the histogram is loated relative to these points.The value of σ de�nes the Gaussian (normal) distribution (1.16):

y =
1√
2πσ

e−
(R−〈R〉)2

2σ2 . (4)One should plot this funtion on the histogram.



54 Measurements in PhysisLABORATORY ASSIGNMENT1. Read arefully the brief manual ¾universal digital voltmeter V7-23¿ andpay speial attention to the setion ¾Measurement of resistane to direturrent¿.2. Turn on the voltmeter power supply and wait for 15�20 minutes until thevoltmeter warms up.3. Measure resistanes of the given set of N = 250�300 resistors.4. Plot the histogram (follow instrutions in the text) for m = 10 and m = 20.5. Calulate 〈R〉 and ompare it with the nominal value. Plot the valueson the absissa and ompare them with the position of maximum of thehistogram. Plot the values 〈R〉 − σ and 〈R〉+ σ on the absissa. Comparethe histogram width with these values.6. Calulate the number of the resistanes whih belong to the interval be�tween 〈R〉 − σ and 〈R〉 + σ and between 〈R〉 − 2σ and 〈R〉 + 2σ.7. Plot the Gaussian distribution and ompare it with the histograms orre�sponding to di�erent numbers of partitions n.Literature1. Ñêâàéðñ Äæ. Ïðàêòè÷åñêàÿ �èçèêà. � Ì.: Ìèð, 1971.2. Çàéäåëü À.Í. Ýëåìåíòàðíûå îöåíêè îøèáîê èçìåðåíèé. � Ë.: Íàóêà, 1974.Example of lab report 1.1.3The following equipment is used: a set of 270 resistors with the nominalof 560 Ohm and the universal digital voltmeter V7-23 operating in the mode¾Measurement of resistane to diret urrent¿.The measured resistanes of 270 resistors (in Ohm) are listed in Table 1 inasending order.Using the tabulated resistanes we plot the histograms for m = 20 and m =
= 10. To ompare the histogram with the normal distribution we plot the numberof results ∆n in a given interval divided by the total number of results N and bythe interval width ∆R on the absissa, instead of plotting the number ∆n itself.The values of ∆n and w = ∆n/(N∆R) versus the group number k are listed inTables 2 and 3, respetively. The histograms are shown in Figs. 1 and 2. Wealulate the mean value of the resistane aording to Eq. (1):

〈R〉 =
1

N

N
∑

i=1

Ri = 560,7 Ohm.The standard deviation is determined aording to Eq. (3):
σ =

√

√

√

√

1

N

N
∑

i=1

(Ri − 〈R〉)2 ≈ 9 Ohm.
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56 Measurements in PhysisT a b l e 2

k 1 2 3 4 5 6 7 8 9 10

∆n 4 4 10 17 8 16 44 45 28 25

w · 1000 6 6 15 25 12 24 65 67 41 37

k 11 12 13 14 15 16 17 18 19 20

∆n 14 10 11 10 3 7 5 5 3 1

w · 1000 21 15 16 15 4 10 7 7 4 1T a b l e 3

k 1 2 3 4 5 6 7 8 9 10

∆n 8 27 24 89 53 24 21 10 10 4

w · 1000 6 20 18 66 39 18 16 7 7 3The intervals between 〈R〉−σ and 〈R〉+σ and between 〈R〉−2σ and 〈R〉+2σontain 46% and 93% of the total number of the results, respetively. Normaldistribution is de�ned by Eq. (4):

y =
1√
2πσ

e
−

(R−〈R〉)2

2σ2 .This funtion is shown in Figs. 1 and 2. One an see that the histograms agreewell with the normal distribution. Aording to the normal distribution a resis�tane belongs to the interval between 〈R〉 − σ and 〈R〉 + σ with the probabilityof 68% and to the interval between 〈R〉 − 2σ and 〈R〉 + 2σ with the probabilityof 95%.The experiment shows that the resistane of a resistor hosen randomly be�longs to the interval 560 ± 9 Ohm with the probability of 46%, to the interval
560 ± 18 Ohm with the probability of 93%, and to the interval 560 ± 27 Ohmwith the probability of 99%.Thus all the resistanes belong to 5-perent interval (〈R〉 ± 3σ).
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58 Measurements in PhysisLab 1.1.4Measurement of radiation bakground intensity.Purpose of the lab: to apply methods of experimental data proessingand to study statistial laws in measurement of radiation bakgroundintensity.Tools and instruments: Geiger-M�uller ounter CTC-6, a power unit,and a omputer onneted to the ounter via the interfae.As it was stated in disussion of random errors the random dispersionof experimental results ould be due to both systemati errors and randomvariations of the measured quantity. A �ux of osmi rays, whih onsid�erably ontribute to radiation bakground, randomly varies with time. Ifvariations take plae near a de�nite value one says that the �ux �utu�ates. In this ase the random variable an be haraterized by the meanvalue and the standard deviation from this mean value. To determine themean value and standard deviation one employs the same methods whihare used in alulations of the mean values and random errors of measure�ments. Cosmi rays are divided into the primary ones reahing the Earthorbit from outer spae and the seondary rays arising due to interationof the primary rays with the Earth atmosphere. The seondary rays on�stitute the major part of the rays at the sea level. The main part of theprimary rays omes to the Earth from the Galaxy; the rest arises due tosolar ativity and has lower energies. The origin of the galati rays is asubjet of debate. A part of osmi radiation is emitted by stars of theGalaxy during hromospheri �ares in the same way as on the Sun. Moreenergeti rays are apparently due to supernova outbursts and pulsars. Itis hypothesized that aeleration of spae partiles an be attributed tohigh-veloity louds of plasma originated in supernova explosions and togalati magneti �elds. The primary osmi rays form the �ux of stablepartiles with a high kineti energy whih in the appropriate units lies inthe range from 109 to 1021 eletron-volt (or shortly eV 1 eletron-volt =
= 1,6 ·10−12 erg = 1,6 ·10−19 J). It is found that in outer spae the partile�ux is independent of diretion (isotropi). The basi quantity speifyingthe amount of partiles in the osmi rays is intensity I. By de�nitionintensity is the number of partiles passing through the unit area perpen�diular to the diretion of observation per unit of spatial angle (steradian)and per unit of time. The unit of measurement is

number of particles

cm2 · sr · s .

1.1.4 59For the isotropi distribution of osmi rays that takes plae outsidethe Earth atmosphere the density F of partile �ux oming from the upperhemisphere equals

F = 2π

π/2∫

0

I cos θ sin θ dθ = πI

(

amount of particles

cm2 · s

)

.The density of partiles with absolute veloity V equals:
n =

4πI

V

(

amount of particles

cm3

)

.Notie that the majority of partiles outside the Earth atmosphere movesat speeds lose to the speed of light c, therefore to estimate n one ansubstitute c for V . Also note, that the intensity of the seondary osmirays near the ground is proportional to cos2 θ, where θ is the angle betweenthe veloity and the vertial.Partile �ux density is equal to the number of partiles rossing the areaof 1 m2 per 1 seond. The density is 1 partile/(m2·s) at the distaneabout 50 km from the Earth surfae. The majority of the partiles has theenergy of 10 GeV. Partiles with energies less than 1 GeV are absent in the�ux, whih is apparently due to magneti �elds of the Earth and the Sun.Generally the primary osmi rays onsist of protons (92%) and heliumnulei (6.6%) also alled α-partiles. Heavier nulei (up to nikel) arealso deteted, they onstitute about 0,8% of the net �ux. Eletrons andpositrons onstitute about 1%, the positron �ux is ten times less than theeletron one. γ-quanta with energies greater than 108 eV amount to only0,01%. Time variation of the �ux of primary osmi rays is not signi�ant.The most variable part onsists of the partiles with energies about 1 GeV;the variations are due to hanging magneti �elds of the Solar system,11-year yles of solar ativity, the 27-day period of the Sun revolutionaround its axis, hromospheri bursts of the Sun (5�13 bursts during anative year), and magneti storms in the Earth magnetosphere.When traversing the Earth atmosphere the primary osmi rays inter�at with the atomi nulei of atmosphere gases and produe the seondaryosmi rays. Only one of 100,000 protons of the primary rays reahesthe ground. However there are a lot of seondary protons; together withmuons (also alled µ-mesons) and neutrons they form the so alled hard(high-energy) omponent of the seondary osmi rays. A radiation isalled hard if it passes through the lead plate of 10 m thik. The soft(low-energy) omponent of osmi rays (shielded by a lead plate of 10 m



60 Measurements in Physisthik) mostly onsists of eletrons, positrons, and photons. The soft om�ponent in the atmosphere lose to the ground is produed by the hardomponent. The �ux density of soft omponent grows with height morerapidly than the hard omponent �ux. The density of vertial �ux of thesoft omponent at the sea level is approximately half of the �ux densityof the hard omponent whih equals 1,7·10−2 partiles/(m2·s). Howeverthe �ux density of the soft omponent 15 km above the Earth is 4�5 timesgreater than that of the hard omponent. The net �ux density of osmirays is maximum at the height of 17 km. Overall, the �ux of osmi raysat the sea level is about 100 times less than at the upper boundary of theEarth atmosphere and two thirds of the �ux onsist of muons. Analysis ofsilt on the oean �oor has revealed that the average �ux density of osmirays remained approximately onstant during the last 35 thousand years.The �ux density of seondary rays lose to the ground strongly dependson diretion. It has its maximum in the vertial diretion and minimum inthe horizontal one. The �ux is approximately proportional to the squareof the osine of the angle between the �ux and the vertial, whih is due toinreasing the length of the path of the rays in the Earth atmosphere. Smalltime variations of the �ux density of seondary rays are aused by variationsin pressure, temperature, and magneti �eld in the Earth atmosphere.Although the powerful partile aelerators are in operation nowadays,the osmi rays remain the sole soure of partiles of ultrahigh energies.However suh partiles do not ome frequently. A partile with the energyof 1019 eV rosses the area of one square meter only one in two thousandyears. Of ourse the area of 10 square kilometers redues the waiting periodto several days. High energy partiles are deteted via the generated �uxesof seondary partiles alled air showers. The total number of partiles ina shower originating about 20�25 km above the ground an reah severalmillions and overs the area of several square kilometers. The simultaneousdetetion of a large number of partiles on a signi�ant area proves theirommon origin and makes it possible to determine the energy of the parentpartile.Cosmi rays and natural radioativity of the Earth and the atmosphereare primary soures of ions in the lower part of the Earth atmosphere (upto a height of 60 km). Ionization in the atmosphere initially dereases withheight but higher than 1 km it starts to inrease, the inrease aeleratesat the height of 3 km. The number of ions per unit volume is 3�4 timesgreater at the height of 5 km than at the sea level, but at the height of9 km it is already 30 times greater.Cosmi rays an be deteted and their intensity an be measured via ion�
1.1.4 61ization they produe. To this end a speial devie, namely, Geiger-M�ullerounter is used. The ounter onsists of a gas-�lled vessel with two ele�trodes. Several types of suh ounters exist. The ounter used in the lab(CTC-6) onsists of a thin-walled metal ylinder operating as an eletrode(athode). The other eletrode (anode) is a thin wire strethed along theylinder axis. To use the ounter in the partile ount mode one shouldapply the voltage of 400 V on the eletrodes. The partiles of osmi raysionize the gas in the ounter and also knok out eletrons from its walls.These eletrons are aelerated by the strong eletri �eld between the ele�trodes and knok out seondary eletrons in their ollisions with the gasmoleules. The seondary eletrons in turn are aelerated and ionize gasmoleules. This results in eletron avalanhe and the urrent through theounter sharply inreases. The eletri iruit of the ounter is shown inFig. 1.A diret voltage is supplied to the ounter by a power unit throughresistor R. In the initial state the eletrodes of the ounter and apaitor

C1 are harged to 400 V, whereas the resistane of R is muh less thanleakage resistanes of the ounter and C1. The apaitor C2 bloks thediret voltage from being applied to the omputer interfae.
Fig. 1. Eletri iruit ofGeiger ounter

A small urrent through the ounter initiatesa rapid eletron avalanhe of the harge au�mulated in CTC-6 and apaitor C1. The en�ergy of the disharge is supplied by the apa�itor C1 whih is onneted in parallel with theounter. The disharge stops when the voltageaross the ounter beomes low and does not sup�port the avalanhe anymore (the potential di�er�ene aross the eletron free path is less than theionization potential). The iruit returns to ini�tial state in several RC1. During this proess ashort pulse of urrent passes through the apai�tor C2 in the eletroni iruit of omputer inter�fae.Capaitane C1 should be neither too highnor too small. The aumulated energy shouldbe high enough to initiate the avalanhe but theharging time of the apaitor (τ ∼ RC1) alledthe dead time should not be too large beause dur�ing this time the ounter is not able to detet partiles (usually the deadtime is about several miroseonds). In CTC-6 ounter the apaitane ofthe Geiger tube serves as C1, so the extra apaitor is not neessary.



62 Measurements in PhysisThe resistane R should also be neither too great (it inreases theounter dead time), nor too small, otherwise the apaitor aumulatesenough harge during the disharge and the avalanhe would not termi�nate. Usually R ∼ 1 MOhm.The number of deteted partiles depends on the time of measurement,the ounter size, the gas omposition and its pressure, and also on thematerial of the ounter walls. The major portion of deteted partiles isdue to the natural radiation bakground.Variations of partile �ux, whih are signi�ant in the laboratory mea�surement, are related to short-time variations of physial onditions of thepartile prodution and propagation in the Earth atmosphere. As it wasalready mentioned, the random variable measured in the lab is the partile�ux density hanging with time in a random way. The methods of dataproessing are the same as those of random errors. An estimate showsthat the measurement error due to Geiger�M�uller ounter is negligible inomparison with variations of the �ux itself (�ux �utuations). The mea�surement auray is mostly determined by the time required to restorethe initial state of the ounter after detetion of a partile. This period isalled the resolution time. The size of the ounter must be hosen so thatthe time period between the partiles passing through the ounter exeedsthe resolution time.The quantity measured in the lab is the number of partiles passedthrough the ounter during time intervals of 10 and 40 seonds. Di�erenttime intervals are hosen to demonstrate that the standard distributionworks better for larger time intervals and the histogram is more symmetri.Random values obtained for smaller time intervals should be treated bymeans of the Poisson distribution (see the Appendix).The standard deviation of the number of ounts measured for someperiod of time is equal to the square root of the mean number of ounts forthe same period: σ =
√

n0 (see Eq. (10) of the Appendix). However thetrue value of the measured quantity is unknown (otherwise the experimentwould be unneessary). Therefore when evaluating the error of a partiularmeasurement one has to substitute the measured value n rather than thetrue mean value n0:

σ =
√

n. (1)Equation (1) shows that usually (with the probability of 68%) the variationof the measured number of partiles n from the mean value is less than√
n. The result of measurement is written as:

n0 = n ±√
n. (2)

1.1.4 63Now onsider the following important problem. Suppose one arries outa set of N measurements and obtains the number of partiles n1, n2, ...,
nN . So far we used these numbers to determine how muh the result of apartiular measurement di�ers from the true mean value. As it was alreadymentioned this problem addresses reliability of the result obtained in asingle measurement. But if one arries out several measurements the resultsan be used to solve another problem: they allow one to determine themean value of the measured quantity better than for a single measurement.If N measurements have been arried out the mean value of the numberof partiles deteted in one measurement equals obviously

n̄ =
1

N

N
∑

i=1

ni, (3)whereas the standard error of the single measurement an be estimatedaording to Eq. (1.18), i. e. by substitution n0 = n̄ in Eq. (1.17) :

σsep =

√

√

√

√

1

N

N
∑

i=1

(ni − n̄)2. (4)Aording to Eq. (1) one expets that this error is lose to √
ni, i. e.

σsep ≈ σi =
√

ni, where one ould substitute any measured value n for ni.Sine ni are di�erent, one obtains di�erent estimates of σsep. All of themdi�er from the more reliable estimation of σsep given by Eq. (4). Thisis to be expeted. When proessing measurement results, we always getapproximate values of the measured quantity and the errors whih ouldmore or less oinide with the true values. The value √n̄ is the losest oneto σsep de�ned by Eq. (4), i. e.

σsep ≈
√

n̄. (5)Of ourse, the value n̄ from Eq. (3), whih is obtained by averaging theresults of N measurements, does not exatly oinide with the true value

n0, it is essentially a random quantity. Probability theory shows that thestandard deviation of n̄ from n0 an be determined by Eq. (1.20):

σn̄ =
1

N

√

√

√

√

N
∑

i=1

(ni − n̄)2 =
σsep√

N
. (6)Here Eq. (4) is used in the seond equation.



64 Measurements in PhysisUsually it is not the absolute but the relative error of measurementwhih is of great interest. For the onsidered set of N measurements (10 seah) the relative error of a measurement (i. e. the expeted di�erenebetween ni and n0) is

εsep =
σsep

ni
≈ 1√

ni
.The relative error of the mean value n̄ is determined similarly:

εn̄ =
σn̄

n̄
=

σsep

n̄
√

N
≈ 1√

n̄N
. (7)The value σsep from Eq. (5) is substituted in the last equation of (7).Thus the relative error of n̄ is determined only by the total number ofounts n̄N and it is independent of the set partitioning (10, 40 or 100 s).This is to be expeted, beause all the measurements onstitute the sin�gle measurement, whih registers ∑ni = n̄N ounts. As we an see therelative auray of a measurement gradually improves as the number ofounts grows (and the time of the measurement inreases).Using Eq. (7) we have found that to attain an auray up to 1% ofthe measurement of intensity of osmi rays one should obtain at least1002=10 000 ounts, the auray of 3% requires only 1000 ounts, theauray of 10% is reahed at 100 ounts, et. The auray is the sameregardless of the way the net number of ounts (1000 or 10 000) is obtained:in a single or several independent experiments.A speially designed omputer ode is used to measure the intensityof osmi rays and treat the experimental data. Using this ode one anobtain the spei�ations of the experimental assembly and arry out a nu�merial experiment whih simulates the real one. The simulated data aregenerated by a speial ode (random-number generator). In real exper�iment the ode allows one to follow real-time variations of the quantityunder study, its mean value, the standard deviation, the histogram, and toverify the theoretial formulae onerning measurements and errors. Dataanalysis an be performed for various durations of the interval and the num�ber of ounts. The ode also ontains the main de�nitions and formulaeused in data treatment.LABORATORY ASSIGNMENT1. Study the setions of the manual onerning measurements before the ex�periment.2. Study the experimental setup.

1.1.4 653. Turn on the omputer and the assembly. After omputer booting the odeSTAT is loaded and the experiment begins. Study the manual of STAT whihis available in the laboratory.4. Carry out the demonstration experiment in whih the data is produedby the random-number generator. Study how the following values varydepending on the number of measurements:1) the measured quantity,2) its mean value,3) the error of individual measurement,4) the error of the mean value.5. After the main experiment is ompleted opy the experimental data fromthe omputer monitor to the workbook.6. Using the data plot the histogram wn = f(n) of the distribution of thenumber of ounts for 10 s. To this end plot the integers n on the absissaand the fration of the events orresponding to the number of ounts equalto n on the ordinate. The fration of events wn whih is the probability ofgetting n ounts is determined aording to the obvious formula:

wn =
number of events with outcome n

total number of measurements(N)
.7. Combine the measurement results for τ = 20 s bins in pairs and plot thehistogram of the distribution of the number of ounts for 40 s bins. Thehistograms of the distributions of the number of ounts for 10 and 40 sbins should be plotted on the same graph; this makes visual omparisoneasier. The absissa graduations on the seond graph should be hosen sothat the positions of the mean values n̄ oinide. How does the histogramhange when the period of the measurement inreases? What determinesthe width of the histogram peak?8. Determine the mean number of partiles for 10 and 40 seond bins andthe orresponding standard deviations for individual and the mean values.Verify that the standard deviation of individual measurement is related tothe mean number of partiles as σ =

√
n̄.9. Determine the fration of the events for whih a deviation from the meanvalue does not exeed σ, 2σ. Compare the results with theoretial esti�mates. Literature1. Ëàáîðàòîðíûå çàíÿòèÿ ïî �èçèêå / Ïîä ðåä. Ë.Ë. �îëüäèíà. � Ì.: Íàóêà,1983. Ñ. 40�52.2. Laboratory pratie on general physis. V. 3 / Edited by Yu.M. Tsipenjuk. �M.: MIPT edition, 1998. P. 159�166, 367�372.



66 Measurements in Physis3. Sivukhin D.V. Course of general physis. V. V. Part 2. P. 354�370.Example of lab report 1.1.4Lab equipment: Geiger-M�uller ounter (CTC-6), a power unit, and a om�puter.1. Turn on the omputer. (Aumulation of data for the main measurementbegins.)2. In the ourse of the demonstration experiment we verify that when thenumber of measurements inreases1) the quantity to be measured �utuates;2) the �utuations of the mean value of the measured quantity derease andthe mean value tends to a onstant;3) the �utuations of the error of individual measurement derease and theerror of individual measurement (the systemati error) tends to a onstant;4) the �utuations of the error of the mean value and the value itself derease.3.Perform the main experiment: the measurement of the density of the osmirays �ux for 10 seonds (the results have been aumulated sine turning onthe omputer). Using the omputer ode proess the results similarly to thedemonstration experiment. The results are reorded in tables 1 and 2.4. Combine the measurement results from Table 1 in pairs, whih orrespondsto N2 = 100 measurements for the time interval of 40 s. The results are reordedin Table 3.5. Represent the results of the last measurement in a speial form whih issuitable for plotting the histogram (Table 4). The histograms of distributions ofthe mean number of ounts for 10 and 40 s are plotted on the same graph (seeFig. 2). The absissa graduation is 4 times greater for the seond distribution tomake the maxima oinide.6. Using Eq. (3) alulate the mean number of ounts for 10 s:
n̄1 =

1

N1

N1
∑

i=1

ni =
2896

400
= 7.24.7. Find the standard deviation of individual measurement using Eq. (4):

σ1 =

√

√

√

√

1

N1

N1
∑

i=1

(ni − n̄1)2 =

√

2934

400
≈ 2.7.8. Verify Eq. (5):

σ1 ≈
√

n̄1; 2.7 ≈
√

7.24 = 2.69.9. Determine the fration of the events for whih deviations from the meanvalue are less than σ1, 2σ1, and ompare them with the theoretial estimates (seeTable 5).

1.1.4 67T a b l e 1Number of ounts for 20 s# îïûòà 1 2 3 4 5 6 7 8 9 100 20 16 20 16 16 15 13 16 13 1410 17 22 14 12 15 17 20 16 16 1720 16 15 28 15 19 5 14 17 14 1530 11 6 14 11 16 12 18 14 14 2540 10 21 18 14 13 20 18 15 17 1150 10 7 6 21 23 19 10 13 14 1560 10 12 13 9 18 19 17 11 9 1670 16 15 12 16 12 20 6 11 13 1980 22 17 19 17 10 13 10 20 16 1090 12 10 19 16 14 15 5 14 13 13100 12 14 12 14 13 13 17 7 18 15110 13 13 22 12 15 14 10 16 15 10120 17 19 27 13 16 16 13 15 15 13130 6 18 8 14 16 17 13 15 19 16140 17 13 15 19 16 14 20 18 16 12150 16 12 14 12 11 8 12 10 13 20160 11 10 10 10 20 16 15 15 11 10170 13 12 15 14 15 13 12 17 15 11180 11 13 15 14 11 10 16 14 14 22190 10 16 20 18 11 11 10 22 15 11Footnote: Table is omposed so that, e.g. the result of the 123-rd event is on theintersetion of the 120-th row and the 3-rd olumn.10. Using Eq. (3) determine the mean number of ounts for 40 s:

n̄2 =
1

N2

N2
∑

i=1

ni =
2896

100
≈ 29.0.11. Find the standard deviation of individual measurement using Eq. (4):

σ2 =

√

√

√

√

1

N2

N2
∑

i=1

(ni − n̄2)2 =

√

3210

100
≈ 5.7.12. Verify Eq. (5):

σ2 ≈
√

n̄2; 5.7 ≈
√

29.0 = 5.4.
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1.1.4 69T a b l e 2Data for histogram of distribution of number of ounts for 10 sNumber of pulses ni 0 1 2 3 4 5Number of events 0 3 9 15 30 59Fration of events wn 0 0.007 0.023 0.037 0.075 0.147Number of pulses ni 6 7 8 9 10 11Number of events 49 53 62 45 28 20Fration of events wn 0.123 0.132 0.155 0.113 0.070 0.050Number of pulses ni 12 13 14 15 16 17Number of events 14 7 2 3 0 1Fration of events wn 0.035 0.017 0.005 0.007 0 0.003T a b l e 3Number of ounts for 40 s# of sample 1 2 3 4 5 6 7 8 9 100 36 36 31 29 27 39 26 32 36 3310 31 43 24 31 29 17 25 28 32 3920 31 32 33 33 28 17 27 42 23 2930 22 22 37 28 25 31 28 32 17 3240 39 36 23 30 26 22 35 29 19 2650 26 26 26 24 33 26 34 29 26 2560 36 40 32 28 28 24 22 33 28 3570 30 34 30 38 28 28 26 19 22 3380 21 20 36 30 21 25 29 28 29 2690 24 29 21 30 36 26 38 22 32 2613. Compare the standard deviations of individual measurements for twodistributions: n̄1 = 7.4; σ1 = 2.7 and n̄2 = 29; σ2 = 5,7. One an easily see thatalthough the absolute value σ of the seond distribution is greater (5.7 > 2.7),the relative half-width of the seond distribution is smaller:

σ1

n̄1

· 100% =
2.7

7.24
· 100% ≈ 37%,

σ2

n̄2

· 100% =
5.7

29
· 100% ≈ 20%.This an be also seen in Fig. 2.14. Determine the standard error of the quantity n̄1 and the relative error ofthe estimate n̄1 using N = 400 measurements for 10 s bins. Aording to Eq. (6)

σn̄1 =
σ1√
N1

=
2.7√
400

≈ 0.13.



70 Measurements in PhysisT a b l e 4Data for histogram of distribution of number of ounts for 40 sNumber of pulses n1 17 18 19 20 21 22 23 24 25Number of events 3 0 2 1 3 6 2 4 4Fration of events wn 0.03 0 0.02 0.01 0.03 0.06 0.02 0.04 0.04Number of pulses n1 26 27 28 29 30 31 32 33 34Number of events 12 2 10 8 5 5 7 6 2Fration of events wn 0.12 0.02 0.01 0.08 0.05 0.05 0.07 0.06 0.02Number of pulses n1 35 36 37 38 39 40 41 42 43Number of events 2 7 1 2 3 1 0 1 1Fration of events wn 0.02 0.07 0.01 0.02 0.03 0.01 0 0.01 0.01T a b l e 5Error Numberofevents Fraton of events, % Theoretialestimate

±σ1 = ±2.7 268 67 68

±2σ1 = ±5.4 384 96 95Find the relative error aording to the �rst Eq. (7):

εn̄1 =
σn̄1

n̄1

· 100% =
0.13

7.24
· 100% ≈ 1.8%;and aording to the last Eq. (7):

εn̄1 =
100%√
n̄1N1

=
100%√

7.24 · 400
≈ 1.9%.Finally,

nt=10s = n̄1 ± σn̄1 = 7.24 ± 0.13.15. Determine the standard error of the quantity n̄2 and the relative errorof the estimate n̄2 using N2 = 100 measurements for 40 s bins. Aording toEq. (6)

σn̄2 =
σ2√
N2

=
5.7√
100

= 0.57.The relative error aording to the �rst Eq. (7) is
εn̄2 =

σn̄2

n̄2

· 100% =
0,57

29
· 100% ≈ 2.0%;

1.1.4 71and aording to the seond Eq. (7):
εn̄2 =

100%√
n̄2N2

=
100%√
29 · 100

≈ 1.9% = εn̄1 .Finally,

nt=40s = n̄2 ± σn̄2 = 29.0 ± 0.6.AppendixThe Poisson distribution. In physis the measurement results are often rep�resented by integers. For example, a disrete (usually large) number of partilespasses through Geiger ounter during the time of measurement. A nuleus un�dergoing �ssion splits into integer number of parts. Statistial patterns in theseases possess some general features.Consider a ounter whih detets osmi rays. Whereas the number of ountsfor any period of time is an integer, the �ux density ν (i. e. the average numberof ounts per one seond per unit area) is usually non-integer.Let's �nd the probability that for a given �ux density ν the ounter triggers

n times during a given time interval. For the sake of simpliity we will assumethat the ounter has unit area, whih does not in�uene the �nal result.Sine we alulate probabilities one should imagine a great number of similarsimultaneously operating ounters. Some of them trigger exatly n times. Theratio of the number of these ounters to the total number of ounters is theprobability of the event that a ounter triggers n times during the given timeinterval.Let the net number of ounters be N . On average Nν partiles pass throughthem per seond and Nνdt partiles pass for the time dt. If dt is small enoughnone of the ounters detets more than one partile during this time, therefore theounters an be divided into two groups: those whih triggered and those whihdid not. The last group is, of ourse, the largest one. Obviously the number oftriggered ounters is equal to the number of ounted partiles, i. e. approximately

Nνdt, so their ratio to the net number of ounters is Nνdt/N = νdt.Therefore the probability of a partile passing through a ounter for dt equals

νdt. This argument is valid only if dt is very small.Let us alulate now the probability P0(t) that no partile passes through aounter for t. By de�nition the number of suh ounters at t equals NP0(t) andat t + dt it is equal to NP0(t + dt). The last number is less than NP0(t) beauseduring dt the number of the ounters dereases by NP0(t)νdt. Therefore

NP0(t + dt) = NP0(t) − NP0(t)νdt,or

P0(t + dt) − P0(t) = −P0(t)νdt.Dividing this equation by dt and taking the limit of in�nitesimal dt we obtain

dP0

dt
= −νP0.



72 Measurements in PhysisIntegrating this equation we obtain

P0(t) = e−νt. (8)The onstant of integration is determined by the obvious ondition that initiallythe probability to �nd a ounter whih has not triggered equals unity.Now let us alulate the probability Pn(t + dt) of the event of exatly npartiles passing through a ounter for the time t + dt. These ounters aredivided into two groups. The �rst group inludes the ounters whih triggeredexatly n times for the period t and not triggered for the period dt. The seondgroup inludes the ounters whih triggered exatly n−1 times for the time t andtriggered one during the period dt. The number of ounters in the �rst groupequals NPn(t)(1 − νdt) and the number of ounters in the seond group equals

NPn−1(t)νdt. (Eah expression onsists of two multipliers. The �rst determinesthe probability that a ounter triggers a given number of times during the time

t and the seond spei�es the probability to trigger or not to trigger during thetime dt.) Thus we obtain:

NPn(t + dt) = NPn(t)(1− νdt) + NPn−1(t)νdt.Now move NPn(t)(1 − νdt) into the left part of the equation and divide it by

Ndt:

dPn

dt
+ νPn = νPn−1.Applying the reurrene relation for n = 1, n = 2 et., and using (8) we obtain

Pn =
(νt)n

n!
e−νt.Notie that νt denoted as n0 equals the mean number of partiles passing througha ounter for the time t. Then our formula an be written as

Pn =
nn

0

n!
e−n0 . (9)It is the �nal formula whih is known as the Poisson distribution law. It deter�mines the probability that for a given mean number of ounts n0 (not neessarilyinteger) exatly n ounts take plae (n is integer).The Poisson distribution law is spei�ed by the single parameter: the meannumber of ounts. Neither the time of measurement nor the ounter area matters.Similarly the law is not limited by a Geiger ounter deteting osmi rays. Thelaw applies to the number of telephone alls passing through entral station or toany other problem in whih the number of ounts is an integer and independentof the number of ounts deteted previously (independent events).Consider some properties of Eq. (9). First of all let us alulate the proba�bility to �nd any number n:

∞
∑

n=0

Pn(n0) =
∞
∑

n=0

nn
0

n!
e−n0 = e−n0

∞
∑

n=0

nn
0

n!
= e−n0en0 = 1.

1.1.4 73Of ourse this result is evident beause any value of n ould be found in experi�ment, therefore we have alulated the probability of a ertain event.Now alulate the mean value of n:
〈n〉 =

∞
∑

n=0

nPn(n0) =
∞
∑

n=1

n
nn

0

n!
e−n0 = e−n0n0

∞
∑

n=1

nn−1

0

(n − 1)!
=

= n0e
−n0

∞
∑

n=0

nn
0

n!
= n0e

−n0en0 = n0.The obtained result is preditable sine we started from the assumption that themean value of n equals n0.Now let us �nd the standard deviation of n. To this end we alulate thevariane of n (the mean value of the deviation squared):
〈

(n − n0)
2
〉

=
〈

n2 − 2nn0 + n2

0

〉

=
〈

n2
〉

− 2 〈n〉n0 + n2

0 =
〈

n2
〉

− n2

0.To alulate 〈n2
〉 it is onvenient to �nd 〈n(n − 1)〉 at �rst and then make useof the following expression 〈n(n − 1)〉 =

〈

n2
〉

− 〈n〉 =
〈

n2
〉

− n0:

〈n(n − 1)〉 =
∞
∑

n=0

n(n − 1)Pn(n0) =
∞
∑

n=2

n(n − 1)
nn

0

n!
e−n0 =

= e−n0n2

0

∞
∑

n=2

nn−2

0

(n − 2)!
= n2

0e
−n0

∞
∑

n=0

nn
0

n!
= n2

0e
−n0en0 = n2

0.Hene: 〈n2
〉

= n2

0 + n0 and
σ2 ≡

〈

(n − n0)
2
〉

=
〈

n2
〉

− n2

0 = (n2

0 + n0) − n2

0 = n0.Finally,
σ ≡

√

〈(n − n0)2〉 =
√

n0. (10)Gaussian distribution. When the parameter n0 tends to in�nity the Poissondistribution takes the form of Gaussian distribution. Many other distributionlaws have the same limit. This is explained by the entral limit theorem whihstates that a distribution of the sum of a large number of independent randomvalues tends to Gaussian distribution. For example, the number of partiles pass�ing through a ounter for n seonds (random quantity, the Poisson distribution)ould be treated as the sum of n numbers of partiles passing through the ounterper seond.Consider the Poisson distribution for large n0 and n. Disreteness of thedistribution is no longer signi�ant in this limit beause n varies almost ontin�uously. We will speify the deviation of n from n0 by ε de�ned by the followingrelation

n = n0(1 + ε) or ε =
n − n0

n0

.



74 Measurements in PhysisUsing Stirling's formula

ln n! = ln
√

2πn + n ln n − nand Eq. (9) we obtain

ln Pn = n ln n0 − n0 − ln
√

2πn − n ln n + n =

= n ln
n0

n
+ (n − n0) − ln

√
2πn ≈ − ln

√
2πn0 − n0ε

2

2
,then

Pn =
1√

2πn0

e
−

(n−n0)2

2n0 . (11)The probability distribution Pn an be extended to ontinuous quantities.To this end notie that n − n0 is equal to the deviation of experimental value nfrom the mean value n0. Let us denote this deviation as x:

x = n − n0.Using Eq. (10) we substitute the standard deviation σ for n0. Finally, notiethat Pn ould be treated as the probability to �nd the value n in the intervalbetween n − 1/2 and n + 1/2. This interval orresponds to ∆x = 1. Making thesubstitutions and hanging the notation from Pn to P (x) we obtain

P (x) =
1√
2πσ

e
− x2

2σ2 . (12)Funtion P (x) is the probability that the value x belongs to the unit interval
∆x around the entral value x. Choosing the in�nitesimal interval dx instead we�nd

dP = ρ(x)dx =
1√
2πσ

e
− x2

2σ2 dx. (13)Equation (13) determines the probability that the random value is between
x − dx/2 and x + dx/2. The quantity ρ(x) is alled probability density. For therandom value whih has a non-zero mean value µ the probability density (13) is

ρ(x) =
1√
2πσ

e
−

(x−µ)2

2σ2 . (14)The distribution (14) is alled Gaussian distribution.Using Eq. (13) it is easy to �nd the probability that the random value liesbetween x1 and x2, where x1 and x2 are any numbers. Obviously,
P (x1 6 x 6 x2) =

x2∫

x1

1√
2πσ

e
− x2

2σ2 dx. (15)
1.1.5 75The integral (15) annot be expressed via primitive integrals. It is alled theerror funtion erf(x):

erf(x) =
2√
π

x∫

0

e−t2 dt. (16)One an easily show, that
P (x1 6 x 6 x2) =

1

2

[

erf

(

x2√
2σ

)

− erf

(

x1√
2σ

)]

. (17)The funtion erf(x) is antisymmetri relative to the origin x = 0:
erf(−x) = −erf(x). (18)Using the tables of erf(x) one an easily �nd the probability that a randomvalue lies between −σ and σ, between −2σ and 2σ, and between any other values:

P (−σ 6 x 6 σ) =
1

2

[

erf

(

1√
2

)

− erf

(

− 1√
2

)]

= erf

(

1√
2

)

≈ 0,68,

P (−2σ 6 x 6 2σ) ≈ 0,95,

P (−3σ 6 x 6 3σ) = 1 − 0,0044.The probability to �nd x between two values quikly approahes unity as thewidth of the interval inreases.Indeed they are met not so rarely. It takes plae, beause real error distri�butions are various and never stritly obey Gauss law. Suh distributions aretreated as Gauss for the lak of better. In the area of small deviations from meanvalue Gauss law mostly orretly estimates probabilities of di�erent meeting inpratie deviations, but in the area of large deviations desribes them badly, andmore the deviations � worse the desription.Lab 1.1.5Study of elasti proton-eletron ollisionsPurpose of the lab: to alulate momenta and sattering angles ofprotons and eletrons using photographs of partile traks; to treat theresults using non-relativisti and relativisti theory and to deide whihtheory applies.Tools and instruments: slides with photographs of partile traks ina hydrogen bubble hamber; a slide projetor with a oordinate grid forviewing the �lm.One of the most e�ient methods of studying atomi nulei and ele�mentary partiles is to investigate their ollisions with energeti partiles



76 Measurements in Physisand register the partiles originated in the ollisions. In these experimentsthe following tehniques are used: 1) reating beams of partiles used asprojetiles, 2) preparing targets ontaining nulei or other partiles, and3) deteting properties of the outgoing partiles.Energies of outgoing partiles originated in the most radioative souresare limited by several MeV's1. Partiles, whih arry eletri harge, anbe aelerated in speial mahines alled partile aelerators. Partileenergy of a ommerial aelerator ranges from several MeV to tens ofGeV. All soures of nulei and elementary partiles are divided into ra�dioative soures (primary and seondary partiles), aelerators (primary,seondary, and tertiary beams), and nulear reators and osmi rays.A list of available targets is also limited. It inludes all stable nuleiand eletron.The major problem with partile detetion stems from the fat thatpossible marosopi e�et on matter due to a partile is very small. Themost prominent e�et of this kind is ionization of matter by an eletri�ally harged partile. Some detetors employ eletromagneti radiation ofharged partiles passing through matter. Neutral partiles are registeredby seondary e�ets. The main part of a detetor is a physial system in un�stable state: superheated vapor or liquid, gas in a pre-disharge state, andso on. A miro-partile entering suh a system auses maro-atastrophe.PSfrag replaements

~p0

~pe

~pFig. 1. Elasti ollision between protonand eletron at rest Elasti ollisions between protonsand eletrons is the subjet of thislab; the experimental data are photo�graphi images of partile traks in ahydrogen bubble hamber. Workingsubstane in the hamber is a super�heated liquid. A trak due to a harged partile is formed by vapor bubbles.The detailed mehanism of bubble formation is still to be understood.Consider an elasti ollision between a proton and an eletron at rest.Figure 1 shows: the proton momentum ~p0 before the ollision, the protonmomentum ~p after the ollision, the eletron momentum ~pe, and the sat�tering angles ϕ and θ of the proton and the eletron with respet to thediretion of inoming proton, respetively.The law of onservation of momentum reads (see Fig. 1):
p0 = p cosϕ + pe cos θ,
p sinϕ = pe sin θ.

(1)1 1 eV (eletron-volt) = 1.6 · 10−19 J.

1.1.5 77Exluding the angle ϕ we get

(p0 − pe cos θ)2 + p2
e sin2 θ = p2or

p2
0 − 2p0pe cos θ + p2

e = p2. (2)This relation follows from the law of onservation of momentum and itis valid both in relativisti and non-relativisti mehanis.Using the law of onservation of energy one must be areful sine rela�tivisti and non-relativisti expressions for partile energy are di�erent. Inlassial (non-relativisti) mehanis kineti energy is expressed in termsof mass, veloity, and momentum:
Eê =

mv2

2
=

p2

2m
. (3)By introduing the notations M and m for the mass of proton andeletron, respetively, and using the notations for the momenta introduedabove (see Eq. 1)), the law of onservation of kineti energy in non-rela�tivisti approximation an be written as:

p2
0

2M
=

p2

2M
+

p2
e

2m
. (4)Exluding the proton momentum after the ollision from Eqs. (2)and (4) one obtains:

pe

(

1 +
m

M

)

= 2p0

m

M
cos θ (5)or

cos θ =
M + m

2m
· pe

p0

. (6)It is evident that the momentum of the eletron after the ollision isdiretly proportional to the osine of its sattering angle. The momentuminreases as the angle dereases. Taking into aount that M/m ≈ 2000,one gets

pe ≈ 2p0

m

M
cos θ. (7)This implies that the maximum eletron momentum is

pemax ≈ 0.001p0. (8)Then it follows from Eq. (1) that p ≈ p0 and θ ≫ ϕ.



78 Measurements in PhysisRelativisti mehanis requires the modi�ed expression for energy andmomentum in order for the laws of onservation of momentum and energybe valid in di�erent referene frames.

p =
mv

√

1 − v2

c2

, (9)

E =
mc2

√

1 − v2

c2

. (10)Here v is the partile veloity, c is the speed of light, and m is the partilemass.Introduing the notations

β =
v

c

(11)and

γ =
1

√

1 − β2
, (12)one an rewrite eqs. (9) and (10) as

E = γmc2, (13)
p =

E

c2
v = γβmc, (14)

E2 = p2c2 + m2c4. (15)In relativisti mehanis the total energy γmc2 of a free partile is thesum of the kineti energy (γ − 1)mc2 and the rest energy mc2.Let the proton energy before and after the ollision be E0 and E, re�spetively. The energy of the eletron after the ollision is Ee and beforethe ollision was equal to the eletron rest energy mc2. Conservation ofthe proton and eletron energy gives:

E0 + mc2 = E + Ee. (16)Notie that before and after any elasti ollision the partiles are thesame. Therefore, kineti energy of the system whih equals the di�erenebetween the total and the rest energy for eah partile is also onserved.For eletron

K = Ee − mc2. (17)
1.1.5 79Now take p from (2) and E from (16), substitute in (15):

(E0 + mc2 − Ee)
2 = (p2

0 − 2p0pe cos θ + p2
e)c

2 + M2c4and simplify this expression taking into aount that E2
0 = p2

0c
2 + M2c4and E2

e = p2
ec

2 + m2c4,
m2c4 + E0mc2 − E0Ee − mc2Ee = −p0pec

2 cos θ,whih gives the relation between the eletron momentum pe and the angle
θ:

cos θ =
E0Ee + mc2Ee − E0mc2 − m2c4

p0pec2
=

(E0 + mc2)(Ee − mc2)

p2
ec

2

pe

p0

=

=
(E0 + mc2)(Ee − mc2)

E2
e − (mc2)2

pe

p0

=

=
E0 + mc2

Ee + mc2

pe

p0

=
M + m + K0/c2

2m + Ke/c2
· pe

p0

. (18)Kineti energy is negligible ompared to rest energy for veloities smallompared to the speed of light, then Eq. (18) beomes Eq. (6).Using the relation (15) between eletron energy and momentum onegets the following relation between the sattering angle of the eletron andits momentum:
cos θ =

E0 + mc2

p0

· pe
√

p2
ec

2 + m2c4 + mc2
. (19)It is evident that the relation between the momentum and the osineis nonlinear. The osine grows slower with the momentum than in thenon-relativisti ase.It is onvenient to rewrite Eq. (19) using the dimensionless parameter

z =
pec

Ee + mc2
=

p0c

E0 + mc2
cos θ ≈ p0c

E0

cos θ = β cos θ. (20)This parameter is diretly proportional to cos θ. A plot of the funtion

z(cos θ) an be used to determine the initial momentum of the protons.It has already been mentioned that the elasti ollisions between pro�tons and eletrons were observed in the bubble hamber plaed in a uniformmagneti �eld. The bubble hamber is a ylinder �lled with a liquid whihtemperature is lose to the boiling point. The liquid does not boil beause



80 Measurements in Physisit is pressurized by a piston or a membrane used as a ylinder base. Thepressure drops when the proton beam enters the hamber, the liquid be�omes superheated and remains unstable for some time. If during this time(several milliseonds) a harged partile passes through the hamber, theliquid will boil along the partile trak whih beomes visible as a hain ofvapor bubbles. The working liquid serves as the target and the detetor atthe same time. Liquid hydrogen is often used as the working liquid, whihallows one to observe interation of energeti partiles with protons (thehydrogen nulei) and with eletrons (from the hydrogen eletron shells).The hamber operates at the temperature of liquid hydrogen of 29 K andat the pressure of 5 atm.Bubble hamber is superior ompared to the Wilson hamber in havinga greater density of the working medium, whih lessens partile free pathand enables to detet more interation events in the same volume. Nowa�days bubble hambers are not used, they have been superseded by sparkhambers.The bubble hamber in whih the partile traks have been pho�tographed was plaed in a uniform magneti �eld ~B perpendiular to thephotographi plane. Reall that the partile with eletri harge e whihis moving with the veloity ~v in the magneti �eld ~B is subjeted to theLorentz fore:

~F = e~v × ~B. (21)In our ase it would be safe to assume that ~v and ~B are orthogonal.The Lorentz fore is perpendiular to the veloity, so the partile exeutesirular motion. The irle radius r and the partile momentum p arerelated as

mv2

r
= evB, (22)or

p = eBr. (23)This equation is valid both in lassial and relativisti mehanis.In what follows B = 2 T. If pc and r are measured in megaeletronvolts(MeV) and entimeters, respetively, then
pc = 6r. (24)Work with the photographs begins with installing the �lm in the slideprojetor and obtaining a sharp image on a sreen. The diretion in whihthe �lm is moving is onsidered as the diretion of absissa of the oordinategrid. Then the �lm is examined and suitable images are seleted.

