Gradient projection method for convex functions and strongly convex sets.

M. O. Golubev maksimkane@mail.ru

Department of Higher Mathematics Moscow Institute of Physics and Technology (SU)

SOPHIA ANTIPOLIS

June 29, 2015

M. O. Golubev

 \mathbb{H} - the Hilbert space over \mathbb{R} . $\langle p, x \rangle$ is scalar product for vectors $p, x \in \mathbb{H}$. Let $B_R(x) = \{y \in \mathbb{H} \mid ||y - x|| \le R\}$.

Definition

The metric projection of the point $x \in \mathbb{H}$ on the set $A \subset \mathbb{H}$ is defined as follows $P_A(x) = \left\{ a \in A \mid ||x - a|| = \inf_{y \in A} ||x - y|| \right\}.$

The set $P_A(x)$ is a singleton for any closed convex subset $A \subset \mathbb{H}$ and for any point $x \in \mathbb{H}$, i.e. $P_A(x) = \{a(x)\}$. Moreover, for any pair of points $x_0, x_1 \in \mathbb{H}$, $\{a_i\} = P_A(x_i), i \in \{0, 1\}$ we have

$$||a_0 - a_1|| \le 1 \cdot ||x_0 - x_1||.$$

For a subset $A \subset \mathbb{H}$ and a number $\varrho > 0$ we define the open ϱ -neighbourhood of the set A

$U_{\mathcal{A}}(\varrho) = \{ x \in \mathbb{H} \mid \varrho_{\mathcal{A}}(x) < \varrho \}.$

 \mathbb{H} - the Hilbert space over \mathbb{R} . $\langle p, x \rangle$ is scalar product for vectors $p, x \in \mathbb{H}$. Let $B_R(x) = \{y \in \mathbb{H} \mid ||y - x|| \le R\}$.

Definition

The metric projection of the point $x \in \mathbb{H}$ on the set $A \subset \mathbb{H}$ is defined as follows $P_A(x) = \left\{ a \in A \mid ||x - a|| = \inf_{y \in A} ||x - y|| \right\}.$

The set $P_A(x)$ is a singleton for any closed convex subset $A \subset \mathbb{H}$ and for any point $x \in \mathbb{H}$, i.e. $P_A(x) = \{a(x)\}$. Moreover, for any pair of points $x_0, x_1 \in \mathbb{H}$, $\{a_i\} = P_A(x_i)$, $i \in \{0, 1\}$ we have

$$||a_0 - a_1|| \le 1 \cdot ||x_0 - x_1||.$$

For a subset $A \subset \mathbb{H}$ and a number $\varrho > 0$ we define the open ϱ -neighbourhood of the set A

$U_{\mathcal{A}}(\varrho) = \{ x \in \mathbb{H} \mid \varrho_{\mathcal{A}}(x) < \varrho \}.$

 \mathbb{H} - the Hilbert space over \mathbb{R} . $\langle p, x \rangle$ is scalar product for vectors $p, x \in \mathbb{H}$. Let $B_R(x) = \{y \in \mathbb{H} \mid ||y - x|| \le R\}$.

Definition

The metric projection of the point $x \in \mathbb{H}$ on the set $A \subset \mathbb{H}$ is defined as follows $P_A(x) = \left\{ a \in A \mid ||x - a|| = \inf_{y \in A} ||x - y|| \right\}.$

The set $P_A(x)$ is a singleton for any closed convex subset $A \subset \mathbb{H}$ and for any point $x \in \mathbb{H}$, i.e. $P_A(x) = \{a(x)\}$. Moreover, for any pair of points $x_0, x_1 \in \mathbb{H}$, $\{a_i\} = P_A(x_i)$, $i \in \{0, 1\}$ we have

$$||a_0 - a_1|| \le 1 \cdot ||x_0 - x_1||.$$

For a subset $A \subset \mathbb{H}$ and a number $\varrho > 0$ we define the open ϱ -neighbourhood of the set A

$U_A(\varrho) = \{ x \in \mathbb{H} \mid \varrho_A(x) < \varrho \}.$

 \mathbb{H} - the Hilbert space over \mathbb{R} . $\langle p, x \rangle$ is scalar product for vectors $p, x \in \mathbb{H}$. Let $B_R(x) = \{y \in \mathbb{H} \mid ||y - x|| \le R\}$.

