Maxim Balashov Moscow Institute of Physics and Technology balashov73@mail.ru

Strong and weak convexity: application to the gradient projection algorithm

mini SYMPOSIUM Some aspects of Variational Analysis and Applications

29 – 06 – 2015

Strongly convex sets of radius R

Let X be a Banach space.

Definition. (A. Pliś, Ch. Olech, H. Frankowska, E. Polovinkin...) A nonempty set $A \subset X$ is strongly convex of radius $R > 0$ if

$$
A = \bigcap_{x \in B} B_R(x), \qquad B \subset X.
$$

The subset of centers $B \subset X$ is arbitrary.

Define
$$
\varrho_A(x) = \inf_{a \in A} ||x - a||
$$
.
Let $R > 0$, $U_A(R) = \{x \in E \mid 0 < \varrho_A(x) < R\}$.
Let $\pi(\mathfrak{u}, A)$ be the metric projection of the point \mathfrak{u} on the set A .

Proximally smooth set with constant R

Definition. (J. Borwein, F. Clarke,...). A set $A \subset E$ is called *proximally smooth* with constant R, if the distance function $\mathfrak{u} \mapsto \varrho_A(\mathfrak{u})$ continuously differentiable on the set $U_A(R)$. **Definition.** (F. Clarke) We shall say that the set $A \subset E$ satisfies the *supporting condition* of weak convexity with constant $R > 0$, if from the inclusions $\mathfrak{u} \in U_A(R)$ and $x \in \pi(\mathfrak{u}, A)$ we have the following inequality

$$
\varrho_A\left(x+\frac{R}{\|{\mathfrak{u}}-x\|}({\mathfrak{u}}-x)\right)\geq R.
$$

The following theorem gives characterization of proximally smooth sets.

Theorem 1. (F. Clarke, R. Stern, P. Wolenski, F. Bernard, L. Thibault, N. Zlateva...) Let E be a uniformly convex and uniformly smooth Banach space; $A \subset E$ be a closed subset, $R > 0$. Then the following conditions are equivalent:

 $(1).$ The set A satisfies the supporting condition of weak convexity with the constant R.

 $(2).$ The set A is proximally smooth with constant R.

(3). The projection mapping $\mathfrak{u} \mapsto \pi(\mathfrak{u}, A)$ is single valued and continuous on the set $U_A(R)$.

Metric projection:

strongly convex and proximally smooth sets

Let X be a real Hilbert space.

1. (M. Balashov, M. Golubev). Let $A \subset X$ be a strongly convex set of radius $R, \varrho_A(x_i) \geq r \geq 0, i = 1, 2$. Then

$$
\|\pi(x_1, A) - \pi(x_2, A)\| \le \frac{R}{R + r} \|x_1 - x_2\|.
$$
 (1)

2. (F. Clarke, R. Stern, P. Wolenski). Let $A \subset X$ be a proximally smooth set of radius R, $\rho_A(x_i) \leq r < R$, $i = 1, 2$. Then

$$
\|\pi(x_1, A) - \pi(x_2, A)\| \le \frac{R}{R - r} \|x_1 - x_2\|.
$$
 (2)

Level sets of functions

Next two results were obtained by J.-Ph. Vial.

Let $f: X \to \mathbb{R}$ be a strongly convex function with constant \varkappa , i.e. the function $f(x) - \frac{\varkappa}{2} ||x||^2$ is convex. Let $\alpha \in \mathbb{R}$, $\mathcal{L}_f(\alpha) = \{x \in X \mid f(x) \leq \alpha\}$ and $M = \sup_{x \in \mathcal{L}_f(\alpha), f'(x) \in \partial f(x)} ||f'(x)||$. Then the set $\mathcal{L}_f(\alpha)$ is strongly convex of radius $R = \frac{M}{\gamma}$.

Let $f: X \to \mathbb{R}$ be a function with the Lipschitz continuous gradient with the Lipschitz constant L on the lower level set $\mathcal{L}_f(\alpha) = \{x \in X \mid f(x) \leq$ α . Let $m = \inf_{x \in \partial \mathcal{L}_f(\alpha)} ||f'(x)||$. Then the upper Lebesgue set of the form $\mathcal{U}_f(\alpha) = \{x \in X \mid f(x) \geq \alpha\}$ is proximally smooth with constant $R = \frac{m}{L}$.

Strongly convex set, $f' \in Lip$

We shall consider the next problem in a real Hilbert space X :

$$
\max_{x \in A} f(x). \tag{1}
$$

(i) The set A is strongly convex of radius $r > 0$, (ii) The function $f: X \to \mathbb{R}$ has the Lipschitz continuous gradient on the convex set A with constant $L > 0$, (iii) $r < \frac{m}{L}$, where $m = \inf_{x \in \partial A} ||f'(x)||$.

Strongly convex set, $f \in Lip$

Theorem 1.

Suppose that conditions (i) — (iii) take place in the problem (1). Then the iteration process $x_0 \in \partial A$,

$$
x_{k+1} = \arg \max_{x \in A} (f'(x_k), x), \qquad k = 0, 1, 2, 3, ...
$$

converges to the unique solution z_0 of the problem with the rate of geometric progression with common ratio $q = \frac{Lr}{m} < 1$, i.e.

$$
||x_{k+1} - z_0|| \le q||x_k - z_0||.
$$

Proximally smooth set, strongly convex function

Now

$$
\min_{x \in A} f(x). \tag{2}
$$

- (i) The set A is a closed proximally smooth with constant of proximal smoothness $R>0$,
- (ii) The function $f: X \to \mathbb{R}$ is a strongly convex with constant of strong convexity $\varkappa > 0$,
- (iii) Let $\alpha \in \mathbb{R}$, $\mathcal{L}_f(\alpha) \cap A \neq \emptyset$ and the function f has the Lipshcitz continuous gradient with constant $L > 0$ on the set $\mathcal{L}_f(\alpha)$,
- (iv) Suppose that $\frac{M}{\varkappa} < R$, where $M = \sup ||f'(x)||$. $x \in \mathcal{L}_f(\alpha)$

Proximally smooth set, strongly convex function

Theorem 2.

Suppose that conditions (i) — (iv) take place in the problem (2) . Then for any initial point $x_0 \in A \cap \mathcal{L}_f(\alpha)$ the iteration process

$$
x_{k+1} = P_A \left(x_k - t f'(x_k) \right), \quad t = \frac{\varkappa - \frac{M}{R}}{L^2 - \frac{\varkappa M}{R}},
$$

converges to the unique solution $z_0 \in A$ of the problem (2) with the rate of geometric progression with common ratio

$$
q(t) = \frac{R}{R - tM} \sqrt{1 - 2t\kappa + t^2L^2} \in (0, 1), \quad t = \frac{\kappa - \frac{M}{R}}{L^2 - \frac{\kappa M}{R}},
$$

namely,

$$
||x_{k+1} - z_0|| \le q(t) ||x_k - z_0||.
$$