1.1.5 81The photograph shows traks of protons passing through the hamber.The protons ollide both with atomi nulei (hydrogen nulei in our ase,i.e. protons) and with eletrons. In the �rst ase either elasti satteringor a nulear reation ours, the latter often results in pion reation. Thepath of inoming proton has a sharp usp.
Fig. 2

In the ase of proton-eletron olli�sion a proton path is smooth sine pro�ton is muh heavier than eletron. Thetrajetories of the reoiled eletrons,whih are usually alled δ-eletrons, areurved by the magneti �eld. As it fol�lows from Eq. (23) the urvature radiusof a trajetory is proportional to thepartile momentum and so it is muhsmaller for eletrons than for protons.Deeleration of eletron due to its inter�ation with the environment results indereasing its momentum and thereforethe urvature radius of its path whihbeomes a spiral (see Fig. 2).The rosses (in the squares) on the photographs are the labels plaedon the bubble hamber window, through whih the shots are taken, todetermine the image sale.Besides the traks of δ-eletrons one an also see the traks of theeletrons whih are not related to the proton trajetories. Suh eletrons,whih seemingly appear out of nothing, are due to sattering of γ-quanta(energeti eletromagneti radiation) on eletrons. The photographs alsoshow the traks of the pairs e+ and e− originated at the same point andbent in the opposite diretions. Suh eletron-positron pairs are reatedby γ-quanta in the �eld of a nuleus.Not all the photographs an be used for the measurements. One shouldselet the images on whih the enters of the onseutive spiral revolutionsare not signi�antly displaed with respet to eah other and the diame�ter of the �rst spiral revolution exeeds 8-10 mm. The photographs onwhih an eletron reoils at the angle less than 2�3◦ must be disarded.The reason is that the angle visible on the photograph is not the wholestory, there is always a omponent perpendiular to the �lm. The error ofthe measurement arising due to the undetetable perpendiular omponentinreases if the angle is small. Also one should take into aount that prob�ability for a δ-eletron to emerge is inversely proportional to the square ofits kineti energy, therefore the majority of δ-eletrons have small energies



82 Measurements in Physisand their trajetories have small radii. This irumstane ompliates themeasurements. It is advisable to selet both ¾narrow¿ and ¾wide¿ spirals.The measurements are performed with the aid of a magnifying glass(×28). The distane between the rosses on the bubble hamber window isknown and it is used to determine the size of a trajetory. In our ase theradii R measured on the projetor sreen must be multiplied by the oe��ient K = 0.427 in order to obtain the orresponding radii r in the bubblehamber. Figure 2 shows the whole photograph whih an be observed bymeans of a magnifying glass with a less magni�ation.A photograph allows one to determine the angle between the protontrajetory and the initial segment of eletron spiral. The eletron momen�tum is determined by the urvature radius of the spiral. In so doing theexperimental relation between eletron momentum and sattering anglean be found. Comparing the relation with Eqs. (6) and (18) one ouldinfer whether relativisti e�ets should be taken into aount.The urvature radius R of eletron trajetory and the sattering angle θare determined as follows. The seleted image of the ollision is entered onthe projetor sreen (see Figs. 3 and 4). The oordinates are hosen so thatthe absissa is direted along the proton trajetory. The origin is plaedat the initial point of δ-eletron trajetory whih oordinates are (x1, y1).We assume that the initial segment of the spiral is well approximated bya irle:

(x − x0)
2 + (y − y0)

2 = R2. (25)Here x0 and y0 are the oordinates of the irle enter and R is its radius.Figures 3 and 4 show two possible diretions in whih an eletron anreoil. One an see that the irle enter is loated either on the left or onthe right of the ordinate. In both ases the angle α between the ordinateand the radius drawn from the enter (x0, y0) to the origin (x1, y1) equals
θ whih an be determined providing R and y0 are known. Then

cos θ =
y0

R
. (26)The radius of eletron trajetory R measured on the sreen is used toalulate the radius in the bubble hamber, r = 0.427R. The eletronmomentum is then determined from Eq. (24).Radius and oordinates of the enter of a irle an be determinedfrom the oordinates of three points of the irle. One of the points isthe origin (x1, y1). Two more points are shown in Fig. 3: the point (x3,

y3) of the trajetory intersetion with the ordinate and some intermediatepoint (x2, y2). Substitution of the point oordinates in Eq. (25) gives three
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x2

0 + (y3 − y0)
2 = R2.

(27)Then

y0 =
y3

2
, x0 =

x2
2 + y2

2 − y2y3

2x2

. (28)For the ase shown in Fig. 4 two additional points are: the point (x2,
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y2) of the trajetory intersetion with the absissa and an arbitrary point(x3, y3). This gives the following set of equations:

x2
0 + y2

0 = R2,
(x2 − x0)

2 + y2
0 = R2,

(x3 − x0)
2 + (y3 − y0)

2 = R2.

(29)Therefore

x0 =
x2

2
, y0 =

x2
3 + y2

3 − x2x3

2y3

. (30)It is onvenient to hoose the point of the trajetory intersetion withthe ordinate as the third point providing the trajetory does not deviatesigni�antly from a irle. Then

x0 =
x2

2
, y0 =

y3

2
. (31)The radius of a irle is always found as

R =
√

x2
0 + y2

0 . (32)For ross-heking it is advisable to measure diretly the distane be�tween the origin and the enter of δ-eletron trajetory on the sreen usingthe oordinate grid.In partile physis energy is usually measured in eletron-volts (eV) orthe derived units: kiloeletron-volt (1 KeV = 103 eV), megaeletron-volt(1 MeV = 106 eV), and gigaeletron-volt (1 GeV = 109 eV). Momentumand mass are onveniently replaed by pc and mc2, respetively. Thesequantities have dimension of energy and expressed in eletron-volts, whihsimpli�es alulations. Using these units in the lab is mandatory. Themasses of eletron and proton are mc2 = 0,511 MeV and Mc2 = 938 MeV,respetively. LABORATORY ASSIGNMENT1. Make the table for reording the results of the measurements and alula�tions:

N x2, y2, y3, Rscr, R, cos θ pec, zmm mm mm mm mm MeV

1.1.5 85Here N is the trak number and Rscr is the radius measured on the sreen.2. Using the magnifying glass projet the image of the traks on the sreen.3. Selet an appropriate eletron trak (the sattering angle exeeds 2�3◦ andthe diameter of the �rst urve revolution is 8�80 mm).4. Plae the origin of referene frame at the initial point (x1, y1) of the
δ-eletron trajetory. Choose the absissa diretion along the proton tra�jetory (see Fig. 3).5. Measure and tabulate the oordinates x2, y2, y3 of the orresponding pointsfor a ase shown in Fig. 3 and x2, x3, y3 or x2, y3 for a ase shown in Fig. 4.6. Measure and tabulate the radius R of the �rst revolution of the trak.7. Repeat the measurements 3�6 for 40-50 traks.8. Calulate and tabulate the oordinates of the irle using Eqs. (28) and (30)or (31), the radius of the irle using Eq. (32), the osine of the satter�ing angle using Eq. (26), the eletron momentum multiplied by the speedof light using Eq. (24) and the relation r = 0.427R, and z(cos θ) usingEq. (20).9. Plot the points with oordinates (pec, cos θ). On the same graph plot thepoints cpe(cos θ) alulated using non-relativisti and relativisti Eqs. (7)and (19).10. Plot the points with oordinates (z, cos θ). Draw a straight line throughthe points and the origin (using the method of least squares is preferable).Using the value of the slope and Eqs. (20), (9), (10), and (15) alulate:the momentum of the inoming proton, the proton energy, the protonveloity divided by the speed of light β = v/c, and the quantity γ =

= 1/
√

1 − β2.11. Estimate the random error of the proton momentum and energy using thefollowing graphi method. Draw two additional straight lines through theorigin with the slopes β ±∆β (β is the slope of the line drawn previously)by hoosing ∆β so that two thirds of the points are between the lines.Calulate the error of the momentum using

∆p ≈ p(β + ∆β) − p(β)√
nand ompare the obtained value with the error given by the method ofleast squares (1.40). Questions1. Derive equations relating eletron sattering angle and its momentum in rela�tivisti and non-relativisti mehanis.2. Derive the formula relating veloity of a relativisti partile with its momentumand energy.



86 Measurements in Physis3. Derive the equation relating eletron momentum and the radius of its traje�tory in magneti �eld. Show that this equation is valid both in relativisti andnon-relativisti mehanis. Literature1. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. � Ì.: Íàóêà, 1980. Ò. IV. � 111. Ò. V.×. 2. � 86.2. Êèòòåëü ×., Íàéò Ó., �óäåðìàí Ì. Ìåõàíèêà. � Ì.: Íàóêà, 1983. �ë. 11,12.3. Êîïûëîâ �.È. Âñåãî ëèøü êèíåìàòèêà. � Ì.: Íàóêà, 1981.4. Áåëîíó÷êèí Â.Å. Îòíîñèòåëüíî îòíîñèòåëüíîñòè: Ó÷åá. ïîñîáèå / ÌÔÒÈ.Ì., 1996.5. Êèíãñåï À.Ñ., Ëîêøèí �.�., Îëüõîâ Î.À. Îñíîâû �èçèêè. Ò. 1. Ìåõàíèêà,ýëåêòðè÷åñòâî è ìàãíåòèçì, êîëåáàíèÿ è âîëíû, âîëíîâàÿ îïòèêà. � Ì.:Ôèçìàòëèò, 2001. ×. 1. �ë. 10.Example of lab report 1.1.5The laboratory equipment: a �lm with photographs of events in a hydrogenbubble hamber and a slide projetor with oordinate grid for surveying the �lm.The momentum and the sattering angle (the angle the reoiled eletronmakes with the diretion of the inoming proton) of an eletron are determinedby its (spiral) trajetory in the magneti �eld. The initial part of the spiral is ap�proximated by a irular ar. The radius and the sattering angle are alulatedfrom the oordinates of three points lying on the ar: x2, y2, and y3 (see Fig. 3).The origin of the referene frame is at the ollision point. The orrespondingdata are tabulated in Table 1. The oordinates are measured on the sreen withan error of 1 mm.The table also ontains the results of the alulation. The radius and theosine of the sattering angle are evaluated using Eqs. (32), (28) and (26).Eletron momentum is evaluated using Eq. (24) in whih r = 0.427R (R isin mm). The values of z are obtained from (20). The errors an be evaluatedusing (1.33).The points with oordinates (pec, cos θ) are plotted in Fig. 5. The largesatter is due to a large measurement error.It is evident that eletron momentum inreases together with cos θ (the angledereases).In a non-relativisti ase and for a onstant energy of protons the eletronmomentum is determined by Eq. (7), so it is diretly proportional to cos θ.In a relativisti ase the orresponding dependene is non-linear and it isgiven by Eq. (19). It is onvenient to introdue the funtion
z =

pec
√

p2
ec2 + m2c4 + mc2

=
p0c

E0 + mc2
cos θ ≈ p0c

E0

cos θ = β cos θ.

1.1.5 87The funtion depends linearly on cos θ, whih allows one to determine the veloityof inoming protons using graphial methods.The alulated values of z are presented in Table 1.The �nal results are shown in Fig. 6, the straight line is drawn using themethod of least squares (Eqs. 1.39)and (1.40)).The line slope is β = 0.936 ± 0.014.The relative error of β found by the method of least squares is:
∆β

β
=

0.014

0.936
= 0.015 = 1.5%.Now let us evaluate the random error of β graphially. To this end we drawtwo additional straight lines, so that approximately 40 · 1/3 · 1/2 ≈ 7 points lieoutside the lines. The slopes of the lines di�er from the slope of the entral lineby ±0.08. The random error of β is

∆β =
0.08√

40
≈ 0.013;

∆β

β
= 0.14 = 1.4%,whih agrees with the results of the method of least squares.Calulate γ:

γ =
1√

1 − 0.9362
= 2.84.Equations (1.33) and (12) give the error of γ:

∆γ

γ
= γ2β2 ∆β

β
≈ γ2 ∆β

β
≈ 8 · 1,5% = 12%.Finally: γ = 2.8 ± 0.3.The initial proton momentum is found from Eq. (14):

p0c = γβmc2 = 2.8 · 0.936 · 938 MeV = 2.5 ± 0.3 GeV.The initial proton energy is

E0 = γmc2 = 2.8 · 938 MeV = 2.6 ± 0.3 GeV.The proton veloity is v = βc = 0.936 c. The dashed line in Fig. 5 orrespondsto p(cos θ) alulated using the non-relativisti Eq. (7). The solid line on the sameplot orresponds to the relativisti dependene (19).It is obvious that the eletron momentum should be determined from rela�tivisti formulae.



88 Measurements in PhysisT a b l e 1# x2 y2 y3 R Rscr cos θ pec ztrak mm mm mm mm mm MeV1 7.5 10 24 13.2 13 0.91 3.4 0.8612 8 15 25 13.6 13 0.919 3.5 0.8643 3 3 8.5 4.4 4 0.95 1.1 0.644 2 5 10.5 8 8 0.66 2.0 0.785 11.5 20 33.5 17.8 18 0.94 4.6 0.8956 29 20 40.5 21.6 22 0.939 5.5 0.9117 11.5 20 40 23 23 0.87 5.8 0.9168 15 10 15.5 9.6 10 0.81 2.5 0.8169 18 23 45 23.1 23 0.97 5.9 0.91710 8 10 19.5 9.9 10 0.98 2.5 0.82211 6 3 6 3.8 4 0.8 0.97 0.6012 2.5 5 10.5 7 7 0.78 1.7 0.7513 6.5 8 13.5 6.8 7 0.99 1.74 0.7514 22.5 15 22 14.2 14 0.77 3.64 0.86915 24 30 57 28.9 29 0.98 7.4 0.93316 9.5 15 28.5 15.4 15 0.92 3.9 0.87917 37.5 47 94 48.1 48 0.97 12.32 0.95918 21.5 12.5 24.5 14.2 14 0.86 3.64 0.86919 30 23 47 24.2 24 0.97 6.2 0.92120 21 15 27 14.9 15 0.91 3.82 0.87521 5 10 19 12 12 0.82 2.9 0.8422 22 27 50.5 22.5 22 0.99 6.53 0.92523 6 10 19 10.5 10 0.9 2.7 0.82824 12.5 8 19 9.9 9 0.96 2.53 0.81825 2.5 7.5 12 8 8 0.7 2.1 0.7926 7.5 10 21 11.1 11 0.95 2.8 0.83627 19.5 15 30.5 15.7 16 0.97 4.02 0.88128 17 20 40.5 20.6 20 0.98 5.28 0.90829 16 24 47.5 25.6 25 0.93 6.6 0.92530 9 6 10.5 6.0 6 0.87 1.55 0.7231 5.5 9 17 9.3 9 0.9 2.4 0.8132 10 15 28.5 15.1 15 0.94 3.9 0.87733 35.5 26 51.5 28.2 28 0.96 7.22 0.93234 24.5 19 38 19.6 20 0.97 5.02 0.90335 12.5 12.5 22 11.1 11 0.99 2.84 0.83636 8 15 28.5 17 17 0.85 4.3 0.88837 33 40 81 41.4 41 0.98 10.61 0.95338 11 16 32.5 17.5 18 0.93 4.5 0.89239 12.5 17 35 18.5 18 0.95 4.7 0.89840 34.5 40 80 40.4 40 0.99 10.35 0.952
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90 Measurements in PhysisLab 1.1.6Study of eletroni osillosopePurpose of the lab: to study operation priniples and design of ele�troni osillosope.Tools and instruments: an osillosope, generators of eletri signals,and ables.Osillosope is an instrument whih displays an eletri signal as time�dependent urve. Osillosopes are widely used in experiments. Any time�dependent physial quantity whih an be onverted to eletri signal anbe studied with the aid of an osillosope.The osillosope used in the lab is a modi�ed version of the modelsÑ1-94 and Ñ1-1.
Fig. 1. Cathode-ray tubeCathode-ray tube. The main part of osillosope that determines itsmost important spei�ations is a athode-ray tube (CRT). It is a glass va�uum tube ontaining the following elements (see Fig. 1): athode heater 1,athode 2, modulator 3 (an eletrode whih ontrols image brightness),�rst (fousing) anode 4, seond (aelerating) anode 5, de�eting plates 6and 7, third (aelerating) anode 8, and sreen 9.An eletron beam is formed by a set of eletrodes alled ¾eletron gun¿:the athode and the heater, the modulator, and the fousing and aeler�ating anodes. The eletrodes are arranged to aelerate eletrons and tofous the beam on the sreen. A voltage di�erene between the �rst (fo�using) anode and the athode an be adjusted by knob ¾FOCUS¿. Thesize of the sreen bright spot is determined by the quality of the fousing
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Fig. 2. De�etion of eletron beam by eletri �eld of the platessystem, the size does usually not exeed 1 mm. Spot brightness is pro�portional to the eletron beam urrent whih an be adjusted by varyingthe modulator voltage (knob ¾BRIGHTNESS¿). The osillosope sreenis the tube front surfae overed with a phosphor layer.On its way to sreen the beam of eletrons passes two pairs of de�etingplates. Two vertial plates are a apaitor whih eletri �eld de�ets thebeam in the horizontal diretion. Two horizontal plates de�et the beam inthe vertial diretion. By applying the appropriate voltage on the plates itis possible to ¾draw¿ a �gure on the sreen using the beam as a ¾marker¿.Consider the motion of an eletron in a homogeneous eletri �eld ofde�eting plates (see Fig. 2). Let an eletron enter the �eld at the speed

v0 and go along z-axis, i.e. perpendiular to the �eld lines. The motion isfree along the z-axis and it is uniformly aelerated along the y-axis:

z = v0t, y =
at2

2
. (1)The aeleration an be found by using the seond law of Newton:

a =
eEy

m
. (2)Using Eqs. (1) and (2) one �nds:

y =
eEy

2mv2
0

z2. (3)



92 Measurements in PhysisTherefore the eletron path between the de�eting plates is a parabola.The eletron is displaed by distane h1 from the point of entry at the �eldexit and its veloity is de�eted by the angle α from z-axis:

h1 =
eEy

2mv2
0

l21, tan α =
eEy

mv2
0

l1. (4)Here l1 is the length of the plates. After leaving the �eld the eletron goesalong a straight line. The displaement h from the enter of osillosopesreen an be obtained from Fig. 2:

h = h1 + l2 tan α =
eEyl1
mv2

0

(

l1
2

+ l2

)

. (5)Let the distane between the enter of a plate and the sreen be L.Then

h =
eEyl1L

mv2
0

. (6)The speed v0 is determined by aelerating voltage Ua on the seondanode:

mv2
0

2
= eUa. (7)The eletri �eld Ey between the de�eting plates is

Ey =
Uy

d
, (8)where Uy is the voltage between the plates and d is the distane betweenthem. Using Eqs. (6) �(8) one obtains:

h =
l1L

2dUa
Uy. (9)Therefore beam displaement is diretly proportional to the de�eting volt�age Uy. The proportionality oe�ient k in Eq. (9) is alled tube voltagesensitivity:

k =
h

Uy
=

l1L

2dUa

[ cm

V

]

. (10)The tube sensitivity to voltage on the seond pair of plates is alulated inthe same way.Equation (9) also applies when de�eting voltage is time-dependent pro�viding the orresponding variation of time τ of eletron passage betweenthe plates is small. Typial time interval T , whih de�nes signal variation
1.1.6 93rate, an be the signal period, duration, build-up time, et. Let us estimatethe minimum value Tmin whih satis�es Tmin ≫ τ . The speed of eletronleaving the ¾eletron gun¿ is approximately 2 · 107 m/s (for Ua ≈ 103 V).For l = 3 m this gives τ = 1.5 · 10−9 s. Assuming that Eq. (9) appliesif Tmin/τ > 10 one obtains Tmin = 15 · 10−9 s. Therefore Eq. (9) or�retly determines the eletron oordinates on the sreen if the frequeny ofsinusoidal voltage on the de�eting plates is less than ∼108 Hz = 0.1 GHz.However, the atual maximum frequeny is su�iently less. Voltagesensitivity of the tube is a fration of mm/V, so the input signal must beampli�ed before it is applied to osillosope. Any ampli�er has a workingfrequeny range in whih its oe�ient of ampli�ation is onstant, outsidethe range the oe�ient falls sharply. The upper frequeny is determinedby the time onstant of osillosope iruit. Usually the working frequenyrange of osillosope is limited by that of the ampli�er.For the osillosope used in this lab the working range is 0 −−1 MHz.In this range, a beam displaement on the sreen in horizontal and vertialdiretions an be onsidered diretly proportional to the voltage on theorresponding de�eting plates.Sweeps. Aording to Eq. (9) x and y oordinates of the point where thebeam strikes the sreen are proportional to instantaneous voltages Ux(t)and Uy(t).The signal amplitude varies between tens of mirovolts and several hun�dred volts whereas the sensitivity of the de�etion plates is a fration ofmm/V. Therefore before the signal is applied to osillosope it must beeither ampli�ed or diminished.Ampli�ers ¾Y¿ and ¾X¿ serve to amplify the signal applied to thehorizontal and vertial plates, respetively. The attenuator (divider) atthe ¾Y¿ input allows one to redue the input signal by a required fator.Two requirements must be met in order to obtain an ¾image¿ of periodieletri signal Uc(t) on the sreen.1. The voltage Uy applied to the vertially de�eting plates must berelated to Uc as:

Uy(t) = U0y + kyuUc(t). (11)Here U0y is a onstant voltage whih determines image loation on the Yaxis of the sreen and kyu is the ampli�ation oe�ient of the input signalin the vertial hannel.2. The voltage Ux applied to horizontally de�eting plates must belinearly proportional to time t:

Ux = U0x + kxut. (12)
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Fig. 3. Sweeps voltageHere U0x is a onstant voltage whih determines the image loation on the

X axis of the sreen and kxu is a oe�ient whih depends on workingparameters of the sweep osillator and the ¾X¿ hannel ampli�er.A sawtooth voltage generated by the sweep osillator is also alledsweep voltage (see Fig. 3). During the forward sweep (Tfs) the voltageinreases to maximum, so the beam rosses the sreen from left to right ata onstant rate. When the forward sweep is ompleted, the voltage returnsto its initial value (Tbs), so the beam returns to its initial position on theleft side of the sreen. The rate of forward sweep, i.e. the sale of X-axis,is ontrolled by knob ¾TIME/DIV¿ whih graduation orresponds to thetime of beam rossing a ell of the gratiule. Waiting interval Tw allowsone to vary the sale of X axis regardless of the sweep period.A potential di�erene between the modulator of ¾eletron gun¿ and theathode is positive during the forward sweep, so the bright trae on thesreen is visible. During the bakward sweep (Tbs) the modulator voltage¾bloks¿ the beam, so there is no trae on the sreen during the blokinginterval.Triggering. Observation of periodi and espeially fast proesses requiresthe period of sweeps be a multiple of the signal period. However eitherthe sweep osillator or the signal is not stable. In pratie sweeps areontrolled by the studied periodi signal: the beginning of a forward sweepmust oinide with a seleted point of the signal. Proess of synhronizingsweeps by means of a seleted point of the signal is alled triggering. Thismethod of synhronization is illustrated in Fig. 4.Signal Uy of an arbitrary shape (trapezoid in the �gure) reahes thethreshold voltage Ul (triggering level) from below that is ontrolled byknob ¾LEVEL¿ on the osillosope front panel. At this moment the for�ward sweep of the ¾saw¿ starts provided the threshold is rossed duringthe waiting interval Tw (Figs. 3 and 4). The ¾saw¿ an start when thesignal Uy rosses threshold Ul either from below (like in Fig. 4) or fromabove aording to the hosen triggering mode (the swith ¾TRIGGER
1.1.6 95

Fig. 4. Triggering of sweeps
+¿ or ¾TRIGGER −¿ on the front panel of osillosope). Adjusting theknobs ¾TRIGGER¿ and ¾LEVEL¿ one ontrols a signal phase at the be�ginning of the sweep and ahieve a desired image stability and observationonveniene. Synhronization is impossible unless Uy rosses Ul.Sweep osillator an work in automati or trigger mode that is on�trolled by swith ¾AUTO/TRIG¿. In automati mode the waiting time

Tw an not exeed some maximum Tw,max. If the signal Uy does not ross

Ul during Tw,max the forward sweep starts automatially at the momentwhih is not related to signal phase; the period Tauto of sawtooth voltageis determined by internal parameters of osillosope. In this ase the im�age on the sreen is ¾running¿; if there is no signal the horizontal line isdisplayed.If the signal Uy rosses Ul during the waiting interval, a forward sweepis triggered at the moment orresponding to a ertain phase of the signal.A stable image is then displayed.Synhronization in automati mode is possible only if the internalperiod of sweep osillator is greater than the period of studied signal,

Tauto > Ts. Otherwise the �rst sweep yle will be followed by anotherone or more forward sweeps of the ¾saw¿ triggered at the moments notrelated to a ertain phase of the signal, whih will result in several super�imposed images.In the waiting mode a forward sweep is triggered only if Uy rosses

Ul during the waiting time Tw. The time an be as long as neessary,so synhronization is realized for any period of the signal Us(t). A short



96 Measurements in Physisinterval of signal (e.g. the signal front or a short pulse whih duration ismuh less than the time interval between pulses) an be observed only inthe waiting mode.Sweeps an also be synhronized by an external signal (instead of Uy)whih is synhronous to the signal under study. The external signal isapplied to the input onnetor ¾EXT.TRIG.¿ on the osillosope frontpanel. The swith ¾TRIGGER¿ must be in position ¾EXT.¿. Operationof the triggering iruit is similar to the one desribed above. The sweeprange (sale) is ontrolled by swith ¾TIME/DIV¿.The vertial image dimension is ontrolled by swith ¾V/DIV¿ whihgraduation in volts orresponds to beam displaement by one ell of thegratiule (this quantity is alled de�etion oe�ient). Knob ¾l¿ is usedto shift the image up and down by varying the onstant U0y (see Eq. (11)).Now onsider frequeny response of vertial and horizontal de�e�tion hannels of osillosope. Suppose that the sinusoidal signal Uy =
= U0 sin(2πft) is applied to the ¾Y¿ hannel. Beam position on the osil�losope sreen is then y = y0(f) sin(2πft + ∆Φy(f)), where y0(f) is theposition amplitude as a funtion of frequeny f and ∆Φy(f) is the di�er�ene between the phase of y and the phase of the signal Uy (phase shift)at the frequeny f .Then the frequeny response of the vertial hannel is given by

Ky(f) =
y0(f)

U0

,and the phase response is the funtion ∆Φy(f). Frequeny and phaseresponses of the horizontal de�etion hannel are de�ned in the same way.Usually the frequeny response Ky(f) remains onstant, Ky = Ky,max,in the range from fmin to fmax and dereases for f < fmin and f > fmax.The frequeny range between fmin and fmax is alled bandwidth. Thevalues fmin and fmax are determined aording to
Ky(fmin)
Ky,max =

Ky(fmax)
Ky,max =

1√
2
≃ 0,7.Sine Ky(f) and ∆Φ(f) are not onstant in the whole frequeny range,the shape of a high frequeny pulse is distorted in the vertial de�etionhannel.The ¾Y¿ hannel an be used with an open and losed input. In the�rst ase both the variable U∼ and onstant U= omponents of a signalare transmitted, while in the seond ase it is only the variable one. Inthe losed input mode the onstant omponent is bloked by a dividing

1.1.6 97apaitor onneted to the input. By swithing ¾∼/≃¿ on the front panelone an hoose a required input of the ¾Y¿ ampli�er. The horizontalde�etion hannel has the similar ¾X¿ ampli�er.To observe the dependene Uy = F (Ux) one applies signal Ux to thelosed input ¾→⊃X¿. The horizontal image size an not be adjusted in thelab osillosope. To shift the image horizontally one uses the potentiometer¾↔¿ whih hanges the onstant U0x (see Eq. (12)).Lissajous urves. Two osillations with equal or multiple frequeniesapplied to the osillosope inputs make the beam draw a stationary losedurve alled Lissajous urve. The urve slowly rotates if the frequeniesare not exat multiples; for arbitrary frequenies the pattern is smeared.Let us apply signal Ux = Ua cos(2πft + ϕ1) to the horizontally de��eting plates (the internal sweep osillator must be swithed o�) andapply the signal of the same frequeny but with the phase shifted, Uy =
= Ub cos(2πft + ϕ2), ϕ1 6= ϕ2, to the vertially de�eting plates.For sensitivities kx and ky the beam oordinates x, y on the sreen are:

x = A cos(2πft + ϕ1), y = B cos(2πft + ϕ2), A = kxUa, B = kyUb.Exluding time t from these equations one readily obtains beam trajetory:

x2

A2
+

y2

B2
− 2

xy

AB
cos(ϕ2 − ϕ1) = sin2(ϕ2 − ϕ1).Thus the urve obtained by superimposing two osillations of the samefrequeny is ellipse. The ellipse orientation depends on the phase shiftbetween the osillations (ϕ2 − ϕ1).The partiular Lissajous urve depends on the relation between peri�ods, phases, and amplitudes of the osillations. Some Lissajous urvesfor di�erent periods and phases are shown in Fig. 5. Parameters of anosillation, e.g. fx, an be determined from the Lissajous urve providedthe parameters of the other osillation, e.g. fy, are known. For example,one should imagine two straight lines, a vertial and horizontal one, whihross the urve without rossing its nodes. The number of rossings withthe horizontal line nx and the vertial line ny determines the ratio of thefrequenies aording to fy/fx = nx/ny.If either or both osillations are not harmoni the urves are moreompliated.Calibration signal. The osillosope has internal generator of retangu�lar pulses of a �xed amplitude and the frequeny of 50 Hz. The signalis used to hek de�etion and sweep oe�ients. When the signal is ap�plied to ¾Y¿ input (the swith ¾V/DIV¿ is in K position), a de�etion on
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Fig. 5. Lissajous urves for osillations of the same amplitude

Y -axis must be 4.5�5.0 divisions and the osillation period on X-axis mustbe 20 ms.Preparation of equipment1. Chek that the devie asings are properly grounded. Swith on powersupplies of the osillosope and the generators and let them warm up for3�5 min.2. Set the following knobs in intermediate positions (see Fig. 6): ¾BRIGHT�NESS¿, ¾FOCUS¿, ¾l¿, ¾↔¿, and ¾LEVEL¿.3. Set the swith ¾TRIGGER¿ in position ¾INT +¿ and the swith ¾AUTO/WAIT¿in position ¾AUTO¿. Swith ¾V/DIV¿ should be set to a low sensitivity,e.g. 5 V/div.4. Set the swith ¾TIME/DIV¿ in position 2 ms.5. A horizontal line appears on the sreen in 1�2 min after the osillosope isswithed on. If the line does not appear adjust the line position by knobs¾l¿ and ¾↔¿. Use the knobs ¾BRIGHTNESS¿ and ¾FOCUS¿ to obtaina lear sharp image.CAUTION!1. Do not inrease brightness beyond the level at whih the image starts togrow.2. The beam on the osillosope sreen is visible only during the forwardsweep. In the waiting mode there is no image unless Ul and Uy ross (see
1.1.6 99

Fig. 6. Front panel of osillosope



100 Measurements in PhysisFig. 4). Therefore an experiment should begin in ¾AUTO¿ mode at thelowest sensitivity of the input ¾Y¿. In so doing the horizontal line is visibleeven if a signal is absent. By inreasing the sensitivity with ¾V/DIV¿set the image amplitude of 2�6 divisions. Use the knob ¾LEVEL¿ tostabilize image. A onvenient horizontal dimension is adjusted by knob¾TIME/DIV¿. If this fails try again the synhronization attempt in the¾WAIT¿ mode.3. To apply a signal to the ¾X¿ input (to observe Uy = F (Ux) dependene)one should swith o� the internal sweep osillator as follows:� set the beginning of sweep at the sreen enter in ¾AUTO¿ mode;� swith the trigger to waiting mode (¾WAIT¿);� turn the knob ¾LEVEL¿ to the minimum, the image must vanish;� inrease the sreen brightness if neessary (¾BRIGHTNESS¿).LABORATORY ASSIGNMENTI. Observation of periodi signal of aousti frequeny generator(AFG)1. Figure out how the signal image depends on synhronization modes. Tothis end onnet the input ¾Y¿ to output of AFG. Set the followingswithes as: ¾TRIGGER¿ to ¾INT +¿, ¾WAIT�AUTO¿ to ¾AUTO¿,¾V/DIV¿ to 5, and ¾TIME/DIV¿ to 2 ms. Apply a signal of frequeny100 Hz and arbitrary amplitude (e.g. set the attenuator of AFG at 0 dB)to the input ¾Y¿. The osillosope must display a sinusoid. If the sinu�soid is ¾running¿, stabilize it by turning knob ¾LEVEL¿. Shift the imagehorizontally until the initial point of the sinusoid appears.2. Turn the knob ¾LEVEL¿ and observe how the urve hanges. Perform thesame observations at the modes ¾AUTO¿, ¾WAIT¿, and internal triggermodes ¾INT +¿ and ¾INT −¿. Figure out how the urve appearanedepends on triggering mode.3. Obtain a stable image for three arbitrary sets of AFG ontrols (e.g. 100 Hz,0 dB; 1000 Hz, 10 dB; and 3 · 105 Hz, 30 dB). Adjust the image size usingknobs ¾TIME/DIV¿, ¾V/DIV¿.II. Measurement of amplitude of sinusoidal signal. Correspon�dene between step-wise attenuator of AFG (the swith ¾⊳ dB¿)and the ontrol swith of vertial image sale (¾V/DIV¿ on theosillosope front panel).1. Set the swith ¾V/DIV¿ in position ¾5¿, the frequeny of AFG at fafg =
= 1000 Hz, and the attenuator at ¾0 dB¿; by adjusting the AFG outputset the sinusoid amplitude at 2A = 4 divisions. Obtain a stable sinusoidon the sreen. After that the output voltage of the generator should notbe altered.

1.1.6 1012. Set the step-wise attenuator of AFG in position ¾10 dB¿. Adjust the ver�tial image size by the knob ¾V/DIV¿ and measure the signal amplitude.Perform the measurement for all positions of the attenuator (they orre�spond to di�erent values of attenuation α, [dB℄) and tabulate the resultsin Table 1. T a b l e 1Settings of AFG attenuator and osillosope divider
α, dB V/DIV 2A, DIV 2A, Â β, dB |α − β|, dB010. . . . . . . . . . . . . . . . . .70Parameter β is de�ned as β = −20 lg(2A[V ]/20[V ]), the measurementunit is 1 dB (1 deibel). Plot a graph in oordinates β, α. Find themaximum disrepany between β and α.III. Measurement of frequeny of sinusoidal signalSet the amplitude of sinusoidal signal at 6 divisions and the AFG fre�queny in aordane with Table 2. Obtain a stable image. Set a on�venient horizontal size of the image by using the swith ¾TIME/DIV¿.Measure the signal period, alulate the frequeny and tabulate the resultsin Table 2. T a b l e 2Period and frequeny of sinusoidal signal

fafg, TIME T , T , fmes, |fafg − fmes|, |fafg − fmes|Hz DIV DIV s Hz Hz fmes

2 · 10

2 · 102. . . . . . . . . . . . . . . . . . . . .

2 · 106IV. Measurement of frequeny response of the ampli�ers of¾X¿ and ¾Y¿ hannels1. Connet the output of AFG to the ¾Y¿ input of osillosope. Set theswith ¾V/DIV¿ in position ¾1¿. Set the amplitude of sinusoidal signalat 6 divisions at AFG frequeny fafg = 103 Hz. Obtain a stable image.



102 Measurements in PhysisMeasure the signal amplitude 2Ay (or 2Ax) in the whole working frequenyrange of AFG aording to Table 3 both for open (≃) and losed (∼) input.Calulate the values of parameter K using Eq. (13):

K(fafg) =
2A(fafg)[V ]

6[V ]
. (13)Tabulate the results in Table 3. T a b l e 3Frequeny response of hannel ampli�ers

fafg, Hz 10 . . . 102 103 104 105 106 . . . 107

2Ay, div

Ky, ≃
2Ay, div

Ky, ∼
2Ax, div

KxOne should determine the frequenies at whih oe�ients Kx and Kyare equal to approximately 0.7 of their maximum values. These frequeniesde�ne the ampli�er bandwidth.2. Turn o� the internal sweep osillator of X . To do this set the swithesin the following positions: ¾TRIGGER¿ to ¾EXT¿, ¾WAIT�AUTO¿ to¾WAIT¿, turn ¾LEVEL¿ lokwise to halt, and ¾BRIGHTNESS¿ to max�imum. Connet the output of AFG to the ¾X¿ input of osillosope andset the signal amplitude at 6 divisions at AFG frequeny fafg = 103 Hz.The image should be a segment of straight horizontal line at the sreenenter.3. Measure the signal amplitude 2Ax, alulate Kx(f) in the same way as
Ky(f), and tabulate the results in Table 3.4. Plot Ky,≃(f), Ky,∼(f), and Kx(f) on the same graph using logarithmisale for frequeny f .5. Turn on the internal sweep osillator. Consider (qualitatively) how thefrequeny response of ¾Y¿ hannel a�ets a pulse signal. Set the swith ofsignal shape of AFG in position ¾⊓¿. Set the signal amplitude at 4 divisionson the osillosope sreen. Observe the signal at open (≃) and losed (∼)inputs at frequenies of 10 Hz, 103 Hz, 2 · 105 Hz, and 106 Hz. Sketh theurves.

1.1.6 103V. Measurement of phase shift between output signals of ¾Y¿ and¾X¿ hannels when input signal is the same for both hannels,i.e. measurement of the di�erene between phase responses of¾X¿ and ¾Y¿ hannels.
Fig. 7. Lissajous urve for

fx = fy and arbitrary phaseshift ∆Φxy

1. Turn o� the internal sweep osillator asin IV.2. Apply a signal of frequeny 104 Hzfrom the AFG output simultaneously to in�puts of ¾X¿ and <Y¿ hannels using a teeonnetor. By adjusting the AFG output setthe amplitude of X at 6 divisions. The saleon Y must be 0.5 V/DIV. The image mustbe a segment of straight line at the angle of30�60◦ to the vertial (a degenerate ellipse).By varying frequeny observe transformationof the segment to ellipse.2. Using the gratiule measure the parameters A and B (see Fig. 7) in thewhole range of AFG frequenies and alulate the phase shift ∆Φxy as

∆Φxy =







± arcsin B
A , if the ellipse is tilted to the right,as in Fig. 7;

±π ∓ arcsin B
A , if the ellipse is tilted to the left.The sign ¾+¿ or ¾−¿ orresponds to lokwise or ounterlokwise motionof the point traing the ellipse. By inreasing or dereasing frequeny onetransforms the ellipse to a straight line and the motion reverses.Tabulate the data in Table 4. Plot ∆Φxy(f) using a logarithmi salefor fafg. T a b l e 4Phase shift ∆Φ versus frequeny

fafg, Hz 10 . . . 50 102 103 104 105 106 . . . 107

A, div
B, div

∆ΦxyVI. Observation of Lissajous urves obtained by superimposingorthogonal osillationsTurn o� the internal sweep osillator. Apply a sinusoidal signal offrequeny fx to the input ¾X¿ from the �rst AFG, and a sinusoidal signal offrequeny fy to the input ¾Y¿ from the seond AFG. Adjust the amplitudes



104 Measurements in Physisof the signals and the swith ¾V/DIV¿ so that the Lissajous urve oupiesthe major part of osillosope sreen. Set fy at 1 kHz. By varying fx obtaina stable urve for the following values of the ratio fy/fx: 1:1, 2:1, 3:1, and3:2. Sketh the urves and ompare them with the urves shown in Fig. 5.Literature1. Ëàáîðàòîðíûå çàíÿòèÿ ïî �èçèêå / Ïîä ðåä. Ë.Ë. �îëüäèíà. � Ì.: Íàóêà,1983.2. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. III. � Ì.: Íàóêà, 1996.3. Êàëàøíèêîâ Ñ.�. Ýëåêòðè÷åñòâî. � Ì.: Íàóêà, 1985.4. Äæîíñ Ì.Õ. Ýëåêòðîíèêà � ïðàêòè÷åñêèé êóðñ. � Ì.: Ïîñòìàðêåò, 1999.
Chapter IIDYNAMICS

Dynamis of many partiles. In lassial mehanis the state of motionof a partile is de�ned by the partile position vetor ~r and momentum ~p =
= m~v. A state evolves in time aording to equation of motion, (Newton'sseond law):

d~p

dt
= ~F (~r, ~p, t). (2.1)It is important that the right-hand side (the fore) depends only on thepartile state. Solution of Eq. (2.1) for some boundary onditions gives alaw of partile motion:
~r = ~r(t).Sine the equation of motion of a partile is linear, it beomes for a setof partiles

d

(

n
∑

i=1

~pi

)

dt
=

n
∑

i=1

~Fi. (2.2)Here only the external fores are ounted beause the internal fores atingbetween the partiles anel out.Any set of partiles has a remarkable geometri point alled the enterof mass. The position vetor of the enter of mass is de�ned as

~R =

n
∑

i=1

mi~ri

n
∑

i=1

mi

.Obviously, the veloity of the enter of mass is

~v =
~P

m
,



106 Dynamiswhere ~P =
n
∑

i=1

~pi is the net momentum of the partiles, and m =
n
∑

i=1

mi isits mass. Aording to Eq. (2.2)

m
d~v

dt
=

n
∑

i=1

~Fi.Therefore the enter of mass behaves as the single partile whih mass isequal to the total mass of partiles and the fore exerted on this partileequals the sum of all the external fores. The enter of mass veloity anbe regarded as the veloity of the set as a whole.If there are no fores exerted on the set of partiles, the set is alledisolated or losed. In this ase Eq. (2.2) predits onservation of the netmomentum:

n
∑

i=1

~pi = const, (2.3)i. e.

~v = const.The enter of mass of an isolated set of partiles serves as the origin of aspeial inertial frame of referene alled the enter of mass frame.The net momentum in the enter of mass frame is zero.The sum of momenta of two partiles before and after an interation,e.g. a ollision, is the same:

~p10 + ~p20 = ~p1 + ~p2 (2.4)or

m1~v10 + m2~v20 = m1~v1 + m2~v2. (2.5)Here the subsript ¾0¿ refers to the quantities before the interation.Let ~p be the partile momentum and ~r be its position vetor withrespet to some point of origin O. Then the angular momentum ~L of thepartile with respet to O is de�ned as the ross produt:
~L = ~r × ~p. (2.6)Similarly, if there is a fore ~F exerted on the point, the torque due tothe fore with respet to O is de�ned as the vetor produt
~M = ~r × ~F . (2.7)

Chapter II 107Multiplying Eq. (2.1) by ~r on the left and using ~p = md~r
dt one �nds:

d~L

dt
= ~M. (2.8)Equation (2.7) an be written in a more transparent form as

M = rF sin θ = Fh,where θ is the angle between the vetors ~r and ~F and h = r sin θ is thelength of the perpendiular drawn from the point O to the diretion of thefore, this distane is alled the lever arm with respet to O.On the other hand,
~M = ~r × ~F =

∣

∣

∣

∣

∣

∣

~i ~j ~k
x y z
Fx Fy Fz

∣

∣

∣

∣

∣

∣

=

=~i(yFz − zFy) +~j(zFx − xFz) + ~k(xFy − yFx).Here ~i, ~j, and ~k are the unit basis vetors orresponding to the axes Ox,

Oy, and Oz. Let us hoose the referene frame so that vetors ~r and ~F liein the same plane. In addition, let the axis Ox be direted along ~r. Then

~r = (x, 0, 0), ~F = (Fx, Fy, 0),i.e.
Mx = 0, My = 0, Mz = xFy = xF sin θ = Fh.Sine the perpendiular drawn from the point O to the diretion of thefore ~F is perpendiular to Oz, its length h an be alled the lever arm withrespet to Oz. For this reason the projetions of ~M on the oordinate axesare alled moments of fore with respet to these axes. Similar onsiderationapplies to angular momentum ~L.In an arbitrary frame vetors ~r and ~F an be written as follows:

~r = ~r⊥ + ~r‖, ~F = ~F⊥ + ~F‖.Here ~r⊥ is the omponent of ~r perpendiular to Oz and ~r‖ is the parallelomponent. The vetors ~F⊥ and ~F‖ are similarly de�ned. One an showthat

~M‖ = ~r⊥ × ~F⊥,i.e.