Definition

The metric projection of the point $x \in \mathbb{H}$ on the set $A \subset \mathbb{H}$ is defined as follows $P_A(x) = \left\{ a \in A \mid ||x - a|| = \inf_{y \in A} ||x - y|| \right\}.$

The set $P_A(x)$ is a singleton for any closed convex subset $A \subset \mathbb{H}$ and for any point $x \in \mathbb{H}$, i.e. $P_A(x) = \{a(x)\}$. Moreover, for any pair of points $x_0, x_1 \in \mathbb{H}$, $\{a_i\} = P_A(x_i)$, $i \in \{0, 1\}$ we have

$$||a_0 - a_1|| \le 1 \cdot ||x_0 - x_1||.$$

For a subset $A \subset \mathbb{H}$ and a number $\varrho > 0$ we define the open ϱ -neighbourhood of the set A

$$U_A(\varrho) = \{ x \in \mathbb{H} \mid \varrho_A(x) < \varrho \}.$$

 \mathbb{H} - the Hilbert space over \mathbb{R} . $\langle p, x \rangle$ is scalar product for vectors $p, x \in \mathbb{H}$. Let $B_R(x) = \{y \in \mathbb{H} \mid ||y - x|| \le R\}$.

Definition

The metric projection of the point $x \in \mathbb{H}$ on the set $A \subset \mathbb{H}$ is defined as follows $P_A(x) = \left\{ a \in A \mid ||x - a|| = \inf_{y \in A} ||x - y|| \right\}.$

The set $P_A(x)$ is a singleton for any closed convex subset $A \subset \mathbb{H}$ and for any point $x \in \mathbb{H}$, i.e. $P_A(x) = \{a(x)\}$. Moreover, for any pair of points $x_0, x_1 \in \mathbb{H}$, $\{a_i\} = P_A(x_i)$, $i \in \{0, 1\}$ we have

$$||a_0 - a_1|| \le 1 \cdot ||x_0 - x_1||.$$

For a subset $A \subset \mathbb{H}$ and a number $\varrho > 0$ we define the open ϱ -neighbourhood of the set A

$$U_A(\varrho) = \{ x \in \mathbb{H} \mid \varrho_A(x) < \varrho \}.$$

 \mathbb{H} - the Hilbert space over \mathbb{R} . $\langle p, x \rangle$ is scalar product for vectors $p, x \in \mathbb{H}$. Let $B_R(x) = \{y \in \mathbb{H} \mid ||y - x|| \le R\}$.

Definition

The metric projection of the point $x \in \mathbb{H}$ on the set $A \subset \mathbb{H}$ is defined as follows $P_A(x) = \left\{ a \in A \mid ||x - a|| = \inf_{y \in A} ||x - y|| \right\}.$

The set $P_A(x)$ is a singleton for any closed convex subset $A \subset \mathbb{H}$ and for any point $x \in \mathbb{H}$, i.e. $P_A(x) = \{a(x)\}$. Moreover, for any pair of points $x_0, x_1 \in \mathbb{H}$, $\{a_i\} = P_A(x_i)$, $i \in \{0, 1\}$ we have

$$||a_0 - a_1|| \le 1 \cdot ||x_0 - x_1||.$$

For a subset $A \subset \mathbb{H}$ and a number $\varrho > 0$ we define the open ϱ -neighbourhood of the set A

$$U_A(\varrho) = \{x \in \mathbb{H} \mid \varrho_A(x) < \varrho\}.$$

A nonempty subset $A \subset \mathbb{H}$ is called a strongly convex set of radius R > 0 if it can be represented as the intersection of closed balls of radius R > 0, that is there exists a subset $X \subset \mathbb{H}$ such that $A = \bigcap_{x \in X} B_R(x)$.

Definition

Normal cone to the set $A \subset \mathbb{H}$ at the point $a \in \overline{A}$ is the following set

$$N(A; a) = \left\{ p \in \mathbb{H} \mid \sup_{x \in A} \langle p, x \rangle \le \langle p, a \rangle \right\}$$

A nonempty subset $A \subset \mathbb{H}$ is called a strongly convex set of radius R > 0 if it can be represented as the intersection of closed balls of radius R > 0, that is there exists a subset $X \subset \mathbb{H}$ such that $A = \bigcap_{x \in X} B_R(x)$.

Definition

Normal cone to the set $A \subset \mathbb{H}$ at the point $a \in \overline{A}$ is the following set

$$N(A; a) = \left\{ p \in \mathbb{H} \mid \sup_{x \in A} \langle p, x \rangle \leq \langle p, a \rangle
ight\}.$$

Theorem (M. V. Balashov, M. O. Golubev)

Let $A \subset \mathbb{H}$ be a closed convex subset. Then the following properties are equivalent

1) A is a strongly convex set of radius R > 0, 2) $\forall \varrho > 0, \forall x_0, x_1 \in \mathbb{H} \setminus U_A(\varrho), \{a_i\} = P_A(x_i), i \in \{0, 1\}$

$$||a_0 - a_1|| \le \frac{R}{(R + \varrho)} \cdot ||x_0 - x_1||.$$

Theorem (M. V. Balashov, M. O. Golubev)

Let $A \subset \mathbb{H}$ be a closed convex subset. Then the following properties are equivalent

