1	2	3	4	5	Σ

Вариант А

ПИСЬМЕННАЯ КОНТРОЛЬНАЯ ПО МЕХАНИКЕ

24 октября 2010 г.

- 1А. Пуля при выстреле из автомата полетела вертикально вверх с начальной скоростью v_0 . Сила сопротивления воздуха $\vec{F} = -k\vec{v}$, где k положительная константа. Найдите время $t_{\rm n}$ подъёма пули на максимальную высоту. Найдите максимальное и минимальное значения ускорения при подъёме (по модулю), а также модуль ускорения пули в момент времени $t = \frac{1}{2} t_{\rm n}$. При падении пули с большой высоты её установившаяся скорость равна $v_{\rm уст}$.
- **2A**. Тонкая цепь длиной l и массой m сложена компактной кучкой на шероховатой поверхности с коэффициентом трения μ . Цепь тянут за крайнее звено с постоянной горизонтальной силой $F>\mu mg$. Какой будет скорость цепи в момент времени, когда она полностью распрямится? Звенья цепи вовлекаются в движение поочерёдно, поперечным движением звеньев цепи можно пренебречь.
- **3A**. В серии экспериментов по упругому рассеянию тяжёлой нерелятивистской частицы на более лёгкой первоначально покоившейся частице обнаружено, что тяжёлые частицы, отклонившиеся после удара от первоначального направления на угол $\theta = \arctan \frac{1}{3}$, летят либо со скоростями v, либо 2v. Найдите угол α между импульсом рассеянной тяжёлой частицы в лабораторной системе отсчёта и её импульсом в системе отсчёта, связанной с центром масс.
- 4А. Поведение силы тяжести внутри Земли можно приближённо описать следующей простой моделью: внутри ядра планеты (до середины радиуса Земли) ускорение свободного падения растёт по линейному закону ($\sim r$), а затем остаётся постоянным вплоть до поверхности Земли. Определите в этой модели зависимость плотности $\rho(r)$ от расстояния r до центра Земли, если средняя плотность Земли $\rho_{\rm cp} = 5.5 \ {\rm r/cm}^3$.
- **5A**. Нейтрон, летевший со скоростью $v = 2.6 \cdot 10^8$ м/с, после упругого столкновения с неподвижной частицей полетел в перпендикулярном направлении, при этом его кинетическая энергия уменьшилась в 2 раза. С частицей какой массы столкнулся нейтрон?

2	3	4	5	\sum
,				
	2	2 3	2 3 4	2 3 4 5

Вариант Б

ПИСЬМЕННАЯ КОНТРОЛЬНАЯ ПО МЕХАНИКЕ

24 октября 2010 г.

- 1Б. Из пушки, установленной на высоте h, производится выстрел в горизонтальном направлении с начальной скоростью $v_0=600$ м/с. Сила сопротивления воздуха $\vec{F}=-kv\vec{v}$, где k постоянная. Время полёта снаряда $\tau=10$ с. Определить высоту h, а также горизонтальное расстояние l до точки попадания снаряда, если при падении снаряда с большой высоты его установившаяся скорость $v_{\infty}=200$ м/с.
- **2Б**. Человек несёт мешок с мукой, из которого мука высыпается так, что масса человека с мешком изменяется по закону $m(t) = m_0 \mu t$. По какому закону изменялась бы скорость человека, если бы развиваемая им полезная мощность была постоянна и равна N? Скорость в начальный момент времени принять равной v_0 .
- **3Б**. В серии экспериментов по упругому рассеянию тяжёлой нерелятивистской частицы на первоначально неподвижной более лёгкой свободной частице детектор рассеянных тяжёлых частиц установлен так, чтобы регистрировать частицы, изменившие направление своего полёта на угол $\theta = \arctan\frac{1}{8}$. Найти отношение кинетических энергий регистрируемых частиц, если известно, что в системе центра масс направления их движения составляют друг с другом угол $\pi 2 \arctan\frac{1}{4}$.
- 4В. Глубинное бурение на сферически симметричном астероиде показало, что он состоит из однородных ядра и коры, причём отношение плотности ядра к плотности коры k=2, а ускорение силы тяжести имеет одно и то же значение на границе ядра с корой и на поверхности планеты. Какую долю α радиуса планеты составляет радиус ядра?
- 5Б. Ядро гелия ³Не после упругого столкновения с неподвижной частицей отклонилось на 90°. Кинетическая энергия ядра гелия после удара $K_1=0.25m_{\rm He}{\rm c}^2$, а полная энергия частицы-мишени $E_2=2.75m_{\rm He}{\rm c}^2$, где $m_{\rm He}$ масса ядра ³Не. С частицей какой массы столкнулось ядро гелия?