Mz = r⊥ · F⊥ sinϕ,



108 Dynamiswhere ϕ is the angle between ~r⊥ and ~F⊥. For the omponent Lz of angularmomentum one has

Lz = r⊥ · p⊥ sin α,where α is the angle between ~r⊥ and ~p⊥.The net angular momentum of a set of partiles is the sum of angularmomenta of all partiles and the net torque is due to external fores onlybeause the torques due to inter-partile fores anel out. Therefore

d

(

n
∑

i=1

~Li

)

dt
=

n
∑

i=1

~Mi. (2.9)If the set of partiles is isolated, i.e. no external fore ats on it, the nettorque is zero and the net angular momentum of the partiles is onserved:

n
∑

i=1

~ri × ~pi = const. (2.10)Sometimes vetor quantities like momentum and angular momentumare not onserved but a ertain omponent is. For instane, the omponentof momentum perpendiular to the lines of fore of uniform gravitational�eld and angular momentum with respet to an axis parallel to the �eldare onserved. In a entral �eld the angular momentum with respet tothe �eld enter is onserved.The work done by fore ~F is de�ned as the dot produt

dA = ~F · d~r, (2.11)where d~r is the partile displaement due to the fore.Using the seond Newton' law (2.1) one obtains
dA =

d~p

dt
d~r = ~vd~p =

1

m
~p d~p =

1

m
p dp = d

(

p2

2m

)

.Therefore the work hanges the quantity alled kineti energy of thepartile:

K =
p2

2m
=

mv2

2
. (2.12)If the work done by a fore on a partile whih travels in a losed pathis zero, the fore is alled onservative. An equivalent de�nition is thatthe work done by a onservative fore is path independent. Gravitational�eld is an example of onservative fore. The �eld of a onservative fore

Chapter II 109an be spei�ed by potential energy U . By de�nition the work done by aonservative fore equals the loss of the potential energy:
dU = −~F d~r. (2.13)Using the seond Newton's law one obtains:

dU = −d~p

dt
d~r = −~vd~p = − 1

m
~p d~p = − 1

m
pdp = −d

(

p2

2m

)

,i.e.

d

(

U +
p2

2m

)

= 0. (2.14)This is the law of onservation of mehanial energy.The net kineti energy of a set of partiles is equal to the sum of kinetienergies of the partiles. In an isolated set of partiles, i.e. no externalfore ats on the set, the net kineti energy an hange (unlike the net mo�mentum and angular momentum) due to the work done by internal fores.The net kineti energy is onserved provided the interations between par�tiles are elasti, i.e. energy transforms only from kineti to potential andbak. For two partiles with an elasti interation between them the lawof onservation of kineti energy is
p2
10

2m1

+
p2
20

2m2

=
p2
1

2m1

+
p2
2

2m2or
m1v

2
10

2
+

m2v
2
20

2
=

m1v
2
1

2
+

m2v
2
2

2
. (2.15)Here the subsript ¾0¿ stands for a quantity before the interation.Using these relations in Eqs. (2.4) and (2.5) one an prove that in theenter of mass frame the momentum of a partile hanges only its diretionwhile its magnitude remains the same.The net kineti energy of a set of partiles in an arbitrary frame is thesum of the kineti energies of partiles in the enter of mass frame and thekineti energy of the set whih speed equals that of the enter of mass.The laws of onservation of momentum, angular momentum, and en�ergy derived from equations of motion are, in fat, fundamental propertiesof an isolated system, whih follow from homogeneity and isotropy of spaeand homogeneity of time.A partile whih speed is lose to the speed of light (v ∼ c, c =

= 3 · 1010 m/s) is alled relativisti. High energy physis experimentally



110 Dynamison�rms the relation between the momentum of a relativisti partile andits veloity:

~p =
m~v

√

1 − v2

c2

, (2.16)where m is the partile mass. Equation (2.1) remains the same althoughthe relation between momentum and veloity is di�erent. Using Eq. (2.1)one an show that

d

dt





mc2

√

1 − v2

c2



 =
dA

dt
,where dA = ~F ·d~r is in�nitesimal work. The kineti energy K of a partilean be de�ned as the work done by a fore aelerating the partile fromzero speed to v. Then

K =
mc2

√

1 − v2

c2

− mc2. (2.17)Sine

(

1 − v2

c2

)−1/2

= 1 +
1

2

v2

c2
+ . . . ,Eq. (2.17) beomes for v ≪ c

K =
mv2

2
,whih is to be expeted.Aording to ollider experiments the energy of a free partile does notvanish at v = 0 but tends to a onstant value of mc2. Therefore the partileenergy is atually the quantity

E = K + mc2,i.e.

E =
mc2

√

1 − v2

c2

. (2.18)The onstant mc2 is alled the partile rest energy. By omparingEqs. (2.16) and (2.18) one an see that the partile momentum is
~p =

E
c2

~v. (2.19)
Chapter II 111At v = c both momentum and energy of a massive partile tend to in�nity.Therefore a massive partile annot move faster than light. However rel�ativisti mehanis admits existene of massless partiles whih travel atthe speed of light (e.g. photons and neutrinos). Equation (2.19) for thesepartiles beomes

p =
E
c
. (2.20)We use the term ¾partile¿ although its ¾elementariness¿ is never used.Therefore Eqs. (2.16), (2.18), and (2.19) an be equally applied to any bodyomprised of many partiles. The mass m is then the total body mass and vshould be understood as the body veloity as a whole.The energy of a body at rest onsists of the rest energy of the onstituentpartiles, their kineti energies and the interation energy of the partiles.Therefore

mc2 6=
∑

i

mi · c2,where mi is the mass of i-th partile.Thus mass is not onserved in relativisti mehanis, there is only thelaw of onservation of energy whih also inludes rest energy.By taking the squares of Eqs. (2.16) and (2.18) one an see that

E2 − (pc)2 = m2c4, (2.21)i.e.
E =

√

(mc2)2 + (pc)2. (2.22)Equation (2.21) is often alled the main kinemati identity of relativistimehanis.Notie that a partile for whih

p ≫ mc,is alled ultrarelativisti. For suh a partile Eq. (2.20) holds approxi�mately.When desribing ollisions of relativisti partiles it is onvenient towrite the main kinemati identity as

(

∑

i

Ei

)2

−
(

∑

i

~pic

)2

= invariant. (2.23)The term ¾invariant¿ means that the right-hand side of Eq. (2.23)remains the same in another inertial frame of referene.



112 DynamisRigid body dynamis. One of the most important mehanial oneptsis that of absolutely rigid body. Absolutely rigid body is a set of partiles inwhih the distane between any pair of partiles remains the same duringthe body motion.Consider rotation of a rigid body around some axis. In this ase all thebody partiles move around the irles whih enters belong to the samestraight line alled rotation axis. The axis an be either inside or outsidethe body. Let us hoose a point O on the rotation axis. The positionof the partile A of the rigid body an be spei�ed by the radius-vetor−−→
OA = ~r. If the body rotates by the angle dϕ for the time interval dt, thedisplaement of A is then

|d~r| = r⊥ · dϕ, (2.24)where r⊥ is the distane between A and the rotation axis.The rate of hange of the angular displaement is alled angular veloity

ω. Sine the linear displaement dl = rdϕ for the same time interval equals

vdt,

v = ω · r. (2.25)This relation an be also written in vetor form by introduing thevetor of rotation angle ~ϕ and the vetor of angular veloity ~ω. Thesequantities together with torque and angular momentum are vetors albeitunusual. Unlike ordinary vetors (e.g. position vetor, veloity, and fore)whih are alled polar vetors, these vetors have opposite diretions in theright-handed (the z-axis is along the motion of a right srew when turningthe srew from x to y) and left-handed oordinate frames. Vetors whihpossess this property are alled axial vetors. As long as one employs thesame oordinate frame (usually it is the right-handed) the axial and polarvetors an be treated on the same footing. In vetor form Eq. (2.25)beomes:

~v = ~ω × ~r. (2.26)The rotation angle is related to the angular veloity as
~ω =

d~ϕ

dt
. (2.27)Any body an be treated as a set of n partiles (inluding n → ∞). Inthis ase the torque and the angular momentum are de�ned as the sums:

~M =
n
∑

i=1

~ri × ~Fi, (2.28)
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~L =

n
∑

i=1

~ri × mi~vi. (2.29)As it was already mentioned a set of partiles in whih the distanebetween any two partiles remains onstant during a motion is alled rigidbody. Consider rotation of a rigid body around immobile axis Oz. Theangular veloity vetor ~ω is the same for all partiles of the body and it isparallel to the axis. The partile veloity is
~vi = ~ω × ~ri,where ~ri is the position vetor of the partile drawn from the origin O.Any partile moves around the irle whih radius is ri⊥. The vetors ~ri⊥and ~vi⊥ are perpendiular, i.e. the angular momentum of i-th partile is

Li⊥ = miri⊥vi⊥ = mir
2
i⊥ω.The net angular momentum of the body is

Lz =

n
∑

i=1

mir
2
i⊥ω = Izω.The quantity Iz introdued here spei�es the body's rotational inertia,it is alled the moment of inertia around z axis. It is determined not onlyby the body mass but also the mass distribution with respet to the axisof rotation:

Iz =

n
∑

i=1

mir
2
i⊥. (2.30)The moment of inertia I around an axis of rotation an be expressed viathe moment of inertia I0 around the parallel axis whih passes through theenter of mass of the body, the mass of body m, and the distane betweenthe axes a0:

I = I0 + ma2
0. (2.31)This relation is alled Huygens-Steiner theorem.The distane of mass mi from the axis of rotation in Eq. (2.30) anbe expressed via its oordinates as r2

i⊥ = x2
i + y2

i . Similar equations anbe written for moments of inertia around x and y axes:

Ix =
n
∑

i=1

mi(y
2
i +z2

i ), Iy =
n
∑

i=1

mi(z
2
i +x2

i ), Iz =
n
∑

i=1

mi(x
2
i +y2

i ). (2.32)



114 DynamisAdding the moments of inertia and taking into aount that r2
i =

= x2
i + y2

i + z2
i one obtains the relation:

Ix + Iy + Iz = 2
n
∑

i=1

mir
2
i = 2I⊙. (2.33)Here the moment of inertia around the point I⊙ is introdued.Equation (2.33) turns out to be very useful in alulating the momentsof inertia. For example, by plaing the origin at the enter of a thin spher�ial shell of radius R one obtains:

Ix = Iy = Iz =
2

3
I⊙ =

2

3
mR2. (2.34)Equation of motion of a rigid body rotating around a �xed axis Oz is

Iz
dω

dt
= Mz. (2.35)Comparing this equation with Newton's seond law (2.1) one an see thattwo equations are idential up to replaement of the fore with the torque,the aeleration with the angular aeleration, and the mass with the mo�ment of inertia (the latter depends on the mass and its distribution relativeto the axis). Similar orrespondene exists in the expression of kineti en�ergy K:

K =
1

2

n
∑

i=1

miv
2
i =

1

2

n
∑

i=1

mir
2
i⊥ω2

z =
1

2
Izω

2
z =

L2
z

2Iz
. (2.36)Notie that the linear displaement in the expression for work is similarto the rotation angle. In the simplest ase of the fore tangential to theirular path of a partile one obtains:

dA = F dr = Fr dϕ = M dϕ. (2.37)Equation (2.30) also applies to ontinuous mass distribution if the sumover the partiles is replaed by the integral over in�nitesimal body ele�ments:

Iz =

∫
r2
⊥ dm. (2.38)Vetors and tensors. Many problems of physis require the onept oftensor to be properly formulated. Often a vetor is de�ned as an orderedtriplet of numbers. However one an see that not any ordered triplet forms
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A

O

~rA

xA x

x′
A

x′

y′
A

y′
yA

y

ϕ

ϕFig. 2.2. Rotation of oordinate framea vetor. For instane, pressure, volume, and temperature (P , V , T ) ofany mass of gas form the ordered triplet whih is not vetor. On the otherhand, the triplet (x, y, z), where x, y, and z are oordinates of some pointin a Cartesian frame form the vetor alled radius vetor. What is thedi�erene?Vetor is a onept originated from experiene. The latter teahes thatpartile displaements (arrows) are added aording to the parallelogramrule (see Fig. 2.1):
~r13 = ~r12 + ~r23. 1 23~r12

~r23

~r13Fig. 2.1. Vetor addition:

~r13 = ~r12 + ~r23

This is one of the de�ning properties ofvetor that is independent of the oordinateframe. However the de�nition of the radiusvetor as a triplet of numbers (x, y, z) dependson the oordinate frame. This de�nition anbe made invariant by speifying the rule re�lating the oordinates of a point in di�erentframes.Let a oordinate frame be rotated around z axis by the angle ϕ (seeFig. 2.2).Coordinates of the point A transform as:

x′
A = xA cosϕ + yA sin ϕ,

y′
A = −xA sin ϕ + yA cosϕ,

z′A = zA.These equations de�ne the law of transformation of the omponents of



116 Dynamisradius vetor beause ~rA ≡ (xA, yA, zA). The same transformation lawholds for omponents of any vetor. For instane, the vetor of fore

~F ≡ (Fx, Fy , Fz) transforms as:

F ′
x = Fx cosϕ + Fy sinϕ,

F ′
y = −Fx sin ϕ + Fy cosϕ,

F ′
z = Fz.Thus the transformation law of the omponents of radius vetor de�nesvetor of any kind. The triplet of numbers (P , V , T ) does not satisfy thislaw sine it is independent of the oordinate frame.Let us give a general de�nition of a vetor. Suppose there are twooordinate frames, Ox1x2x3 and Ox′

1x
′
2x

′
3, with the ommon origin O.Vetor ~A is an ordered triplet of numbers (A1, A2, A3) whih transformsunder rotation of the oordinate frame as the triplet of oordinates (x1,

x2, x3) of a radius-vetor:

A′
i =

3
∑

k=1

αikAk, i = 1, 2, 3. (2.39)Here αik is the osine of the angle between the axes Ox′
i and Oxk.This de�nition an be generalized. A seond-rank tensor is a triplet ofvetors (~T1, ~T2, ~T3) whih under rotation of the frame transforms aordingto the same law:

~T ′
i =

3
∑

k=1

αik
~Tk, i = 1, 2, 3. (2.40)Vetors ~T1, ~T2, and ~T3 an be alled omponents of tensor T on the axes

Ox1, Ox2, and Ox3, respetively, and vetors ~T ′
1, ~T ′

2, and ~T ′
3 are the om�ponents on the axes Ox′

1, Ox′
2, and Ox′

3. Obviously,
~T1 =~iT11 +~jT12 + ~kT13,
~T2 =~iT21 +~jT22 + ~kT23,
~T3 =~iT31 +~jT32 + ~kT33,

(2.41)where ~i, ~j, and ~k are unit vetors of the oordinate frame. Thus tensor
T an be spei�ed by the matrix Tik whih elements are alled tensoromponents.The set of Eqs. (2.41) an be written in a ompat form:

~Tk =
∑

l

~elTkl, k = 1, 2, 3, (2.42)
Chapter II 117where ~e1 =~i, ~e2 = ~j, and ~e3 = ~k. Similarly,

~T ′
i =

∑

m

~e′mT ′
im, i = 1, 2, 3, (2.43)where ~e′1 =~i′, ~e′2 = ~j′, and ~e′3 = ~k′. Substituting Eqs. (2.42) and (2.43) inEq. (2.40) one �nds

∑

m

~e′mT ′
im =

∑

k,l

αik ~el Tkl. (2.44)Salar multipliation of Eq. (2.44) by ~e′n gives the transformation law forthe tensor omponents:
T ′

in =
∑

k,l

αik αnl Tkl. (2.45)Here one uses the relation (~e′n, ~el) = αnl, (~e′m, ~e′n) = δmn, where δmn isidentity matrix, i.e.
δmn =

{

1, åñëè m = n,
0, åñëè m 6= n.

O

A

dm

~r~s

~r‖

~r⊥

Fig. 2.3. Calulation ofmoment of inertia aroundarbitrary axis

Equation (2.45) de�nes the transformationlaw of a seond-rank tensor under rotationsof oordinate frame. One an see that it isreasonable to lassify vetors and salars astensors of the �rst-rank and zero-rank, respe�tively. Components of a third-rank tensortransform as
T ′

ikl =
∑

m,n,p

αim αkn αlp Tmnp.As an example, onsider tensor of inertiaof a rigid body. Let us alulate the momentof inertia I of the body around arbitrary axis OA passing through theorigin O (see Fig. 2.3).Let us write the radius vetor ~r of a body element of mass dm as thesum of the vetor omponents along OA and perpendiular to it:

~r = ~r‖ + ~r⊥.By de�nition the moment of inertia is

I =

∫
r2
⊥dm =

∫
(r2 − r2

‖)dm.



118 DynamisIf ~s is a unit vetor along the axis OA, then

r‖ = (~r,~s) = x1s1 + x2s2 + x3s3.Also

r2 = x2
1 + x2

2 + x2
3, s2

1 + s2
2 + s2

3 = 1.Combining the above relations one obtains:

I = I11s
2
1 + I22s

2
2 + I33s

2
3 + 2I12s1s2 + 2I23s2s3 + 2I31s3s1, (2.46)where

I11 =
∫
(x2

2 + x2
3)dm,

I22 =
∫
(x2

3 + x2
1)dm,

I33 =
∫
(x2

1 + x2
2)dm,

I12 = I21 = −
∫

x1x2 dm,

I23 = I32 = −
∫

x2x3 dm,

I31 = I13 = −
∫

x3x1 dm.

(2.47)Equation (2.46) shows how the moment of inertia around axis OA de�pends on the osines of the axis. The equation has a geometri interpreta�tion. Let us draw straight lines through the origin O in various diretionsand plot the points on them at the distane 1/
√

I from the origin. Thepoints form a surfae. Let us �nd the equation of the surfae. Radius-ve�tor of a point on the surfae is

~r =
~s√
I
,i.e.

si = xi

√
I, i = 1, 2, 3. (2.48)Substitution of Eq. (2.48) in Eq. (2.46) gives

I11x
2
1 + I22x

2
2 + I33x

2
3 + 2I12x1x2 + 2I23x2x3 + 2I31x3x1 = 1. (2.49)This surfae of the seond order is an ellipsoid sine it does not have pointsat in�nity (I 6= 0). The ellipsoid is alled inertia ellipsoid of the bodyonstruted around the point O. Inertia ellipsoid depends on the pointof onstrution. The entral inertia ellipsoid is the ellipsoid onstrutedaround the enter-of-mass. One an show that the moment of inertia of arigid body has all the features of a seond-rank tensor: it is in one-to-oneorrespondene with matrix Iik and its vetor omponents are
~I1 = ~e1I11 + ~e2I12 + ~e3I13,
~I2 = ~e1I21 + ~e2I22 + ~e3I23,
~I3 = ~e1I31 + ~e2I32 + ~e3I33.

(2.50)
Chapter II 119There is a theorem in algebra that Eq. (2.49) an be redued to themain axes Ox, Oy, and Oz:

Ixx2 + Iyy2 + Izz
2 = 1. (2.51)The origin O of oordinate frame is usually plaed at the enter-of-mass.The quantities Ix, Iy, and Iz are alled the main moments of inertia of thebody. Vetor omponents of the tensor on the main axes Ox, Oy, and Ozare

~Ix =~iIx, ~Iy = ~jIy , ~Iz = ~kIz . (2.52)If the osines of a given axis with respet to the main axes are known,

sx = cosα, sy = cosβ, sz = cos γ,then taking into aount that
Ixy = 0, Iyz = 0, Izx = 0,and using Eq. (2.46) one obtains:

I = Ix cos2 α + Iy cos2 β + Iz cos2 γ. (2.53)Otherwise, if the moments of inertia I1, I2, and I3 around three arbi�trary axes are known, one an solve the set of linear equations

I1 = Ix cos2 α1 + Iy cos2 β1 + Iz cos2 γ1,
I2 = Ix cos2 α2 + Iy cos2 β2 + Iz cos2 γ2,
I3 = Ix cos2 α3 + Iy cos2 β3 + Iz cos2 γ3,

(2.54)and determine the main moments of inertia: Ix, Iy, and Iz .The main axes of a body an be found from its symmetry. The mainaxes of a homogeneous retangular parallelepiped are parallel to its edges.If a body is rotationally symmetri its inertia ellipsoid has the same symme�try. A ylinder is an example. In this ase the moments of inertia aroundthe axes perpendiular to the symmetry axis are the same. The symmetryaxis is one of the main axes. Any axis whih is perpendiular to it is alsothe main one. For a spherial body any axis passing through its enter isthe main axis.For example, onsider a homogeneous retangular parallelepiped whihedges are a, b and c (see Fig. 3 on p. 139).Let us plae the origin O of the oordinate frame Oxyz at the enter ofmass of the parallelepiped. It is not di�ult to alulate the main momentsof inertia:

Ix =
m

12
(b2 + c2), Iy =

m

12
(a2 + c2), Iz =

m

12
(a2 + b2).



120 DynamisNow let us �nd the moment of inertia with respet to the diagonal OO′.For this purpose we use Eq. (2.53). One an see that the osines of theaxis OO′ are

cosα =
a√

a2 + b2 + c2
, cosβ =

b√
a2 + b2 + c2

, cos γ =
c√

a2 + b2 + c2
.Thus the desired moment of inertia is

Id =
m

6
· a2b2 + a2c2 + b2c2

a2 + b2 + c2
. (2.55)For a ube

Ix =
ma2

6
, Iy =

ma2

6
, Iz =

ma2

6
, Id =

ma2

6
.The latter is lear beause the inertia ellipsoid of a ube is sphere.Notie that the angular momentum ~L of a rigid body an be writtenas the dot produt of inertia tensor I and angular veloity vetor ~ω:

L1 = I11ω1 + I12ω2 + I13ω3,
L2 = I21ω1 + I22ω2 + I23ω3,
L3 = I31ω1 + I32ω2 + I33ω3.

(2.56)These equations are simpli�ed when written in the oordinate frame of themain axes:

Lx = Ixωx, Ly = Iyωy, Lz = Izωz. (2.57)Literature1. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. I. � Ì.: Íàóêà, 1996. �ë. I�V, VII.2. Êèíãñåï À.Ñ., Ëîêøèí �.�., Îëüõîâ Î.À. Îñíîâû �èçèêè. Ò. 1. Ìåõàíèêà,ýëåêòðè÷åñòâî è ìàãíåòèçì, êîëåáàíèÿ è âîëíû, âîëíîâàÿ îïòèêà. � Ì.:Ôèçìàòëèò, 2001. ×. 1. �ë. 1�7, 10.Lab 1.2.1Determination of pellet veloity by means ofballisti pendulumPurpose of the lab: determination of pellet veloity using onservationlaws and employing ballisti pendulums.Tools and instruments: an air-ri�e on a support, a spotlight, anoptial system to measure pendulum displaement, a ruler, pellets and abalane to weigh them, and ballisti pendulums.Muzzle veloity of an air ri�e is in the range from 150 to 200 m/s, andthat of a ri�e is ∼1000 m/s.

1.2.1 121These veloities are large in omparison with a pedestrian speed(∼2 m/s) or even with the speed of an automobile (∼20 m/s). A labo�ratory benh is usually about a few meters long, so the time of pellet �ightis about 10−2�10−3 s. Measurement of suh time interval requires an ex�pensive equipment apable of registering fast proesses. It is heaper todetermine pellet veloity by measuring the momentum transferred by thepellet to some body in an inelasti ollision. Net pellet-body momentumis onserved providing external fores are negligible or the ollision timeis small. If the body mass exeeds onsiderably the pellet mass the speedof the body (with the pellet stuk in it) is signi�antly less than the ini�tial pellet veloity and an be easily measured. Duration of the inelastiollision, whih lasts from the initial ontat between the pellet and thebody until the pellet gets stuk, depends on resistane of the body mate�rial. The time an be estimated using the pellet penetration depth andassuming that the resistane fore is onstant. A veloity of 200 m/s anda penetration depth of ∼1 m allows one to estimate the ollision time as

∼10−4 s. Within that period even a body one hundred times heavier thana pellet will hange its position by 0.1 mm only. For small ollision timesa momentum transferred by external fores is far smaller than the pelletmomentum.The momentum transferred by the pellet and therefore its veloity anbe measured by a ballisti pendulum. The latter is a pendulum whih is setin motion by a short initial impat. The impat an be onsidered shortif the ollision time is muh shorter than the pendulum period. In thisase the pendulum displaement during the ollision time is muh smallerthan the amplitude of the pendulum swing. For harmoni osillationsollision time τ , pendulum period T , angular deviation ∆ϕ developed forthe ollision time, and the maximum swing ϕm (amplitude) are related bya simple equation:
∆ϕ

ϕm
≈ 2πτ

T
.Thus, if the ollision time equals 0.01 of the period, the deviation is 0.06of the amplitude.Maximum swing of pendulum and initial veloity resulting from pulseimpat an be determined from the law of of onservation of mehanialenergy providing energy loss for osillation period is muh smaller thanenergy of osillation. We onsider an attenuation as small if the amplitudedereases less than by half after ten swings. Pellet momentum and veloityan be found from the initial maximum swing.While arrying out the experiment one should ensure that the pendulum
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Fig. 1. Pellet-veloity measurement setupswings in a plane and do not allow a transverse motion after the pelletstrikes. This an be ahieved by installing the ri�e arefully. Also oneshould be aware that the pellet is followed by air jet whih may a�etpendulum motion thereby deteriorating the results. Therefore the ri�emust be positioned at a distane su�ient for jet dispersion. The in�ueneof the gas jet on the pendulum an be estimated by means of a blank shot.The ri�e is mounted on a speial support. To load the ri�e one shouldloosen the lok srew of the support and tilt the ri�e to one side in theholder then bend the barrel in the trigger diretion as far as it an go. Theinitial ri�e position should be restored after it is loaded.I. Pellet-veloity measurement setupThe ballisti pendulum used in this part of the lab is a heavy ylindersuspended on four threads of the same length. It is shown in Fig. 1 asa part of the measurement setup. When the pendulum is swinging anypoint of the ylinder exeutes irular motion with the radius equal to thesuspension length. The motion is illustrated in Fig. 2 (side view of theswing plane). All the points of the ylinder move round irular ars of thesame radius L. In partiular the enter of mass M0 moves to M1 alongthe ar whih enter is at the point O.

1.2.1 123

Fig. 2. Pellet-veloity measurement setupWe have already mentioned that the ri�e must be appropriately in�stalled. The ri�e should be mounted so that the pellet veloity before olli�sion would be direted along the ylinder axis (at least lose enough). Theexternal fores for the pellet-ylinder system are gravity fore whih hasno horizontal omponent and the thread tension fores whih develop hor�izontal omponents when the pendulum swings. However if the deviationis small these omponents are also small and their momentum transferredduring the ollision is negligible ompared to the momentum of the pellet.Thus the law of onservation of momentum applied to the ollision looksas follows:
mu = (M + m)V. (1)Here m is the pellet mass, M is the ylinder mass, u is the pellet veloitybefore ollision, and V is the ylinder veloity after ollision.Taking into aount that the pendulum mass exeeds onsiderably thatof a pellet we an write

u =
M

m
V. (2)



124 DynamisHaving gained some kineti energy during ollision the pendulum willrise until its kineti energy is onverted into potential energy in the grav�itational �eld (losses negleted). Aording to the law of onservation ofmehanial energy the pendulum elevation h above its equilibrium positionis related to the initial pendulum veloity V as

V 2 = 2gh. (3)Here g is the gravitational aeleration.Pendulum elevation an be expressed via the angle ϕ of pendulum de�viation from the vertial:

h = L(1 − cosϕ) = 2L sin2 ϕ

2
, ï¨Ǒï¨Ǒï¨Ǒ ϕ ≈ ∆x

L
. (4)From Eqs. (2), (3) and (4) we obtain the �nal formula for pellet velo�ity:

u =
M

m

√ g

L
∆x. (5)The pendulum deviation ∆x is measured by means of an optial systemshown in Fig. 1. Enlarged image of the sale attahed to the ylindermakes it possible to determine its horizontal displaement. This allowsone to measure suessive amplitudes of pendulum swing and determinethe attenuation.Equation (3) and therefore the �nal formula (5) are valid as long as anenergy loss during pendulum motion an be negleted.The most important soures of swing attenuation are air drug and aloose pivot.The energy lost during a swing quarter-period ould be omitted fromthe onservation law (3) if it is small ompared to the maximum potentialenergy. As it was already mentioned the attenuation an be negleted ifthe swing magnitude dereases less than by half for ten periods.LABORATORY ASSIGNMENT1. Examine the ballisti pendulum and the measurement setup, learn how tohandle the air-ri�e.2. Using the preision balane weigh the pellets and plae them into boxompartments with appropriate numbers so that not to mix them up. Donot forget to reset the balane before hanging pellets.3. Measure the distane L (see Fig. 1) with a two-meter ruler.4. Assemble the optial system designed for measuring pendulum displae�ment. Swith on the spotlight and obtain a lear image of the sale on thesreen.

1.2.1 1255. Fire a few blank shots at the pendulum to make sure that it does notrespond to the impat of the air jet from the ri�e.6. Make sure that the swing attenuation is small: the amplitude dereasesless than by half after ten swings.7. Fire a few shots and determine pellet veloity for eah shot using Eq. (5).8. For eah shot estimate an auray of determination of pellet veloity.9. Find the average pellet veloity and a satter near the average. What is thereason for the observed satter? Is it due to the measurement inaurayor to di�erent shot veloities? Questions1. Give a de�nition of ballisti pendulum and desribe where it an be used.2. When is initial momentum of ballisti pendulum equal to pellet momentum?3. Why is it neessary to use inelasti ollision between pellet and pendulum?4. Estimate the time of pellet-pendulum ollision in the experiment.5. What fators are responsible for non-onservation of momentum during the ol�lision?6. What are the spei� requirements for ri�e installation?7. What fators ontribute to swing attenuation?8. Whih assumptions made in derivation of eq. (5) an be heked experimentally?9. Why are the suspension threads not parallel (see Fig. 1)?II. Method of torsion ballisti pendulumThe measurement setup is shown in Fig. 3. A pellet of mass m hits atarget �xed on the rod aa whih together with weights M and the wire Π isa torsion ballisti pendulum. To determine the pellet veloity we assume apellet-target ollision to be inelasti and use the law of angular momentumonservation
mur = IΩ. (6)Here r is the distane between the pellet path and the pendulum axis ofrotation (the wire Π), I is the pendulum moment of inertia, and Ω is itsangular veloity right after the ollision.The law of angular momentum onservation an be used if the timeof pellet-target ollision is muh less than the period of small osillationsof the pendulum. An angle of pendulum rotation during the ollision issmall ompared to the amplitude of pendulum swing. Consequently thetorque in the wire right after the ollision is small ompared to the torqueat the maximum swing whih is always �nite. What matters is that theprodut of the torque and the ollision time is small ompared to theangular momentum of the pellet before the ollision.
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Fig. 3. Measurement of pellet veloity using a torsion ballistipendulumInitial kineti energy of the pendulum onverts to potential energy, i.e.elasti energy of the wire torsion, and a part of it is irreversibly lost, �rstof all, due to air frition. The loss an be estimated by measuring thederement of swing amplitude in 10 periods. The swing attenuation isonsidered small if the amplitude dereases by half or less. This meansthat the energy loss during osillation period is onsiderably less than theswing energy. Negleting the losses we an write the energy balane as
k

ϕ2

2
= I

Ω2

2
. (7)Here k is the torsion modulus of the wire Π and ϕ is the maximum swingangle.From Eqs. (6) and (7) we obtain

u = ϕ

√
kI

mr
. (8)

1.2.1 127The maximum angle in the experiment is always small. It an be easilydetermined from a displaement x of the image of the �lament spotlighton the measurement sale. It follows from Fig. 3 that
ϕ ≈ x

2d
. (9)Here d is the distane from the sale III to the pendulum rotation axis.Equation (8) inludes the produt kI whih an be found by measuringthe period of the pendulum with the weights M and without them. In theformer ase the pendulum period is equal to

T1 = 2π

√

I

k
. (10)In the latter ase

T2 = 2π

√

I − 2MR2

k
. (11)It follows from Eqs. (10) and (11) that

√
kI =

4πMR2T1

T 2
1 − T 2

2

. (12)Here R is the distane from the enters of mass of the weights M to thewire. LABORATORY ASSIGNMENT1. Examine the experimental setup and learn how to handle the air-ri�e.2. Using the preision balane weigh the pellets and plae them into boxompartments with the appropriate numbers so that not to mix them up.Do not forget to reset the balane before hanging pellets.3. Measure the distanes r, R and d (see Fig. 3) with a ruler.4. Adjust the optial system designed for measuring pendulum rotation angle.Swith on the spotlight, diret the light to the mirror and obtain a learimage of the spotlight �lament on the sale.5. Fire a few blank shots at the pendulum to make sure that it does notrespond to the impat of the air jet from the ri�e.6. Make sure that the swing attenuation is small: the amplitude must dereaseby half or less after ten swings.7. By measuring the time of 10�15 full swings of the pendulum determine T1and T2. Using Eq. (12) �nd the value of √kI and estimate its error.8. Fire a few shots and determine the pellet veloity for eah shot usingEqs. (9) and (8).



128 Dynamis9. Estimate the pellet veloity error for eah shot.10. Find the average pellet veloity and a satter near the average. What is thereason for the observed satter? Is it due to the measurement inaurayor to di�erent shot veloities? Questions1. How does a deviation of the pellet-target impat angle from 90 degrees a�et thevalidity of the method employed in the experiment?2. At whih amplitudes of pendulum swing should the periods be measured?3. How does pellet momentum a�et pendulum swing?Literature1. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. I. � Ì.: Íàóêà, 1996. �� 26, 30, 33,34, 41.2. Ñòðåëêîâ Ñ.Ï. Ìåõàíèêà. � Ì.: Íàóêà, 1975. �� 53, 124, 126.3. Õàéêèí Ñ.Ý. Ôèçè÷åñêèå îñíîâû ìåõàíèêè. � Ì.: Íàóêà, 1971. �� 22, 26, 67,68, 89, 95.Lab 1.2.2Experimental veri�ation of the dynamial law ofrotational motion using the Oberbek pendulumPurpose of the lab: 1) to verify that angular aeleration of the pen�dulum is diretly proportional to the torque exerted on the pendulum, todetermine the moment of inertia of the pendulum; 2) to aess fritionfores applied to the axis of rotation.Tools and instruments: the Oberbek pendulum, weights, a stop�wath, a ruler, and a aliper.The purpose of the lab is to verify experimentally the dynamial law ofrotational motion:

I
dω

dt
= M. (1)To this end the Oberbek pendulum is used, its design is shown in Fig. 1.The pendulum onsists of four thin rods whih are rigidly attahed tothe hub at right angles. The hub and two wheels of di�erent radii (r1 and

r2) are attahed to the same horizontal shaft whih is �xed between twospindle bearings. The moment of inertia of the pendulum an be varied byplaing the weights m1 along the rods. A thin thread is winded around oneof the pendulum wheels. The light platform of a known mass is attahed
1.2.2 129to the thread, it is used for plaing the weights. The torque exerted on thependulum is due to the thread tension T :

Mí = rT, (2)where r is the wheel radius (r1 or r2). The fore T an be easily foundfrom the equation of motion of the platform with a weight on it:
mg − T = ma. (3)Here m is the mass of the platform and the weight.If the torque Mfr due to the frition in the bearings is small omparedto the torque MT due to the tension in the thread, then the aeleration

a is onstant aording to Eqs. (1), (2), and (3). The aeleration an befound by measuring the time t that takes the platform to desend throughthe distane h:
a =

2h

t2
. (4)This aeleration is related to the angular aeleration β = dω/dt by:

a = r
dω

dt
= rβ. (5)Equations (2) � (5) speify the pendulum motion.In real experiment the torque Mfr is often large, whih signi�antly af�fets the results. At �rst sight, the e�et due to frition ould be mitigatedby inreasing the mass m. However this is not so beause:1) greater mass m inreases the pressure exerted on the shaft by the pen�dulum thereby enhaning the frition;2) large m redues the time t and therefore deteriorates the auray oftime measurement.In our installation the frition in the spindle bearings (see Fig. 1) issmall, so the frition torque is not large. However it is not negligible andshould be taken into aount in data treatment.It is onvenient to separate the frition torque in Eq. (1) expliitly:

MT − Mfr = I
dω

dt
. (6)Before proeeding to the measurement the weights m1 should be installedat some distane R from the rotation axis, so that the pendulum be inneutral equilibrium. To hek the latter set the pendulum in motion andlet it stop several times. (What is the use of the proedure? How an one
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Fig. 1. Oberbek penduluminfer from the observations that the pendulum is well balaned?) Thenwind one layer of the thread around a wheel and set the height h of theplatform desent. The reommended height is 70-100 m. It is onvenientto perform measurements for the same height h using 3-5 di�erent weightson the platform.The experiment onsists of two parts. In the �rst part the pendulumrotation is studied for di�erent weights and the same moment of inertia(the positions of the weightsm1 are �xed). The results are used to alulatethe moment of inertia I and the torque Mfr due to frition in the bearings.In the seond part the rotational motion is studied for di�erent (5�6)values of the moment of inertia. The latter is varied by hanging thedistane R of the weights from the shaft. The measured value of themoment of inertia is ompared to the alulated one. The weights m1 areylinders of radius r and height l. The moment of inertia of the pendulumis evaluated as

I = I0 + 4m1R
2 + 4

m1l
2

12
+ 4

m1r
2

4
, (7)

1.2.2 131where I0 is the moment of inertia without the weights m1. The derivationof the formula is left to the reader.LABORATORY ASSIGNMENT1. Ahieve the neutral equilibrium by varying the distane R between theweights m1 and the shaft. The distane R should be measured andreorded.2. Inrease the tension T by loading the platform. Find the minimum mass
m0 of the weight for whih the pendulum starts spinning. Perform theexperiment for eah wheel. Estimate the torque due to frition.3. Put an additional weight on the platform and measure the time of theplatform desent. Repeat the measurement 4-5 times and �nd the average

t. Using Eqs. (2) � (5) determine the angular aeleration β = 2h
rt2 andthe torque MT . Tabulate the results using the table below.

Wheeldiamete
r Weight Massofplatfor
m withweights Desent time t̄ ± σt̄ β ± σβ MT ± σMm g g t1 t2 t3 t4 t5 se se−2 N·m4. Repeat the experiment for 3�4 di�erent values of m for eah wheel (6�8measurements overall). Tabulate the results.5. Plot the experimental results for two wheels. Plot the values of MT on theabsissa and the angular aeleration β on the ordinate. Determine graph�ially the moment of inertia l and the frition torque Mfr (the x-intereptof the funtion β(MT )). Estimate the errors.6. Repeat the measurements of 3�5 for two di�erent values of the moments ofinertia orresponding to maximum and minimum distane of the weights

m1 from the shaft.7. Compare the values of Mfr obtained in the experiments. Does the valueof Mfr depend on the moment of inertia of the pendulum?8. Repeat the experiments desribed in 3 for three di�erent moments of inertiaof the pendulum using only one weight and the large wheel. In eah asedetermine I using Eq. (6). Take the value Mfr from 5.9. Plot the values of I obtained for di�erent R's as a funtion I = f(R2).Using the plot determine the moment inertia of the pendulum I0 withoutthe weights.



132 DynamisDo the experimental results agree with Eq. (7)? How does the relativeontribution of two last terms in Eq. (7) depend on R? Is the orrespond�ing orretion omparable to the measurement errors? To answer thesequestions plot the value ∆I/I versus R2, where

∆I = 4
ml2

12
+ 4

mr2

4
.10. What are possible soures of the experimental error?Questions1. Why must the torque due to frition in the shaft bearings be redued as muhas possible? It appears that Eq. (6) is valid for any value of Mfr.2. What is the role of the thread thikness and elastiity?3. Whih quantity has to be measured with the greatest auray in this experi�ment?4. State and prove Huygens-Steiner theorem.Literature1. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. I. � Ì.: Íàóêà, 1996. �� 30, 32, 35,36.2. Ñòðåëêîâ Ñ.Ï. Ìåõàíèêà. � Ì.: Íàóêà, 1975. �ë. VII, �� 52, 53, 59; ãë. V,�� 41, 42.Lab 1.2.3Determination of prinipal moments of inertia ofrigid bodies by means of tri�lar torsionsuspensionPurpose of the lab: to determine the moments of inertia of rigidbodies and to ompare the results with theoretial alulations; to verifyadditivity of the moments of inertia and the Huygens-Steiner theorem.Tools and instruments: a tri�lar suspension, a stopwath, an osilla�tion ounter, and a set of rigid bodies (a disk, a rod, a hollow ylinderet.).Rotational inertia is due to the moment of inertia with respet to theorresponding axis of rotation (see the introdution to this hapter). Themoment of inertia with respet to an immobile axis of rotation is de�nedas

I =

∫
r2 dm. (1)

1.2.3 133

Fig. 1. Tri�lar suspensionHere r is the distane of the body element dm from the axis. Integrationis performed over all elements.The moment of inertia an be alulated for uniform bodies of a simpleshape. Otherwise the moment of inertia an be determined from experi�ment. The tri�lar suspension shown in Fig. 1 is often used for this purpose.The devie onsists of the immobile platform P and the platform P ′ whihis symmetrially suspended on three threads AA′, BB′, and CC′ and anexeute free osillations.The platform P is mounted on a braket and is equipped with a lever(not shown) used to initiate rotational osillations by slightly turning theupper platform. It is better to turn the upper platform whih is attahedto the immobile shaft sine turning the lower platform would also ausependulum-like osillations whih are di�ult to aount for. The upperplatform remains at rest after the initial turn during the ensuing osilla�



134 Dynamistions. One the lower platform P ′ is turned by the angle ϕ with respetto the upper one, the restoring torque arises. It tends to return the lowerplatform to the equilibrium position that orresponds to zero rotation an�gle. However the platform does not remain in the equilibrium beause ofnon-zero angular veloity (kineti energy). This results in angular osilla�tions.Negleting the energy losses due to frition in air and at the points ofsuspension one an write the law of onservation of energy for the osilla�tions:

Iϕ̇2

2
+ mg(z0 − z) = E. (2)Here I is the moment of inertia of the platform and the body, m is themass of the platform and the body, ϕ is the platform angle of rotation(the dot stands for time derivative, so it is the angular veloity), z0 is thevertial oordinate of the enter O′ of the lower platform at ϕ = 0, and zis the oordinate of the enter that orresponds to the rotation angle ϕ.The �rst term on the left-hand side is the kineti energy of rotation, theseond term is the potential energy in the gravitational �eld, and E is thetotal energy.It should be obvious from Eq. (2) that the restoring fore is due togravity.Now let us hoose the oordinate frame x, y, z, whih is rigidly �xedto the upper platform (see Fig. 1). In this frame the oordinates of thesuspension point C are (r, 0, 0 ). The oordinates of the lower end C′ ofthe orresponding thread at equilibrium are (R, 0, z0). When the platformturns by the angle ϕ the lower end is at the point C′′ with oordinates(R cosϕ, R sinϕ, z). The distane between points C è C′′ is equal to thethread length L. Therefore

(R cosϕ − r)2 + R2 sin2 ϕ + z2 = L2. (3)Sine at small angles cosϕ ≈ 1 − ϕ2/2, we obtain
z2 = L2 − R2 − r2 + 2Rr cosϕ = z2

0 − 2Rr(1 − cosϕ) ≈ z2
0 − Rrϕ2. (4)Taking the square root of Eq. (4) we obtain for small ϕ:

z ≈
√

z2
0 − Rrϕ2 ≈ z0

√

1 − Rrϕ2

z2
0

≈ z0 −
Rrϕ2

2z0

. (5)Substituting this value for z in Eq. (2) we get
1

2
Iϕ̇2 + mg Rr

2z0

ϕ2 = E. (6)
1.2.3 135Di�erentiation of the last equation with respet to time yields the equa�tion for small angular osillations of the platform:

Iϕ̈ + mg Rr

z0

ϕ = 0. (7)The time derivative of E is zero sine we negleted the energy losses dueto frition.One an easily hek by diret substitution that the solution of thisequation is
ϕ = ϕ0 sin

(

√

mgRr

Iz0

t + θ

)

. (8)The amplitude ϕ0 and the phase θ of osillations are determined frominitial onditions. The osillation period is
T = 2π

√

Iz0

mgRr
. (9)Notie that this is the period of the simple gravity pendulum for r = Rand I = mR2 (a thin ring).Equation (9) gives the formula for the moment of inertia:

I =
mgRrT 2

4π2z0

. (10)Now, the parameters R, r, and z0 do not hange during the experiment,whih allows one to rewrite the last equation as:

I = kmT 2. (11)Here k =

gRr

4π2z0

is a onstant quantity.Thus the equations derived allow one to determine the moment of in�ertia of the platform with or without a body by measuring the period ofangular osillations. The moment of inertia of the body an then be alu�lated using additivity of moments of inertia. The additivity an be veri�edby performing the measurements for two bodies together and separately.The derived equations are based on the assumption that irreversibleenergy losses due to frition are negligible, i.e. the osillations deay slowly.Osillation damping an be evaluated by omparing the time τ , whih takesthe osillation magnitude to derease by a fator of 2�3, with the osillationperiod T . The irreversible energy losses are negligible providing

τ ≫ T. (12)



136 DynamisIt is reommended to determine osillation period with a relative errorof 0.5%. The number of osillations required to measure the period isdetermined by this error and by auray of time measurement.Osillations are registered by a ounter whih onsists of a light soure(2), a photovoltai ell (3), and a digital ounter (1) (see Fig. 1). A leafshutter attahed to the platform rosses the beam twie a period. Thesignal from the ell is registered by the digital ounter.LABORATORY ASSIGNMENT1. Before loading the lower platform hek the installation, i.e. make surethat osillations an be properly initiated and that the pendulum-like os�illations are not exited. Chek operation of the osillation ounter.2. By exiting angular osillations hek how well relation (12) is satis�ed.This task does not require high auray of the orresponding time inter�vals. The measurements must be performed for the unloaded platform.Explain why.3. Find the working range of osillation amplitudes. In this range the osil�lation period determined by 20�30 full swings is independent of the initialamplitude. This means that osillation period remains the same when theamplitude is halved.4. Measure parameters z0, R, and r (see Fig. 1). Calulate the installationonstant k in Eq. (11) and its error σk.5. Measure the moment of inertia of the unloaded platform (hereinafter theosillation period should be measured with a relative error less than 0,5%))
 

 

 

Fig. 2. Position of bodies onplatform
6. Measure the moments of inertia of two bodiesfrom the set, separately at �rst and then to�gether. The bodies should be plaed on theplatform so that the enter of mass of the sys�tem lies on the axis of rotation, i.e. no notie�able tilt of the platform is deteted. For onve�niene a set of onentri rings is engraved onthe platform. Chek additivity of moments ofinertia, i.e. validity of the relation I = I1 +I2,where I1 and I2 are the moments of inertiaof the �rst and the seond body and I is thetotal moment of inertia. The auray of thisrelation an be taken as the auray of the lab measurement. Calulatethe moments of inertia I of all the bodies used and ompare the resultswith the experimental values.7. Plae a disk whih is ut in two halves on the platform. Gradually movethe halves apart, so that their enter of mass remains on the rotation axis

1.2.4 137(see Fig. 2), measure the moment of inertia I of the system versus thedistane h between eah of the halves and the rotation axis (the platformenter).Plot the dependene I(h2) and use it to determine the mass and themoment of inertia of the disk. Questions1. What are the assumptions used in the derivation of Eq. (10)?2. Can the method of measuring the moments of inertia suggested in the lab beused if the axis of rotation of the platform does not pass through the enter ofmass?3. Prove the Huygens-Steiner theorem. Literature1. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. I. � Ì.: Íàóêà, 1996. �� 35, 36, 42.2. Ñòðåëêîâ Ñ.Ï. Ìåõàíèêà. � Ì.: Íàóêà, 1975. �� 52, 55, 59.3. Õàéêèí Ñ.Ý. Ôèçè÷åñêèå îñíîâû ìåõàíèêè. � Ì.: Íàóêà, 1971. �� 67, 68, 89.Lab 1.2.4Determination of prinipal moments of inertia ofrigid bodies by means of torsional osillationsPurpose of the lab: to measure periods of torsional osillations of asuspension frame with a body attahed, to verify theoretial dependenebetween the periods of torsional osillations with respet to di�erentrotation axes, to determine moments of inertia with respet to di�erentaxes and to use them to determine prinipal moments of inertia, and toplot inertia ellipsoid.Tools and instruments: a rigid frame suspended on a vertial wire, inwhih a rigid body an be �xed, a set of rigid bodies, and a stopwath.Rotational inertia of a rigid body is determined not only by the bodymass but also by its spatial distribution. The latter is determined by thequantity alled inertia tensor whih an be represented by a symmetri(3×3) matrix spei�ed by six elements. If all the matrix elements areknown in some oordinate system, the moment of inertia with respet toan arbitrary axis passing through the origin an be found from Eq. (2.46).Any inertia tensor an be redued to diagonal form like any symmetrimatrix. The orresponding diagonal elements Ix, Iy, and Iz are alled
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Fig. 1. Inertial ellipsoids of parallelepiped, disk, and ubethe prinipal moments of inertia. Inertia tensor an be visualized as anellipsoid whih in prinipal axes of inertia is represented by Eq. (2.51):

Ixx2 + Iyy2 + Izz
2 = 1. (1)This ellipsoid is alled the inertia ellipsoid. It is rigidly �xed to the body.The oordinate axes Ox, Oy, and Oz oinide with the prinipal axes ofinertia of the body. If the system origin O oinides with the enter ofmass the inertia ellipsoid is alled entral.

