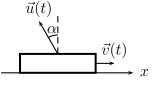
ФИО		_
группа		

1A	2A	3A	4A	5A	\sum	Оценка


Максимум за задачу — 3 очка. Таблица соответствия:										
Σ	0-2	3-4	5	6-7	8	9-10	11	12	13-14	15
Оценка	1	2	3	4	5	6	7	8	9	10
	не	уд	удовл		xop			отл		

Вариант \mathbf{A}

ПИСЬМЕННАЯ КОНТРОЛЬНАЯ ПО ФИЗИКЕ

27 октября 2012

- **1А.** Движение катера определяется суммой силы лобового сопротивления и силы тяги, развиваемой благодаря вращению его винта. При испытаниях катера в стоячей воде обнаружено, что зависимость суммарной мощности этих сил N от скорости катера v может быть описана функцией $N(v) = \alpha v + \beta v^2$, где α , β некоторые константы. Когда катер покоится, его сила тяги максимальна и равна $F_0 = 20$ кH, а сила сопротивления равна нулю. Максимальная скорость катера равна $v_m = 10$ км/ч, масса катера m = 10 т. Определить время разгона катера до скорости $v_1 = 9,9$ км/ч.
- **2А.** На платформе, движущейся по горизонтальной шероховатой поверхности, установлен ракетный двигатель, реактивная струя которого направлена вверх под углом α к вертикали. При некотором значении коэффициента трения платформа двигается с постоянным ускорением, независимо от темпа расхода топлива и скорости истечения струи. Найти это ускорение.

- **3А.** Покоящийся пион π^- (масса $m_\pi=139~{
 m MpB}/c^2$) распадается на мюон μ^- (масса $m_\mu=106~{
 m MpB}/c^2$) и антинейтрино ($m_\nu=0$). Считая движение мюона свободным, найти его пробег l (в лабораторной с.о.) до распада, если его собственное время жизни $\tau_0=2,2\cdot 10^{-6}~{
 m c}$.
- **4А.** При абсолютно упругом столкновении движущейся нерелятивистской частицы массы m_1 с исходно покоящейся частицей массы $m_2 = 4m_1$ последняя уносит 16% энергии налетающей частицы. Определить угол отклонения лёгкой частицы в системе центра инерции.
- **5А.** Спутник двигался вокруг Земли по эллиптической орбите, у которой большая и малая полуоси равны соответственно $a=\frac{8}{5}R$ и $b=\sqrt{\frac{12}{5}}R$, где R радиус Земли. В точке максимального сближения спутника с Землёй его скорость скачкообразно изменили, сохраняя направление движения прежним. На сколько процентов была изменена скорость, если вследствие этого спутник перешёл на круговую орбиту?

1Б	2Б	3Б	4Б	5Б	\sum	Оценка

	Ma	ксиму	м за	задач	ну —	3 очка	. Таб.	лица	соответс	твия:
Σ	0-2	3-4	5	6-7	8	9-10	11	12	13-14	15
Оценка	1	2	3	4	5	6	7	8	9	10
	не	уд	удовл		xop			ОТЛ		

Вариант \mathbf{F}

ПИСЬМЕННАЯ КОНТРОЛЬНАЯ ПО ФИЗИКЕ

27 октября 2012

- **1Б.** Полную силу сопротивления движению катера в стоячей воде можно представить в виде $F = \alpha v + \beta v^2$, где α и β неизвестные константы, v скорость катера. При движении со скоростью $v_0 = 2$ узла для преодоления силы сопротивления необходима мощность $N_0 = 1$ л. с, а при движении со скоростью $v_1 = 3$ узла мощность $N_1 = 2,5$ л. с. Какова максимальная мощность $N_{\rm max}$ (в л. с.), необходимая для преодоления силы сопротивления, если известно, что катер может развить скорость не более $v_2 = 4$ узлов?
- **2Б.** Тележка массой M движется горизонтально без трения. Спереди тележки установлен вертикально щит, поверхность которого перпендикулярна скорости тележки. Площадь поверхности щита S. Навстречу тележке горизонтально летит поток песчинок со скоростью v относительно земли. Число песчинок в единице объёма n, масса каждой песчинки m. Песчинки абсолютно неупруго ударяются о щит и соскальзывают на землю. Через время T после начала наблюдения за её движением, тележка остановилась. Какова была скорость тележки V_0 в начале наблюдения?
- **3Б.** Пион π^- с кинетической энергией $K_\pi=5,10~{\rm MpB}$ (масса $m_\pi=139,6~{\rm MpB}/c^2$) распадается на мюон μ^- (масса $m_\mu=105,7~{\rm MpB}/c^2$) и антинейтрино ($m_\nu=0$). Мюон вылетел в направлении, противоположном движению исходного пиона, и оставил в регистрационной камере прямой трек длиной l=5 м, после чего также распался. Считая движение мюона в камере свободным, определите его собственное время жизни τ_0 .
- **4Б.** Шарик массы m_1 , испытывая абсолютно упругое столкновение с изначально покоящимся шариком массы $m_2 = 9m_1$, отклоняется в системе центра масс на угол $\theta = 120^\circ$. Определить, какую часть первоначальной энергии теряет движущийся шарик за время удара.
- **5Б.** Спутник двигался вокруг Земли по эллиптической орбите, у которой большая и малая полуоси равны соответственно $a=\frac{8}{5}R$ и $b=\sqrt{\frac{12}{5}}R$, где R радиус Земли. В точке максимального удаления спутника от Земли его скорость скачкообразно изменили, сохраняя направление движения прежним. На сколько процентов была изменена скорость, если вследствие этого спутник перешёл на круговую орбиту?