Fig. 2. Experimentalsetup
The inertia ellipsoid allows one to determine themoment of inertia with respet to any axis pass�ing through the ellipsoid enter. One should simplydraw the radius-vetor ~r along the rotation axis tothe point of intersetion with the ellipsoid surfae.The length r spei�es the orresponding moment ofinertia aording to

I =
1

r2
. (2)The prinipal axes of a body an often be de�termined by its symmetry. For instane, symmetryaxes of ylinder and/or sphere are the prinipal axesof inertia beause the moment of inertia with respetto any axis passing through a plane perpendiular tothe symmetry axis is the same. Therefore the inertia

1.2.4 139ellipsoid being the ellipsoid of rotation with respet to the symmetry axishas the same symmetry as the body itself.Inertia ellipsoid turns out to be symmetri for some bodies whih donot possess axial symmetry. For example onsider a parallelepiped withsquare base or a ube. For ube the inertia ellipsoid is spherial, thereforethe moment of inertia is independent of the rotation axis, just like forsphere. Figure 1 shows (not to sale) the entral inertia ellipsoids forparallelepiped, disk, and ube.Figure 2 shows the setup used to observe torsional osillations. Theframe 1 is rigidly attahed to the vertial wire 2 �xed in the speial lamps 3whih allow one to exite torsional osillations around the vertial. Therigid body 7 is �xed in the frame by means of the plank 4, the nuts 5, andthe srew 6. The body has speial holes used to �x the body in di�erentpositions, so that the rotation axis passes through the enter of mass atvarious angles.
Fig. 3. Rotation axes of parallelepiped

Torsional osillations of theframe and the body are desribedby the equation
(I + Ið)d2ϕ

dt2
= −fϕ. (3)Here I and Ið are the momentsof inertia of the body and theframe, respetively, ϕ is the an�gle of rotation whih depends ontime t, and f is the torsion o�e�ient of the wire. The periodof torsional osillations is deter�mined by the equation

T = 2π

√

I + Ið

f
. (4)Figure 3 shows the positionsof rotation axes in parallelepiped. The prinipal axes are AA′, BB′, and

CC′. The moments of inertia with respet to these axes are Ix, Iy, and

Iz . The axis DD′, whih oinides with the main diagonal, makes thesame angles with the prinipal axes and with the edges a, b, and c whihare parallel to the axes. The osines of the angles are a/d, b/d, and c/d,respetively, where d =
√

a2 + b2 + c2 is the diagonal length.



140 DynamisThe moment of inertia Id with respet to the diagonal DD′ is expressedvia the prinipal moments of inertia as (2.53):

Id = Ix
a2

d2
+ Iy

b2

d2
+ Iz

c2

d2
. (5)This gives the equation:

(a2 + b2 + c2)Id = a2Ix + b2Iy + c2Iz. (6)Using the relation (4) between the moment of inertia and the period oftorsional osillations one obtains the relation between the periods of osil�lation:

(a2 + b2 + c2)T 2
d = a2T 2

x + b2T 2
y + c2T 2

z . (7)Experimental veri�ation of this relation serves to verify Eq. (5) as well.This equation also allows one to derive the relations between the momentsof inertia orresponding to the axes EE′, MM ′, and PP ′ and the prinipalmoments of inertia. Using Eq. (4) one an �nd the orresponding osillationperiods. The reader is suggested to alulate the osines of the angles whihthe above axes make with the prinipal axes and obtain the relations

(b2 + c2)T 2
E = b2T 2

y + c2T 2
z , (8)

(a2 + c2)T 2
P = a2T 2

x + c2T 2
z , (9)

(a2 + b2)T 2
M = a2T 2

x + b2T 2
y . (10)These relations should be experimentally veri�ed as well.LABORATORY ASSIGNMENT1. Learn how to handle the installation. Make sure that 1) the wire is tight,2) the frame is rigidly attahed to the wire, 3) the devie for exiting thetorsional osillations is properly funtioning, and 4) vertial vibrations arenot exited together with the torsional osillations.2. Learn how to attah bodies to the frame. A body has speial holes whihmust �t with the srews on the frame. To �x the body (see Fig. 2) oneshould do the following. Unsrew the nuts 5, pull up the plank 4 and insertthe body into the frame, so that the hole on the body �ts the jag on thelower side of the plank. Lower the plank and insert the srew 6 protrudingfrom the plank by 5�7 mm into the hole on the body. Tighten the nuts 5and then the srew 6. If the body gets loose in the frame tighten thesrew 6 to �x it.

1.2.4 1413. Before eah set of measurements (the empty frame or the frame with thebody) one should hoose a proper amplitude of torsional osillations (themaximum rotation angle of the frame). The amplitude is properly hosen ifthe osillation period (determined by 10�15 osillations) remains the samewhen the amplitude is redued by half. One should derease the amplitudeuntil this ondition is ful�lled.4. Determine the osillation periods for empty frame and for di�erent posi�tions of the bodies with respet to the rotation axis. A period should bemeasured by 10�15 osillations, eah measurement should be repeated atleast 3 times.5. Measure the parallelepiped dimensions using the aliper. Calulate theprinipal moments of inertia. Verify Eqs. (7) � (10) using the data obtained.6. Draw ross-setions of inertia ellipsoid by prinipal planes. For this pur�pose take the measured osillation periods with respet to the axis in theprinipal plane and for eah axis alulate the quantity 1/
√

T 2 − T 2ð whihis proportional to the distane from the enter of mass to the point of inter�setion of the ellipsoid with the axis. Here Tð is the osillation period of theempty frame. Plot the values obtained along the diretions orrespondingto the axes and draw the ellipse through these points (8 points overall).The ellipse orresponds to the ross-setion of the inertia ellipsoid by theprinipal plane (not to sale). Find the ratio of the prinipal moments ofinertia.7. Perform the same measurements for the ube and draw the orrespondingross-setions of the inertia ellipsoid. Verify that the entral moments ofinertia are equal. Questions1. What are the prinipal moments of inertia of a rigid body?2. What does the inertia ellipsoid of a ube look like?3. Desribe the state of free (torqueless) rotation of a rigid body.Literature1. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. I. � Ì.: Íàóêà, 1996. �� 53, 54.2. Ñòðåëêîâ Ñ.Ï. Ìåõàíèêà. � Ì.: Íàóêà, 1975. �� 63, 64.



142 DynamisLab 1.2.5Study of gyrosope preessionPurpose of the lab: to study the fored preession of gyrosope; tospeify the dependene of preession veloity on the torque on the gyro�sope axis; to alulate the rotational veloity of the gyrosope rotor andompare the result with that one obtained from the preession veloity.Tools and instruments: a gyrosope in Cardan suspension, a stop�wath, a set of weights, unfastened rotor of a gyrosope, a ylinder ofknown mass, a torsional pendulum, a aliper, and a ruler.The dynamial equation of a rigid body an be presented as

d~P

dt
= ~F , (1)

d~L

dt
= ~M. (2)Here Eq. (1) represents dynamis of the enter of inertia, and Eq. (2)is the angular momentum equation. A rigid body possesses six degrees offreedom, for this reason these two vetor equations provide the ompletedesription of its motion.If the fore ~F does not depend on rotational veloity and the torque

~M is independent of translational veloity, Eqs. (1) and (2) an be treatedindependently. This assumption is invalid, for example, for projetile mo�tion in the atmosphere. But if the separation of the equations is possible,Eq. (1) desribes motion of a material point and Eq. (2) regards the prob�lem of rotation of a rigid body about a �xed point. The latter problem isonsidered in the lab.The angular momentum of a rigid body written in projetions on itsprinipal axes x, y, z is

~L =~i Ixωx +~j Iyωy + ~k Izωz, (3)where Ix, Iy, Iz are prinipal moments of inertia, ωx, ωy, ωz are the om�ponents of the angular veloity vetor ~ω. A fast-rotating body with
Izωz ≫ Ixωx, Iyωy,is ommonly referred to as gyrosope. If the gyrosope enter of inertia isat rest, the gyrosope is alled balaned.

1.2.5 143Aording to Eq. (2), the inrement of angular momentum is given bythe integral

∆~L =

∫
~M dt. (4)If the torque is applied for a short period of time, it follows from Eq. (4)that the inrement of the angular momentum ∆~L is muh less than theangular momentum itself:

|∆~L| ≪ |~L|.This equation aounts for the remarkable dynami stability of a fast-rotat�ing gyrosope.

Fig. 1. Flywheel

Let us �gure out what fores shouldbe applied to a gyrosope in order tohange the diretion of its axis. Con�sider a �ywheel rotating about z-axiswhih is orthogonal to the wheel plane(Fig. 1). We assume that
ωz = ω0, ωx = 0, ωy = 0.Now assume that the axis of rota�tion turns by in�nitesimal angle dϕ in

zx-plane in the diretion of x-axis. Thisangular displaement represents an ad�ditional rotation of the �ywheel about

y-axis, suh that
dϕ = Ω dt,where Ω is the angular veloity of the additional rotation. Let us assumethat
LΩ ≪ Lω0. (5)This means that the angular momentum of the �ywheel, whih is equal to

Izω0 prior to appliation of fore, rotates in zx-plane and its magnituderemains onstant. Thus

|d~L| = Ldϕ = LΩ dt.The inrement of the angular momentum is direted along x-axis; for thisreason one an represent vetor d~L as ross produt of the angular veloityvetor ~Ω (direted along y-axis) and the vetor of angular momentum ofthe �ywheel (direted along z-axis):

d~L = ~Ω × ~Ldt,
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d~L

dt
= ~Ω × ~L.Using Eq. (2) one obtains

~M = ~Ω × ~L. (6)Equation (6) is valid provided the ondition (5) is ful�lled. It allows oneto determine the torque ~M whih makes the �ywheel axis start rotatingwith veloity ~Ω. Thus, to turn the �ywheel axis toward x-axis one needsto apply the fore direted along y-axis rather than along x-axis. In thisase the torque ~M is direted along x-axis.The torque ~M on the gyrosope axis results in its slow rotation around

y-axis with angular veloity Ω. This kind of motion is referred to as regularpreession of gyrosope. In partiular, the torque an be aused by thegravitational fore if the gyrosope enter of inertia does not oinide withits point of suspension. Let the gyrosope mass be mg and its axis ofrotation be de�eted by angle α from the vertial. Then the veloity ofpreession aused by the gravitational fore is

Ω =
M

Izω0 sin α
=

mgglc sin α

Izω0 sin α
=

mgglc
Izω0

, (7)where lc is the distane between the point of suspension and the enter ofinertia of the gyrosope, i.e. the preession veloity does not depend onthe angle α.To study the regular preession of the gyrosope one suspends addi�tional weights on its axis. This results in displaement of the enter ofinertia and produes the torque of gravitational fore leading to preession.The preession veloity in this ase is given by the following equation:
Ω =

mgl

Izω0

, (8)where m is the mass of the weight and l is the distane between the enter ofthe Cardan suspension and the point of weight suspension on the gyrosopeaxis (see Fig. 3).In this lab regular preession of the gyrosope is studied. The outer ringA of the suspension an freely rotate about the vertial axis aa. The innerring B is onneted to the ring A via horizontal axis bb. The gyrosopeitself is mounted in the ring B, its axis  is orthogonal to the axis bb. Theenter of inertia of the gyrosope oinides with the intersetion point ofthe three axes and its spatial position is onstant under arbitrary rotationsof the rings. E�etively the gyrosope is suspended at the enter of inertia.
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Fig. 2. Gyrosope in Cardan suspensionThe experimental setup for studying the gyrosope preession is shownin Fig. 3. The gyrosope rotor is the rotor of high-speed eletri motor Msupplied with alternating urrent of the frequeny of 400 Hz. The motorasing (the stator with oils supplied with 400-Hz urrent) is attahed tothe ring B (see Figs. 2 and 3). The motor and the ring B an rotate aboutthe horizontal axis bb in the ring A whih, in turn, an rotate about thevertial axis aa. The engine rotor is a massive steel ylinder with ooperveinlets like "squirrel ase". The lever (marked with letter C in Fig. 3)is direted along the rotor symmetry axis, it is used for suspension of theweights W. One an alter the fore F whih indues preession by usingdi�erent weights. The torque due to this fore is determined by the distane

l between the suspension point of the weights and the gyrosope enter ofinertia; this distane is indiated in the setup.In the previous derivation of the equations governing gyrosope pre�ession we assumed that the vetors of fores are oplanar to the vetors
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Fig. 3. Experimental setupof self-rotation angular veloity and preession veloity (zy-plane). In thisase the torque due to gravitational fores hanges only the diretion of thegyrosope angular momentum while the magnitude remains onstant. Fri�tion fores do not lie in the plane of axial rotation, so they an hange boththe magnitude and the diretion of the angular momentum. The fore offrition exerted on the gyrosope rotor is ompensated by the motor, whilethe frition in the gimbal axes is not ompensated. As a result the gyro�sope axis will desend in the diretion of gravitational fore exerted onthe weights. The reader is enouraged to analyze the frition fores in de�tail and to estimate the errors in determination of the veloity ω0 of thegyrosope rotation around its symmetry axis due to the frition-induedlowering of the axis.In the �rst part of the lab the dependene of preession veloity onthe torque on the gyrosope rotation axis is studied. For this purposeone suspends the weights W on the lever C. The preession veloity isdetermined by measuring the number of revolutions of the lever aroundthe vertial and the time passed. During the measurements the lever does
1.2.5 147not only rotate but also slightly lowers, thus it should be raised by 5�6◦prior to the measurements. The measurement should be stopped when thelever is lowered by the same angle.Measurements of the gyrosope preession veloity allow one to alu�late the angular veloity of its rotor. Equation (8) is used for this purpose.The moment of inertia of the rotor I0 is measured via the torsional osilla�tions of the rotor replia whih is suspended on a sti� wire along the rotorsymmetry axis. The period of torsional osillations T0 depends both onthe moment of inertia I0 and the wire torsion modulus f :

T0 = 2π

√

I0

f
. (9)To eliminate the unknown torsion modulus from Eq. (9) one measuresthe osillation period of a ylinder of a given size and mass (and hene agiven moment of inertia Ic). The moment of inertia of the rotor is thendetermined by the equation:

I0 = Ic
T 2

0

T 2
c

, (10)where Tc is the period of torsional osillations of the ylinder.One an also work out the angular veloity of the rotor without thestudy of preession. The motor asing used in the lab has two oils whihare neessary for fast spin-up of the gyrosope. In this lab the �rst oilis used for the spin-up while the seond one an be used to measure thenumber of revolutions. The rotor is always slightly magnetized, for thisreason its rotation leads to the indution of alternating emf in the seondoil. The emf frequeny equals the rotor rotation frequeny; it an bemeasured, e.g. by observing Lissajous �gures on osillosope sreen. Forthis purpose one should apply the emf-signal and the sinusoidal signal fromthe generator to the X- and Y-inputs of the osillosope, respetively. Ifthe frequenies of two signals oinide the �gure on the sreen is an ellipse.LABORATORY ASSIGNMENT1. Set the gyrosope axis horizontally by turning the lever C arefully.2. Turn on the gyrosope power supply and wait for 4�5 minutes until therotor motion beomes stable.3. Make sure that the rotor rotation is fast: tapping on the lever C shouldnot hange its diretion. Explain why the gyrosope axis is stable. "Play"with the gyrosope: press on the lever C with the penil and observe the



148 Dynamisgyrosope reation. Determine the diretion of gyrosope rotation fromthe observation.4. Suspend the weight W on the lever C, whih should result in gyrosopepreession. Frition in the axis (in whih exatly?) leads to slow loweringof the lever.5. Lift the lever C by 5�6 degrees from the horizontal plane. Suspend theweight W and measure the preession veloity Ω with a stopwath. Con�tinue the measurements until the lever goes down by 5-6 degrees below thehorizontal plane (the number of revolutions should be an integer). Alsomeasure the speed of lowering. Repeat the measurement at least 5 timesand average the results.6. Repeat the experiments desribed in 5 for various values of the torque

M (5-7 values) with respet to the gyrosope enter of mass (the arm lis indiated on the setup). Plot the obtained dependene of preessionveloity Ω on torque M .7. Measure the moment of inertia of the rotor with respet to its symmetryaxis I0: suspend the rotor replia by the wire so that the symmetry axis ofthe replia is vertial and measure the osillation period of the "pendulum".Replae the rotor with a ylinder of a given mass and radius and measureits osillation period. Using Eq. (10) alulate the moment of inertia ofthe gyrosope rotor I0.8. Estimate the errors of the obtained values of I0 and Ω.9. Calulate the rotor rotation frequeny using Eq. (8).10. Estimate the torque due to frition using the known value of the speed oflowering.11. Determine the rotor speed using Lissajois �gures. Turn on the osillo�sope and the generator and apply the signal from the seond oil of thegyrosope (from two terminals on the gyrosope base) to the osillosopeY-input. The signal from the generator should be applied to the X-input.The subsequent adjustment of the osillosope depends on its model: if"GOS-620" devie is used, set the "Time/div" knob to "X-Y" mode byturning it ounter-lokwise and adjust the horizontal and vertial salesusing the "Volts/div" knobs. To obtain a Lissajois �gure (ellipse) oneshould set the generator frequeny equal to the rotor frequeny. Make theellipse stable by �ne tuning of the generator frequeny. If this is not pos�sible turn the motor power o� for a while: then the urrent in the �rstoil does not indue emf in the seond one and does not interfere with themeasurements. With the power o� the measurements should be performedquikly due to deeleration of the rotor. Stability of the ellipse means thatthe generator frequeny equals the rotor frequeny.

1.2.5 14912. Estimate the errors of the results and ompare two values of the gyrosopeangular veloity determined by di�erent tehniques.13. Find out if Eq. (5) is appliable in the lab.Questions1. What is gyrosope and what are its major properties?2. What fators does the veloity of regular preession depend on?3. What is the dimensionality of the torsion modulus in Eq. (9)?4. Derive Eq. (8) from Eq. (7).5. Can you explain that a rolling oin is turning in the diretion of tilt?Literature1. Ñèâóõèí Ä.Â.Îáùèé êóðñ �èçèêè. Ò. I. �Ì.: Íàóêà, 1996. Ch. VII, �� 49�51.2. Ñòðåëêîâ Ñ.Ï. Ìåõàíèêà. � Ì.: Íàóêà, 1975. �� 65�67.3. Õàéêèí Ñ.Ý. Ôèçè÷åñêèå îñíîâû ìåõàíèêè. � Ì.: Íàóêà, 1971. �� 99�104.



Chapter IIICONTINUOUS MECHANICS

The subjet of ontinuous mehanis is a marosopi desription ofsolid objets and �uids. In ontinuous mehanis any small volume ispresumably large enough to ontain a very large number of moleules. Suhidealization justi�es the usage of e�ient mathematial methods developedfor analyti funtions.Strain and stress of a deformable solid. Consider a solid objet at restwhih is not absolutely rigid, i.e. it an hange its shape and the volumeunder pressure. A deformation of the solid results in internal fores whihtry to restore its original shape. Suh a fore divided by the orrespondingarea is alled stress.Stress is due to moleular fores, i.e. the fores between moleules.The range of moleular fores is of the order of intermoleular distane. Asa marosopi theory the ontinuous mehanis deals only with distanesgreater than distanes between moleules. Therefore the ¾range¿ of inter�moleular fores in ontinuous mehanis should be onsidered as negligibleand so an internal fore an at only through a surfae.Let some point of a solid objet with oordinate x move at a distane
s. If the displaement is the same for all points, this would be equivalentto a parallel transport (translation) of the objet. Let us assume that thedisplaement of a neighboring point with oordinate x+dx is di�erent from
s and it is atually s + ds. Strain is de�ned as

ε =
ds

dx
,i.e. strain is a relative displaement of two points divided by the initialdistane between them. If the distane between the points inreases thestrain is alled tensile otherwise it is alled ompressive.Notie that the diretion of ds is not neessarily the same as that of dx.If the strain is suh that ds is perpendiular to dx it is alled shear strain;the de�nition remains the same, ε = ds/dx (see Fig. 3.1).
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normal shearFig. 3.1. Normal and shear strainAtually all intermediate strain diretions are possible, so in general d~sè d~x are vetors. The quantity ε relates the two vetors and therefore it isa seond-rank tensor whih an be represented as a (3 × 3) matrix εij .Consider Cartesian oordinates x, y, z and let the omponents of thedisplaement vetor ~s be u, v, w:
~s =~i u +~j v + ~k w.It ould be shown that for small deformations the matrix εij takes theform:

εij =
1

2

(

∂si

∂xj
+

∂sj

∂xi

)

i,j = 1, 2, 3 (or x, y, z).One an see that
εxx = εx =

∂u

∂x
, εyy = εy =

∂v

∂y
, εzz = εz =

∂w

∂z
.The fores responsible for streth (ompression) and shear distortion (seeFig. 3.2) are alled tension (ompression) and shear fores, respetively.

tension shear stressFig. 3.2. Tension and shear stressThe orresponding stress is de�ned as the fore divided by the area on



152 Continuous mehaniswhih the fore ats:

σ =
F

S
.Unlike fore, stress is a loal quantity, i.e. it is de�ned at every point of anobjet. Stress is de�ned as the loal fore exerted on a unit area of someimaginary plane inside an objet (see Fig. 3.3).

tensile stress shearstressFig. 3.3. Tensile and shear stressIn general stress depends on the plane orientation; all intermediate asesbetween normal tension and shear stress are possible. Therefore stress isalso de�ned as the seond-rank tensor whih has nine omponents andrelates three fore omponents and three omponents of the unit vetornormal to the plane the fore ats upon. Figure 3.4 illustrates physialmeaning of the omponents of stress tensor σij .

Fig. 3.4. Components of stress tensor
The �gure pitures an imaginary in��nitesimal parallelepiped in a solid ob�jet and the fores per unit area exertedon its faes.Notie that an objet under ten�sion fore remains at rest (see Fig. 3.2)whereas under the shear stress an ob�jet will be rotating ounterlokwise.To prevent the objet from rotation an�other pair of fores ating in the oppo�site diretion must be applied. This anbe done if the seond pair of shear stress fores is exerted on the upper andlower faes of the parallelepiped in Fig. 3.2. Thus an objet will remain inequilibrium providing the shear stress fores applied to the orrespondingperpendiular planes are equal. The inspetion of Fig. 3.4 shows that thefollowing equations must hold:

σzy = σyz, σxy = σyx, σxz = σzx,

Chapter III 153i.e. stress tensor is symmetri. Beause of this requirement only six om�ponents out of nine of any stress tensor are independent. Note that straintensor is symmetri by de�nition. Overall, 12 independent variables arerequired to desribe an equilibrium state of a deformed solid objet.Elasti modulus. Equation of state of ideal gas gives the relation betweengas pressure P and its volume V at a given temperature. An equationsimilar to the equation of state relates the quantities σ and ε. The equationhas been established empirially and it reads: for tension (ompression),
σ = Eε, (3.1)and for shear stress,

σ = Gε = Gγ, (3.2)where γ is the deformation angle (see Fig. 3.1).The quantity E is alled Young's modulus and G is alled shear modu�lus. It is known from experiment that the moduli E and G are independentof stress in a wide range of the latter. The moduli E and G speify elastiproperties of a material in the range where a linear relation between stressand strain holds.In general, a relation between stress and strain in a rystal is determinedvia a forth-rank tensor whih has 81 omponents. The tensor relates nineomponents of stress tensor and nine omponents of strain tensor, similarlyto Eqs. (3.1) and (3.2). Sine only six omponents of the stress and straintensors are independent, there are only 36 elasti moduli. The atual num�ber of the moduli is less due to a symmetry of the rystal and ranges from21 to 3. Of ourse, this is true for single rystals. Polyrystalline bodiesomposed of small single rystals an be onsidered isotropi. This approx�imation is valid as long as we are interested in a large sale deformationof a rystalline solid. An isotropi body is spei�ed by two independentelasti moduli.Strain and stress in parallelepiped. Let a homogeneous isotropi bodyhave a shape of a parallelepiped. Consider the fores Fx, Fy, and Fz appliedto the opposite faes (see Fig. 3.5). Let the orresponding stresses be σx,

σy , and σz and let us �nd the strains aused by the fores. We assumesmall strains, so superposition priniple applies.Let the oordinate axes be direted along the parallelepiped edges whihlengths are lx, ly, and lz.If only the fore Fx ats, the edge lx is inreased by ∆1lx:

∆1lx
lx

=
σx

E
.
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Fig. 3.5. Strains in parallelepipedIf only the fore Fy ats, the dimension of the slab perpendiular to the

y-axis dereases. In partiular, the edge lx would reeive the derement

∆2lx whih an be alulated as

∆2lx
lx

= −µ
σy

E
,where µ is alled Poisson's ratio. Young's modulus E and Poisson's ratio µspeify ompletely elasti properties of an isotropi material. Other elastioe�ients an be expressed in terms of E and µ. The relative inrementof the edge lx due to the single fore Fz would be

∆3lx
lx

= −µ
σz

E
.If all the fores at simultaneously, the resulting inrement of the edge lxis the sum of all three inrements aording to the superposition priniple:

∆lx = ∆1lx + ∆2lx + ∆3lx.The inrements of the edges ly and lz an be found in a similar way. Finally:
εx =

σx

E
− µ

E
(σy + σz),
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εy =

σy

E
− µ

E
(σz + σx), (3.3)

εz =
σz

E
− µ

E
(σx + σy).These equations are alled generalized Hook's law.A quasistati strething of the slab in the x diretion does the work

A1 = 1

2
Sxσx∆lx, where Sx = lylz is the area of the fae orthogonal to the

x-axis. The work an be written as
A1 =

1

2
lxlylzσx

∆lx
lx

=
1

2
V σxεx,where V = lxlylz is the slab volume. Similarly,

A2 =
1

2
V σyεy, A3 =

1

2
V σzεz.By adding all three ontributions we �nd the density of elasti energy ofthe slab:

wel =
1

2
(σxεx + σyεy + σzεz). (3.4)Using Eq. (3.3) allows one to rewrite Eq. (3.4) as

wel =
1

2E

[

σ2
x + σ2

y + σ2
z − 2µ(σxσy + σyσx + σzσx)

]

. (3.5)Notie that an absolutely rigid slab (E → ∞) does not aumulate theelasti energy (w → 0) whatever fores at on it.Strain due to uniform ompression. Consider a ase when all thestresses σx, σy, and σz are equal and negative. In this ase the slab isunder the uniform pressure applied to all its sides:

P = −σx = −σy = −σz.Then it follows from Eq. (3.3) that

εx = εy = εz = −P

E
(1 − 2µ). (3.6)Calulating the logarithmi derivative of both sides of the equation

V = lxlylz,gives

∆V

V
=

∆lx
lx

+
∆ly
ly

+
∆ly
ly

,



156 Continuous mehanisor

∆V

V
= εx + εy + εz.Therefore Eq. (3.6) an be written as

∆V

V
= − P

K
, (3.7)where

K =
E

3(1 − 2µ)
. (3.8)The onstant K is alled bulk modulus.Then Eq. (3.5) for the elasti energy density an be rewritten as

wel =
3(1 − 2µ)P 2

2E
=

P 2

2K
.Sine wel is positive de�nite, then

1 − 2µ > 0,or

µ <
1

2
.For rok Poisson's ratio µ is lose to 0.25 and for metals it is 0.3.Unilateral tension strain. Let a homogeneous rod be ompressible orstrethable along its axis whih is along x diretion. Assume also that thetransverse dimensions of the rod do not hange due to the rod environment.The transversal shape of the rod is irrelevant. Then Eq. (3.3) an be used.Setting εy = εz = 0 gives:

σy − µ(σz + σx) = 0, σz − µ(σx + σy) = 0.Then

σy = σz =
µ

1 − µ
σx,

εx =
σx

E

(

1 − 2µ2

1 − µ

)

.Finally

∆lx
lx

=
σx

E′
, (3.9)where

E′ = E
1 − µ

(1 + µ)(1 − 2µ)
. (3.10)

Chapter III 157The quantity E′ is alled P-wave modulus.Relation between elasti moduli. As it is already mentioned a uni�form isotropi elasti body is spei�ed by two independent elasti moduli.Therefore the elasti oe�ients introdued above must be related. It anbe shown that

K =
E

3(1 − 2µ)
,

E′ = E
1 − µ

(1 + µ)(1 − 2µ)
,

G =
E

2(1 + µ)
,

E′ = K +
4

3
G.Here K is bulk modulus, E′ is P-wave modulus, µ is Poisson's ratio, E isYoung's modulus, and G is shear modulus. Therefore all elasti oe�ientsan be expressed in terms of E and G.Pasal's law. In ontinuous mehanis a �uid an be de�ned as a mediumin whih a shear stress is absent in equilibrium. Therefore only the diagonal(matrix) omponents of the stress tensor are non-zero:

σij = 0, if i 6= j; σii 6= 0 (i, j = 1, 2, 3).Moreover all the diagonal omponents must be equal due to the �uidisotropy. Therefore the stress tensor of a �uid takes the form

σij =





−P 0 0
0 −P 0
0 0 −P



 ,where P is the pressure at a given point of the �uid.In other words the normal stress (pressure) is independent of the ori�entation of a surfae on whih the pressure is exerted. This statement isalled Pasal's law.Pressure P in a �uid is aused by ompression of the �uid. Sine shearstress is absent the elasti properties of the �uid are spei�ed by the singleelasti onstant alled ompressibility,

χ = − 1

V

dV

dP
,



158 Continuous mehanisor by the inverse quantity, bulk modulus:

K = −V
dP

dV
.It is assumed that the �uid temperature is maintained onstant.Bernoulli's equation. A �uid �ow is spei�ed if the position of any �uidparel is known at any given time. By taking time derivative of the positionit is possible to �nd the parel veloity and the aeleration. Suppose thatthe oordinates x0, y0, and z0 of a parel at a time t0 are given. Theoordinates at a time t an be found from the following funtions:

x = F1(x0, y0, z0, t),

y = F2(x0, y0, z0, t),

z = F3(x0, y0, z0, t).This set of equations is alled the Lagrange equations and the funtionarguments are alled Lagrange variables. To speify a �uid state ompletelyone must also know the pressure, the density, and the �uid temperature.These quantities are determined by the laws of onservation of energy andmomentum and by the equation of state.There is also another method to speify a �ow that refers to whathappens at any point of spae at any given time. Usually three omponentsof the veloity as funtions of the oordinates and time are introdued
u = f1(x, y, z, t),

v = f2(x, y, z, t),

w = f3(x, y, z, t).This set of equations is alled the Euler equations. To determine theparel path one integrates the following set of equations:
dx = udt, dy = vdt, dz = wdt.Sine three onstants of integration an be onsidered as the parel oor�dinates at a given initial time the Lagrange equations are reprodued.A pitorial representation of a �uid �ow is given by the so alled lines ofthe �eld �ow. The tangent to a �eld �ow line at any given point oinideswith the diretion of the �uid veloity. For a stationary �ow, whih is timeindependent, the �eld �ow lines oinide with the parel trajetories.In a stationary �ow all parels going through the same point in spaewill later go along the same �eld �ow line. A �ow region swiped by the

Chapter III 159parel during its motion through the �uid is alled material line. To deriveequations whih desribe a �ow it is onvenient to onsider a materialline with small ross-setional area, so that the �uid parameters an beonsidered onstant aross the line. Let ρ be the �uid density, v be the�uid veloity, and S be the ross-setional area of the material line. Thenthe volumetri �ow rate q, i.e. the �uid mass passing through a givenross-setion per unit time, is
q = ρvS. (3.11)Conservation of the �uid mass �owing along the material line with a varyingross-setion gives:

ρ1v1S1 = ρ2v2S2. (3.12)
Fig. 3.6. To derivation of Bernoulli'sequation

As to the law of onservation of en�ergy we take into aount hanges ofkineti and potential energy of a �uidaused by work of pressure fores butneglet hanges of internal energy ofthe �uid due to ompressibility, visos�ity, and thermal ondutivity. A �uidwhih visosity and thermal ondutiv�ity an be negleted is termed perfet�uid. Consider a material line whihvertial ross-setion is shown in Fig. 3.6. The gravity fore is diretedto the �gure bottom. The heights of the ross-setions 1 and 2 and theorresponding parameters of the �ow are indiated. A �uid parel tra�verses in�nitesimal distane vdt for an in�nitesimal time dt.The parel atthe ross-setion S1 moves at the ross-setion S1
1 , and the parel from S2moves to S1

2 . Sine the displaements are small, the orresponding hangesin the areas of the ross-setions are negligible. The work done by the pres�sure fores to displae the mass of the liquid between the ross-setions S1and S2 is the sum of the positive work p1S1v1dt and the negative work

p2S2v2dt (the displaement is opposite to the fore). To alulate a hangein the kineti and potential energy notie that the energy of the liquidbetween the ross-setions S1
1 and S2 remains the same. The hange isompletely due to a transition of the mass between the ross-setions S1 è

S1
1 , dm = ρ1S1v1dt = ρ2S2v2dt, to the position between the ross-setions

S2 è S1
2 . Using the law of onservation of mass in the expression for thework due to the pressure fores and equating this work to the hange inpotential and kineti energy we obtain:

(

p1

ρ1

− p2

ρ2

)

dm = dm

(g(h2 − h1) +
v2
2 − v2

1

2

)

. (3.13)



160 Continuous mehanisThis gives Bernoulli's equation:

v2
1

2
+ gh1 +

p1

ρ1

=
v2
2

2
+ gh2 +

p2

ρ2

= const. (3.14)The ompressibility of a liquid under standard onditions is usuallysmall. For instane, inreasing the density of water by 1% requires a pres�sure of 200 atm (suh a pressure exists at the sea depth of 2km) andinreasing by 10% requires more than 3000 atm. Therefore water is onsid�ered inompressible for small pressures. Then instead of (3.12) and (3.14)one an write

v1S1 = v2S2, (3.15)

p1 +
ρv2

1

2
+ ρgh1 = p2 +

ρv2
2

2
+ ρgh2. (3.16)Using Bernoulli's equation (3.16) for inompressible �uid one an deriveTorrielli's equation for the veloity of a jet of liquid �owing from a vesselthrough an opening. The area of the opening is onsidered small omparedto the area of the free liquid surfae. Therefore the normal omponent ofthe veloity on the free surfae is negligible in omparison with the jetveloity at the opening. The jet an be extended as a material line tothe surfae. The pressure in the jet is equal to the atmospheri pressurebeause the air-jet boundary is at rest, so there is no fore exerted on theboundary. The pressure on the free surfae is also equal to the atmospheripressure. If the opening is below the free surfae by h, Eq. (3.16) gives forthe jet veloity:

v =
√

2gh. (3.17)Notie that the magnitude of the veloity is independent of its diretion(the normal to the opening area). The quantity ρv2/2 is alled dynamipressure whih is equal to the spei� density of kineti energy. It followsfrom Eq. (3.17) that the dynami pressure equals the hydrostati pressure
ρgh. The total pressure in a liquid at rest at this depth follows after addingthe atmospheri pressure.The Poiseuille equation. Aording to Bernoulli's equation the pressureof a stationary �ow of a �uid in a horizontal tube of onstant ross-setion isthe same along the tube. Atually the pressure dereases in the diretion ofthe �ow. To keep the �ow stationary it is neessary to maintain a pressuredi�erene at the ends of the tube that balanes the fores of internal fritionin the �uid.Consider two parallel plates and a layer of liquid between them. Tomaintain a onstant relative speed of the plates a pair of fores ~F and
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−~F must be applied to the plates. Newton found experimentally that themagnitude of the fore is

F = ηS
v2 − v1

h
, (3.18)where S is the plate area, h is the distane between the plates, v1 and

v2 are the plate veloities, and η is dynami visosity (visosity for short).The fore between two layers of a visous �uid depends on the veloitygradient in the diretion perpendiular to the �ow (Newton's law for avisous �uid):
F = Sη

dvx

dy
. (3.19)Let an inompressible �uid �ow along a straight ylindrial tube of aradius R. Let absissa be direted along the tube axis in the �ow diretion.Consider a ylinder of the length dx and of the radius r (see Fig. 3.7).

Fig. 3.7. To derivation of thePoiseuille equation

The lateral surfae of the ylinder issubjeted to the tangential fore due tovisous frition, the fore is direted op�posite to the ylinder veloity:
dF = 2πrη

dv

dr
dx.The fore due to the di�erene in pres�sure ats on the ylinder bases in the di�retion of motion:

dF1 = πr2
(

P (x) − P (x + dx)
)

= −πr2 dP

dx
dx.The �eld �ow lines are parallel, the ross-setional area of a material lineremains onstant, so Eq. (3.15) shows that the aeleration of the �uidparel under onsideration is zero. Therefore the sum of the fores exertedon the parel must vanish:

dF + dF1 = 0.It follows from the equation that

2η
dv

dr
= r

dP

dx
. (3.20)Sine the veloity v as well as dv/dr are independent of x, the derivative

dP/dx in Eq. (3.20) must be onstant and equal to

P2 − P1

l
,



162 Continuous mehaniswhere P1 and P2 are the pressures at the tube inlet and outlet, respetively.This gives

dv

dr
= −P1 − P2

2ηl
r. (3.21)Integration of this equation yields

v = −P1 − P2

4ηl
r2 + C.The onstant of integration an be found by assuming that the �uid stiksto the tube walls:

v(R) = 0.Then

v =
P1 − P2

4ηl
(R2 − r2).The veloity v is maximum at the tube axis and equals

v0 =
P1 − P2

4ηl
R2.Away from the axis the veloity dereases aording to quadrati depen�dene.Now let us determine the �ow rate, i.e. the amount of the �uid passingthrough a tube ross-setion per unit of time. The mass of the �uid passingthrough a ring-like area of internal radius r and external radius r + drequals dQ = 2πrdr · ρv. Substituting the expression for the veloity andintegrating from 0 to R one �nds:

Q = πρ
P1 − P2

2ηl

R∫

0

(R2 − r2)r dr,or

Q = πρ
P1 − P2

8ηl
R4. (3.22)Thus the �ow rate is proportional to the pressure di�erene, to the fourthpower of the tube radius, and inversely proportional to the tube lengthand dynami visosity. This law was found experimentally and derived byPoiseuille although he was not the �rst to disover it. Equation (3.22) isalled the Hagen�Poiseuille equation.

Chapter III 163In pratie the �ow rate is onveniently measured in terms of the volumeof �uid �owing through ross-setional area (volumetri �ow rate). ThenEq. (3.22) beomes

QV =
πR4

8ηl
(P1 − P2). (3.23)This partiular form of the Poiseuille equation is used in the lab 1.3.3.A �ow of an inompressible visous �uid is desribed by the Navier�Stokes equation:

∂~v

∂t
+ vx

∂~v

∂x
+ vy

∂~v

∂y
+ vz

∂~v

∂z
= −1

ρ
gradP +

η

ρ
∆~v. (3.24)Here

gradP =~i
∂P

∂x
+~j

∂P

∂y
+ ~k

∂P

∂z
, ∆~v =

∂2~v

∂x2
+

∂2~v

∂y2
+

∂2~v

∂z2
.The equation an be redued to a dimensionless form by introduing atypial size L and a typial veloity u of the �ow. The ontribution ofeah term is then determined by its oe�ient. The ontribution of thevisous term ompared to the inertia terms on the left is determined bythe Reynolds number: Re =

ρLu

η
.For the large Reynolds number the visous term oe�ient is small andvisosity is negligible. The Reynolds number also determines transitionbetween the laminar and turbulent regimes of a visous �uid �ow.Literature1. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. I. � Ì.: Íàóêà, 1996. �ë. Õ è ÕII.2. Êèíãñåï À.Ñ., Ëîêøèí �.�., Îëüõîâ Î.À. Îñíîâû �èçèêè. Ò. 1. Ìåõàíèêà,ýëåêòðè÷åñòâî è ìàãíåòèçì, êîëåáàíèÿ è âîëíû, âîëíîâàÿ îïòèêà. � Ì.:Ôèçìàòëèò, 2001. ×. 1. �ë. 8.



164 Continuous mehanisLab 1.3.1Determination of Young's modulus based onmeasurements of tensile and bending strainPurpose of the lab: to determine experimentally the dependene be�tween stress and strain (Hooke's law) for two simplest states of stress -normal stress and bending, and to determine Young's modulus from theresults.Tools and instruments: the �rst part: Lermantov' mahine, a wiremade of studied material, a telesope with a sale, a set of weights, amirometer, and a ruler; the seond part: a braket for bending beams,an indiator for measuring strain, a set of beams, weights, a ruler, and aaliper.The �rst part of the lab is devoted to studying normal stress desribedby eq. (3.1), the stress is observed in a strethed wire. Shear stress isstudied in the seond part, measurements are performed by bending abeam. The relation between the beam bending and the magnitude ofthe fore applied between the points of support is expressed via Young'smodulus. Therefore the modulus an be determined by measuring thebending versus the fore.I. Determination of Young's modulus by measurementof wire strainYoung's modulus is measured with the aid of Lermant's mahine whihdesign is shown in Fig. 1. The upper end of the wire Π made of materialunder study is attahed to the braket K, and the lower one to the ylinderat the end of the pivoted braket III. The ylinder supports the lever rto whih the mirror 3 is attahed. Thus elongation of the wire an bemeasured by the angle of mirror rotation.The wire strain is hanged by displaing weights from the platform Mto the platform O and vie versa. Under this arrangement the deformationof the braket K remains the same and do not a�et the measurementauray.It should be taken into aount that the wire Π is always bent if nostress is applied, whih a�ets the results espeially for moderate stress.Under small load the wire is not just strething, it is mostly straighteningup.
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Fig. 1. Lermant's mahine



166 Continuous mehanisLABORATORY ASSIGNMENT1. Determine the ross-setional area of the wire. For this purpose measurethe wire diameter at least at ten di�erent spots and in two perpendiulardiretions at eah spot. Wath that the mirometer does not deform thewire. In the alulations that follow use the diameter averaged over allmeasurements.2. Measure the wire length.3. Train the telesope on the mirror 3. The sale re�etion should be learlyvisible. Derive the relation between the number n of sale graduations, thedistane h between the sale and the mirror, the length of lever r and theelongation ∆l of the mirror. The lever length is reorded on the mahineand the distane h should be measured.4. Make sure that wire elongation remains diretly proportional to stress (elas�ti region) during experiment. To do so, estimate the maximum load byassuming the yield stress (at whih the material begins to deform plas�tially) be 900 N/mm2. The working load should not exeed 30% of themaximum. Then verify the estimate. Put a weight on the platform, removeit, and hek that the wire length remains the same. Repeat the experi�ment with two, three, and more weights until reahing the maximum load.As soon as irreversible deformations beome notieable inreasing the loadmust be stopped. Eah time the load is hanged the arising osillationsshould be damped (the damper is not shown in Fig. 1).5. Measure the dependene of wire elongation, i.e. the number n of salegraduations, on the mass m of weights by inreasing and then dereasingthe load. Repeat the experiment 2�3 times.6. Using the results plot elongation ∆l versus the load P . When no strethingfore is applied the wire is usually bent, so for small loads its ¾elongation¿is due to straightening rather than strething. Therefore the elongationgrows rapidly at the initial part of the urve ∆l(P ) (small P ) and onlylater the points approah a straight line (whih does not pass through theorigin). The line slope an be used to �nd elasti oe�ient k of the wireand subsequently the Young's modulus. The initial part of the urve ∆l(P )should be exluded from the treatment.7. Using the plot determine the elasti oe�ient k and the Young's modulus
E. Estimate the auray of k and E.8. Determine the wire material by omparing the obtained value of Young'smodulus with tabulated values.

1.3.1 167II. Determination of Young's modulus bymeasurement of beam bendingThe installation onsists of a robust frame with two support prisms
A and B (see Fig. 2). The beam (plank) C lies on the prism edges. Theplatform Π with the weights on it is suspended on the prism D at the beamenter. The beam de�etion is measured with the aid of the indiator
I whih is attahed to a support separate from the frame. A ompleterevolution of the big indiator hand orresponds to 1 mm or one graduationof the small dial.Young's modulus E of the beam material is related to de�etion ymax(the displaement of the beam enter) by Eq. (20) (see p. 172):

E =
Pl3

4ab3ymax .Here P is the load, l is the distane between the prisms A and B, and

a and b are the width and the height of retangular ross-setion of thebeam.To exlude the error due to table de�etion whih hanges under theload, the weights should be plaed on the plank above the lower shelf ofthe support frame before the experiment.Equation (20) is derived under the following onditions: �rstly, theedges of the support prisms A and B are at the same height and, seondly,the fore P is applied preisely at the beam enter. The reader is re�ommended to verify how signi�antly this equation hanges if the aboveonditions are not satis�ed within the auray of experiment.LABORATORY ASSIGNMENT1. Measure the distane between the prisms A and B.2. Determine width and thikness of the beam. To do so, measure theseparameters at least at ten di�erent spots. The averaged values should beused in alulations.3. Put the beam on the frame. Set the indiator at the beam enter andmeasure the de�etion ymax versus the load P . Perform the measurementsby inreasing and then dereasing the load. Chek that the beam restoresits initial shape when the load is removed.4. Study how the result depends on the position of the point where the fore

P is applied. Displae the prism D by 2�3 mm from the beam enterand measure the de�etion again. Compare the value obtained with theprevious result.
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Fig. 2. Installation for measurement of Young's modulus5. Overturn the beam upside down and repeat the measurements. Comparethe results with the previous ones.6. Perform the measurements for two or three wooden beams and for onemade of metal.7. For eah beam plot the dependene of ¾load¿ versus ¾de�etion¿ both forinreasing and dereasing loads. Determine the average Young's modulifrom the slopes of the urves.8. Estimate the measurement errors and ompare the Young's moduli ob�tained with the orresponding tabulated values.Questions1. What are the main soures of measurement errors? How an the errors be dimin�ished?2. Estimate the maximum auray of measurement of wire elongation and beamde�etion whih is reasonable in this experiment.3. What is the di�erene between the state of normal stress and the state of normaldeformation?4. For whih stress and strain does Hooke's law hold?5. Whih deviations from Hooke's law are possible in deformation of solids?
1.3.1 1696. What is Poisson's ratio?7. Whih assumptions are made to obtain the relation between the maximum beamde�etion and Young's modulus?8. What funtion y(x) desribes the shape of the middle line of beam under perfetbending?9. What is the use of platform M in Lermant's mahine?Literature1. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. I. � Ì.: Íàóêà, 1996. �� 75�80.2. Êèíãñåï À.Ñ., Ëîêøèí �.�., Îëüõîâ Î.À. Îñíîâû �èçèêè. Ò. 1. Ìåõàíèêà,ýëåêòðè÷åñòâî è ìàãíåòèçì, êîëåáàíèÿ è âîëíû, âîëíîâàÿ îïòèêà. � Ì.:Ôèçìàòëèò, 2001. ×. 1. �ë. 8. �� 8.1, 8.2.3. Ñòðåëêîâ Ñ.Ï. Ìåõàíèêà. � Ì.: Íàóêà, 1975. �� 81, 82, 87, 88.4. Õàéêèí Ñ.Ý. Ôèçè÷åñêèå îñíîâû ìåõàíèêè. � Ì.: Íàóêà, 1971. �� 105�108.AppendixFigure 3a shows the beam under the load P applied in the middle betweensupports A and B. Eah support exerts the fore P/2 at points A and B. Thebeam is bent so that upper layers beome ompressed and lower ones strethed.It is reasonable to assume that the magnitude of stress in a layer is proportionalto the distane between the layer and the middle line of the beam, as it is shownby the arrows in Fig. 3b for some beam element. Sine the middle line of thebeam is not stressed, the length dl0 of the element middle line does not hangeunder deformation (whih is also true for the middle line of the beam). Thisstressed state of beam is alled pure bending. We assume that stresses in layersare related to their deformations by Hooke's law:

σ = E
dl − dl0

dl0
. (1)The slope of middle line of the beam element (see Fig. 3) hanges from αto α− dα along the distane dl0. The orresponding ar length an be expressedvia urvature radius R:

dl0 = −Rdα. (2)Here the minus sign is taken beause R is onsidered positive and the slopeof middle line in the oordinates of Fig. 3a dereases along the beam (as it isshown in Fig. 3). Let y(x) be the equation of the middle line in the oordinates

x, y (notie that the ordinate points downward), then the slope of the middleline is determined by the expression:

dy(x)

dx
= tanα. (3)The length of the element middle line an be written as (see Fig. 3d):

dl0 =
√

(dx)2 + (dy)2 = dx

√

1 +

(

dy

dx

)2

. (4)
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Fig. 3. Beam bending

1.3.1 171From the same triangle it follows that
dx

dl0
= cos α. (5)Di�erentiating Eq. (3) with respet to x and using Eq. (2) one obtains:

d2y

dx2
=

1

cos2 α

dα

dx
=

(

dl0
dx

)

2
dα

dl0

dl0
dx

= −
(

dl0
dx

)

3
1

R
. (6)Together with Eq. (4) this gives:

1

R
= − y′′

(1 + y′2)3/2
. (7)The stress in the layer loated at the distane ξ from the middle line of thebeam (see Fig. 3) is given by Eq. (1) whih an be rewritten as

σ = E
dl − dl0

dl0
=

E

R
ξ. (8)This formula makes use of the relation following from similarity of the trianglesin Fig. 3:

dl − dl0
ξ

=
dl0
R

. (9)The net elasti fore ating in a beam ross-setion is zero, so the net torquedue to the fores is independent of the point used to alulate the torque. Letus hoose the point at the beam middle line. This gives:

M =

b/2∫

−b/2

ξσ dS =
E

R

b/2∫

−b/2

ξ2 dS =
E

R
I, (10)where dS = adξ, a is the width, and b is the height of the beam ross-setion (seeFig. 3). I is alled moment of inertia of the beam ross-setion with respet tothe axis passing through the beam middle line. It follows from Fig. 3b that thebeam setion from x = 0 to x is in equilibrium provided the fores applied at thepoint of support and at the ross-setion are equal as well as the orrespondingtorques and the torque determined by Eq. (10). Torque equality gives:

EI

R
=

xP

2
. (11)Now using Eq. (7) one an write the equation for the beam middle line:

y′′ = −(1 + y′2)3/2 P

2EI
x. (12)For small de�etion

y′2 ≪ 1. (13)



172 Continuous mehanisIn this ase it follows from Eq. (12) that

y′′ = − P

2EI
x. (14)Integrating this equation one gets:

y′ = − P

4EI
x2 + C. (15)Here C is the onstant determined by the ondition that the beam is symmetri�ally bent, y′ = 0 at x = l/2. Then Eq. (15) gives

y′ = − P

4EI

(

x2 − l2

4

)

. (16)Integrating one more time and taking into aount that y = 0 at x = 0 oneobtains the equation for the beam middle line:

y =
Px

48EI
(3l2 − 4x2). (17)The maximum de�etion of the beam is determined by the value of y at

x = l/2:

ymax =
P l3

48EI
. (18)For beam of retangular ross-setion

I =

b/2∫

−b/2

ξ2 dS = a

b/2∫

−b/2

ξ2 dξ =
ab3

12
. (19)The value of Young's modulus follows from Eqs. (18) and (19):

E =
P l3

4ab3ymax . (20)
1.3.2 173Lab 1.3.2Determination of torsional rigidityPurpose of the lab: to measure the dependene of twist angle of anelasti rod on torque applied, to measure torsion and shear moduli of arod using stati method, and to measure the same moduli using torsionalosillations.Tools and instruments: part 1: a rod, an eyeglass with a sale, a tapemeasure, a mirometer, and a set of weights; part 2: a wire made of thestudied material, weights, a stopwath, a mirometer, a tape measure,and a ruler.The distribution of deformations and stresses in a twisted ylindrialrod of irular ross setion is uniform along the rod only far from thepoints of fore appliation. In these regions of uniform deformation onean onsider every ross setion as absolutely rigid, i.e. rod partiles arenot displaed from the radial lines on whih they are loated prior to thedeformation; all radial lines in a given ross-setion are thus turned bythe same angle. This stressed state of the material is referred to as puretorsion. In what follows it will be shown that the tangential stresses in theross setion are diretly proportional to the distane to the rotation axis.Consider a part of length l of a twisted ylinder shown in Fig. 1a. Astraight line drawn parallel to the axis of an unstrained ylinder beomesa helix after a twisting torque is applied. Cross setions separated by thedistane l are rotated by the angle ϕ.To derive equations desribing torsion it is onvenient to onsider apart of ylinder: a ring of arbitrary radius r, in�nitesimal thikness dr,and in�nitesimal height dl, as shown in Fig. 1b. The top of the ringunder torsion is rotated by the angle dϕ relative to the bottom while thegeneratrix of the ring ylindrial surfae dl (an in�nitesimal part of thehelix mentioned above) is tilted by the angle aα from the vertial.For small torsion angles α one an write down the relation

αdl = rdϕ. (1)One an readily see that α grows with the distane to the ylinder axis. Anin�nitesimal part of the deformed ring is shown in Fig. 1. The tangentialstress τ is diretly proportional to the twist angle α, the proportionalityonstant is shear modulus G (see Eq. (3.2)):

τ = Gα. (2)
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Fig. 1. Twisted ylinderThe tangential stress τ is diretly proportional to α, hene it inreases pro�portionally to the distane to the axis of the ylinder, as it was mentionedabove. Using Eq. (1) one obtains

τ = Gr
dϕ

dl
. (3)These tangential stresses provide the torque about the ylinder axis:

dM = 2πrdr · τ · r. (4)The total torque on the whole ross setion an be obtained by integratingEq. (4) over r from zero to the ylinder radius R:
M = 2πG

dϕ

dl

R∫

0

r3 dr = πG
dϕ

dl

R4

2
. (5)This torque is onstant over the ylinder length. Torques ating on the faeplanes of any given part of ylinder are balaned, thus there is no rotation.

1.3.2 175Then using Eq. (5) one readily obtains a linear relation between the relativetwist ϕ of two ross setions and the distane l between them. Thereforewe obtain the relation between the applied torque M , the relative twistangle ϕ of the ross setions, and the distane l between them:
M =

πR4G

2l
ϕ = fϕ. (6)Here the torsion modulus f is introdued whih is related to shear modulus

G by the following equation:
f =

πR4G

2l
. (7)It is worth empathizing that Eq. (6) is valid only for the stresses muhless than the shear modulus, i.e. at small angles α.I. Stati method of determination of torsion modulusof a rodThe experimental setup for the study of stati torsion is shown in Fig. 2.The top end of the vertial rod R is rigidly attahed to the bar while thebottom end is jointed to the dis D. The twisting moment is provided bytwo wires wound around the dis and passed over the bloks B; the wiresare loaded by idential weights W. The mirror M mounted on the dis isused to measure the twist angle. To determine the angle one should adjustthe eyeglass to observe a sharp re�etion of the sale in the mirror M. Thesale and the eyeglass are mounted on single support. Measurement ofdisplaement of the sale image allows one to determine the twist angle ofthe rod. LABORATORY ASSIGNMENT1. By adjusting the eyeglass observe a lear image of the sale re�eted bythe mirror M. Measure the distane between the mirror and the sale andthe diameters of rod R and dis D.2. Gradually inrease the load on the wires and obtain the dependene ϕ =

= ϕ(M). Carry out the measurements by dereasing the torque. Repeatthe measurements at least three times.3. Plot the results in the (ϕ, M) � oordinates. Using the plot obtaineddetermine the torsion modulus f and estimate the error.4. Using Eq. (7) alulate the shear modulus G and ompare its value withthe tabulated one.
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Fig. 2. Experimental setupII. Dynami measurement of the shear modulus (usingtorsional osillations)The experimental setup used in this part of the lab is shown in Fig. 3.The setup inludes the vertial wire and the horizontal metal rod R at�tahed to its lower end. Two idential movable weights W are symmetri�ally attahed to the rod. The upper end of the wire is seurely lampedby a ollet; a speial mehanism allows onjoint rotation of the wire endand the ollet about the vertial axis, thus it is possible to exite torsionalosillations of the system. Rotation of the rod R and the weights W is due
1.3.2 177to the elasti torque of the wire. The rotation is desribed by Eq. (2.35):

I
d2ϕ

dt2
= −M. (8)Here I is the moment of inertia of the rod and weights about the rotationaxis, ϕ is the rotation angle measured from the equilibrium, and M is thetorque whih at small angles ϕ is well desribed by Eq. (6). Introduingthe notation

ω2 =
f

I
, (9)one obtains from Eqs. (6) and (8):

d2ϕ

dt2
+ ω2ϕ = 0. (10)This is the equation of harmoni osillations (4.4). Its solution is

ϕ = ϕ0 sin(ωt + θ), (11)where amplitude ϕ0 and phase θ are determined by the initial onditions.The osillation period T equals
T =

2π

ω
= 2π

√

I

f
. (12)Equation (10) together with Eqs. (11) and (12) desribe free osilla�tions. In order to apply them to a real proess one should asertain thatthe damping of osillations is negligible. If the amplitude of osillationsdereases less than by half after 10 full swings one an use the equationsfor free osillations. Also one should make sure that the osillation perioddoes not depend on the initial amplitude, otherwise the amplitude shouldbe dereased until this dependene vanishes.LABORATORY ASSIGNMENT1. Estimate experimentally the working range of amplitudes in whih the re�sults derived for free osillations are valid. For this purpose �x the weightson the rod symmetrially and exite torsional osillations. Measure thetime of several full swings (at least ten) and alulate the period T1. Halvethe initial amplitude and determine the orresponding period T2. If T1 =

= T2 one an work with any amplitude not exeeding the �rst one. Other�wise derease the initial amplitude and repeat the measurements until theequality is obtained.



178 Continuous mehanis

Fig. 3. Experimental setup2. Make sure that after 10 full swings the amplitude is dereased less than byhalf.3. Fix the weights on the rod at equal distanes l from the rotation axis (wire)to the enters of inertia of the weights and measure the osillation period T .Repeat the measurement for 4�6 di�erent values of l. The torsion modulusan be obtained from the experimental data plotted in oordinates (l2, T 2).4. Measure the wire length and diameter. Using the obtained torsion modulus
f alulate the shear modulus G (see Eq. (7)), estimate the error, andompare the result with the tabulated value.Questions1. How does frition in the axes of bloks B a�et the results of stati measurements?How an one minimize this in�uene?2. How does the osillation period hange when damping is inreased?3. Whih method of measurement of shear modulus is preferable in pratie: thestati or dynami one?

1.3.3 1794. How an one estimate the error of shear modulus from the plot in (l2,
T 2)-oordinates? Literature1. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. I. � Ì.: Íàóêà, 1996. �� 78,79.2. Ñòðåëêîâ Ñ.Ï. Ìåõàíèêà. � Ì.: Íàóêà, 1975. �� 82, 84, 86.Lab 1.3.3Determination of air visosity by measuring arate of gas �ow in thin pipesPurpose of the lab: determine a domain of stationary �ow, regimesof laminar and turbulent �ows, air visosity, and the Reynolds number.Tools and instruments: metal pipes mounted on a horizontal sup�port, gas �ow meter, mirometer-type manometer, U-shaped glass pipe,stopwath.Consider a �ow of visous �uid in a irular pipe. At small veloitiesof the �ow its motion is laminar (streamline), veloities of �ow parelsare parallel to the pipe axis and their magnitude is a funtion of radius.Inreasing of the veloity makes the �ow turbulent, so layers of di�erentveloities mix. In turbulent regime the veloity at any point of the �uidhaotially hanges its magnitude and diretion while the average veloityremains onstant.Partiular regime of the �uid �ow through a pipe is determined by aspei� value of the dimensionless Reynolds number:Re =

vrρ

η
, (1)where v is the �ow veloity, r is the pipe radius, ρ is the �uid density,and η is its visosity. In irular pipes with smooth walls transition fromlaminar to turbulent regime ours at Re ≈ 1000.In the laminar regime the volume of gas V �owing through a pipe oflength l during a time period t is given by Poiseuille equation (3.23):

QV =
πr4

8lη
(P1 − P2). (2)In this equation P1 − P2 is the pressure di�erene between ross setions1 and 2 of the pipe and l is the distane between the ross setions. The



180 Continuous mehanisquantity Q is referred to as the volumetri �ow rate. Equation (2) allowsone to determine the gas visosity one the �ow rate is known.Let us speify the onditions for Eq. (2) to be valid. First, the inequalityRe < 1000 should be satis�ed. Seond, the spei� volume (or density) ofthe gas should be almost onstant throughout the pipe (the spei� volumeis assumed to be onstant in (2)). For a liquid �ow this assumption isusually well satis�ed; for a gas �ow the pressure di�erene between the pipeends must be small ompared to the pressure itself. In the experimentalsetup the gas pressure equals the atmospheri pressure (103 m of water)while the pressure di�erene does not exeed 10 m of water, i.e. it is lessthan 1% of the atmospheri pressure. Third, Eq. (2) is valid for the piperegions in whih the radial distribution of gas veloities does not hangealong the pipe.Fig. 1. Formation of gas �ow in a irular pipe When gas �ows into apipe from a bulk reservoirthe veloities of gas layers areonstant throughout the pipeross setion (Fig. 1). The veloity distribution pattern gradually hangesalong the pipe as the wall frition drags the adjaent layers. The paraboliveloity distribution typial for a laminar �ow is formed at a ertain dis�tane a from the pipe entry point. This distane depends on the piperadius r and the Reynolds number and an be estimated as

a ≈ 0,2r · Re. (3)The pressure gradient in the �ow formation domain is greater thanthat in the laminar �ow domain. This fat allows one to distinguish thesedomains experimentally.Laboratory setup. The measurements are performed by means of theexperimental setup shown in Fig. 2. Pressurized air (an extra pressureexeeds the atmospheri one by 5-7 m of water) �ows through the gasmeter GM into the reservoir A to whih two metal pipes are soldered.The approximate dimensions of the pipes are given in the �gure; the exatdimensions are marked on the setup. Both pipes are supplied with end apsbloking the air �ow. During the measurements the end ap is removedonly from the working pipe while the other pipe should be tightly sealed.Previous to the gas meter a U-shaped pipe half-�lled with water isset up. It is used for two purposes: �rst, it measures the pressure of theinoming gas; seond, it preserves the gas meter from a possible breakdown.The gas meter operates normally providing the input pressure does notexeed 600 mm of water. The height of the U-shaped pipe is about 600
1.3.3 181

Fig. 2. Setup for measurement of air visositymm, thus if the input pressure exeeds 600 mm the water spills out fromthe pipe into the tank T thereby attrating the experimenter's attention.Suh situation an our if gas is supplied to the system while the pipeends are sealed.There are several millimeter-wide openings in the pipe walls for mea�suring a pressure di�erene. To measure the di�erene, manometer inletsare onneted to two adjaent openings while the other ones are sealed.Air supply is adjusted by the valve V.In the lab mirometer-type manometerMTM (Fig. 3) is used; it allowsone to measure the pressure di�erene up to 200 mm of water. To inreasethe manometer sensitivity its pipe is slanted. The marks 0.2, 0.3, 0.4, 0.6,and 0.8 on the stanhion 4 are the oe�ients whih must be multipliedby the manometer readings to obtain the pressure in millimeters of water(at a given slope). The working liquid is ethanol. The manometer zero isadjusted by shifting ethanol level in the vessel 1 using the instrumentalityof ylinder 6. A driving depth of the ylinder is ontrolled by the srew 7.The manometer is supplied with two inlinometers 9 plaed on theplate 3 orthogonal to eah other. Level adjustment is performed by twolegs 10. The three-way ok 8 is mounted on the gauge top; it has twooperating positions: ¾0¿ and ¾+¿ (see Fig. 3). Position ¾0¿ is used foradjusting the zero level of the menisus. Position ¾+¿ is used for thepressure measurements. The rod 5 is used to swith between the positions(Fig. 3), this does not hange a level of the working liquid in the reservoir.The gas �ow meter (shown in Fig. 4) is used for measuring smallamounts of gas. Its asing is a ylinder with a mehanial ounter and
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Fig. 3. Mirometer-type manometer MTMa dial on its front fae. One revolution of the pointer orresponds to 5liters of gas passed through the meter.The gas �ow meter is �lled with water up to a level determined by thegauge 1. The gas inlet and outlet pipes 2 and 3 are loated on the rear andtop sides of the meter, respetively. The U-shaped manometer is onnetedto the pipe sokets 4, the soket 5 is used for the thermometer. The valve6 is used as a drain. The meter has an inlinometer and retratable legsfor level adjustment.The operating priniple of the gas �ow meter is illustrated in Fig. 5.Several light ups are attahed to the shaft on the ylinder axis line (forsimpliity only two ups are shown). Inoming air from the pipe 2 �lls aup loated above the pipe. The air-�lled up rises to the surfae whilethe next up takes its plae and so on. Shaft rotation is transmitted to theounter. LABORATORY ASSIGNMENT1. Chek the setup and make neessary level adjustments, hek water levelin the gas �ow meter and adjust the zero of the manometer menisus.Choose one of the pipes for the omplete set of measurements (the pipe of
d = 4 mm is preferable).

1.3.3 183
Fig. 4. Shemati view of thegas �ow meter Fig. 5. Interior of the gas �ow meter2. Using Eq. (3) estimate the length of the region of �ow formation. TakeRe = 1000.3. Connet the manometer inlets to a pair of adjaent openings in the seletedpipe (in the region of the formed �ow). Unap the pipe outlet; all the otheroutlets should be sealed.4. Gradually open the valve V (Fig. 2) feeding the setup with air. Carefullytrak the manometer readings sine at a high pressure di�erene the ethanolan spill out from the manometer through the pipe 11.This undesirable situation often ours when working with thin pipes.In this ase ethanol not only �oods an elasti pipe whih onnets themanometer pipe 11 with the three-way ok, but it an also leak into thepipe onneted with (�). Drops of liquid in the pipe result in inorretmeasurements of ∆P = P1 − P2. For this reason before the measurements(or if the ethanol has �ooded the pipes) one should asertain that thereare no drops of liquid in the onneting pipes. The drops an be detetedby observing sudden leaps of manometer readings when slowly moving theonneting pipes. If this is the ase the pipes should be removed and driedout.5. Determine the air visosity. For this purpose measure the dependeneof the pressure di�erene ∆P on the air �ow rate Q = ∆V/∆t. Thegas volume ∆V is measured with the gas �ow meter and ∆t - with thestopwath. Set the slope oe�ient on the manometer stanhion equal to0.2. Start the measurements from small pressure di�erenes (2�3 mm ofwater) and gradually inrease the gas �ow rate Q.Within the range from 0 to 100 of the manometer dial (Fig. 3) oneshould perform not less than 5 measurements to survey the laminar regime.



184 Continuous mehanisSubsequent measurements ould be sparse but they should over a widerpressure range to examine the turbulene regime. Using the data obtainedplot the dependene ∆P = f(Q) whih should be linear in the laminarregime (see Eq. 2). The dependene beomes non-linear for a turbulent�ow sine the pressure di�erene grows faster than the gas �ow rate.6. Calulate the slope of the urve ∆P = f(Q) in the linear domain anddetermine the air visosity η. Estimate the error of the slope and �nd theerror of the obtained value of the visosity.7. Calulate the Reynolds number Re orresponding to transition betweenlaminar and turbulent regimes.8. Measure the pressure distribution along the pipe in the laminar regime.Connet the manometer to all pipe openings one by one (inluding theopening ¾0¿, see Fig. 2). Plot the pressure vs. the distane from the pipeinlet (P = f(l)). Using the plot estimate the length of the �ow formationregion. Compare the result with Eq. (3).9. Measure the dependene Q = f(P ) for all pipes in the formed �ow region(at the end of a pipe) in the laminar regime (Re < 500). Using the dataalulate the following quantity:

8lηQ

π(P1 − P2)
= rn.Plot the obtained funtion on a log-log graph, i.e. plot the values of

ln
(

8lηQ/π(P1 − P2)
) on the Y-axis and ln r on the X-axis. Obviouslythe urve slope equals n and for the Poiseuille equation n = 4. Verify it.Estimate the error of the result. Questions1. Write the equation whih desribes the radial distribution of laminar �ow veloityin a irular pipe. What is the ratio of the average and maximum veloities?2. How is the Reynolds number de�ned? How an it be determined experimentally?3. Desribe the method of graphial treatment of the experimental data (see 8) thatallows one to distinguish the regions of formed and non-formed �ow learly.Literature1. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. I. � Ì.: Íàóêà, 1996. �� 96, 97.2. Õàéêèí Ñ.Ý. Ôèçè÷åñêèå îñíîâû ìåõàíèêè. � Ì.: Íàóêà, 1971. Ch. XVI,� 125.3. L.D. Landau, A.L. Ahiser, E.M. Lifshitz Mehanis and moleular physis. �M.: Nauka 1969. Ch. XV, �� 117�119.

1.3.4 185Lab 1.3.4Study of stationary �ow of liquid through pipePurpose of the lab: to measure liquid �ow veloity using Venturi andPitot methods and to ompare the results with those obtained by diretmeasurement of volumetri �ow rate.Tools and instruments: a setup that inludes venturi and pitot tubesand a stopwath.A �ow of liquid through a pipe of onstant ross-setion is studied inthe lab.

Fig. 1. Venturi tube

The main purpose of experimental study of�uid �ow through a pipe is the measurement of�ow veloity and volumetri (mass) �ow rate. A�urate measurement of the �ow rate is importantin pratial appliations: operation of oil and gaspipelines, plumbing, and entral heating.A lot of di�erent methods have been devel�oped to measure �uid �ow rate and �ow veloity.The most simple and aurate ones rely on mea�surement of the pressure di�erene due to dete�tor positioning (toward or along the �ow in thepitot tube) or due to an obstale impeding the�ow (the narrowing of Venturi tube or a washer).A venturi tube (see Fig. 1) is a horizontal tubewhih ross-setional area gradually hanges along the tube. Wide (S1) andnarrow (S2) setions are onneted to water manometer M1. The pressurein a setion is determined by the height of the orresponding water olumn.
Fig. 2. Pitot tube

Sine water is inompressible (v1S1 = v2S2)and the tube is horizontal (z1 = z2) Bernoulli'equation (3.14) allows one to express the �ow ve�loity in setion S1 in terms of the pressure insetions S1 and S2:

v1 =

√

2(p1 − p2)

ρ [(S1/S2)2 − 1]
. (1)A pitot tube is shown in Fig. 2. Tube T isonneted to two tubes of water manometer M2.Tube 1 is onneted to the surfae of the tube T



186 Continuous mehaniswhile the tip of the tube 2 is bent toward the �ow. Obviously the liquid isat rest, v2 = 0, at the opening of tube 2.Let the pressures measured by means of the tubes 1 and 2 be p1 and p2,respetively. Bernoulli' equation (3.14) gives p1 + ρv2
1/2 = p2, so

v1 =
√

2(p2 − p1)/ρ. (2)Equation (2) relates �ow veloity to the di�erene in liquid heights inthe tubes 1 and 2.The pitot tube allows one to measure the loal �ow veloity at the tubeloation. Using the venturi tube one an determine only the veloity aver�aged over tube ross-setion. Therefore the venturi tube is predominantlyused for �ow rate measurements. The pitot tube is used to measure �owveloity; more often it is an open �ow rather than a �ow in pipe. The pitottube is used for veloities ranging from those of visous boundary layers tosupersoni veloities.Operation of pipelines requires onstant monitoring of volumetri ormass �uid �ow rate. The measurements are ompliated by visosity whihresults in the �uid ¾stiking¿ to pipe wall, so �uid veloity next to the wallvanishes. Therefore the veloity always inreases along the pipe radiusfrom the wall to the enter. For stationary �ow and a low Reynolds numberone an apply the Poiseulle equation, so it would su�e to measure the�ow veloity at any point, e.g. at the pipe axis. Otherwise an auratemeasurement of the �ow requires integrating the �ow veloity over a pipeross-setion, so the veloity must be measured at several points. In themonograph ¾Hydrodynamis¿ by T. Ye. Faber it is reommended to use20 pitot tubes loated at di�erent distanes from the pipe axis in twoperpendiular diretions.One of physial methods of measurement of �uid �ow rate is realizedin an ultrasoni �ow meter. The method is based on the observation thatspeed of sound propagating in a �uid is onstant with respet to the �uid,so the speed of sound is greater in the diretion of �uid �ow and it is less ifthe sound propagates against the �ow. An ultrasound emitter and reeiverare mounted on the opposite walls of the pipe although not faing eahother, so the sound propagates at some angle with respet to the �ow.Therefore the speed of sound in the diretion of the �uid �ow exeeds thatin the �uid at rest and vie versa. A di�erene between the speeds allowsone to determine the �ow veloity even if the speed of sound itself is notknown. Operation of ultrasoni �ow meter is not a�eted by �uid visosity,whih is an advantage. However the meter measures some average veloityon the path of the sound, so for preise measurements the devie has to
1.3.4 187

Fig. 3. Experimental installation for studying stationary �ow of liquidthrough pipebe alibrated. The alibration depends on Reynolds number beause itdetermines a veloity pro�le of the �ow.There is also a turbine �ow meter in whih �ow rate is diretly pro�portional to the number of revolutions of a turbine. However the meterreadings depend on �uid visosity.Laboratory setup. An experimental installation for studying liquid �owis shown in Fig. 3. Water enters tube T from ylindri vessel I equippedwith glass tube B serving as a water meter. The vessel is �lled with tapwater via tube A, the in�ux is ontrolled by tap K. Water �owing out oftube T �lls reeiver vessel II whih has siphon C mounted on the bottom.The siphon preserves the reeiver from over�owing by emptying it assoon as water level reahes the height h. Tube T is equipped by venturiand pitot meters.The �ow rate averaged over the tube ross-setion an be determined bymeasuring the time required to �ll the reeiver II whih volume is known.On the other hand the rate an be found using the readings of the manome�ters with the aid of Eqs. (1) and (2). Comparison of the rates found bydi�erent methods allows one to hek whether Bernouilli' equation an be



188 Continuous mehanisapplied and to assess a role of visosity that hanges veloity pro�le arossthe �ow. It is onvenient to ompare the �ow rates by plotting the rate of�lling the reeiver on absissa and the venturi and pitot rates on ordinate.For ideal liquid the plot would be a straight line at 45◦ to the absissa.Visosity an be estimated by observing the water levels in the reservoirand two manometer tubes. For ideal liquid the levels would be the same.Due to visosity the levels derease along the �ow.Up to this point we assumed that the liquid is ideal, so there is nofrition due to visosity in tube T and no assoiated losses. The followingexperiment allows one to estimate visosity quantitatively. Fill the reser�voir I to some level z1, measure the �ow veloity in tube T using reeiver II(sine water is essentially inompressible it enters and leaves the tube atthe same speed). Using Torrielli's law evaluate the height z2 that resultsin the same speed for an ideal liquid. The di�erene z1 − z2 is a measureof internal losses due to visosity. Moreover it is safe to assume that thelosses our mostly in tube T sine veloity of water in reservoir I is muhless.Visosity hanges the readings of the venturi manometer by a quan�tity ∆h whih an be estimated as the produt of the di�erene z1 − z2and the ratio of the distane ∆l between the manometer entries to the tubelength L. If

∆h ≫ (z1 − z2)
∆l

L
,water an be onsidered as ideal liquid at the sale of ∆l. If ∆h is ompa�rable to (z1−z2)

∆l
L one should subtrat the quantity ∆z ∆l

L ρg from p1−p2.The same applies to the pitot tube. In addition, one should estimate theorretion to manometer readings due to a �nite size of the bent setion oftube 2 inserted in the �ow.It is important to ensure that the �ow remains stationary during theexperiment. This is ahieved by maintaining water level in the reservoir Iat the same height H by adjusting tap K. The glass tube used as a meterhas millimeter graduations for onveniene. Before the experiment oneshould make sure that the manometer tubes are not logged.LABORATORY ASSIGNMENT1. Pour some water in reservoir 1. Plug tube T and make sure that water lev�els in manometer tubes and in the reservoir are the same. Make neessaryadjustments if this not so.2. Measure the �ow rate for several water levels H in reservoir I starting from
∼1 m. A �ow must be stationary, so a water level should be maintained
1.3.4 189onstant during the measurement. The rate is determined by the time trequired to �ll reservoir II. Estimate the error of t. For every H reord thereadings of the venturi and pitot manometers.3. Calulate average �ow veloity vð = V0/(tS1), where V0 is the volumeof reservoir II, t is the time required to �ll the reservoir, and S1 is theross-setional area of tube T. Estimate the error of vð.4. Measure the length L of tube T and ∆l of the venturi and pitot manome�ters.5. Plot the quantity v2ð versus water level H . Plot the errors as ross-bars.Plot also the height alulated aording to Torrielli' equation, z2 =

= v2
p/(2g), on the same graph. Do the points oinide? What is thereason of the disrepany?6. Using Eqs. (1) and (2) and the readings of venturi and pitot manometersalulate veloities vV and vP (taking the losses into aount and withoutthem). Estimate the errors of the veloities. Compare the veloities with

vð and plot them versus vð. How do the errors of S1 and S2 in Eq. (1) andthe narrowing of the tube ross-setion where the pitot tube 2 is inserteda�et the dependene obtained?7. Plot vð versus H . Determine graphially the regions of laminar and turbu�lent �ow. Determine the Reynolds number at the point of transition fromthe laminar to turbulent regime:Re =
vðrρ

η
,where ρ is the water density, r is the radius of tube T,η = 1·10−3 kg/m·s -isthe water visosity. Questions1. Speify the assumptions used to derive Bernouilli's equation.2. How does visosity a�et the readings of venturi and pitot �ow meters?3. Whih water levels H in reservoir 1 orrespond to laminar or turbulent �ow intube T?4. Suppose there is a laminar �uid �ow through a tube and the visosity dereasesgradually while other �ow parameters remain onstant. How does the �owhange?5. Whih �ow regime, laminar or turbulent, provides a better agreement betweenthe values of �ow veloity determined by venturi and pitot tubes and that oneobtained by using reservoir II?6. Derive Torrielli's equation and use it to estimate the veloity of liquid �owingout a very short pipe for di�erent levels H . Why are the experimental values ofthe veloities of water �owing out a long pipe su�iently less?



190 Continuous mehanis7. Estimate the di�erene of water levels ∆h in the left tubes of the manometers(see Fig. 3) attahed to tube T where the ross-setional areas are the same. Howan the pressure di�erene be explained? Can the pressure di�erene betweenthe inlet and outlet of tube T be found by linearly extrapolating the pressuredi�erene between the tubes? Literature1. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. I. � Ì.: Íàóêà, 1996. �ë. ÕII, �� 93,94, 95.2. Õàéêèí Ñ.Ý. Ôèçè÷åñêèå îñíîâû ìåõàíèêè. � Ì.: Íàóêà, 1971. �ë. ÕVI,�� 123, 124.3. Ñòðåëêîâ Ñ.Ï. Ìåõàíèêà. � Ì.: Íàóêà, 1975. �� 100�106.4. Êèíãñåï À.Ñ., Ëîêøèí �.�., Îëüõîâ Î.À. Îñíîâû �èçèêè. Ò. 1. Ìåõàíèêà,ýëåêòðè÷åñòâî è ìàãíåòèçì, êîëåáàíèÿ è âîëíû, âîëíîâàÿ îïòèêà. � Ì.:Ôèçìàòëèò, 2001. ×. 1. �ë. 8. �� 8.3, 8.4, 8.5, 8.6.5. Ôàáåð Ò.Å. �èäðîàýðîäèíàìèêà. � Ì.: Ïîñòìàðêåò, 2001.

Chapter IVMECHANICAL OSCILLATIONS ANDWAVES
Free harmoni osillations. Mehanial motion and the proesses whihan be regarded as periodial are usually alled osillations. Suh proessesan be related to di�erent phenomena of nature, eonomis, or soiety.Osillation takes plae provided there is a proess that returns perturbedsystem to equilibrium (restoring fore). This feature makes it possible togive universal mathematial desription of osillations. Some examples ofrestoring fore in mehanis inlude elasti fore of spring, gravity fore,elasti fore of twisted rod or wire, et.A simple example of osillation is the motion of a weight suspendedon elasti spring. But we start with even a simpler system. Let us puta weight and a spring on a horizontal smooth (fritionless) surfae. Oneend of the spring is �xed while the weight of mass m is attahed to theother end. Let the length of the undeformed spring be l0. The weightstarts moving along the spring axis (let it be x-axis) if it is displaed fromthe equilibrium or it reeives some initial veloity along the axis. Now letus assume that the reation fore F of the spring is proportional to itselongation l− l0 whih is equal to the displaement x = l− l0 of the weightfrom the point of equilibrium:

F = −kx. (4.1)The minus sign indiates that fore is opposite to displaement. The on�stant k is the so alled spring elasti onstant. It should be noted that forlarge deformations spring rigidity depends on the deformation magnitude.This results in non-linearity disussed later in this hapter.Equation of motion of mass m follows from Newton's seond law ofmotion:

mẍ = −kx. (4.2)Hereinafter the dots over variables stand for time derivative.



192 Mehanial osillations and wavesLet us introdue the notation

ω2
0 =

k

m
. (4.3)Then Eq. (4.2) beomes

ẍ + ω2
0x = 0. (4.4)This is an ordinary di�erential equation of the seond order. The gen�eral solution of Eq. (4.4) depends on two onstants determined by twoonditions. In partiular one an impose initial (i.e. at t = 0) onditions.For instane, at t = 0: x = x0 and ẋ = 0 or x = 0 and ẋ = v0.To integrate Eq. (4.2) let us multiply it by ẋ. Sine ẍ = dẋ/dt and

ẋ = dx/dt, this gives

mẋ
dẋ

dt
+ kx

dx

dt
=

d

dt

(

mẋ2

2
+

kx2

2

)

= 0. (4.5)Then

mẋ2

2
+

kx2

2
= E. (4.6)Here the �rst term is kineti energy of mass m and the seond term iselasti energy of the deformed spring. Constant of integration E is thetotal mehanial energy of the weight and the spring. Equation (4.6) showsthat E is a positive quantity whih an be found from initial onditions.If the initial veloity vanishes,

E =
kx2

0

2
. (4.7)If the initial displaement vanishes,

E =
mv2

0

2
. (4.8)Thus the �rst integral (4.6) of Eq. (4.2) is the law of onservation of me�hanial energy. For further integration let us write Eq. (4.6) as

ẋ = ±
√

2E

m

√

1 − k

2E
x2. (4.9)Let us introdue the notation

x

√

k

2E
= sin y. (4.10)

Chapter IV 193Using Eqs. (4.9), (4.10), and (4.3) one obtains
ẏ = ±

√

k

m
= ±ω0.Integration of this equation gives

x1 =

√

2E

k
sin(ω0t + α),

x2 = −
√

2E

k
sin(ω0t + β) =

√

2E

k
sin(ω0t + π + β).Both solutions an be written in the same form:

x =

√

2E

k
sin(ω0t + ϕ0), (4.11)where ϕ0 is the onstant determined from initial onditions. It is oftenonvenient to write Eq. (4.11) as

x =

√

2E

k
cos(ω0t + ϕ0). (4.12)The argument of the sine, ω0t + ϕ0, is alled osillation phase and theonstant ϕ0 is alled initial phase of osillations. The value of sine is thesame for two phases whih di�er by a multiple of 2π, so Eq. (4.12) desribesa periodi proess. The period T is determined by the relation

2π = ω0(t + T ) + ϕ0 − (ω0t + ϕ0) = ω0T.The quantity ω0 introdued in Eq. (4.3) is alled yli frequeny ofosillations. It is related to the number of osillations per seond (temporalfrequeny or frequeny for short) and to period T as

ν =
1

T
=

ω0

2π
. (4.13)Equation (4.6) shows that veloity ẋ dereases when displaement xgrows. A halt (ẋ = 0) ours at the maximum displaement x = a whihis alled amplitude of osillations:

ka2

2
= E. (4.14)



194 Mehanial osillations and wavesThe amplitude a is positive by de�nition. Substitution of Eq. (4.14)to (4.12) gives

x = a sin(ω0t + ϕ0). (4.15)Therefore the veloity is

ẋ = aω0 cos(ω0t + ϕ0). (4.16)Obviously the maximum displaement in the positive diretion of x lagsbehind the maximum veloity in the same diretion by a phase of π/2 (or90◦).In general, when both x0 and v0 are non-zero at t = 0 we have

a =
√

x2
0 + v2

0/ω2
0, ϕ0 = arctan

(

ω0x0

v0

)

. (4.17)Osillations desribed by Eq. (4.15) are alled harmoni (or sinusoidal),sine sine and osine are harmoni funtions. Harmoni osillations areisohronous, i.e. their period does not depend on amplitude. A systemwhih exeutes harmoni osillations desribed by Eq. (4.4) is alled har�moni osillator. Notie that irular motion at onstant speed an beonsidered as the sum of two harmoni perpendiular osillations whihhave the same amplitude and the phases di�ering by π/2. The yli fre�queny in this ase oinides with angular veloity of the irular motion,therefore the name. In general, addition of two perpendiular osillationswith di�erent amplitudes and phases results in a ompliated trajetoryalled Lissajous urve.Equation (4.15) an be written as

x = A sin ω0t + B cosω0t. (4.18)This relation depends on two onstants of integration determined frominitial onditions as in Eq. (4.15).Using Eqs. (4.15) and (4.16) one an obtain the following expressionsfor kineti and potential (elasti) energy of the osillator:
K =

mẋ2

2
=

mω2
0a

2

2
cos2(ω0t + ϕ0) =

mω2
0a

2

4
[1 + cos(2ω0t + 2ϕ0)],

U =
kx2

2
=

mω2
0a

2

2
sin2(ω0t + ϕ0) =

mω2
0a

2

4
[1 − cos(2ω0t + 2ϕ0)].Notie that

K + U = E =
mω2

0a
2

2
.

Chapter IV 195The values of K and U averaged over the period are
K̄ =

1

T

T∫

0

K(t) dt, Ū =
1

T

T∫

0

U(t) dt.Integration gives
K̄ = Ū =

mω2
0a

2

4
=

E

2
. (4.19)Therefore the average kineti and potential energies of the osillator areequal.Now onsider osillations of the weight of mass m suspended on a springwith elasti oe�ient k in gravitational �eld with free-fall aeleration g.In this ase instead of Eq. (4.2) one gets

mẍ = −kx + mg. (4.20)Here the x-axis is direted downwards along the gravity fore.Let x0 be the spring elongation in equilibrium, then

mg = kx0. (4.21)Using Eqs. (4.20) and (4.21) one obtains for deviation ξ = x− x0 fromthe equilibrium:
mξ̈ = −kξ. (4.22)This is the equation of harmoni osillator (4.4).Phase portrait of harmoni osillator. There is a remarkable repre�sentation of harmoni osillations in the so-alled phase plane. Coordinateaxes on the plane are oordinate x and a quantity proportional to its timederivative, e.g. momentum mẋ. A point on the phase plane spei�es thestate of a mehanial system with one degree of freedom at a given time.Now onsider the phase plane of a harmoni osillator whih exeutes themotion

x = a cos(ω0t + ϕ).Let the absissa represent the oordinate x and the ordinate represent thequantity y = ẋ/ω0. This hoie is onvenient sine both x and y have thesame dimension. Obviously

y = −a sin(ω0t + ϕ).One an see that

x2 + y2 = a2. (4.23)
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Fig. 4.1. Phase portrait ofharmoni osillator
This is the equation of the irle of radius a.A point (x, y) on the plane represents thestate of osillator at a given time. Let us re�fer to this point as representing point. Thereis one-to-one orrespondene between the mo�tion of osillator and the motion of represent�ing point along the phase trajetory whih isirular in our ase. Osillations of di�erentamplitudes are represented by a family of ir�les entered at the origin. Figure 4.1 showsthe portrait of harmoni osillator.Osillations of the same amplitude but ofdi�erent initial phases are represented by the same irle, however simulta�neous positions of the representing points on the irle are di�erent. Thephase di�erene is equal to the angle between radius vetors of the points.It is easy to verify that representing points run lokwise. A full revolutionis ompleted for osillation period T = 2π/ω0.Free motion of damped harmoni osillator. Consider osillationswhih in addition to restoring fore are also subjeted to a fore impedingthe motion, i.e. the fore direted opposite to veloity. Suh a fore ariseswhen the osillation proeeds in a medium that resists motion. At a smallveloity the fore is diretly proportional to it:

Fñ = −bẋ. (4.24)In this ase instead of (4.2) one obtains:

mẍ = −kx − bẋ. (4.25)Let us introdue the notation

b

m
= 2β. (4.26)Then Eq. (4.4) an be rewritten as

ẍ + 2βẋ + ω2
0x = 0. (4.27)Let us hek that the solution of this equation has the form

x = a0e
−βt sin(ωt + ϕ0). (4.28)Indeed, substitution of this ansatz to Eq. (4.27) shows that the equationholds provided

ω2 = ω2
0 − β2. (4.29)

Chapter IV 197Therefore inrease in the visous damping oe�ient dereases the os�illation frequeny, so the period whih is inversely proportional to thefrequeny grows. Stritly speaking, this motion is not periodi. Neverthe�less the period of damped osillations an be de�ned as the time intervalbetween two onseutive passages in the same diretion through the equi�librium:

T =
2π

ω
.For small damping (β ≪ ω0) it is reasonable to assume that the maximumdeviation ours whenever the sine in Eq. (4.28) equals unity:

a = a0e
−βt. (4.30)The ratio of two onseutive maxima of deviation in the same diretion isalled derement:

D =
ai

ai+1

= eβT . (4.31)The natural logarithm of this ratio δ is alled damping ratio:

δ = βT. (4.32)For some systems osillation amplitude inreases and the ratio is neg�ative, then it is alled inrement. For small positive δ the amplitude de�reases slowly and damping is small. It follows from Eq. (4.29) that for

β ≪ ω0 the osillation frequeny is lose to ω0.Let us determine the rate of energy dissipation of the osillator forsmall damping. It follows from Eq. (4.19) that the energy depends on theamplitude as
E =

1

2
mω2

0a
2. (4.33)Substituting Eq. (4.30) in Eq. (4.33), taking logarithm, and di�erentiatingone obtains the relative hange in the energy averaged over the period:

dE

E
= −2βdt. (4.34)Therefore the energy derement ∆E during the period T is:

∆E

E
= 2βT = 2δ. (4.35)The important parameter of damped osillations is Q-fator whih isde�ned as the ratio of osillation energy to its losses per period multiplied



198 Mehanial osillations and wavesby 2π. Several useful expressions of Q-fator in terms of osillation param�eters at small damping are given below:

Q = 2π
E

∆E
=

π

δ
=

π

βT
=

ω0

2β
=

mω0

b
=

√
km

b
=

k

bω0

= πn. (4.36)Here n is the number of osillation yles exeuted before the amplitudedereases by a fator of e (e = 2.71828 . . .).Phase portrait of damped osillations is a spiral approahing the originas it revolves around. The motion beomes aperiodi for strong damping,

β > ω0. When β = ω0 the damping is alled ritial.Compound pendulum. Any rigid body that exeutes osillations arounda pivot or a rotation axis due to restoring fore is alled ompound pendu�lum. Consider, for example, a ase when the restoring fore is due togravity. The enter of mass of the pendulum is below the pivot on thesame vertial. During osillations the line onneting the pivot and theenter of mass de�ets from the vertial. Let the instantaneous value ofthe de�etion angle be ϕ. Then aording to Eq. (2.35) the equation ofmotion for this angle is

Iϕ̈ = −mga sin ϕ. (4.37)Here I is the moment of inertia around the pivot (rotation axis), a is thedistane from the rotation axis to the enter of mass.If the de�etion angle remains small, so that sinϕ ≈ ϕ, the equation ofharmoni osillator follows whih gives the period of ompound pendulumas

T = 2π

√

I

mga
. (4.38)If the size of the body suspended on a thread or a weightless rod oflength l is muh less than the length, the body is alled point partile andthe pendulum is alled simple gravity pendulum. In this ase I = ml2and a = l and the expression for the period of simple gravity pendulum isreprodued:

T = 2π

√

lg . (4.39)If the period of simple gravity pendulum oinides with the period ofompound pendulum, l is alled equivalent length leq:
leq =

I

ma
. (4.40)

Chapter IV 199Center of osillation of a ompound pendulum (Fig. 4.2) is the point O′loated at the distane leq from the pivot O on the vertial passing throughthe pivot and the enter of mass. If the pendulum mass is onentrated atthe enter of osillation the ompound pendulum beomes simple gravitypendulum with the same period. Let the moment of inertia of ompoundpendulum around the enter of mass be I0. Then aording to Huygens�Steiner theorem (2.31) the moment of inertia around the pivot is
I = I0 + ma2. (4.41)Substitution of Eq. (4.41) to (4.40) gives
leq = a +

I0

ma
. (4.42)

Fig. 4.2. Compoundpendulum

Obviously the enter of osillation is far�ther away from the pivot than the enter ofmass. It also follows from the above equa�tions that the equivalent length l′eq of the pen�dulum suspended at the enter of osillationoinides with leq. To prove this statementnotie that the distane from the enter of os�illation, whih is now the pivot, to the enterof mass is
a′ = leq − a =

I0

ma
. (4.43)Then

l′eq =
I0

ma′
+ a′ = a + leq − a = leq. (4.44)Sine the equivalent lengths are the same,the period of ompound pendulum does nothange if the pendulum is suspended at the enter of osillations.When de�etion angle is large osillations of simple gravity pendulumbeome non-linear, i.e. the osillation period exhibits dependene on am�plitude (the maximum de�etion angle). Equation (4.37) is integrated inthe introdution to the lab 1.4.3. For small amplitudes it reads:

T ≈ T0

(

1 +
ϕ2

m

16

)

. (4.45)Here T0 is the period at zero amplitude given by Eq. (4.38) and ϕm is themaximum de�etion angle.
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Fig. 4.3. Phase portrait of pendulumEquation (4.37) represents the law of onservation of mehanial energy(the �rst integral of motion) for non-linear osillations:

ϕ̇2

2
− ω2

0 cosϕ =
E0

I
− ω2

0 .Here ω2
0 = mga/I is the osillation frequeny for small amplitudes whennonlinearity an be negleted and E0 is total energy (the potential energyis zero at the equilibrium). The phase portrait of the pendulum is shownin Fig. 4.3. The ellipti trajetories at small angles beome the irles ofFig. 4.1. The trajetories ease to be ellipses when the energy (or ampli�tude) gets large beause osillation beomes rotation. The trajetory thatseparates �nite (bounded) motion of pendulum from rotation is alled sep�aratrix. A trajetory orresponding to in�nite motion is alled a runawaytrajetory.Driven osillator with visous damping. Stationary osillations of asystem subjeted to external periodi fore are alled driven. We onsiderthe most important ase of a fore whih time dependene is desribed byharmoni funtion, F = F0 sin ω0t. Any fore an be represented as a linearsuperposition of harmoni fores using Fourier series. Sine the equationof harmoni osillations is linear we an use the priniple of superposition.An external fore initiates osillations of di�erent frequenies. Duringthe transition proess only those osillations survive whih frequeny oin�

Chapter IV 201ides with the frequeny of the driving fore. The rest of the osillationsdeay during the transition.When the driving fore depends on time harmonially, the equation ofmotion reads:

ẍ + 2βẋ + ω2
0x =

F0

m
sin ωt. (4.46)To solve Eq. (4.46) for stationary osillations let us substitute the osilla�tion whih has the same frequeny as the driving fore:

x = x0 sin(ωt + ϕ). (4.47)Here ϕ is the phase shift between the displaement x and the fore F . Thephase shift is to be found from Eq. (4.46). Notie that the phase shift inEq. (4.15) is determined by the initial onditions whih are not essentialfor the stationary driven osillations.Di�erentiation of Eq. (4.47) and substitution to (4.46), gives

{

[

(ω2
0−ω2) cosϕ−2βω sin ϕ

]

x0−
F0

m

}

sin ωt+
[

(ω2
0−ω2) sin ϕ+2βω cosϕ

]

x0 cosωt = 0(4.48)Sine funtions sinωt and cosωt are linearly independent,

[

(ω2
0 − ω2) cosϕ − 2βω sin ϕ

]

x0 =
F0

m
,

[

(ω2
0 − ω2) sin ϕ + 2βω cosϕ

]

x0 = 0.

(4.49)The seond equation of (4.49) an be rewritten as

tan ϕ = − 2βω

ω2
0 − ω2

. (4.50)Using the trigonometri formulae

cos2 α =
1

1 + tan2 α
, sin2 α =

1

1 + cot2 α
,one an derive from Eq. (4.50) that

cosϕ =
ω2

0 − ω2

√

(ω2
0 − ω2)2 + 4β2ω2

, sin ϕ = − 2βω
√

(ω2
0 − ω2)2 + 4β2ω2

.Substituting these expressions to the �rst of Eqs. (4.49) one an �nd theamplitude x0 of the stationary osillations:

x0 =
F0/m

√

(ω2
0 − ω2)2 + 4β2ω2

. (4.51)



202 Mehanial osillations and wavesEquations (4.50), (4.51), and (4.47) give the desired solution for drivenosillations.Figures 4.4 and 4.5 show the amplitude and phase shift of driven osil�lations versus the frequeny of external fore.When the frequeny of driving fore tends to zero the amplitude tendsto the onstant

F0

mω2
0

=
F0

k
. (4.52)Thus for slow motion, i.e. at small frequeny (or large period), the dis�plaement is determined by the spring onstant.At high frequeny

x0 → F0

mω2
, (4.53)i.e. the amplitude falls when the frequeny grows. The larger the osillatormass, the greater the rate of the fall.Calulating the extremum of Eq. (4.51) one an �nd the maximumamplitude of the osillations and the orresponding frequeny of the drivingfore:

ωmax =
√

ω2
0 − 2β2, x0max =

F0/m

2β
√

ω2
0 − β2

. (4.54)For small damping

ωmax ≈ ω0, x0max ≈ F0

2βω0m
. (4.55)The less the damping, the greater the amplitude. Amplitude enhane�ment of driven osillations at frequenies lose to the eigenfrequeny isalled resonane. As it follows from Eqs. (4.55), (4.52), and (4.36) the ra�tio of the amplitude at the resonane to the amplitude at small frequeniesis equal to Q-fator.The Q-fator spei�es the funtion (4.51) lose to the resonane fre�queny and also the width of resonane peak. For small di�erene ω0 − ωand using Eq. (4.36) one an obtain from Eq. (4.51) :

x0(ω) =
F0

2mβω0

√

1 +

(

2ω0∆ω

2βω0

)2
=

x0max
√

1 + Q2

(

2∆ω

ω0

)2
. (4.56)The funtion

1
√

1 +
(ω0 − ω)2

β2
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F0

k

x0m

x0m√
2

x0

ω0 ω

∆ω

∼ 1

ω2Fig. 4.4. Amplitude-frequeny response (Q = 10)

−π

−π

2

ϕ

ω0 ω

Fig. 4.5. Phase-frequeny response (Q = 10)



204 Mehanial osillations and wavesis alled Lorentz funtion. It is often used to analyze spetral lines.Equation (4.56) gives the width of the peak at x0 = x0max/√2 as

2∆ω =
ω0

Q
. (4.57)Equation (4.50) shows that the phase shift between displaement anddriving fore tends to zero for vanishing fore frequeny. The phases arethe same. At resonane the displaement lags behind the driving fore by

π/2, but the phase of veloity and the phase of fore oinide. It shouldbe lear that maximum amplitude is attained when the maximum fore isollinear with the maximum veloity. At high frequeny of the fore thedisplaement lags behind by π (they are in antiphase).Resonane dependenes of veloity amplitude v0 and aeleration a0an be �gured out similarly. Sine v0 = x0ω and a0 = x0ω
2, then v0 = 0and a0 = 0 at ω = 0. The maximum veloity amplitude is attained at ω =

= ω0 and the maximum aeleration amplitude at ω2
0/
√

ω2
0 − 2β2. Whenthe frequeny of the driving fore grows the veloity amplitude dereaseswhile the aeleration amplitude tends to F0/m.Energy of osillator driven by external fore remains onstant. At thesame time the osillator onsumes energy from external soure. The energyis onverted to work against frition and dissipates into heat. The rate ofenergy onsumption per unit time is

I(ω) = F · ẋ = F0ωx0cos(ωt + ϕ) sin ωt = −1

2
F0ωx0 sinϕ. (4.58)Suppose that the system is lose to resonane, i.e. |ω − ω0| = |∆ω| ≪ ω0.Then

1
√

(ω2
0 − ω2)2 + 4β2ω2

≈ Q

ω2
0

√

1 + Q2

(

2∆ω

ω0

)2
,whih gives

x0 =
F0Q

mω2
0

√

1 + Q2

(

2∆ω

ω0

)2
,

sin ϕ = − 1
√

1 + Q2

(

2∆ω

ω0

)2
.

Chapter IV 205Substitution of these expressions in (4.58) yields
I(∆ω) =

F 2
0 Q

2mω0

[

1 + Q2

(

2∆ω

ω0

)2
] (4.59)or

I(∆ω) =
I(0)

1 + Q2

(

2∆ω

ω0

)2
,where

I(0) =
F 2

0 Q

2mω0

.Equation (4.59) shows that the energy onsumption versus the frequenyof external fore is also of resonant nature. Let us determine the width ofthe urve. At 1/2 we have
I(0)

2
=

I(0)

1 + Q2

(

2∆ω

ω0

)2
.Therefore

∆ω

ω0

= ± 1

2Q
,i.e. the width of the resonant urve is

2|∆ω| =
ω0

Q
.Thus both the maximum of energy onsumption and the width of the urveis determined by Q-fator.Free osillations of oupled pendulums. Up to this point we dis�ussed only the systems with one degree of freedom. Now onsider thesimplest system with two degrees of freedom, namely, two idential pendu�lums onneted by a spring whih exeute osillations in the same plane(see Fig. 4.6). A pendulum onsists of a massless rod with a small massivebob at the end.The notations are shown in the �gure. If the de�etion angles from thevertial are small (sin ϕ ≈ ϕ, cosϕ ≈ 1 − ϕ2/2), the torque on the �rstpendulum due to the spring is

M21 = ka2(ϕ2 − ϕ1).
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φ1 φ2 

l l 

a a 

k 

m m Fig. 4.6. Coupled pendulumsThe torque on the seond pendulum has the same magnitude and theopposite sign:

M12 = −ka2(ϕ2 − ϕ1).The pendulums are oupled via these torques.Equations of motion of the pendulums are

ml2
d2ϕ1

dt2
= −mglϕ1 + ka2(ϕ2 − ϕ1), (4.60)

ml2
d2ϕ2

dt2
= −mglϕ2 − ka2(ϕ2 − ϕ1). (4.61)Adding the equations one obtains:

ml2
d2

dt2
(ϕ1 + ϕ2) = −mgl(ϕ1 + ϕ2). (4.62)Subtrating Eq. (4.61) from (4.60) gives

ml2
d2

dt2
(ϕ1 − ϕ2) = −(mgl + 2ka2)(ϕ1 − ϕ2). (4.63)Notie that addition and subtration of Eqs. (4.60) and (4.61) allowsone to deouple them. Solutions of Eqs. (4.62) and (4.63) are

ϕ1 + ϕ2 = A cos(ω+t + α), (4.64)
Chapter IV 207

ϕ1 − ϕ2 = B cos(ω−t + β), (4.65)
ω+ =

√g
l
, ω− =

√g
l

+
2ka2

ml2
,where A, B, α, and β are some onstants. Adding and subtratingEqs. (4.64) and (4.65) one obtains

ϕ1 =
1

2
A cos(ω+t + α) +

1

2
B cos(ω−t + β), (4.66)

ϕ2 =
1

2
A cos(ω+t + α) − 1

2
B cos(ω−t + β). (4.67)Therefore the angular veloities are

ϕ̇1 = −1

2
ω+A sin(ω+t + α) − 1

2
ω−B sin(ω−t + β), (4.68)

ϕ̇2 = −1

2
ω+A sin(ω+t + α) +

1

2
ω−B sin(ω−t + β). (4.69)Let us analyze the obtained solutions. Suppose the pendulums havethe same initial (at t = 0) de�etions and zero veloities:

ϕ1(0) = ϕ2(0) = ϕ0, ϕ̇1(0) = ϕ̇2(0) = 0.Then from Eqs. (4.66) � (4.69) one gets

sin α = 0, A = 2ϕ0, B = 0,i.e.
ϕ1 = ϕ0 cosω+t, ϕ2 = ϕ0 cosω+t. (4.70)Therefore the pendulums osillate with the same amplitude and phase(in-phase osillations).If at t = 0

ϕ1(0) = −ϕ2(0) = ϕ0, ϕ̇1(0) = ϕ̇2(0) = 0,then it follows from Eqs. (4.66) � (4.69) that

sin β = 0, A = 0, B = 2ϕ0,i.e.

ϕ1 = ϕ0 cosω−t, ϕ2 = −ϕ0 cosω−t = ϕ0 cos(ω−t + π). (4.71)



208 Mehanial osillations and wavesThe relations show that the pendulums osillate with the same amplitudebut their phases di�er by π (antiphase osillations). Two types of motiondesribed by Eqs. (4.70) and (4.71) are alled normal modes of oupledosillators. Normal mode of osillation is a olletive motion in whih theamplitude of osillation of eah degree of freedom remains onstant. Theonept of normal mode is very important for modern physis.Now onsider the ase when only one pendulum is initially de�eted,i.e.

ϕ1(0) = ϕ0, ϕ2(0) = 0, ϕ̇1(0) = ϕ̇2(0) = 0.It an be shown that in this ase

ϕ1 =
ϕ0

2
(cosω+t + cosω−t), (4.72)

ϕ2 =
ϕ0

2
(cosω+t − cosω−t). (4.73)Using trigonometri formulae

cosα + cosβ = 2 cos
α + β

2
cos

α − β

2
,

cosα − cosβ = 2 sin
α + β

2
sin

β − α

2
,one an write Eqs. (4.72) and (4.73) as

ϕ1 = ϕ0 cos
ω+ − ω−

2
t · cos

ω+ + ω−

2
t, (4.74)

ϕ2 = ϕ0 sin
ω− − ω+

2
t · sin ω+ + ω−

2
t. (4.75)Let us analyze Eqs. (4.74) and (4.75). Notie that the osillation fre�queny of the even mode (labeled by ¾+¿), ω+ =

√g/l, equals ω0 where
ω0 is the eigenfrequeny of a solitary pendulum (the so-alled partial fre�queny). On the other hand, the frequeny of the odd mode (labeled by¾−¿) is

ω− = ω0

√
1 + 2ε,where the parameter ε = ka2/mgl spei�es pendulum oupling. For smalloupling, ε ≪ 1,

ω− ≈ ω0(1 + ε),i.e.

ω− − ω+ ≈ ω0ε, ω− + ω+ ≈ 2ω0.

Chapter IV 209In this approximation Eqs. (4.74) and (4.75) beome
ϕ1 = ϕ0 cos

ω0ε

2
t cosω0t, (4.76)

ϕ2 = ϕ0 sin
ω0ε

2
t sinω0t = ϕ0 sin

ω0ε

2
t cos

(

ω0t −
π

2

)

. (4.77)Thus we deal with harmoni osillations of frequeny ω0 whih amplitudevaries periodially with time at a muh less frequeny ω0ε/2. This is theso-alled amplitude modulated osillation or beat. The phase shift is π/2.The modulated amplitude of osillations of the �rst pendulum is
A1(t) = ϕ0 cos

ω0ε

2
t. (4.78)Similarly the osillation amplitude of the seond pendulum is

A2(t) = ϕ0 sin
ω0ε

2
t = ϕ0 cos(

ω0ε

2
t − π

2
).Initially, at t = 0:

A1 = ϕ0, A2 = 0.At t = π
ω0ε :

A1 = 0, A2 = ϕ0.At t = 2 π
ω0ε :

A1 = −ϕ0, A2 = 0.Notie that the amplitude of harmoni osillation is positive by de�nition.The negative sign here means that the phase shift hanges by π. At t =
= 3 π

ω0ε :
A1 = 0, A2 = −ϕ0.At t = 4 π

ω0ε
A1 = ϕ0, A2 = 0.Thus pendulums exhange energy of osillations. At t = 0 the energy isaumulated in the �rst pendulum. Then the energy is gradually transferedvia the spring to the seond pendulum until it aumulates all the energy.The time τ of the transfer an be estimated as

ω0ε

2
τ = π,i.e.

τ =
2π

ω0ε
. (4.79)



210 Mehanial osillations and wavesThe frequeny of the energy exhange between osillators is

2π

τ
= ω0ε = ω− − ω+.Notie that osillations in a system onsisting of a large number ofoupled osillators an be regarded as propagation of waves of a ertainkind.Plane wave. In physis any time variation and spatial alternation ofmaxima and minima of any quantity, e.g. matter density, pressure, tem�perature, eletri �eld, et., is alled a wave. Suh alternation is essentiallyan osillation proess in a system with in�nite number of degrees of free�dom. However, propagation of a short time perturbation, a ¾pulse¿, isoften alled a wave as well. The simplest mathematial model of a waveproess is a plane wave.Suppose that some salar quantity s depends on time t and position x(but it is independent of y and z) as

s = f(x − ut), (4.80)where f is an arbitrary funtion and u = const. Consider a snapshot ofthe wave proess at t = 0. In this ase

s(0, x) = f(x). (4.81)Then onsider a snapshot of the same wave at t = t1. It is desribedby the equation

s(t1, x) = f(x − ut1). (4.82)Comparing Eqs. (4.81) and (4.82) one an see that two snapshots di�erby the displaement ut1 in the positive diretion of x. Therefore the wavepropagates to the right at the speed u while retaining its shape. A waveproess desribed by the funtion (4.80) is alled plane wave. The wavespei�ed by

s = f(x + ut),propagates in the opposite diretion.Plane sinusoidal wave. A ase of sinusoidal funtion f is of speialinterest. Consider

s = A cos(ωt − kx) = A cos
[

k(x − ut)
]

, (4.83)where u = ω/k is the veloity of wave propagation. At any point x thevalue of s exeutes simple harmoni motion with the amplitude A and the
Chapter IV 211irular frequeny ω. Both quantities are the same for all x. The osillationperiod is T = 2π/ω and the phase is kx.A snapshot of (4.83) is a spatial sinusoid. For instane, at t = 0

s = A cos kx.The minimum distane λ, so that
s(x + λ) = s(x)for any x, is alled wavelength. The quantity k is alled wave vetor orspatial frequeny. Obviously

λ =
2π

k
.Standing wave. Let a salar quantity s depend on position oordinates

x, y, and z and time t as
s = F (x, y, z) cos(ωt + ϕ),where F (x, y, z) is an arbitrary funtion and ω and ϕ are onstants. A�ording to the equation s exeutes simple harmoni motion of the samefrequeny and phase at any point in spae. But the osillation amplitudevaries. Suh a proess is alled standing wave.Let us show that superposition of two plane waves of the same ampli�tude, wavelength, and phase and propagating in opposite diretions is asinusoidal standing wave.Indeed let

s1 = A cos(ωt − kx + α1), s2 = A cos(ωt + kx + α2).Their sum
s = s1 + s2in aordane with the trigonometri formula

cosx + cos y = 2 cos
x + y

2
cos

x − y

2an be written as

s = 2A cos

(

kx − α1 − α2

2

)

cos

(

ωt +
α1 + α2

2

)

. (4.84)This equation desribes a sinusoidal standing wave.



212 Mehanial osillations and wavesNow onsider

s1 = A1 cos(ωt − kx + α1), s2 = A2 cos(ωt + kx + α2).It an be shown that in this ase

s = 2A2 cos

(

kx − α1 − α2

2

)

cos

(

ωt +
α1 + α2

2

)

+ a cos(ωt − kx + α1).Here a = A1 − A2. The quantity a/A2 is alled oe�ient of running.Wave equation. Consider a funtion whih desribes plane wave:

f(x, t) = f(x − ut). (4.85)Di�erentiating it with respet to time t one gets:

∂f

∂t
= f ′(x − ut) · (−u),

∂2f

∂t2
= f ′′(x − ut) · u2. (4.86)Here the prime stands for derivative with respet to x − ut. Now let usdi�erentiate the funtion (4.85) twie with respet to x:

∂f

∂x
= f ′(x − ut),

∂2f

∂x2
= f ′′(x − ut). (4.87)Comparing Eqs. (4.86) and (4.87) one an see that the funtion (4.85)satis�es the following equation

∂2f

∂t2
= u2 ∂2f

∂x2
. (4.88)Equation (4.88) is the partial di�erential equation termed wave equationwhih plays an important role in physial appliations. It an be proventhat the general solution of the equation is

f(x, t) = f1(x − ut) + f2(x + ut),where f1 and f2 are arbitrary funtions determined by initial or boundaryonditions.Longitudinal waves in elasti body. Consider dynamis of longitudinalwaves in elasti rod. Let x-axis be direted along the rod. Assume that therod elements whih lie in a plane perpendiular to x at t = 0 also remainin a plane perpendiular to x at any t 6= 0. A ross-setion with oordinate
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x at t = 0 has a di�erent oordinate x′ at t = t′. In the following thequantity (positive or negative)
s = x′ − xis alled the displaement of x. Now onsider the ross-setion between theplanes x and x + ∆x. In the non-deformed rod the ross-setion thiknessis ∆x. A deformation displaes the planes whih oordinates beome x′and x′ + ∆x′, respetively.Let

x′ = x + s(x),

x′ + ∆x′ = x + ∆x + s(x + ∆x),where s(x) is the displaement of the plane x and s(x + ∆x) is the dis�plaement of the plane x + ∆x. Then the thikness of the rod setionequals
(x′ + ∆x′) − x′ = ∆x′.The inrement of the setion thikness is

∆x′ − ∆x = s(x + ∆x) − s(x).The average longitudinal strain of the rod setion between x and x + ∆xis
s(x + ∆x) − s(x)

∆x
.The longitudinal strain ε at a given plane is de�ned as the limit

ε = lim
∆x→0

s(x + ∆x) − s(x)

∆x
=

∂s

∂x
. (4.89)Aording to Hooke's law

σ = Eε, (4.90)where σ is the stress and E is the bulk modulus. Now let us apply Newton'slaw of motion to the rod setion between the planes x and x + ∆x. Thesetion mass is ρS∆x where ρ and S are the density and the ross-setionalarea in the absene of deformation. Let s be the displaement of the enterof mass of the setion. Then

ρS∆x
∂2s

∂t2
= Sσ(x + ∆x) − Sσ(x).



214 Mehanial osillations and wavesThe left-hand side is the mass multiplied by aeleration while the right�hand side equals the net fore exerted on the setion. Let us divide theequation by S∆x:

ρ
∂2s

∂t2
=

σ(x + ∆x) − σ(x)

∆x
.Taking the limit ∆x → 0 one obtains the equation

ρ
∂2s

∂t2
=

∂σ

∂x
. (4.91)Substitution of Eq. (4.90) to (4.91) gives

ρ
∂2s

∂t2
= E

∂ε

∂x
.Aording to Eq. (4.89)

∂ε

∂x
=

∂2s

∂x2
,i.e.

∂2s

∂t2
=

E

ρ

∂2s

∂x2
. (4.92)This is wave equation. Therefore a deformation propagates along the rodeither as a plane wave s = f(x∓ut) or a superposition of suh waves. Thespeed of wave propagation (speed of sound) is

u =

√

E

ρ
.For steel u = 5200 m/s, for opper u = 3700 m/s, for aluminum u =

= 5100 m/s, and for rubber u = 46 m/s.Notie that the wave equation is derived under assumption that thewavelength is large ompared to the rod ross-setion. The opposite limitorresponds to unbounded elasti medium. It an be shown that the speedof longitudinal elasti wave in that ase is

u1 =

√

E′

ρ
=

√

E(1 − µ)

ρ(1 + µ)(1 − 2µ)
,where µ is the Poisson ratio.Energy density. Consider a small setion of the rod whih volume in thenon-deformed state is S∆x, so its mass is ρS∆x. Kineti energy of thesetion moving in x-diretion is

1

2
ρS∆x

(

∂s

∂t

)2

,

Chapter IV 215where ∂s/∂t is the instantaneous veloity of the setion. Then the kinetienergy per unit volume is

wê =
1

2
ρv2.This quantity is alled kineti energy density.It an be shown that the setion has also the potential energy whihdensity equals (onsult the derivation of Eq. (3.4)):

wï =
1

2
Eε2.The total energy density is

w = wê + wï =
1

2
(ρv2 + Eε2).The total mehanial energy of the rod setion bounded by the planes

x = x1 and x = x2 is:
W =

x2∫

x1

wS dx =
S

2

x2∫

x1

(ρv2 + Eε2) dx.An energy hange equals the work done by the fores exerted by the adja�ent setions. Let indies 1 and 2 refer to quantities related to the setions

x = x1 and x = x2, respetively. The fore ating on the left is F1 = −Sσ1(the sign is negative sine for σ1 > 0 the fore F1 is direted to the left).The fore ating on the right is F2 = Sσ2 (if σ2 > 0 the fore is diretedto the right). The work done by the fores F1 and F2 during the time dtequals F1v1dt and F2v2dt, respetively. Therefore the net work is

(F1v1 + F2v2)dt = −(σ1v1 − σ2v2)Sdt.Aording to the law of onservation of mehanial energy this work isequal to energy inrement dW , therefore

dW

dt
= Q1 − Q2,where

Q1 = −Sσ1v1, Q2 = −Sσ2v2.It should be lear that the quantity Q = −Sσv spei�es energy �owthrough a given ross-setion. The orresponding unit of measurementis [Q] = 1 erg/s or 1 J/s = 1 W .



216 Mehanial osillations and wavesEnergy �ow density is de�ned as

q = −σv = Pv,where −σ = P is the pressure in a given ross-setion. The orrespondingunit of measurement is [q] = 1 erg/(cm2 · s) or 1 W/m2. Let us alulatethe density of energy �ow of the plane sinusoidal wave desribed by theequation

s = A cos(ωt − kx).Obviously

σ = Eε = E
∂s

∂x
= EkA sin(ωt − kx),

v =
∂s

∂t
= −Aω sin(ωt − kx).Therefore

q = −σv = EkωA2 sin2(ωt − kx) =
1

2
EkωA2

(

1 − cos(2ωt − 2kx)
)

.One an see that the energy �ow attains its maximum twie per periodand its frequeny is 2ω at any point of the rod. The value of q averagedover the period is

q̄ =
1

T

T∫

0

q(t) dt =
1

2
EkωA2.In aoustis the value q̄ is alled sound volume. Usually the volume ismeasured in deibels (dB) aording to

D = 10 lg

(

q̄,
µW

cm2

)

+ 100 (dB).For example, if q̄ = 10−10 µW/m2 then D = 0 (the initial value). For
q̄ = 10−6 W/m2, D = 100 dB. The threshold of pain, i.e. the value of q̄at whih sound beomes painful for a listener is

q̄ = 10−4 Âòñì2
= 102 µW

cm2
.This orresponds to D = 120 dB.Now onsider a standing wave

s = A sinkx cos(ωt + ϕ),

Chapter IV 217so that

σ = EkA cos kx cos(ωt + ϕ),

v = −Aω sin kx sin(ωt + ϕ),

q =
1

4
EkωA2 sin 2kx sin(2ωt + 2ϕ).One an see that the density of energy �ow through the ross-setionswith oordinates

x1 = 0, x2 =
λ

4
=

π

2k
, x3 = 2

λ

4
= 2

π

2k
, x4 = 3

λ

4
= 3

π

2k
, . . .is always zero. Therefore any setion of the rod of the length λ/4 enlosedbetween a stress nod and a veloity nod next to it does not exhange energywith the neighbors. Its energy is onstant.Transversal waves on string. In aoustis a uniform elasti threadtightened by an external fore is alled a string. It an be a strethed wire,able, or a violin string.Consider a string whih equilibrium position oinides with absissa.Assume that the string elements move only in the plane (x, y). Let s(x, t)be the displaement of the element whih position in equilibrium is x. Nowlet us write Newton's law of motion for the element enlosed in the interval

x, x+∆x. The element mass is ρS∆x where ρ is spei� mass of the stringmaterial and S is ross-setional area. The produt of the element massby its aeleration ∂2s/∂t2 is equal to the y-omponent of the net foreapplied to the ends of the element:

ρS∆x
∂2s

∂t2
= −Sσ(x) sin α(x) + Sσ(x + ∆x) sin α(x + ∆x). (4.93)Here σ(x) is tension at x and α(x) is the angle between the tangent to thestring at x and the absissa. Obviously,

tan α =
∂s

∂x
.Now suppose that displaement s(x, t) is small, so it is safe to assumethat: 1) the string tension σ(x) is approximately equal to the tension σ inequilibrium, 2) sinα approximately equals tan α.Then Eq. (4.93) is simpli�ed and beomes:

ρ∆x
∂2s

∂t2
= σ

[

(

∂s

∂x

)

x+∆x

−
(

∂s

∂x

)

x

]

. (4.94)



218 Mehanial osillations and wavesDividing Eq. (4.94) by ∆x and taking the limit ∆x → 0 one obtains thewave equation:

∂2s

∂t2
=

σ

ρ

∂2s

∂x2
. (4.95)Aording to the equation a transversal wave propagating on stringretains its shape, the wave speed is

cs =

√

σ

ρ
=

√

F

ρS
,where F is string tension and ρS is the mass per unit length.String eigenmodes. Under ertain onditions string vibration beomesstanding transversal wave whih is desribed by the equation

s = A sinkx cos(ωt + ϕ), (4.96)where k = ω/u. Let us separate a string segment by �xing the string at thepoints x = 0 and x = n(λ/2) = nπ/k. Sine the points are at rest (theseare the nodes of s), their �xing does not hange the vibration pattern.Therefore a string of length l with its ends �xed an exeute sinusoidalstanding vibrations with nodes at the ends. The string length is then amultiple integer of half-wavelengths:

l = n
λ

2
= n

πu

ω
, n = 1, 2, . . .The frequeny of n-th eigenmode an be easily found:

ωn =
nπ

l

√

F

ρS
, νn =

n

2l

√

F

ρS
n = 1, 2, . . . (4.97)If the frequeny of external transversal sinusoidal fore oinides withthe frequeny of an eigenmode, resonane ours. The resulting wave isthe standing wave orresponding to the vibrational eigenmode.Passage of longitudinal wave through boundary between two me�dia. Let the plane x = 0 be the boundary between two di�erent elastimedia. The quantities referred to the media on the left and on the rightwith respet to the boundary will be labeled with indies 1 and 2, respe�tively. Suppose an elasti wave is oming from the left:

s1 = A1 cos(ωt − k1x). (4.98)
Chapter IV 219Here s1 is a displaement in the x-diretion. What happens on the bound�ary?To answer this question one should invoke physial properties of theboundary. Firstly, ontinuity requires the displaement on the both sidesof the boundary (x = 0) to be the same:

s1(0, t) = s2(0, t), (4.99)Seondly, aording to third Newton's law the stress on the both sides mustbe equal as well:
σ1(0, t) = σ2(0, t). (4.100)Now suppose that the wave penetrates from the �rst medium to theseond,

s2 = A2 cos(ωt − k2x), (4.101)but this proess does not a�et the �rst medium, so that Eq. (4.98) holds.Substitution of Eqs. (4.98) and (4.101) to (4.99) and (4.100) yields

A1 = A2, A1 = γA2,where
γ =

E2k2

E1k1

=
E2cl1

E1cl2
=

√
E2ρ2√
E1ρ1

.Here cl is the speed of longitudinal wave. Notie that the quantity √
Eρ =

= ρcl is often alled aousti impedane. However the above equations areinompatible unless there is no boundary,

γ = 1.Equations (4.99) and (4.100) an be simultaneously satis�ed by taking intoaount the experimental observation that there is also a re�eted wave inthe �rst medium,

A′
1 cos(ωt + k1x),so that

s1 = A1 cos(ωt − k1x) + A′
1 cos(ωt + k1x). (4.102)Substituting Eqs. (4.101) and (4.102) to (4.99) and (4.100) one obtains:

A1 + A′
1 = A2,

A1 − A′
1 = γA2

}

. (4.103)



220 Mehanial osillations and wavesEquations (4.103) an always be solved for A′
1 and A2. For a given ampli�tude A1 of the inident wave Eqs. (4.103) determine the amplitudes of there�eted and refrated waves:

A′
1 =

1 − γ

1 + γ
A1, A2 =

2

1 + γ
A1. (4.104)Notie that

k2

k1

=
λ1

λ2

=
cl1

cl2
.Wavelengths are di�erent in both media. The wavelength is greater inthe medium in whih the speed of sound is greater. Let us introdue thenotations:

R =
q′1
q1

, T =
q2

q1

.The quantities R and T are alled re�etion and transmission oe�ient,respetively. It is not di�ult to show that

R =

(

1 − γ

1 + γ

)2

, T =
4γ

(1 + γ)2
. (4.105)As expeted,

R + T = 1.This relation follows from the law of onservation of mehanial energy:
q′1 + q2 = q1.For γ = 0 and γ = ∞ we have R = 1, T = 0: the energy is re�eted bakto the �rst medium. Notie that Eqs. (4.105) are invariant under replae�ment of γ with 1/γ. Therefore the introdued re�etion and transmissionoe�ients are the same regardless of the diretion of propagation of theinident wave. Literature1. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. I. � Ì.: Íàóêà, 1996. �ë. VI, Õ,�� 81�85.2. Êèíãñåï À.Ñ., Ëîêøèí �.�., Îëüõîâ Î.À. Îñíîâû �èçèêè. Ò. 1. Ìåõàíèêà,ýëåêòðè÷åñòâî è ìàãíåòèçì, êîëåáàíèÿ è âîëíû, âîëíîâàÿ îïòèêà. � Ì.:Ôèçìàòëèò, 2001. ×. III. �ë. 1�5.3. Êðàó�îðä Ô. Âîëíû. � Ì.: Íàóêà, 1974. �ë. 1�7.4. �îðåëèê �.Ñ. Êîëåáàíèÿ è âîëíû. � Ì.: �ÈÔÌË, 1959. �ë. I�VI.5. Êèòòåëü ×., Íàéò Ó., �óäåðìàí Ì. Ìåõàíèêà. � Ì.: Íàóêà, 1983.

1.4.1 221Lab 1.4.1Compound pendulumPurpose of the lab: to study the dependene of osillation period ofompound pendulum on its moment of inertia.Tools and instruments: a ompound pendulum (uniform steel rod),a knife edge, a simple gravity pendulum, an osillation ounter, a ruler,and a stopwath.
 Fig. 1. Compound pendulum

A ompound pendulum is a rigid bodywhih an freely swing about a stationaryhorizontal axis in the gravitational �eld.The motion of pendulum is desribed bythe following equation:
I
d2ϕ

dt2
= M, (1)where I is the moment of inertia of thependulum, ϕ is the deviation angle mea�sured from the equilibrium position, t istime, and M is the torque ating on thependulum.A uniform steel rod of length l is usedas a ompound pendulum in this lab (seeFig. 1). A knife edge is �xed on the rod, soits arris is the pivot axis. The knife edgean be shifted along the rod thereby alter�ing the distane OC ≡ a between the pivotof the pendulum and its enter of gravity.Using the Huygens-Steiner theorem (2.31)one an �nd the moment of inertia of the pendulum:

I =
ml2

12
+ ma2,wherem is its mass. The torque on the pendulum is due to the gravitationalfore:

M = −mga sinϕ.If the deviation angle ϕ is small one an set sinϕ ≈ ϕ and hene obtain

M ≈ −mgaϕ.



222 Mehanial osillations and wavesThe pendulum an exhibit hundreds of osillations without notable damp�ing provided the experimental setup is in good order. In this ase fritionan be negleted. Substituting the expressions for I and M into Eq. (1)one obtains

ϕ̈ + ω2ϕ = 0, (2)where

ω2 =

ga

a2 +
l2

12

. (3)The solution is given by Eq. (4.15):

ϕ(t) = A sin(ωt + α).The amplitude A and the initial phase α depend on the way the osillationsstarted, i.e. they are determined by initial onditions; the frequeny ωaording to Eq. (3) depends only on the free fall aeleration g and thependulum parameters l and a.The osillation period equals

T =
2π

ω
= 2π

√

√

√

√

√

a2 +
l2

12
ag . (4)We an see that the period of small osillations of a ompound pendu�lum depends neither on the phase nor on the amplitude. This statementmanifests the isohronism of osillations, it is valid for proesses desribedby Eq. (2). In fat, this desription of the pendulum motion is approximatesine the equality sin ϕ ≈ ϕ used in the derivation of Eq. (2) is approximateas well.The osillation period of a simple gravity pendulum is given by (4.39):

T ′ = 2π

√

l′g ,where l′ is the pendulum length. For this reason the quantity
leq = a +

l2

12a
(5)is referred to as the equivalent length. The point O′ separated by thedistane leq from O is alled the enter of osillations. The pivot point andthe osillation enter are reversible, i.e. the periods of osillations about

O′ and O are the same.
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 � �� ���� �

 �� � �  
Fig. 2. Simple gravity pendulum

An experimental veri�ation of theabove statement is a good way of testingthe theory. Another way is to test valid�ity of Eq. (4). The latter ontains thequantity a whih hanges when the edgeis moved along the rod. In this lab a leadball suspended on two diverging wires (asshown in Fig. 2) is used as a simple grav�ity pendulum. The wires are wound ona horizontal axis and their length an bevaried. LABORATORY ASSIGNMENT1. Set the working range of the amplitudes so that the osillation period T isapproximately amplitude-independent. For this purpose de�et the pendu�lum from its equilibrium position by the angle ϕ1 (∼10◦) and measure thetime of 100 full swings. The number of osillations is ounted by an ele�troni or mehanial ounter and the time is measured with a stopwath.To derease the error of time measurements start and stop the stopwathat the moment of pendulum rossing the point of equilibrium. Using thedata obtained alulate the osillation period T1.Repeat the experiment for the initial de�etion angle of 1.5�2 timesless than that in the �rst experiment. If the periods are equal within theexperimental error the working range of the amplitudes lies within (0,ϕ1).If the periods di�er one should repeat the experiment for smaller angles.Identify the soure of the largest error of the measurement of the periodand try to redue it.2. Shift the knife edge along the rod and study the dependene of the osil�lation period T on the distane a between the pivot point and the enterof mass. Plot the values T 2 vs a2 and obtain the values g/4π2 and l2/12by performing a linear �t (use Eq. (4)). Compare the obtained value of gwith the tabulated one and verify the value of l by diret measurement.3. Find the appropriate length of the simple gravity pendulum for a partiularposition of the knife edge so that the periods of both pendulums oinidedwithin the error. Measure the length of the simple gravity pendulum andompare it with the equivalent length alulated from Eq. (5).4. Verify experimentally reversibility of the pivot point and the osillationenter. What pivot position ensures the most aurate veri�ation?Questions1. What are the simpli�ations used in deriving Eq. (4)?



224 Mehanial osillations and waves2. What distane between the pivot point and the enter of mass orresponds tothe minimum period of osillations?3. Desribe the behavior of the ompound pendulum whih pivot point and theenter of mass oinide.4. Why is the simple gravity pendulum suspended on two wires?5. Formulate and prove the Huygens-Steiner theorem.Literature1. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. I. � Ì.: Íàóêà, 1996. �� 30, 33, 35,36, 40, 41.2. Ñòðåëêîâ Ñ.Ï. Ìåõàíèêà. � Ì.: Íàóêà, 1975. �� 52, 59, 124.Lab 1.4.2Measurement of gravitational aeleration bymeans of Kater's pendulumPurpose of the lab: to determine the loal aeleration of gravity usingKater's pendulumTools and instruments: Kater's pendulum, an osillation ounter, astopwath, a aliper with 1 m sale.Free fall is a motion near Earth's surfae suh that fores resistingthe motion an be negleted. The gravitational aeleration near Earth'ssurfae whih is usually alled g is then determined by gravity fore Fexerted on a body of mass m,

~g =
~F

m
. (1)A referene frame related to the Earth is not inertial. In suh a framethere are also entrifugal fore and Coriolis fore in addition to gravityfore. The Coriolis fore is always perpendiular to the veloity of thebody, so the fore hanges only the veloity diretion while the magnituderemains intat. Usually the gravitational aeleration is identi�ed withthe aeleration omponent whih is tangential to the body trajetory, sothe Coriolis fore does not ontribute. Obviously the normal fore exertedon a body that rests upon Earths' surfae equals the sum of gravity andentrifugal fores (the body weight).A gravity pull exerted on a body by the Earth is equal to the produtof the body mass m by gravitational aeleration ~g0:

~F0 = m~g0. (2)
1.4.2 225Gravitational aeleration is determined by distribution of mass insidethe Earth. If the Earth were a solid sphere of onstant density, the a�eleration inside the sphere would be diretly proportional to the distanetowards the Earth enter and the aeleration outside would fall aordingto the inverse-square law. Atually the Earth mass density is not uni�form and grows with depth. Beause of that the gravitational aelerationslightly inreases up to the depth of 2800 km (whih orresponds to thedistane towards the enter of 3600 km) and then falls linearly with thedistane to the enter. Above the surfae and lose to it the gravitationalaeleration is well approximated by that of the uniform sphere. The a�eleration dereases by 10% at the height of 300 km whih orrespondsapproximately to a satellite orbit. Observation of satellite motion allowsone to determine the distribution of mass inside the Earth, whih is used,e.g. for searh of ore bodies.The net gravity fore also inludes gravitational attration to the Moonand the Sun. Although their ontribution to the net fore is small thesefores are responsible for global e�ets suh as tides.Earth rotation around its axis resulted in the Earth deformation be�ause of entrifugal fore. The distane from the Earth enter to a poleis approximately 21 km less than the distane to equator whih is equalto 6 378 140 m. As it was already mentioned the entrifugal fore is om�bined with the gravity fore for a body residing on the Earth surfae. It isalled the net gravitational aeleration g and its values are given in thetables of loal aeleration of gravity. On a pole g = 983.2155 m/s2 andit dereases towards the equator where g = 978.0300 m/s2. Therefore apendulum lok on the equator lags behind the one on a pole by 3.8 min.The diretion of the gravitational aeleration is always perpendiular tothe surfae of a body of water and does not deviate signi�antly from thediretion to the Earth enter.The mass distribution inside the Earth is not spherially symmetri,whih also results in loal variations of g. Extensive and preise measure�ments of g on the Earth surfae showed that gravitational aelerationdepends on time as well. Periodi variations related to the Moon and Suntides are approximately 2.49 ·10−4 m/s2 and 9.6 ·10−5 m/s2, respetively.There are also periodi variations of the same order due to geologial pro�esses inside the Earth (the so-alled seular variations).Measurements of g on the Earth surfae are reorded on the gravi�metri maps to be used in searhing for ore bodies and studying internalomposition of the Earth.The �rst measurements of g with an auray of up to 10−3 m/s2(milligal) were performed at the beginning of the 20-th entury by means



226 Mehanial osillations and wavesof Kater's pendulums. Suh an auray requires the auray of pendulumperiods of 10−6 s and the auray of equivalent length of 1µm. Modernmethods of measurement of g are divided into dynami and stati. Thedynami methods inlude the measurements with the aid of pendulums, inpartiular, Kater's pendulums. However these measurements an be madepreise only in laboratory onditions and take a lot of time. This is alsotrue for string gravimeters in whih the frequeny of string osillations isdetermined by its tension due to a suspended weight.

Fig. 1. Kater's pendulum
Reently the auray of measurement oflength and time intervals has been signi�antlyimproved, so it beomes possible to measurefree fall aeleration diretly. For example, us�ing a laser interferometer and an atomi lokto measure the path and time interval overedby a body equipped with a orner re�etorwhih falls in an evauated tube allows one toreah the auray of 3 · 10−6 m/s2. The dy�nami methods are used to measure the abso�lute value of free fall aeleration. Stati meth�ods allow one to measure a relative di�erene inthe gravitational aeleration with an aurayof up to 1.5 · 10−5 m/s2. The stati methodsemploy measurements of spring deformationsor torsional deformations of horizontal stringsdue to suspended weights. To redue temper�ature e�ets the springs and strings are madeof quartz. The stati method is di�ult to usefor preise measurements of the absolute valueof gravitational aeleration beause a depen�dene of the load on deformation deviates fromHooke's law. The relative variations of g mea�sured by a stati method are then ompared to the referene points inwhih the absolute values are obtained by dynamial methods. This ishow gravimetri maps are produed.The equivalent length of a ompound pendulum is determined byEq. (4.38):

T = 2π

√

I

mga
. (3)Here I is the moment of inertia of the pendulum about the pivot, m is thependulum mass, and a is the distane from the pivot to the enter of mass.

1.4.2 227The pendulum mass and osillation period an be measured with a highauray while the moment of inertia annot. Usage of Kater's pendulumallows one to exlude the moment of inertia from the equation for g.The method of Kater's pendulum is based on the observation that theperiod of a ompound pendulum remains the same when the pivot is plaedin the enter of osillation, i.e. the point separated from the pivot at thedistane equal to the equivalent length and loated on the same vertialwith the pivot and the enter of mass.The pendulum used in the lab (see Fig. 1) onsists of a steel plate (or arod) to whih two idential prisms Ï1 and Ï2 are attahed. The osillationperiod of the pendulum an be varied by means of movable weights �1, �2,and �3.Suppose one has attahed the weights so that the periods T1 and T2 ofpendulum osillations on the prisms Ï1 and Ï2 are the same, i.e.

T1 = T2 = T = 2π

√

I1

mgl1
= 2π

√

I2

mgl2
, (4)where l1 and l2 are the distanes from the enter of mass to prisms Ï1 andÏ2.This ondition is met providing the equivalent lengths, I1/ml1 and

I2/ml2, are the same. Aording to Huygens-Steiner theorem

I1 = I0 + ml21, I2 = I0 + ml22, (5)where I0 is the moment of inertia of pendulum about the axis through theenter of mass and parallel to the pivot. Exluding I0 and m from Eqs. (4)and (5) one obtains the equation for g:g =
4π2

T 2
(l1 + l2) = 4π2 L

T 2
. (6)Here L = l1 + l2 -is the distane between prisms Ï1 and Ï2 whih anbe measured with an auray of 0.1 mm with the aid of a large aliper.Summation of the lengths l1 and l2 is less aurate sine the orrespondingerror is several millimeters.Notie that Eq. (6) follows from Eqs. (4) and (5) providing

l1 6= l2, (7)sine Eqs. (4) and (5) beome identities for l1 = l2.



228 Mehanial osillations and wavesEquation (6) is derived under assumption that T1 = T2. Atually it isnot possible to equate the periods preisely. In general

T1 = 2π

√

I0 + ml21
mgl1

, T2 = 2π

√

I0 + ml22
mgl2

.Then

T 2
1 gl1 − T 2

2 gl2 = 4π2(l21 − l22),and g = 4π2 l21 − l22
l1T 2

1 − l2T 2
2

= 4π2 L

T 2
0

, (8)where

T 2
0 =

l1T
2
1 − l2T

2
2

l1 − l2
= T 2

2 +
l1

l1 − l2
(T1 + T2)(T1 − T2). (9)The error of g an be found from Eq. (8):

σgg =

√

(σL

L

)2

+ 4

(

σT0

T0

)2

. (10)To evaluate the error σT0 let us examine how the period of osillationdepends on the distane l between the enter of mass and the pivot. To doso we express moment of inertia I via I0 using Eq. (5):

T = 2π

√

I0 + ml2

mgl
. (11)This funtion is shown in Fig. 2. When l → 0 the period goes to in�nity as

l−1/2. When l → ∞ the period goes to in�nity as l1/2. The minimum ofthe period is at lmin =
√

I0/m. Every value of T for T > Tmin is repeatedtwie for two di�erent values of l, one of them is greater than lmin and theother is less. These values were used in Eqs. (4) � (6). The plot shows thatthe values of the quantities l1 and l2 diverge when T grows.Let us determine how the error of T0 depends on the di�erene l1 − l2.To this end let us �nd how σT0 depends on the error of T1. Di�erentiatingthe �rst equation of (9) at onstant T2 we obtain:
2T0(dT0)T2

=
l1

l1 − l2
2T1dT1, (dT0)T2

=
l1

l1 − l2
· T1

T0

dT1.Similarly we obtain at onstant T1:
(dT0)T1

= − l2
l1 − l2

· T2

T0

dT2.
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Tmin

T

lmin ll2 l1Fig. 2. Osillation period versus distane between enter of mass andpivotNow onsider the ase when l1 and l2 are lose. The denominator issmall and the error of T0 grows sharply. Therefore the period of osillationsmust be hosen so that l1 and l2 are signi�antly di�erent. If they di�erby a fator of 1.5 the error of T0 exeeds the error of T1 by less than anorder of magnitude.Let us derive the equation for dT0. Consider the seond equality inEq. (9). Notie that T1 ≈ T2, so the di�erene T1 − T2 is small. Thereforethe seond term in the equation an be regarded as a minor orretion aslong as l1 − l2 is not large.Therefore the errors of l1 and l2, if taken into aount, will be multipliedby a small di�erene T1 − T2 and an be negleted in alulation of σT0 .This is true even for the errors of several millimeters typial for this lab.Now, sine the errors of T1 and T2 are independent and approximatelyequal the general formula (1.33) gives �nally:

σT0 ≈
√

l21 + l22
l1 − l2

σT , (12)where σT is the error of the period.One an see that the error does not signi�antly depend on the aurayof the equality T1 = T2. Therefore, as soon as the equality holds withinseveral perent, a further improvement is not neessary.Finally notie that the ratio l1/l2 should not be too large. Indeed l1is always less than the distane L between the prisms. The quantity l2



230 Mehanial osillations and wavesbeomes small for large l1/l2 and the period of osillations grows sharply(reall that I is always greater than I0). This inreases the duration ofexperiment and an unertainty due to frition whih is not taken intoaount in derivation of Eq. (3).Let us quantify this statement. The ontribution due to frition an bedetermined as the ratio of the work done by frition fores to the energyof osillation. The work of frition depends on l2 only slightly beausethe work is the produt of the torque due to frition (whih is almostindependent of l2) and de�etion angle whih is ompletely independent of

l2. The energy of osillation equals the potential energy of the pendulum,i.e.

Wosc = mgl2(1 − cosϕ),where ϕ is the de�etion angle of the pendulum. So, the less l2, the less

Wosc.Thus we onlude that the ratio of l1 to l2 should be neither too smallnor too large. A preferred value lies in the range:

1,5 <
l1
l2

< 3. (13)Laboratory setup. The design of Kater's pendulum is shown in Fig. 1.The distane L between the prisms Ï1 and Ï2 is �xed. Distanes l1 and l2an be varied by moving weights �1, �2 and �3.The number of osillations is measured by a ounter whih onsists ofa spotlight, a photoell, and a digital ounter. A light rod attahed to thependulum end rosses the beam of light twie a period. Pulses generatedby the photoell are registered by the digital ounter. If n1 and n2 arethe initial and �nal readings of the ounter during time t, the number ofperiods is, obviously, equal to N = (n2 − n1)/2 and the osillation periodis T = t/N . Time t is measured by the stopwath mounted on the ounter.To measure l1 and l2 one should remove the pendulum from its supportand plae it on the speial horizontal bar whih has a sharp edge. Then oneshould �nd the position of the enter of mass by balaning the pendulumon the bar. The distanes from the bar to the prisms are l1 and l2. Ifthey di�er signi�antly (see Eq. (13)) and the periods T1 and T2 are lose,the auray of measurement of l1 and l2 need not be high aording toEq. (9). LABORATORY ASSIGNMENT1. Study Kater's pendulum design.

1.4.2 2312. Find the working range of osillation amplitudes in whih osillation periodan be onsidered as independent of the amplitude. To do so put thependulum on a prism, de�et it from the vertial by an angle ϕ1 (∼10◦),and measure the time of 100 full swings. Find the period T1. Repeat theexperiment by dereasing the initial de�etion by a fator of 1.5�2 and �ndthe period T ′
1. If the periods oinide within the measurement auray,any initial amplitude ϕ whih does not exeed ϕ1 an be hosen for furthermeasurements. If it turns out that T1 6= T ′

1, take the seond value of theinitial amplitude as ϕ1 and repeat the experiment. It is not reommendedto take the initial amplitude greater than 10◦ sine the prism an possiblyslide on the support.3. Figure out how the osillation periods T1 and T2 (the pivot point on theprism Ï1 and Ï2, respetively) depend on the position of weights �1, �2and �3. It would su�e to measure the time of 10�15 full swings. It isneessary to determinea) whih of the weights has the greatest e�et on T1 and T2, and whihone has the least;b) whih of the weights has the greatest e�et on the di�erene |T1−T2|.Does a weight displaement hanges the periods T1 and T2 in the samediretion? Do the experiments for all the weights.4. By moving the weight whih has the greatest e�et on the di�erene

|T1−T2| (usually it is �2) make the periods roughly oinide. Determine T1and T2 by 10�15 full swings. Remove the pendulum from the support, lo�ate its enter of mass, and measure the distanes l1 and l2. As it wasalready mentioned, they should di�er by a fator of no less than 1.5 andno more than 3.5. By moving the weight whih has the least e�et on the periods, make T1and T2 oinide within one perent auray. Chek whether the values l1and l2 satisfy inequalities (13). The �nal measurement should be performedusing 200�300 full swings. By the way make sure that frition has no signif�iant e�et on the osillations, i.e. the amplitude of osillations dereasesno more than by a fator of 2�3 during the 200�300 full swings.6. Using Eqs. (8) and (9) alulate the gravitational aeleration. Evaluatethe error and ompare the result with the tabulated value.Questions1. How do temperature variations, frition, and the amplitude of osillations a�etthe auray of the experiment?2. What distane from the pivot to the enter of mass orresponds to the minimumosillation period?3. Show that the enter of mass lies between the pivot and the enter of osillations.



232 Mehanial osillations and waves4. Prove Huygens-Steiner theorem.5. Show that if the pivot is plaed in the enter of osillations the period of osilla�tions remains the same. Literature1. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. I. � Ì.: Íàóêà, 1996. �� 35, 36, 41,66.2. Ñòðåëêîâ Ñ.Ï. Ìåõàíèêà. � Ì.: Íàóêà, 1975. �� 50, 124.Lab 1.4.3Study of non-linear osillations of a long-periodpendulumPurpose of the lab: determination of the dependene of osillationfrequeny on amplitudeTools and instruments: long-period pendulum, stopwathEquation of the pendulum motion. A pendulum used in the labonsists of two idential weights �xed on a rigid rod; the rod an rotateabout a horizontal axis whih is slightly o� the enter of mass of the system.An arrangement of the rod and the weights is shown in Fig. 1, the namesof the variables used are indiated in the same �gure.

Fig. 1. Long-periodpendulum
The pendulum osillations are due to thetorque of the gravitational fore. The motion ofthe pendulum is spei�ed by the dependene ofthe deviation angle ϕ (measured from the equi�librium position) on time. The torque Mg dueto the gravitational fore, whih tends to returnthe system to the equilibrium, an be written as

Mg = −
(

m + ρ
L + l

2

) g(L − l) sinϕ.In what follows we shall assume that the dragfore, whih is responsible for the osillation damping, is diretly propor�tional to the veloity. This fat is onsistent with the experimental dataproviding the veloity is not large. In the ase onsidered the drag foredepends on the air visosity and on the frition in the bearings of the pen�dulum axis whih is too small to be taken into aount. Thus the torque
Md of the drag fore equals

1.4.3 233
Md = −b(L2 + l2)ϕ̇,where b is a onstant.The pendulum moment of inertia I about the rotational axis is equalto the sum of the moments of inertia of its onstituents (the weights andthe rod) about the same axis:

I = m(L2 + l2) + ρ
L3 + l3

3
,where m is the mass of eah of the weights (onsidered as point masses)and ρ is the linear density of the rod.Consequently, the equation of the rotational motion of the pendulum,

Iϕ̈ = Mg + Md,beomes
Iϕ̈ = −

(

m + ρ
L + l

2

) g(L − l) sin ϕ − b(L2 + l2)ϕ̇,or
ϕ̈ + 2βϕ̇ + ω2

0 sin ϕ = 0, (1)where
2β = b

L2 + l2

I

è ω2
0 =

(

m + ρ
L + l

2

) g(L − l)

I
.Negleting the rod mass ompared to the masses of the weights one anwrite down

2β =
b

m
, ω2

0 = g L − l

L2 + l2
.Small-amplitude osillations. For small deviation angles sin ϕ ≈ ϕ;when plugged into Eq. (4.27) it gives the equation of small-amplitudedamped osillations

ϕ̈ + 2βϕ̇ + ω2
0ϕ = 0. (2)The solution of the equation is given by (4.28)

ϕ = ae−βt cos(ωt + α), (3)where (see eq. (4.29))

ω2 = ω2
0 − β2. (4)



234 Mehanial osillations and wavesThe onstants a and α are determined by initial onditions.From Eq. (4) one an see that damping dereases the osillation fre�queny and thus inreases the period. To estimate the magnitude of thee�et (assuming a small damping: β2 ≪ ω2) we rewrite Eq. (4) as ∆ω2 =
= −β2 and obtain

∆T

T
= −∆ω

ω
= −2ω∆ω

2ω2
= −∆ω2

2ω2
=

β2

2ω2
=

β2T 2

8π2
.Using Eqs. (4.31) and (4.32) one �nally obtains

∆T

T
=

δ2

8π2
, where δ = βT = ln

ai

ai+1

. (5)Equation (5) allows one to estimate the in�uene of the damping on theosillation period as the amplitudes ai an be easily measured. We assumethat the orretion (5) due to damping is small ompared to the orre�tion due to the non-linearity of the osillations. However, this assumptionshould be experimentally veri�ed.Non-linear osillations. An equation of large-amplitude undamped os�illations an be obtained by setting β = 0 in (1)

ϕ̈ + ω2
0 sin ϕ = 0. (6)This equation is non-linear1. For small deviation angles sin ϕ ≈ ϕ eq. (6)is linear and oinides with the equation of the harmoni osillator (4.4).The dependene of the period of non-linear osillations on the amplitudean be obtained by integrating the relation

dt =
dϕ

ϕ̇

(7)from t = 0 to, e.g. t = T/4. To �nd the angular veloity ϕ̇ and thedeviation angle ϕ one should multiply Eq. (6) by ϕ̇

ϕ̇ϕ̈ + ϕ̇ω2
0 sin ϕ = 0and integrate one:2:

ϕ̇2

2
+ ω2

0(cosϕm − cosϕ) = 0, (8)1 We remind that linear equations are those in whih all terms are the �rst powers offuntions and their derivatives. In eq. (6) the non-linearity is due to the sine funtion.In other ases there ould be polynomial or more ompliated funtions2 One an also obtain (8) from the energy onservation law

1.4.3 235where ϕm is the maximum deviation angle. From here it follows that
ϕ̇2 = 2ω2

0(cos ϕ − cosϕm) = 4ω2
0

(

sin2 ϕm

2
− sin2 ϕ

2

)

,

ϕ̇ = 2ω0 sin
ϕm

2

√

1 − sin2 ϕ
2

sin2 ϕm

2

. (9)Using Eqs. (9) and (7) one obtains
T = 4

T/4∫

0

dt = 4

ϕm∫

0

dϕ

ϕ̇
=

4

2ω0 sin ϕm

2

ϕm∫

0

dϕ
√

1 − sin2 ϕ
2

sin2 ϕm

2

. (10)Introduing a new variable θ

sin2 θ =
sin2 ϕ

2

sin2 ϕm

2

(11)we an rewrite an expression for the osillation period T as

T = T0 ·
2

π

π/2∫

0

dθ
√

1 − sin2 ϕm

2
sin2 θ

. (12)Here T0 = 2π/ω0 is the period of small-amplitude (linear) osillations.The integral (12) is not expressed via primitive funtions but it an beworked out by Taylor expanding of the integrand. This gives the followingdependene of the osillation period on the amplitude

T

T0

= 1 +
1

4
sin2 ϕm

2
+

9

64
sin4 ϕm

2
+ . . . (13)For relatively small angles one obtains:

T ≈ T0

(

1 +
ϕ2

m

16

)

. (14)In Fig. 2 the rigorous solution (13) (solid line) and the approximate one(14) (dashed) are depited. At 90◦-amplitudes the disrepany between thesolutions is about 2% while a non-linear ontribution to the period is about15�20% and an be measured with a simple stopwath if the osillationperiod is about 10 seonds.



236 Mehanial osillations and waves

Fig. 2. Dependene of osillation period on amplitudeBoth non-linearity and damping a�et the pendulum osillation pe�riod (6). We have onsidered the ontribution of eah of the fators in�dependently assuming that the other one is negligible. In fat these fatorsat simultaneously and the osillation period is a ompliated funtion ofthe damping derement and the amplitude. But if the orretion to theperiod is small, one an use the Taylor expansion of the funtion of twovariables:

f(x, y) ≈ f(0, 0) +
∂f(0, 0)

∂x
x +

∂f(0, 0)

∂y
y,whih gives for eqs. (5) and (14):

T (δ2, ϕ2
m) ≈ T0

(

1 +
δ2

8π2
+

ϕ2
m

16

)

. (15)One an see that in the �rst order the damping and the non-linearityontributions are independent.LABORATORY ASSIGNMENT1. Adjust the position of the weights on the rod so that the pendulum osil�lation period is 5-10 seonds.

1.4.4 2372. Release the pendulum without pushing from the initial 80�90◦ and devia�tion angle and start the stopwath simultaneously.3. Eah time the angle reahes its maximum value tabulate the number of theperiods n passed from the start of motion, the maximum deviation angle
ϕn, and the stopwath readings.4. Repeat the experiment several times for various osillation periods.5. Estimate the e�et of damping on the pendulum osillations. For thispurpose plot the values lnϕn vs n, alulate the slope of the line andextrat the value of the logarithmi derement δ (see Eq. (5)). Using (5)estimate the ontribution of the damping to the osillation period andasertain that it is small ompared to the e�et observed (or omparedto the expeted value alulated from Eq. (14)). Otherwise one shouldintrodue the orretion for the damping using Eq. (15) and use the value

T0 − δ2

8π2 instead of the small-osillation period T0.6. Plot the dependene of the osillation period T vs. the maximum deviationangle squared ϕ2 (measured in radians). Compare your result with thetheoretial predition (14). Questions1. How does the pendulum osillation period depend on damping?2. Disuss the design of a moderate size pendulum whih has a large osillationperiod. Could a onventional pendulum be used in the lab instead?3. Disuss the dependene of the pendulum osillation period on the amplitude.Literature1. Êèòòåëü ×., Íàéò Ó., �óäåðìàí Ì. Ìåõàíèêà. � Ì.: Íàóêà, 1983. Ñ. 251.2. Êèíãñåï À.Ñ., Ëîêøèí �.�., Îëüõîâ Î.À. Îñíîâû �èçèêè. Ò. 1. Ìåõàíèêà,ýëåêòðè÷åñòâî è ìàãíåòèçì, êîëåáàíèÿ è âîëíû, âîëíîâàÿ îïòèêà. � Ì.:Ôèçìàòëèò, 2001. ×. III. �� 2.4, 3.2.Lab 1.4.4Study of osillations of oupled pendulumsPurpose of the lab: to study an osillator with two degrees of freedomTools and instruments: a setup of two idential bi�lar gravity pendu�lums suspended on a tight horizontal string, a stopwath, and a rulerPrior to experiment read the paragraph onerning oupled pendulumsin the introdution to this hapter.



238 Mehanial osillations and wavesThe measurements are performed using the setup shown in Fig. 1.One of the string ends is rigidly attahed to the vertial support, whilethe other end runs over the sheave and is kept tight by the weight of mass

M . Points A and B of the string are �xed. Points C and D divide the dis�tane between A and B into three equal segments of length a eah; identialgravity pendulums of mass m and length l are suspended at these points.Eah pendulum is suspended on two threads (bi�larly) in the string plane,so that osillations our in the plane orthogonal to the string. String ten�sion is muh greater than the weight of the pendulums provided M ≫ m.Vertial displaement of the string from equilibrium does not a�et motionof the pendulums if osillation amplitudes are small. Although horizontaldisplaement of the string is also rather small ompared to the pendulumdisplaements, it provides weak oupling between the pendulums.The displaements of points C and D of the string and both vertial(Fig. 2à) and horizontal (Fig. 2b) displaements of pendulums are shownin Fig. 2.Assuming small displaements of the pendulums we obtain the followingexpression for tension T (see Fig. 2a)

mg ≈ T. (1)Dynami equations governing the horizontal omponents of pendulumdisplaements are (Fig. 2):

mẍ1 = −T sin ϕ1 ≈ −T
x1 − x3

l
≈ −mg x1 − x3

l
, (2)

mẍ2 = −T sin ϕ2 ≈ −T
x2 − x4

l
≈ −mg x2 − x4

l
. (3)The relation between the string and suspension tensions an be obtainedfrom Fig. 2:

T
x1 − x3

l
= F

x3

a
+ F

x3 − x4

a
, (4)

T
x2 − x4

l
= F

x4

a
+ F

x4 − x3

a
. (5)Let us introdue a dimensionless parameter

σ =
T

F

a

l
=

m

M

a

l
,whih is muh less than unity in our ase (weak oupling). Thus fromEqs. (4) and (5) we obtain

σx1 = (2 + σ)x3 − x4, σx2 = (2 + σ)x4 − x3. (6)
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Fig. 1. Sheme of experimental setup

Fig. 2. Displaements of pendulums and string (a) view along thestring, (b) top view



240 Mehanial osillations and wavesNegleting σ ompared to 2 we arrive at

x3 = σ
2x1 + x2

3
, x4 = σ

x1 + 2x2

3
. (7)Then the equations of pendulum motion beome:

ẍ1 +

g

l
(1 − σ)x1 = σ

g

3l
(x2 − x1), (8)

ẍ2 +

g

l
(1 − σ)x2 = σ

g

3l
(x1 − x2). (9)Notie that the system of equations (4.60)-(4.61) an be rewritten as

ϕ̈1 +

g

l
ϕ1 =

g

l
ε(ϕ2 − ϕ1),

ϕ̈2 +

g

l
ϕ2 =

g

l
ε(ϕ1 − ϕ2)or

ϕ̈1 + ω2
0ϕ1 = ω2

0ε(ϕ2 − ϕ1), (10)

ϕ̈2 + ω2
0ϕ2 = ω2

0ε(ϕ1 − ϕ2). (11)Equations (10) and (11) oinide with Eqs. (8) and (9) exept for thenotations. One an introdue the quantitiesg

l
(1 − σ) = ω2

0 , σ

g

3l
= ω2

0εand thus obtain

σ

1 − σ
= 3εor

σ(1 + σ) ≈ 3ε,i.e.

σ ≈ 3ε (for weak oupling).Now Eqs. (8) and (9) beome

ẍ1 + ω2
0x1 = ω2

0ε(x2 − x1), (12)
ẍ2 + ω2

0x2 = −ω2
0ε(x2 − x1). (13)

1.4.4 241Thus all theoretial results derived in the introdution to this hap�ter are valid for this experiment. In partiular, energy transfer from onependulum to another and vie versa takes the time (4.79):
τ =

2π

ω0ε
. (14)One an see that the oupling parameter an be written as

ε =
1

3

(

1 − ω2
0lg )

. (15)Using Eq. (15) one an rewrite the relation (14) as
τ =

6π

ω0(1 − ω2
0l/g)

≈ 6π
Ml

ma

√

lg . (16)Equation (16) an be experimentally veri�ed by measuring the partial fre�queny of a pendulum, its length, and the time of energy transfer.LABORATORY ASSIGNMENT1. Measure the pendulum lengths, the distane between �xed points of thestring and between pendulum suspension points. Write down the pendu�lum masses and the weight whih keeps the string tight.2. Measure the periods of normal osillation modes. To measure the periodof in-phase osillations T1 de�et the pendulums from the vertial by equalangles (about 30◦) in the same diretion and release them simultaneously.Time readouts should be taken when the pendulums pass through theirequilibrium positions (about 10 osillations). Repeat the measurement2�3 times and average the results. To measure the period of antiphaseosillations T2 the initial de�etions should be in the opposite diretions.3. Measure the periods of partial osillations. For this purpose one of thependulums should be detahed or put on a support.4. Observe swinging of one pendulum by another. For this purpose de�etonly one pendulum and measurethe period of beatings τ .5. Chek validity of the relation

1

τ
=

1

T1

+
1

T2

. (17)6. Repeat the previous measurements for di�erent string tensions.7. Plot the dependene of the beatings period on the string tension.



242 Mehanial osillations and waves8. Compare the results obtained with the theoretial preditions given byEq. (16). Questions1. Give some examples of osillators with two degrees of freedom.2. What are normal osillations (normal modes)?3. What are partial osillations?4. At whih initial ondition does the swinging of pendulums our in turn?5. Derive the equation (17). Literature1. Êèòòåëü ×., Íàéò Ó., �óäåðìàí Ì. Ìåõàíèêà. � Ì.: Íàóêà, 1983.2. Êèíãñåï À.Ñ., Ëîêøèí �.�., Îëüõîâ Î.À. Îñíîâû �èçèêè. Ò. 1. Ìåõàíèêà,ýëåêòðè÷åñòâî è ìàãíåòèçì, êîëåáàíèÿ è âîëíû, âîëíîâàÿ îïòèêà. � Ì.:Ôèçìàòëèò, 2001. ×. III. �ë. 2. � 2.5.Lab 1.4.5Study of string osillationsPurpose of the lab: to study the dependene of the frequeny of stringosillations on the tension; to study the formation of standing waves onthe string.Tools and instruments: bar with a �xed string, audio-frequenygenerator, onstant magnet, weightsOne of the main properties of a string is its �exibility whih is due to alarge ratio of the string length to its diameter. Even strings made of sti�materials almost do not resist a bending if the size of the bent setion ismuh greater than the string diameter. This fat allows us to neglet thestress due to bending in this lab.A horizontal string with �xed endpoints sags in a gravitational �eldwhen poorly tightened. Inreasing the tension will straighten the stringalmost to a straight line; in this situation the tension is su�iently greaterthan the weight of the string. For this reason we will neglet the gravitywhen onsidering straightly tightened strings.A tight string with �xed ends is well suited for the study of osillationproesses sine it makes possible a diret observation of the simplest typesof osillations and waves exited on the string. It is also possible to de�termine the parameters of the osillations and ompare the results withtheoretial preditions.
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Fig. 1. Experimental setupMotion of string segments an be aused by a perturbation of the stringshape or by a transmission of momentum along the string. The string ten�sion tends to restore its initial straight shape, whih results in the motionof string segments. The perturbation propagates along the string.From eq. (4.95) one obtains an expression for the speed of a transversewave propagating along a string
u =

√

F

ρl
, (1)where F is the tension, ρl is the mass of the string per unit length. For agiven frequeny ν the wavelength is

λ =
u

ν
. (2)The frequenies of normal modes of the string are given by eq. (4.97):

νn = n
u

2l
, (3)where l is the string length, n is the number of half-wavelengths.Laboratory setup. The experimental setup is shown in Fig. 1. Bearings2 and 4 and magnet 3 are plaed on massive bar 1, the bearing 2 and themagnet 3 an be moved along the bar while the bearing 4 is �xed. Oneof the string ends is �xed in the bearing 4. Then the string is threadedbetween the poles of the magnet, the bearing 4 (whih allows for horizontalstring displaements), and the �xed blok. Plate 5 is suspended on theloose end of the string; by plaing di�erent weights on the plate one anvary a string tension.



244 Mehanial osillations and wavesAn alternating voltage generated by the audio-frequeny generator 6 isapplied between the massive bar 1 and the string end �xed in the bearing 4.An Ampere fore due to the magneti �eld ating on the urrent makes thestring vibrate. The frequeny of the fore swinging the string is equal tothe frequeny of the urrent osillations, i.e. the frequeny of the generator.The Ampere fore results in string osillations and wave propagation;the waves are re�eted by the bearings 2 and 4 and interfere, whih resultsin a standing wave provided the string length is an integer of half-wave�lengths.In real experiments there always exist losses of energy due to air frition,transmission of energy to the bearings, irreversible proesses in the string,et. To maintain the osillations one needs to supply energy to the string.In a stationary regime the amount of the supplied energy equals the amountof the dissipated energy. In the experimental setup the Ampere fore notonly exites the string osillations but also maintains them.In this situation the energy �ux propagates along the string. But theenergy propagation in a pure standing wave is prohibited (see the introdu�tion to this hapter). Therefore a traveling wave must exist, atually thisleads to the smearing of the standing-wave nodes. If the energy losses perperiod are muh less than the energy stored in the string a traveling-wavefator is muh less than unity:

A1 − A2

A2

≪ 1. (4)Here A1 and A2 are the inident and the re�eted wave amplitudes, respe�tively. In this ase one an use the equations obtained for a pure standingwave. It is worth mentioning that the quantity A1 − A2 an be estimatedby observing the smearing of the nodes; it equals half of the smearingamplitude. The wave amplitude in an antinode is 2A2.If inequality (4) is not well satis�ed, one should derease the outputpower of the generator. This would derease the rate of energy loss om�pared to the energy stored in the wave.One more fat should be mentioned. The Ampere fore will exitepolarized waves with the plane of osillations orthogonal to the diretionof the magneti �eld. In real experiments it is not always possible to obtainthe linearly polarized waves.LABORATORY ASSIGNMENT1. Examine the experimental setup. Plae the bearing 2 (Fig. 1) so that thelength L of the osillating part of the string is longer than 80 m.2. Turn on the power supply of the audio-frequeny generator.

1.4.5 2453. Set the harmoni output signal of the generator and the minimal range ofthe output frequenies.4. Put some weights on the plate.5. Move the magnet and vary the generator frequeny to obtain a pattern ofstanding waves. (Moving the magnet along the string hanges a loationof the point where the Ampere fore is applied. The point must be loseto a node although they should not oinide.)6. Inrease the generator frequeny at a onstant tension and obtain the pat�terns of standing waves orresponding to n = 1, 2, 3, .... up to not less than6. For eah pattern write down the orresponding frequeny; repeat themeasurement by inreasing and dereasing the generator frequeny. Carryout this proedure for di�erent values (at least �ve) of the string tension.7. While arrying out the experiment hek if inequality (4) holds. For thispurpose one should measure a node smearing and the amplitude of osil�lations in an antinode. If (4) is not well satis�ed the output power of thegenerator must be redued.8. For eah value of the string tension F plot the resonant frequeny νn vs n.Calulate the slope of the urves and determine the wave veloity u using(3) at a given value of the tension. Estimate the error of the results.9. Plot the wave veloity squared u2 vs the string tension F . Calulate theslope of the line and determine the linear density ρl of the string using (1).Estimate the error and ompare the result with the value written on theexperimental setup. Questions1. What are longitudinal and transverse waves? Write down the wave equation.2. Derive the wave equation. Give a de�nition of node and antinode of a standingwave. Desribe an energy propagation along an osillating string.3. Prove that the veloity of transverse wave on a string equals u =
√

F/ρl. Com�pare this value with the veloity obtained in the experiment.4. Desribe the re�etion of a wave from the �xed end and from the end whihmoves freely in a plane orthogonal to the diretion of the string tension. Whatis the value of a phase shift between the inident and re�eted waves?5. What ondition must be satis�ed for a traveling wave not to a�et the osillationpattern? How an one hek the ondition experimentally?Literature1. Ñòðåëêîâ Ñ.Ï. Ìåõàíèêà. � Ì.: Íàóêà, 1975. ?. 137�143.2. Õàéêèí Ñ.Ý. Ôèçè÷åñêèå îñíîâû ìåõàíèêè. � Ì.: Íàóêà, 1971. ?. 150�154.3. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. I. � Ì.: Íàóêà, 1996. �� 81, 84.4. Êèíãñåï À.Ñ., Ëîêøèí �.�., Îëüõîâ Î.À. Îñíîâû �èçèêè. Ò. 1. Ìåõàíèêà,ýëåêòðè÷åñòâî è ìàãíåòèçì, êîëåáàíèÿ è âîëíû, âîëíîâàÿ îïòèêà. � Ì.:Ôèçìàòëèò, 2001. ×. III. �ë. 5. � 5.6.



246 Mehanial osillations and wavesLab 1.4.6Measurement of speed of ultrasound in liquid bymeans of ultrasound interferometerPurpose of the lab: to measure wavelength of ultrasound in di�erentliquids by means of ultrasound interferometer and to alulate speeds ofultrasound and adiabati ompressibility of the liquids.Tools and instruments: an ultrasound interferometer, frequeny gen�erator �4-42, and an ammeter.Sound waves with a frequeny greater than 20 kHz are alled ultra�sound. Unlike sound, ultrasound is not pereptible by human ear.Ultrasound waves an propagate in solids and �uids just like ordinarysound waves. In solids ultrasound propagates in the form of longitudinaland transverse waves; in �uids there are only longitudinal waves. The speedof ultrasound depends on elasti properties and density of the medium inwhih ultrasound propagates. Therefore elasti properties of a medium anbe determined if the speed of ultrasound and the medium mass density areknown.In the lab the speed of ultrasound in liquid is measured. There areseveral methods of measuring the speed. The method of ultrasound inter�ferometry used in the lab is one of the most preise.A standing wave is exited between an emitter and a rigid re�etingsurfae. (See the introdution to the hapter.) The distane between theemitter and the re�etor must be an integer multiple of half wavelengths:
l = n

λ

2
, cs = λνn, (1)where cs is the speed of ultrasound and νn is the wave frequeny.The interferometer an be onsidered as a resonator tuned to the fre�quenies derived from (1):

νn = n
cs

2l
. (2)These frequenies orrespond to standing waves of the resonator, they arealled resonant frequenies. Two adjaent resonant frequenies orrespondto distanes l between the emitter and the re�etor separated by

∆l =
λ

2
. (3)Equation (3) is more general than (1). Indeed, Eq. (1) is derived on theassumption that both ends of the olumn of liquid are losed by absolutely

1.4.6 247elasti walls whih ompletely re�et the sound. This assumption is neversatis�ed, so a phase shift between the inident and re�eted waves neverequals π.Equation (3), whih spei�es the distane between two onseutive res�onanes, is independent of the details of re�etion from the top and bottomof the ontainer. As long as a resonane is deteted, further inrement ofthe olumn height by λ/2 inreases the path of the wave between two on�seutive re�etions by λ, so the phase hanges by 2π and the next resonaneours.Consider a method of exiting the ultrasound. Usually one employs a�at quartz rystal plaed between the plates of a apaitor (the plates areglued or thermally sprayed on the rystal). The size of the rystal hangesperiodially due to eletri �eld (piezo-e�et) of a desired frequeny. Theosillations are then transferred to liquid.Usually the quartz rystal is plaed in the liquid to avoid extra surfaesre�eting the sound. In our ase the plate is rigidly �xed to the ontainerbottom. The osillations are transferred to the liquid through the bottomwhih in ideal ase would oinide with a node.However osillations annot be exited at the node beause there is nomotion and no work an be done. This looks like a ontradition sineenergy must be transferred from the emitter to the liquid to ompensatelosses on the re�eting surfaes and due to internal frition. The bottomoinides with an osillation node only for an ideal liquid in whih thereare no losses. No losses means no ompensation. In a real liquid the energylosses are imminent and the bottom needs not be immobile.In resonane and in the absene of energy losses, the amplitudes of thewaves propagating in opposite diretions are equal and their sum is a stand�ing wave. In reality the amplitude Aup of the wave propagating upwardfrom the emitter somewhat exeeds the amplitude Adown of the downwardwave. The sum of the waves is a standing wave with the amplitude of

2Adown and a propagating wave with the amplitude of Aup − Adown. Thepropagating wave transfers energy and ¾blurs¿ the wave pattern at thenodes.Now let us disuss how to measure a sound wavelength. It shouldalready be lear that the measurement is essentially the measurement ofthe distane between two onseutive positions of the re�etor for whiha resonane ours. Aording to Eq. (3) one �nds the wavelength bydoubling the distane obtained.The speed of sound cs an then be found from Eq. (1). In addition tothe wavelength one should know the frequeny of osillations of the quartzrystal whih oinides with the signal frequeny.



248 Mehanial osillations and wavesUsing the value of cs one ould determine ompressibility χ of liquid:

cs =

√

1

χρ
, χ =

1

ρc2
s

, (4)where ρ is the liquid density. Sine propagation of sound is an adiabatiproess, this equation de�nes adiabati ompressibility χad. The adiabatiand thermal ompressibility of liquid do not di�er muh, e.g. for water thedi�erene is 1%, the di�erene between them an often be negleted.A strong eletrolyte dissolved in water dissoiates into ions. The eletri�eld of an ion aligns the nearby water moleules that drastially reduesthe ompressibility. Roughly speaking, eah ion beomes the enter of asphere whih ompressibility is almost zero. As a result the ompressibilityof the solution dereases and the speed of ultrasound rises sharply.

Fig. 1. Ultrasound interferometer
Laboratory setup. The interferometerused in the lab onsists of ylinder C (seeFig. 1), quartz plate K is glued to its bot�tom. The plate is ut in a speial way (theso alled ¾X-ut¿) and possesses piezoele�tri properties. Charges of opposite signaumulate on the opposite rystal faesto whih stress or ompression is applied.The reverse e�et is used in the interfer�ometer: a periodi voltage applied to thehorizontal rystal faes oated with silvermakes the rystal osillate. The alternat�ing voltage is generated by the standardfrequeny generator �4-42 whih gradua�tion sale has an error less than 1%. Thegenerator has a resonane ampli�er tunedto the eigenfrequeny of the quartz plate(1 MHz). A voltage applied to the rystalis tens of volts.The thikness of the ontainer bottomis hosen so that resonane ours in the working range of frequenies.The ontainer bottom exited by the quartz rystal transmits ultra�sound to the bulk of liquid. This prevents a ontat between the liquidand the quartz rystal and allows one to study even onduting liquidswhih otherwise would damage or short-iruit the rystal.The urrent supplied to the rystal is ontrolled by an ammeter. Thelatter is onneted in series with diode Ä and in parallel with resistor
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R whih is inluded in the rystal supply iruit. The ammeter servesto detet resonane. A power onsumed by the rystal rises sharply inresonane and so does a urrent through the resistor.Disk O made of stainless steel serves as the interferometer re�etor. Itslower surfae is parallel to the ontainer bottom. Mirometri srew M isused to move the disk up and down. Spring Ï lifts the rod Ø up there�by maintaining mehanial ontat between the rod and the mirometrisrew. LABORATORY ASSIGNMENT1. Turn on generator �4-42 and let it warm up for several minutes. Emptythe ontainer by unlamping a hose if there is any liquid inside. Set therange of working frequenies of the generator, i.e. the range ontaining theeigenfrequeny 1 MHz of the quartz rystal.Find the resonant frequeny of the rystal by adjusting the frequeny toahieve a maximum of the urrent. Using the knob ¾output level¿ hoosethe signal amplitude so that the ammeter readings are approximately 2/3 ofthe sale. Using the mirometri srew move the re�etor down and waththe readings. If the readings exhibit periodi behavior make sure that itis due to resonane (e.g. onseutive maxima are separated by equal dis�tanes). It ould happen that it is not possible to detet a resonane. Thisdoes not neessarily mean that the interferometer does not work properlysine deteting resonane in air olumn requires more sensitive instrumentsthan for liquids.Small deviations of the readings an be due to touhing the miromet�ri srew. This hanges the interferometer eletrial apaitane and theoutput generator frequeny as well. One ould avoid suh deviations byturning the srew arefully and keeping in touh with the srew knob.2. Clamp the hose and �ll the ontainer with water using a funnel. Raisethe re�etor but keep its working surfae under water. Make sure thatthe surfae is free of air bubbles. Chek the resonant frequeny. Move there�etor down and wath the ammeter readings to determine how manyhalf-wavelengths �t the distane traversed by the re�etor.Plot the # of a maximum as absissa and the maximum position asordinate. Verify that the points lie on a straight line. Using Eq. (3)determine graphially the speed of ultrasound in water.Using Eq. (4) alulate the adiabati ompressibility χad of water. Re�peat the experiment 4�5 times. Estimate the error of cs and χad.3. Repeat the experiment with NaCl water solutions with onentrations of 5,10, 15, and 20%. Measure the solution density with a hydrometer. Plot csand χad versus onentration. Using the plot determine the onentration



250 Mehanial osillations and wavesand χad of a standard solution. Rinse the ontainer with the standardsolution before �lling it.At the end of the experiment the ontainer must be rinsed with purewater. Questions1. Whih mehanial osillations are alled ultrasoni?2. What are longitudinal and transverse waves? In whih media an the wavespropagate?3. Write down a mathematial expression for a plane wave.4. What onditions should be met to make wave interferene possible?5. Derive an equation whih spei�es the ondition of resonane in the interferom�eter. How does the equation depend on boundary onditions?6. What onditions should be met to reate a standing wave? Give de�nitions ofnode and anti-node. How is energy transferred in the wave?7. Why is the speed of ultrasound greater in a solution of eletrolyte than in thepure liquid?8. Suppose the open surfae of liquid is used instead of the metalli re�etor. Theheight of the liquid olumn an be gradually varied by slowly emptying theontainer. What is the phase di�erene between the inident and re�eted waveson the air-liquid boundary?9. How should the interferometer be modi�ed in order to do the same measurementswith gases? Literature1. Ëàíäàó Ë.Ä., Àõèåçåð À.È., Ëè�øèö Å.Ì. Ìåõàíèêà. � Ì.: Íàóêà, 1969.�ë. XVI, �� 125�129.2. Õàéêèí Ñ.Ý. Ôèçè÷åñêèå îñíîâû ìåõàíèêè. � Ì.: Íàóêà, 1971. �ë. XIX,�� 153�155.3. Êèíãñåï À.Ñ., Ëîêøèí �.�., Îëüõîâ Î.À. Îñíîâû �èçèêè. Ò. 1. Ìåõàíèêà,ýëåêòðè÷åñòâî è ìàãíåòèçì, êîëåáàíèÿ è âîëíû, âîëíîâàÿ îïòèêà. � Ì.:Ôèçìàòëèò, 2001. ×. III. �ë. 5. �� 5.2�5.5.Lab 1.4.7Determination of elasti onstants of liquids andsolids via measurement of speed of ultrasoundPurpose of the lab: to measure the speed of sound in liquids and solidsand to alulate elasti onstants of the studied media using the resultsof measurements.Tools and instruments: An ultrasound sensor, a gage post, a set ofsamples, a millimeter ruler, and prism probes.
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Fig. 1. Pulse method ofultrasound speed measurement

Ultrasound is a mehanial osillationwith the frequeny exeeding 20 kHz.Plane waves are the simplest type of ul�trasound waves, they an be longitudi�nal and transverse. In longitudinal wavespartile displaement oinides with thediretion of wave propagation, in trans�verse waves it is perpendiular. Longitu�dinal ultrasound waves an propagate inany medium. Transverse waves propagateonly in solids where shear stress is possi�ble.Under normal onditions, the speedof ultrasound is about 300 m/s in air,1500 m/s in water, 5700 m/s in quartz,6000 m/s in steel.Generation and detetion of ultra�sound waves. Pulse method is one ofpopular methods of ultrasound speed mea�surement. A short pulse of ultrasound issent to the tested medium and the time tof ultrasound propagation at some distane l is measured. The ultrasoundspeed is determined by the simple formula:

cs =
l

t
. (1)An ultrasound pulse is generated by a piezoeletri transduer. Thepulse is deteted by a reeiver, plaed at some distane from the transduer.As an alternative the reeiver an be replaed by a re�etor (see Fig. 1).In this ase the re�eted pulse returns to the transduer, whih not onlygenerates but also detets ultrasound. When a sheme with the re�etor isused the distane is passed twie, so the distane between the transduerand the re�etor in Eq. (1) should be doubled.To measure the time of pulse propagation it is onvenient to use anosillosope whih shows two pulses orresponding to the moment of signalemission and its return. The time t is determined from the distane be�tween the pulses on the sreen (the osillosope sweep is alibrated). Theultrasound speed measured by this method is the group veloity whih isnot the same as the phase veloity mentioned above. These two veloitiesare equal if there is no dispersion (dispersion is a dependene of the phaseveloity on the wavelength).



252 Mehanial osillations and wavesUsually barium titanate piezoeletrial plates are used as transduers.(BaTiO3). To exite both longitudinal and transverse waves in the bodyunder study the so alled prism probes are used. The transduer is loatedat some angle α to the working surfae of the retangular prism probe(see Fig. 2) whih an be made of plexiglass. The transduer generates alongitudinal wave in plexiglass whih is inident at the angle α onto theinterfae between the plexiglass and the studied body. At small angles ofinidene the wave di�rated on the interfae ontains both longitudinaland transverse waves. As their speeds are di�erent, two re�eted pulsesan be seen on the osillosope beside the initial one.The probe should be glued to the sample to transmit transverse waves,a liquid lubriant will not do.
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Fig. 3. Installation shemeLaboratory setup. A standard ultrasound sensor is used to measurespeed of ultrasound in liquids. (The instrument is designated for measur�ing the depth of defets under the surfae of an objet). A generator exitesshort high-frequeny osillation pulses in the transduer (made of bariumtitanate BaTiO3). A pulse is transmitted into the sample through a thinlayer of lubriant. After re�etion from the opposite side of the samplethe pulse returns to the transduer whih onverts it bak to eletri sig�nal. Then the ampli�ed signal is applied to the sensor CRT. Signals onthe sreen are seen as pulses: the transmitted one is at the beginning ofthe sweep and the re�eted ones are loated to its right. The distane be�tween the pulses is proportional to the time t of ultrasound passage fromthe transduer to the re�etive surfae and bakwards. This distane is
1.4.7 253measured with the aid of a mark (a step on a sweep line) whih an bemoved along the line by the depth gauge ontrol.The installation setup is shown in Fig. 3. The transduer 1, onnetedto the ultrasound sensor 2 with a shielded able is attahed into the bot�tom 3 of the gage post. A studied rod or the ylindrial stainless steelvessel with liquid 5 is seurely plaed on the post in the support 4. Aontat between the transduer and the sample is maintained by a layer oflubriant whih transfers only longitudinal waves into the sample. In solidsamples, the pulse is re�eted from the top free end; in liquids the piston 6made of stainless steel serves as the re�etive surfae, its height above thebottom is measured by the sale on the rod 7. Water is used to alibratethe depth gauge sale (the propagation speed is cs = 1497 m/s at 25 ◦Cand the temperature oe�ient dcs/dt = 2.5 m/(s·Ê)).By measuring the ultrasound speed (and alibrating the devie) one anmeasure the time interval between the transmitted and re�eted pulses orbetween two sequentially re�eted pulses. The latter method is preferablebeause the result does not inlude the error due to passage of the ultra�sound through the bottom of the vessel.To measure the speed of transverse ultrasound waves (as well as longi�tudinal ones), an installation with a prism probe should be onneted tothe ultrasound sensor instead of the gage post. The sample has a shapeof a semiylinder. The probe is loated on its axis (Fig. 2) so that thedistanes passed by longitudinal and transverse waves in the sample arethe same (they are equal to the double radius of the semiylinder) and donot depend on the angle at whih the waves enter the sample. An aoustiontat between the probe and the sample is ahieved by means of a thinlayer of mineral wax or BPh-2 adhesive. These substanes an transmittangential stress to the sample.LABORATORY ASSIGNMENT1. Plug the ultrasound sensor in the AC supply. Swith it on by turning the¾Intensity¿ knob lokwise.2. Warm up the sensor for 1�2 minutes, then obtain a lean and sharp im�age of the sweep line by turning the ¾Intensity¿ and ¾Fous¿ knobs. Setthe beginning of the sweep at the left side of the sreen using the ¾ShiftX¿ knob. Set the ¾Frequeny¿ swith to 5 MHz whih orresponds tothe resonant frequeny of the transduer. Set other swithes to the fol�lowing positions: ¾Eletroni magni�er¿ to ¾O�¿, ¾Measurement type¿ to¾Smooth¿, ¾Automati ontrol area¿ to the outmost right position, ¾Sen�sitivity¿ to the middle position, ¾Time orreted gain¿ to the outmostright position, ¾Pulse power¿ to the outmost right position, ¾Cuto�¿ tothe middle position, and I and I+ II swithes to I position.



254 Mehanial osillations and waves3. Calibrate the sale of the depth gauge. For this purpose plae a vessel�lled with water into the measurement gage. Before plaing the vessel ora sample do not forget to grease the emitter surfae with light oil! Set the¾Measurement type¿ swith to the ¾Ä. Ïð.¿ position. Using the ¾Sonirange¿ swith set the neessary range (in aordane with the distane

t from the emitter to the surfae of the re�etive piston). Calibrate thesale using several (5�6) distanes between the emitter and the piston. Plotthe alibration urve in the oordinates of the depth sale marks and thealulated time of the pulse passage. The distane l is measured by meansof the sale on the piston rod. The speed of ultrasound in water is givenin the introdutory setion.4. Measure the speed cl of longitudinal ultrasound waves in the samples madeof di�erent materials (steel, aluminum, brass, organi glass, and so on)and liquids (tetrahloromethane and oil). Measure the length l of the solidsamples using the millimeter ruler and the distane between the vesselbottom and the re�etor using marks on the piston rod. The time ofpulse passage an be determined by means of the depth gauge sale andthe alibration urve. Calulate the speed of ultrasound in the materialsunder onsideration.Hint. When arrying out the experiment make sure that the pulseshosen for the measurement orrespond to two sequentially re�eted pulses.Various ghost pulses an appear on the osillosope sreen, e.g. those dueto diret re�etion from the sample bottom.For the shortest samples there is a minor di�erene in the amplitudesof re�eted pulses, while for the longest samples the di�erene in the am�plitudes of two sequentially re�eted pulses an be quite large. Sometimesit is neessary to inrease the sensitivity of the ampli�er (¾Sensitivity¿) tobe able to see the seond re�eted signal.5. Measure the speed of longitudinal cl and transverse cτ waves in di�erentmaterials (steel, aluminum, brass and so on) by using the prism probe withthe angle of inidene α whih ensures transmission of both types of thewaves into the studied medium (the value of the angle is indiated on theprobe prism). The time of passage of eah pulse an be determined bymeans of the depth gauge sale and the alibration urve. The ultrasoundpath should be measured with the millimeter ruler.6. Calulate the Poisson ratio µ, Young's modulus E, and shear modulus Gfor the studied solids by using the following formulae
cτ =

√

G

ρ
,
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cl =

√

E(1 − µ)

ρ(1 + µ)(1 − 2µ)
,

G =
E

2(1 + µ)
.The material density ρ an be taken from tables.7. Calulate the adiabati ompressibility for the liquids under study usingthe formulae

χ =
1

ρc2
l

.8. Evaluate the errors of the results obtained and ompare the results withthe tabulated values. Questions1. When measuring the speed of ultrasound by means of the ultrasound sensor onean see ghost pulses on the sreen in addition to sequentially re�eted pulses.Why are these pulses seen? How an one get rid of them?2. When measuring the ultrasound speed using the prism probe, a systemati er�ror is introdued beause there is a wedge-shaped part of the plexiglass probebetween the emitter and the material under study. Evaluate this error for givensizes of the probe and the sample.3. Show that the re�etion oe�ient of the ultrasound wave on the interfae be�tween two media does not depend on the diretion of wave propagation.Literature1. Ñèâóõèí Ä.Â. Îáùèé êóðñ �èçèêè. Ò. I. � Ì.: Íàóêà, 1996. �� 78, 81, 83,85.2. Êèíãñåï À.Ñ., Ëîêøèí �.�., Îëüõîâ Î.À. Îñíîâû �èçèêè. Ò. 1. Ìåõàíèêà,ýëåêòðè÷åñòâî è ìàãíåòèçì, êîëåáàíèÿ è âîëíû, âîëíîâàÿ îïòèêà. � Ì.:Ôèçìàòëèò, 2001. ×. III. �ë. 5.



Chapter VTABLES

T a b l e 1Physial onstantsQuantity Symbol orequation ValueSpeed of light in vauum c 299 792 458 m/s (exat)Plank onstant h
~ = h/2π

6.62606876(52) · 10−34 J·s

1.054571596(82) · 10−34 J·sBoltzmann onstant k 1.3806503(24) · 10−23 J/KAvogadro onstant NA 6.02214199(47) · 1023 mol−1Atomi mass unit 1 u 1.66053873(13) · 10−27 kgGas onstant R = kNA 8.314472(15) J/(mol·K)molar volume, ideal gas atSTP(T0 = 273.15 Ê,

P0 = 101325 Pa) V0 =
RT0

P0

22.413996(39) · 10−3 m3

molGravitational onstant G 6.673(10) · 10−11 N · m2/kg2Eletron harge(magnitude) e
1.602176462(63) · 10−19 C
4.8032042 · 10−10 esuEletron harge-to-massratio e/me 1.758820174(71) · 1011 C/kgEletron mass me 0.910938188(72) · 10−30 kgProton mass mp 1.67262158(13) · 10−27 kgNeutron mass mn 1.67492716(13) · 10−27 kg

Chapter V 257T a b l e 1 (ont'd)Quantity Symbol orequation ValueEletron rest energy mec
2 0.510998902(21) MeVProton rest energy mpc2 938.271998(38) MeVNeutron rest energy mnc2 939.565330(38) MeVUnertainty of the last digits is shown in parenthesis.

T a b l e 2Conversion of unitsLength:Angstrom
1 �A = 10−10 m = 10−8 cm = 0.1 nmAstronomial unit
1 AU = 1.5 · 1011 m = 1.5 · 1013 cmLight year
1 lyr = 9.5 · 1015 m = 9.5 · 1017 cmParse
1 pc = 3.1 · 1016 m = 3.1 · 1018 cmPressure:Atmosphere (standard)
1 atm = 760 mm Hg = 101325 Pa (exact)Energy:Erg
1 erg = 10−7 JCalorie

1 cal = 4.1868 J (exact)Eletron-volt

1 eV = 1.6021765 · 10−19 J = 1.6021765 · 10−12 ergTemperature orresponding to 1 eV,

11605 K



258 TablesT a b l e 3Astrophysial onstantsSolar mass

MÑ = 1.99 · 1030 êã = 1,99 · 1033 gSolar luminosity

LÑ = 3.86 · 1026 W = 3.86 · 1033 erg/sSolar onstant

EÑ = 1.35 · 103 W/m2 = 1.35 · 106 erg/(s · cm2)Solar radius

RÑ = 6.96 · 105 km = 6.96 · 108 mSolar angular diameter as viewed from Earth

αÑ = 0.92 · 10−2 radSolar surfae temperature

TÑ = 5.9 · 103 KEarth mass

MÇ = 5.98 · 1024 kg = 5.98 · 1027 gEarth mean density

ρE = 5.52 · 103 kg/m3 = 5.52 g/cm3Earth equatorial (a) and polar (b) radius

a = 6378 km, b = 6357 kmMean radius of equivalent sphere

R = 6371 kmStandard gravitational aelerationgn = 9.80665 m/s2Average distane between Sun and Earth

LE = 1 AU = 1.5 · 108 km = 1.5 · 1011 mAverage temperature of Earth surfae

TE = 300 ÊEarth average orbital veloity

vE = 30 km/s = 3 · 104 m/sAngular veloity of Earth rotation

ωE = 0.727 · 10−4 rad/sEarth esape veloities (1-st and 2-nd)
v1 =

√

GMÇ/RE = 7.9 km/s = 7.9 · 103 m/s,

v2 = v1

√
2 = 11.2 km/s = 11.2 · 103 m/sVenus mass

MV = 0.82ME = 4.87 · 1024 kg = 4.87 · 1027 g

Chapter V 259Average distane between Venus and Sun
LV = 1.08 · 108 km = 1.08 · 1011 mVenus year

TV = 225 daysVenus radius

RV = 0,99RE = 6.3 · 103 km = 6.3 · 106 mVenus mean density
ρV = 4.7 · 103 kg/m3 = 4.7 g/cm3Gravitational aeleration on Venus surfaegV = 0.84gE = 8.2 m/s2Mars mass
MÌ = 0.11ME = 0.66 · 1024 kg = 0.66 · 1027 gAverage distane between Mars and Sun
LM = (2.06 − 2.49) · 108 kmDistane between Mars and Earth
LME = (0.55 − 4.0) · 108 kmMars average density
ρM = 4 · 103 kg/m3 = 4 g/cm3Gravitational aeleration on Mars surfaegM = 0.37gE = 3.6 m/s2Moon mass
ML = 7.4 · 1022 kg = 7.4 · 1025 gMoon diameter
DL = 3.48 · 103 km = 3.48 · 106 mAverage distane between Moon and Earth

LL = 3.84 · 105 km = 3.84 · 108 mMoon mean density
ρL = 3.3 · 103 kg/m3 = 3.3 g/cm3Gravitational aeleration on Moon surfaegM = 1.64 m/s2 T a b l e 4Gravitational aeleration at various latitudes

θ, deg g , m/s2 θ, deg g , m/s2 θ, deg g, m/s20 978.0300 35 979.7299 70 982.60615 978.0692 40 980.1659 75 982.866510 978.1855 45 980.6159 80 983.058415 978.3756 50 981.0663 85 983.175920 978.6337 55 981.5034 90 983.215525 978.9521 60 981.914130 979.3213 65 982.2853
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Tables

T a b l e 5Properties of elements at 760 mm Hg

ρ � density (at 20 ◦C); CP � molar heat apaity (at 25 ◦C); tm and tvap � melting and vaporization points; q � molarenthalpy of fusion; r � molar enthalpy of vaporization; λ � thermal ondutivity (at temperatures shown in parenthesis);

α � linear oe�ient of thermal expansion of isotropi substanes at 0 ◦C.Element Sym-bol ρ, g
cm3 CP , J

mol·K
tm,◦C tvap,◦C q,

kJ
mol

r, kJ
mol

λ, W
m·K

α,10−6 Ê−1Aluminum Al 2.70 24.35 660 2447 10.7 293.7 207 (27) 22.58Barium Ba 3.78 26.36 710 1637 7.66 150.9 � 19.45Beryllium Be 1.84 16.44 1283 2477 12.5 294 182 (27) 10.5Boron (ryst.) B 3.33 11.09 2030 3900 22.2 540 1.5 (27) 8Bromine Br 3.12 75.71 −7.3 58.2 10.58 30.0 � 8.3Vanadium V 5.96 24.7 1730 3380 17.5 458 33.2 (20) �Bismuth Âi 9.75 25.52 271.3 1559 10.9 151.5 8 (20) 16.62Wolfram W 18.6�19.1 24.8 3380 5530 35.2 799 130 (27) 4.3Germanium Ge 5.46 28.8 937.2 2830 29.8 334 60.3 (0) 5.8Iron Fe 7.87 25.02�26.74 1535 � 15.5 � 75(0) 12.1Gold Au 19.3 25.23 1063 2700 12.77 324.4 310(0) 14.02Indium In 7.28 26.7 156.01 2075 3.27 226 88(20) 30.52Iodine I 4.94 26.02 113.6 182.8 15.77 41.71 0.44(30) 93.0Iridium Ir 22.42 25.02 2443 4350 � � 138(20) 6.5Cadmium Cd 8.65 26.32 321.03 765 6.40 99.81 93(20) 29.0Potassium K 0.87 29.96 63.4 753 2.33 77.5 100 (7) 84Calium Ca 1.55 26.28 850 1487 8.66 150 98 (0) 22(0)Cobalt Co 8.71 24.6 1492 2255 15.3 383 70.9 (17) 12.0Silion (ryst.) Si 2.42 � 1423 2355 46.5 394.5 167 (0) 2.3Lithium Li 0.534 24.65 180.5 1317 3.01 148.1 71 (0-100) �Magnesium Mg 1.74 24.6 649 1120 8.95 131.8 165 (0) �Manganese Mn 7.42 26.32 1244 2095 141.6 224.7 � 22.6Copper Cu 8.93 24.52 1083 2595 130.1 304 395�402 (20) 16.62Molybdenum Mo 9.01 23.8 2625 4800 27.6 594 162 (27) 5.19
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T a b l e 5 (ont'd)Element Sym-bol ρ, g
cm3 CP , J

mol·K
tm,◦C tvap,◦C q,

kJ
mol

r, kJ
mol

λ, W
m·K

α,10−6 K−1Sodium Na 0.971 28.12 97.82 890 2.602 89.04 133 (27) 72Neodymium Nd 6.96 27.49 1019 3110 14.6 � � 8.6Nikel Ni 8.6�8.9 25.77 1453 2800 17.8 380.6 92 (20) 14.0Tin (gray) Sn 5.8 25.77 231.9 2687 7.07 290.4 65 (20) �Palladium Pd 12.16 25.52 1552 3560 17.2 � 76.2 (20) 12.42Platinum Pl 21.37 25.69 1769 4310 21.7 447 74.1 (20) 9Rhodium Rh 12.44 25.52 1960 3960 � � � 8.7Merury (liquid) Hg 13.546 27.98 −38.86 356.73 2.295 59.11 8.45 (20) �Rubidium Rb 1.53 30.88 38.7 701 2.20 69.20 35.5 (20) 90Lead Pb 11.34 26.44 327.3 1751 4.772 179.5 34.89 (20) 28.3Selenium (ryst.) Se 4.5 25.36 217.4 657 5.42 � 0.13 (25) 20.3Sulphur (ota.) S 2.1 22.60 115.18 444.6 1.718 90.75 0.2 (0) 74Silver Ag 10.42�10.59 25.49 960.8 2212 11.27 254.0 418 (27) 19.02Strontium Sr 2.54 25.11 770 1367 9.2 138 � 20.6Antimony Sb 6.62 25.2 630.5 1637 20.41 128.2 23 (20) 9.2Tantalum Ta 16.6 25.4 2996 5400 31.4 75.3 63 (27) 6.2Tellurium (ryst.) Te 6.25 25.7 449.5 989.8 17.5 114.06 � 17.0Titanium Ti 4.5 25.02 1668 3280 15.5 430 15.5 (20) 7.7Thorium Th 11.1�11.3 27.32 1695 4200 15.65 544 35.6 (27) 9.8Carbon (diamond) C 3.52 6.12 � � � � � 1.2Carbon (graphite)1 C 2.25 8.53 3500 3900 � � 114 (20) �Uranium (13 ◦C) U 18.7 27.8 1133 3900 19.7 412 22.5 (27) 10.7Phosphorus (white) P 1.83 24.69 44.2 � 2.51 � � 125Chromium Cr 7.1 23.22 1903 2642 14.6 349 67 (27) 7.78Cesium Cs 1.87 31.4 28.64 685 2.18 65.9 23.8 (20) 97Zin Zn 6.97 25.40 419.5 907 7.28 114.7 111 (20) 32Zironium Zr 6.44 25.15 1855 4380 20 582 21.4 (20) 5.1

1 Reator graphite, ρ = 1.65 − 1.72 g/m3; the given value orresponds to λ⊥ perpendiular to pressing diretion, λ⊥/λ‖ = 1,5.

2 At 20 ◦C.



262 TablesT a b l e 6Properties of solids (at 20 ◦C)

ρ � density; α � linear oe�ient of thermal expansion; λ � thermalondutivity.Substane ρ, g/m3 α, 10−6 K−1 λ, W/(m·K)AlloysBronze (Cu, Zn, Sn, Al) 8.7�8.9 16�20 200Duralumin (Al, Cu) 2.8 27 186Invar (Fe, Ni, C) 8.0 ∼1 11Constantan (Cu, Ni) 8.8 15�17 21�22Brass (Cu, Zn) 8.4�8.7 17�20 80�180Manganin (Cu, Mn, Ni) 8.5 16 �Platinum-Iridiumalloy (Pl, Ir) 21�22 8.7 �Steel 7.5�7.9 10�13 ∼40Wood (dried)1Balsa (ork) 0.11�0.14 � 0.04Bamboo 0.31�0.40 � 0.14�0.17Beeh 0.7�0.9 2.57 �Birh 0.5�0.7 � 0.117Oak 0.6�0.9 4.92 0.171Cedar 0.49�0.57 � 0.08�0.09Maple 0.62�0.75 6.38 0.12�0.13Pine 0.37�0.60 5.41 0.08�0.11Poplar 0.35�0.5 � 0.1Ash 0.65�0.85 9.51 0.12�0.14MineralsDiamond 3.01�3.52 1.5 628Asbestos 2.0�2.8 � 0.1Basalt 2.4�3.1 � 2.177Plaster 1�2.3 � 0.18�1.05Clay 1.8�2.6 8.1 1.05�1.26Granite 2.34�2.76 8.3 2.7�3.3Quartz (fused) 2.65 1.46 �Lime 1.9�2.8 � 1.1Marble 2.6�2.84 3�15 2.7�3Mia 2.6�3.2 � �
1 Thermal ondutivity of wood is given for diretions perpendiular to �bers;thermal ondutivity along �bers is greater by the fator of 2-3.

Chapter V 263T a b l e 6 (ont'd)Substane ρ, g/m3 α, 10−6 K−1 λ, W/(m·K)Misellaneous substanesCardboard 0.69 � 0.21Brik 1.4�2.2 3-9 1�1.3Ie 0.913 � �Para�ne 0.87�0.91 � 2.5Plexiglas 1.16�1.20 92�130 0.17�0.18Cork 0.22�0.26 � �Rubber 1.1 220 0.146Glass 2.4�2.8 6 0.7�1.13Flint glass 3.9�5.9 7�8 0.84Porelain 2.3�2.5 2.5�6 1.05Ebonite 1.15 84.2 0.17Amber 1.1 57 �T a b l e 7Properties of liquids (at 760 mm Hg)

σ � surfae tension at the temperature in the left olumn (a � liquid-airsurfae, v � liquid-vapor surfae); η � visosity at 20 ◦C; λ � thermalondutivity at 0 ◦C.Liquid t, ◦C σ, 10−3 N
m

η, 10−3 kg
m·s

λ, W
m·KAniline 19.5 40.8 (v) 4.40 0.181Aetone 16.8 23.3 (v) 0.324 0.170Benzoyl 17.5 29.2 (a) 0.647 0.153Water 20 72.75 (a) 1.0019 0.596Glyerin 20 63.4 (a) 1495.0 0.290Dihloroethane � � 0.146Nitri aid 70% 20 59.4 (a) � �Sulphuri aid 85% 18 57.6 (a) 27 �Castor oil 18 33.1 (a) 986 �Nitrobenzene 13.6 42.7 (v) 2.01 0.166Tin 232 526.1 (CO2) � 34.3Merury 20 487 (v) 1.552 8.45Turpentine 20 26.7 (a) � �Methanol 20 23.0 (v) 0.578 0.222Ethanol 20 22.75 (v) 1.200 0.184Carbontetrahloride 20 27 (v) 0.972 0.112Diethyl ether 20 16.96 (v) 0.242 �
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Tables

T a b l e 8Properties of liquids

ρ � density at 20 ◦C; tm and tvap � melting and vaporization points at standard pressure; tcr � ritial temperature;

Pcr � ritial pressure; c � spei� heat apaity at 20 ◦C; q and r � spei� latent heat of fusion and vaporization;

β � bulk oe�ient of thermal expansion at 20 ◦C.Liquid Formula ρ, kg
m3

tm,

◦C tvap,

◦C tcr,

◦C Pcr,atm c,

J
g·K

q,

J
g

r,

J
g

β,

10
−5 K−1Aniline C6H7N 10261 −6 184 426 52.4 2.156 87.5 458.9 85Aetone C3H6O 792 −95 56.5 235 47.0 2.18 82.0 521.2 143Benzoyl C6H6 897 +5.5 80.1 290.5 50.1 1.72 126 394.4 122Water H2O 998.2 0.0 100.00 374 218 4.14 334 2259 18Glyerin C3H8O3 1260 +20 290 � � 2.43 176 � 51Methanol CH4O 792.8 −93.9 61.1 240 78.7 2.39 68.7 1102 119Nitrobenzene C6H5O2N 1173.22 +5.9 210.9 � � 1.419 � � �Carbon disul�de CS2 1293 −111 46.3 275.0 77.0 1.00 � 356 �Ethanol C2H6O 789.3 −117 78.5 243.5 63.1 2.51 108 855 112Toluene C7H8 867 −95.0 110.6 320.6 41.6 1.6163 � 364 114Carbontetrahloride CCl4 1595 −23 76.7 283.1 45.0 � 16.2 195.1 122Aeti aid C2H4O2 1049 +16.7 118 321.6 57.2 2.64 187 405.3 107Phenol C6H6O 1073 +40.1 181.7 419 60.5 � 123 495.3 �Chloroform CHCl3 1498.51 −63.5 61 260 54.9 0.96 197 243 �Diethyl ether C4H10O 714 −116 34.5 193.8 35.5 2.34 98.4 355 163

1 at 15 ◦C; 2 at 25 ◦C; 3 at 0 ◦C; 4 at 1�8 ◦C.
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Speedofsoundatdi�erentmedia
Gases(at0

◦C)

Gas

c,m/s
d
c/

d
t,ms

·Ê Gas
c,m/s

d
c/

d
t,ms

·Ê

Nitrogen333.640.85Oxygen314.840.57

Ammonia 415.00.73Methane4300.62

Argon 319.0�Neon
4350.78

Hydrogen1286.02.0Watervapor405�

Air 331.460.607(100
◦C)

(dry)Helium9701.55Carbondioxide260.30.87
Liquids

Liquid
t,◦C

c,m/s
d
c/

d
t,ms

·Ê Liquid

t,◦C

c,m/s

d
c/

d
t,ms

·Ê

Nitrogen
−

1
9
9
.0962

−
1
0Carbondisul�de251149

−
3
.3

Aniline201659
−

4
.0Turpentine251225�

Aetone 251170
−

5
.5Ethanol201177

−
3
.6

Benzoyl251295

−
5
.2

Water251497

+
2
.5Toluene251300

−
4
.3

Glierine261930

−
1
.8Carbon

Kerosene251315

−
3
.6tetra-

25930

−
3
.0

Merury201451

−
0
.4

6hloride



266 TablesSolids

c‖ � speed of longitudinal waves, c⊥ � speed of transversal waves, c � speed oflongitudinal waves in thin rod.Solids c‖, m/s c⊥, m/s c, m/sAluminum 6400 3130 5240Conrete 4250�5250 � �Wolfram 5174 2842 �Granite 5400 � �Wood (oak, along �ber) � � 4100Wood (pine, along �ber) � � 3600Duralumin 6400 3120 �Iron 5930 � 5170Quartz rystal (X-ut) 5720 � 5440Quartz fused 5980 3760 5760Brass 4280�4700 2020�2110 3130�3450Copper (oxidized) 4720 � 3790Marble � � 3810Nikel (oxidized,non-magneti) � � 4810Tin 3320 � 2730Polystyrene 2350 1120 �Polyethylene 2000 � �Silver 3700 1694 2802Glass: rown 5260�6120 3050�3550 4710�5300�int 3760�4800 � 3490�4550Tool steel 5900�6100 � 5150Stainless steel 5740 3092 �Zin 4170 � 3810Ebonite 2500 � �

Chapter V 267T a b l e 10Elasti properties of materials (at 18 ◦C)
E and G � Young and shear modulus; µ � Poisson ratio; K � ompressibility.Material E, 1010 N

m2 G, 1010 N
2 µ K, 1010 N

m2MetalsAluminum 7.05 2.63 0.345 7.58Bronze (66% Cu) 9.7�10.2 3.3�3.7 0.34�0.40 11.2Bismuth 3.19 1.20 0.33 3.13Iron 19�20 7.7�8.3 0.29 16.9Gold 7.8 2.7 0.44 21.7Cadmium 4.9 1.92 0.30 4.16Constantan 16.3 6.11 0.32 15.5Brass 9.7�10.2 3.5 0.34�0.40 10.65Copper 10.5�13.0 3.5�4.9 0.34 13.76Nikel 20.4 7.9 0.28 16.1Tin 5.43 2.04 0.33 5.29Platinum 16.8 6.1 0.37 22.8Lead 1.62 0.56 0.44 4.6Silver 8.27 3.03 0.37 10.4Steel 20�21 7.9�8.9 0.25�0.33 16.8Titanium 11.6 4.38 0.32 10.7Zin 9.0 3.6 0.25 6.0Misellaneous materialsBamboo 3.3 � � �Oak 1.3 � � �Quartz �ber 7.3 � � �Redwood 0.88 � � �Rubber soft 0.00015� 0.00005� 0.46�0.49 16.80.0005 0.00015Pine 0.9 � � �Glass 5.1�7.1 3.1 0.17�0.32 3.75



268 TablesT a b l e 11Surfae tension of water and aniline atvarious temperaturesInterfae: water � air, aniline � air.

t σ, 10−3 N/m t σ, 10−3 N/m

◦C Water Aniline ◦C Water0 75.64 � 60 66.1810 74.22 44.10 70 64.4220 72.75 42.7 80 62.6130 71.18 � 90 60.7540 69.56 � 100 58.8550 67.91 39.4 T a b l e 12Visosity of liquids at various temperatures(η, 10−3 N · s/m2)Sugar solution Castor

t, Water Glye- in water t, t, Merury

◦C rin 20% 60% ◦C oil ◦C0 1.788 12100 3.804 238 5 3760 −20 1.8610 1.306 3950 2.652 109.8 10 2418 0 1.6915 1.140 � 2.267 74.6 15 1514 20 1.5520 1.004 1480 1.960 56.5 20 950 30 1.5025 0.894 � 1.704 43.86 25 621 50 1.4130 0.801 600 1.504 33.78 30 451 100 1.2440 0.653 330 1.193 21.28 35 312 200 1.0550 0.549 180 0.970 14.01 40 231 300 0.9560 0.470 102 0.808 9.83 100 16.970 0.406 59 0.685 7.1580 0.356 35 0.590 5.4090 0.316 21100 0.283 13 T a b l e 13Visosity of glyerin-water solution(glyerine mass ratio is shown)
t 10% 25% 50% 80% 95% 96% 97% 98% 99% 100%20 1,31 2,09 6,03 61,8 544 659 802 971 1194 149525 1,15 1,81 5,02 45,7 365 434 522 627 772 94230 1,02 1,59 4,23 34,8 248 296 353 423 510 662

Chapter V 269T a b l e 14Compressibility of liquids
κ = − 1

V

(

∂V

∂P

)

TLiquid Formula Pressure
P , atm t, ◦C κ,

10−6 atm−1Aniline C6H5NH2 85.5 25 43.2Aetone (CH3)2CO 0�500 0 82Benzoyl C6H6 1�4 15.4 87Water H2O 0�100 20 46.8Glyerin C3H8O3 1�10 14.8 22.1Kerosene � 1�100 16.5 69.6Sulphuri aid H2SO4 1�16 0 302.5Nitrobenzene C6H5NO2 86.5 25 46.1Sulphur dioxide CS2 1�2 20 80.95Methanol CH3OH 1�500 0 79.4Ethanol CH3CH2OH 1�50 0 96Carbontetrahloride CCl4 0�98.7 20 91.6Carbon dioxide ÑÎ2 60 13 1740Chloroform CHCl3 1�2 0 87.27Bromoethane C2H5Br 1�500 10.1 80T a b l e 15Spei� heat apaity of water and speed of soundin water at various temperatures

t, ◦C c, J/(g·Ê) v, m/s t, ◦C c, J/(g·Ê) v, m/s0 4.2174 1407 60 4.1841 155610 4.1919 1445 70 4.1893 156120 4.1816 1484 80 4.1961 155730 4.1782 1510 90 4.204840 4.1783 1528 99 4.214550 4.1804 1544



270 TablesT a b l e 16Boiling point of water at various pressures

P , torr t, ◦C P , torr t, ◦C P , torr t, ◦C680 96.9138 725 96.6846 770 100.3666685 96.1153 730 98.8757 775 100.5484690 97.3156 735 99.0657 780 100.7293695 97.5146 740 99.2547 785 100.9092700 97.7125 745 99.4426 790 101.0881705 97.9092 750 99.6294 795 101.2661710 98.1048 755 99.8152 799 101.4079715 98.2992 760 100.000720 98.4925 765 100.1838 T a b l e 17Water density at various pressures

t, ◦C ρ, g/m3 t, ◦C ρ, g/m3 t, ◦C ρ, g/m30 0.99987 12 0.99952 24 0.997321 0.99993 13 0.99940 25 0.997072 0.99997 14 0.99927 26 0.996813 0.99999 15 0.99913 27 0.996544 1.00000 16 0.99897 28 0.996265 0.99999 17 0.99880 29 0.995976 0.99997 18 0.99862 30 0.995677 0.99993 19 0.99843 31 0.995378 0.99988 20 0.99823 32 0.995059 0.99981 21 0.99802 33 0.9947210 0.99973 22 0.99780 34 0.9944011 0.99963 23 0.99757 35 0.99406T a b l e 18Di�usion oe�ient of saline (at 18 ◦C)Conentration of NaCl,mol/l D, 10−5 m2/s0.05 1.260.40 1.21.00 1.242.0 1.293.0 1.364.0 1.435.0 1.49

Chapter V 271T a b l e 19Di�usion oe�ients of inorgani substane in watersolutionSolute Conentration,mol/l t, ◦C D,
10−5 m2/sBr2 0.0050 25 1.18CO2 01 18 1,46CaCl2 1.5 9 0.84CdSO4 1.0 16.8 0.33Cl2 0.1 16.3 1.3CoCl2 0.0127 11 0.73CuCl2 1.5 10 0.5CuSO4 0.1 17 0.45H2 01 18 3.6HCl 0.2 25 3.0HNO3 3.0 6 1.8KBr 1.0 10 1.2KCl 0.1 25 1.89KNO3 0.2 18 1.39KOH 0.1 13.5 2.0K2SO4 0.02 19.6 1.27LiCl 1.0 18 1.06MgSO2 1.0 15.5 0.53N2 01 18 1.63NH3 0.683 4 1.23NaBr 2.9 10 1.0Na2CO3 2.4 10 0.45NaCl 1.0 18.5 1.24NaNO3 0.6 13 1.04O2 01 25 2.60NaOH 0.1 12 1.29

1 Low onentration.



272 TablesT a b l e 20Di�usion oe�ients of gasesCoe�ients of self-di�usion (at t = 0 ◦C, P = 1 atm)Gas D, m2/s Gas D, m2/sNitrogen N2 0.17 Xenon Xe 0.048Argon Ar 0.156 Krypton Kr 0.08Hydrogen H2 1.28 Methane CH4 0.206Water vapor 0.277 Neon Ne 1.62Helium He 1.62 Carbon oxide CO 0.175Oxygen O2 0.18 Carbon dioxide CO2 0.097Coe�ients of inter-di�usion (at t = 0 ◦C)System D, m2/s System D, m2/sHe � CH4 0.57 H2 � air 0.66He � O2 0.45 H2 � CH4 0.62He � air 0.62 H2 � O2 0.69Ne � H2 0.99 CH4 � N2 0.2Ne � N2 0.28 CH4 � O2 0.22Ar � CH4 0.172 CH4 � air 0.186Ar � O2 0.167 N2 � H2O 0.204Ar � air 0.165 N2 � CO2 0.208Ar � CO2 0.177 CO � O2 0.175Kr � N2 0.13 CO � air 0.182Kr � CO 0.13 O2 � CO2 0.174Xe � H2 0.54 air � CO2 0.207Xe � N2 0.106 H2O � CO2 0.41T a b l e 21Thermal ondutivity of air at various temperatures(at P = 1 atm)
t, ◦C λ, 10−2 W

m·Ê t, ◦C λ, 10−2 W
m·Ê t, ◦C λ, 10−2 W

m·Ê
−173 0.922 −23 2.207 27 2.553
−143 1.204 −3 2.348 37 2.621
−113 1.404 0.1 2.370 67 2.836
−83 1.741 7 2.417 97 3.026
−53 1.983 17 2.485

Chapter V 273T a b l e 22The Joule-Thomson oe�ients(µJ−T = ∆T/∆P ; in units of Ê/atm)Carbon oxide (CO)
t, ◦C P , atm1 50 100 2000 0.295 0.240 0.190 0.09325 0.251 0.206 0.162 0.08450 0.213 0.175 0.137 0.072100 0.150 0.122 0.095 0.049Hydrogen (H2)
T , Ê P , atm

≈ 0 20 100 18060 0.391 0.287 0.035 �70 0.287 0.234 0.059 −0.03980 0.220 0.192 0.061 −0.037Methane (CH4)

t ◦C P , atm

≈ 0 17 51 102.121.1 0.405 0.425 0.410 0.33237.8 0.359 0.375 0.365 0.29471.1 0.283 0.298 0.290 0.229104.4 0.227 0.239 0.233 0.180Ethane (C2H8)

t ◦C P , atm

≈ 0 17 51 102.121.1 0.939 1.217 � �37.8 0.833 1.037 � �71.1 0.657 0.760 0.890 0.353104.4 0.498 0.572 0.586 0.399



274 TablesT a b l e 22 (ont'd)Argon (Ar) Helium (He)

t, ◦C P , atm P , atm1 20 100 200 200

−150 1.81 � −0.025 −0.056 −0.052
−100 0.860 0.800 0.285 0.040 −0.0580 0.431 0.406 0.305 0.192 −0.061625 0.371 0.350 0.264 0.175 �100 0.242 0.224 0.175 0.127 −0.0638200 0.137 0.126 0.095 0.068 −0.0641Nitrogen (N2), Oxygen (O2)

t, ◦C P , atm1 20 100 200

−150 1.265 1.128 0.020 −0.027

−100 0.649 0.594 0.274 0.0580 0.267 0.250 0.169 0.08725 0.222 0.206 0.140 0.078100 0.129 0.119 0.077 0.042200 0.056 0.048 0.026 0.006Carbon dioxide (CO2)

t, ◦C P , atm1 20 100 200

−25 1.650 0.000 −0.005 −0.0120 1.290 1.402 0.022 0.00520 1.105 1.136 0.070 0.02740 0.958 0.966 0.262 0.06660 0.838 0.833 0.625 0.12580 0.735 0.724 0.597 0.196100 0.649 0.638 0.541 0.256200 0.373 0.358 0.315 0.246Air

t, ◦C P , atm1 20 100 200
−100 0.5895 0.5700 0.2775 0.0655
−50 0.3910 0.3690 0.2505 0.1270
−25 0.3225 0.3010 0.2130 0.12400 0.2746 0.2577 0.1446 0.109725 0.2320 0.2173 0.1550 0.095950 0.1956 0.1830 0.1310 0.082975 0.1614 0.1508 0.1087 0.0707100 0.1355 0.1258 0.0884 0.0580

Chapter V 275T a b l e 23Critial properties and parameters a and b in Van derWaals equation
(

P +
a

V 2

)

(V − b) = RT ; a =
27

8
RTcrb, b =

RTcr

8PcrSubstane Tcr Pcr ρcr a bÊ MPa g
cm3

N·m4

mol2
cm3

molNitrogen (N2) 126.25 3.399 0.304 0.1368 38.607Argon (Ar) 150.65 4.86 0.531 0.1361 32.191Water (vapor) (H2O) 647.30 22.12 0.32 0.5524 30.413Hydrogen (H2) 33.24 1.297 0.0310 0.02484 26.635Air 132.45 3.77 0.35 0.1357 36.51Helium (He) 5.20 0.229 0.0693 0.00344 23.599Nitrous oxide (N2O) 309.58 7.255 0.453 0.3852 44.347Oxygen (O2) 154.78 5.081 0.41 0.1375 31.662Neon (Ne) 44.45 2.72 0.484 0.0211 16.948Nitri oxide (NO) 180 6.54 0.52 0.1444 28.579Carbon oxide (CO) 132.92 3.499 0.301 0.1473 39.482Methane (CH4) 190.60 4.63 0.160 0.2288 42.777Methanol(CH4O) 513.15 7.95 0.272 0.9654 67.047Ethanol(C2H6O) 516 6.4 0.276 1.2164 84.006Sulphur dioxide (CS2) 552 7.90 0.44 1.1243 72.585Carbon dioxide (CO2) 304.15 7.387 0.468 0.3652 42.792Chlorine (Cl2) 417 7.71 0.573 0.6576 56.202Carbon tetrahloride(CCl4) 556.25 4.56 0.558 1.9789 126.78Ethane (C2H6) 305.45 4.87 0.203 0.5571 64.997T a b l e 24Temperature dependene of parameters a and

b of argonTemperature, ◦C a, 106 atm·m6/mol2 b, m3/mol151 1.90 61157 1.87 59,5163 1.84 58173 1.785 55,5183 1.735 53193 1.69 51213 1.60 48233 1.53 45253 1.47 43273 1.42 41
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Tables

T a b l e 25Properties of gases

M � moleular mass; ρ � density (at t = 0 ◦C, P = 1 atm); tcr � ritial temperature; Pêð � ritialpressure; ρêð � ritial density; tm � melting point (at P = 1 atm); tvap � boiling point (at P = 1 atm).Substane Formula M ρ, kg/m3 tcr, ◦C Pcr, atm ρcr, kg/m3 tm, ◦C tvap, ◦CNitrogen N2 28.016 1.2505 147.1 33.5 311 −210.02 −195.81Ammonium NH3 17.031 0.7714 132.4 112.0 234 −77.7 −33.4Argon Ar 39.944 1.7839 122.4 48.0 531 −189.3 −185.9Hydrogen H2 2.0158 0.08988 239.9 12.80 31,0 −259.20 −252.78Water vapor H2O 18.0156 0.768 374.2 218.5 324 0,00 100.00Dry air 1 � 28.96 1.2928 140.7 37.2 310 −213 −193Helium He 4.002 0.1785 267.9 2.26 69,3 −272.2 −268.93Nitrogen dioxide N2O 44.013 1.9775 36.5 71.7 450 −90 −88.6Oxygen O2 32.000 1.42896 118.8 49.7 430 −218.83 −182.97Methane CH4 16.04 0.7168 82.5 45.7 162 −182.5 −116.7Neon Ne 20.183 0.8999 228.7 26.9 484 −248.60 −246.1Nitri oxide NO 30.006 1.3402 92,9 64.6 520 −167 −150Carbon oxide CO 28.01 1.2500 140.2 34.5 301 −205 −191.5Carbon dioxide CO2 44.01 1.9768 31.0 73 460 −56.62 −78.483Chlorine Cl2 70.914 3.22 144 76.1 573 −100.5 −33.95
1 Air omposition (volume fration): 78.03% N2, 20.99% O2, 0.933% Ar, 0.03% CO2, 0.01% H2, 0.0018% Ne et..

2 At P = 5.12 atm (triple point).

3 Sublimation temperature.
ChapterV
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T a b l e 26Thermal properties of gases

cp è Cp � spei� and molar heat apaity (for given temperature ranges); γ = cp/cv at 20 ◦C; η � dynami visosityat 20 ◦C; λ � thermal ondutivity at 0 ◦C; β = (1/V )(∂V/∂T )P � oe�ient of thermal expansionGas Formula t, ◦C cp,

J
g·Ê Cp,

J
mol·Ê γ

λ,

10−2 W
m·Ê η,

10−7 kg
m·ñ t, ◦C β,

10−3 Ê−1Nitrogen N2 0�20 1.038 29.1 1.404 2.43 174 0�100 3.671Ammonia (vapor) NH3 24�200 2.244 38.1 1.34 2.18 97,0 � �Argon Ar 15 0.523 20.9 1.67 1.62 222 100 3.676Aetone (vapor) C3H6O 26�110 1.566 90.9 1.26 1.70 73,5 � �Hydrogen H2 10�200 14.273 28.8 1.41 16.84 88 100 3.679Water vapor1 H2O 100 1.867 34.5 1.324 2.35 128 1�120 4.187Dry air � 0�100 0.992 29.3 1.40 2.41 181 � �Helium He −180 5.238 21.0 1.66 14.15 194 100 3.659Nitrous oxide N2O 16�200 0.946 41.7 1.32 1.51 146 0 3.761Oxygen O2 13�207 0.909 29.1 1.40 2.44 200 0�100 3.67Methane CH4 18�208 2.483 39.8 1.31 3.02 109 −50 ÷ +50 3.580Nitrogen oxide NO2 13�172 0.967 29.0 1.40 2.38 188 0 3.677Carbon oxide CO 26�198 1.038 28.5 1.40 2.32 177 0�100 3.671Sulfur dioxide SO2 16�202 0,561 36,0 1,29 0,77 126 � �Carbon oxide CO2 15 0.846 37.1 1.30 1.45 144,8 0�100 3.723Chlorine Cl2 13�202 0.519 36.8 1.36 0.72 132 0�100 3.830Ethylene C2H4 15�100 1.670 46.8 1.25 1.64 103 � �

1 λ is measured at 100 ◦C.



278 TablesT a b l e 27Visosity of gases and vapors at various temperatures

η, 10−8 kg/(m·s)

t,

◦C NitrogenN2

ArgonAr Hydro-gen H2

Watervapor Air HeliumHe Oxy-gen O2

Carbon-dioxideCO2

−75 1285 1585 677 � 1312 1526 1452 1007

−50 1419 1760 733 � 1445 1640 1612 1126

−25 1542 1930 788 � 1582 1750 1753 12470 1665 2085 840 883 1708 1860 1910 136720 1766 2215 880 � 1812 1946 2026 146325 1778 2248 890 975 1840 1968 2052 148650 1883 2400 938 1065 1954 2065 2182 160775 1986 2550 985 1157 2068 2175 2310 1716100 2086 2695 1033 1250 2180 2281 2437 1827T a b l e 28Pressure and density of saturated water vapor at varioustemperatures

t,

◦C P ,torr ρ,g/m3
t,

◦C P ,torr ρ,g/m3
t,

◦C P ,torr ρ, g /m3

−30 0.28 0.33 −2 3.88 4.13 26 25.21 24.4
−28 0.35 0.41 0 4.58 4.84 28 28.35 27.2
−26 0.43 0.51 2 5.29 5.60 30 31.82 30.3
−24 0.52 0.60 4 6.10 6.40 32 35.66 33.9
−22 0.64 0.73 6 7.01 7.3 34 39.90 37.6
−20 0.77 0.88 8 8.05 8.3 36 44.56 41.8
−18 0.94 1.05 10 9.21 9.4 38 49.69 46.3
−16 1.13 1.27 12 10.52 10.7 40 55.32 51.2
−14 1.36 1.51 14 11.99 12.1 50 92.5 83.0
−12 1.63 1.80 16 13.63 13.6 60 149.4 130
−10 1.95 2.14 18 15.48 15.4 70 233.7 198
−8 2.32 2.54 20 17.54 17.3 80 355.1 293
−6 2.76 2.99 22 19.83 19.4 90 525.8 424
−4 3.28 3.51 24 22.38 21.8 100 760.0 598

Chapter V 279T a b l e 29Emf of thermoouples at various temperaturesemf, mV
t, Platinum � pla- Chromel � Iron � Copper �
◦C tinum+10% Rhodium Alumel Constantan Constantan100 0.64 4.1 5 4200 1.44 8.1 11 9300 2.31 12.2 16 15400 3.25 16.4 22 21500 4.22 20.6 27600 5.23 24.9 33700 6.26 29.1 39800 7.34 33.3 45900 8.45 37.4 521000 9.59 41.3 581200 11.95 48.91400 14.37 55.91600 16.77 T a b l e 30Spei� resistane and temperature oe�ient of resistivity ofmetal wires (at 18 ◦C)Metal ρ,10−6Ohm·m α · 104,Ê−1Aluminum 3,21 38Wolfram 5.5 51Iron (0.1% C) 12.0 62Gold 2.42 40Brass 6�9 10Manganin (3% Ni, 12% Mn, 85% Cu) 44.5 0.02�0.5Copper 1.78 42,8Nikel 11.8 27Constantan (40% Ni, 1.2% Mn, 58.8% Cu) 49.0 −0.4 ÷ 0.1Nihrome (67.5% Ni, 1.5% Mn, 16% Fe, 15% Cr) 110 1,7Tin 11.3 45Platinum 11.0 38Lead 20.8 43Silver 1.66 40Zin 6.1 37



280 TablesT a b l e 31Work funtionMetal A, eVAluminum 4.25Barium 2.49Wolfram 4.54Iron 4.31Copper 4.40Nikel 4.50Barium oxide 1.1(thin �lm on wolfram)Tin 4.38Platinum 5.32Merury 4.52Silver 4.3Cesium 1.81Zin 4.24
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