1) A is a strongly convex set of radius R > 0,

2) $\forall \varrho > 0, \forall x_0, x_1 \in \mathbb{H} \setminus U_A(\varrho), \{a_i\} = P_A(x_i), i \in \{0, 1\},$

$$\|a_0 - a_1\| \le \frac{R}{(R + \varrho)} \cdot \|x_0 - x_1\|.$$

Theorem (M. V. Balashov, M. O. Golubev)

Let $A \subset \mathbb{H}$ be a closed convex subset. Then the following properties are equivalent

1) A is a strongly convex set of radius R > 0, 2) $\forall \varrho > 0, \forall x_0, x_1 \in \mathbb{H} \setminus U_A(\varrho), \{a_i\} = P_A(x_i), i \in \{0, 1\},$

$$||a_0 - a_1|| \le \frac{R}{(R + \varrho)} \cdot ||x_0 - x_1||.$$

Consider the minimization problem

$$f(x) \to \min, \quad x \in A \subset \mathbb{H}.$$
 (1)

Consider the standard gradient projection algorithm:

$$x_{k+1} = P_A(x_k - \alpha_k f'(x_k)), \quad x_1 \in \partial A, \quad \alpha_k > 0.$$
(2)

Consider the minimization problem

$$f(x) \to \min, \quad x \in A \subset \mathbb{H}.$$
 (1)

Consider the standard gradient projection algorithm:

$$x_{k+1} = P_A(x_k - \alpha_k f'(x_k)), \quad x_1 \in \partial A, \quad \alpha_k > 0.$$
(2)

(i) f: H→ R is convex, differentiable and the gradient f'(x) satisfies the Lipschitz condition with constant M > 0, i.e. for all x₁, x₂ ∈ H

$$\|f'(x_1) - f'(x_2)\| \le M \|x_1 - x_2\|,$$

(ii) A ⊂ ℍ is strongly convex with radius R,
(iii) for any k ∈ ℕ there exists a unit vector n(x_k) ∈ N(A; x_k) such that ⟨n(x_k), f'(x_k)⟩ ≤ 0, (i.e. x_k - α_kf'(x_k) ∉ A for any α_k > 0),
(iv) the problem (1) has a unique solution x_k ∈ ∂A.

(i) f: H→ R is convex, differentiable and the gradient f'(x) satisfies the Lipschitz condition with constant M > 0, i.e. for all x₁, x₂ ∈ H

$$\|f'(x_1) - f'(x_2)\| \le M \|x_1 - x_2\|,$$

(ii) A ⊂ ℍ is strongly convex with radius R,
(iii) for any k ∈ ℕ there exists a unit vector n(x_k) ∈ N(A; x_k) such that ⟨n(x_k), f'(x_k)⟩ ≤ 0, (i.e. x_k - α_kf'(x_k) ∉ A for any α_k > 0),
(iv) the problem (1) has a unique solution x_k ∈ ∂A.

(i) f: H→ R is convex, differentiable and the gradient f'(x) satisfies the Lipschitz condition with constant M > 0, i.e. for all x₁, x₂ ∈ H

$$\|f'(x_1) - f'(x_2)\| \le M \|x_1 - x_2\|,$$

(ii) A ⊂ ℍ is strongly convex with radius R,
(iii) for any k ∈ ℕ there exists a unit vector n(x_k) ∈ N(A; x_k) such that ⟨n(x_k), f'(x_k)⟩ ≤ 0, (i.e. x_k - α_kf'(x_k) ∉ A for any α_k > 0),

(iv) the problem (1) has a unique solution $x_* \in \partial A$.

(i) f: H→ R is convex, differentiable and the gradient f'(x) satisfies the Lipschitz condition with constant M > 0, i.e. for all x₁, x₂ ∈ H

$$\|f'(x_1) - f'(x_2)\| \le M \|x_1 - x_2\|,$$

(ii) A ⊂ ℍ is strongly convex with radius R,
(iii) for any k ∈ ℕ there exists a unit vector n(x_k) ∈ N(A; x_k) such that ⟨n(x_k), f'(x_k)⟩ ≤ 0, (i.e. x_k - α_kf'(x_k) ∉ A for any α_k > 0),

(iv) the problem (1) has a unique solution $x_* \in \partial A$.

a. Suppose that conditions (i)-(iv) hold. Let $\alpha_k = \alpha \in (0, \frac{2}{M}]$. Let $t = \min_{x \in \partial A} \|f'(x)\| > 0$.

Then the sequence x_k , generated by the rule (2), converges to the solution of (1) at a rate of geometric progression:

$$\|x_{k+1} - x_*\| \le q \|x_k - x_*\|$$
, where $q = rac{R}{\sqrt[4]{(R^2 + \alpha^2 t^2)(R + \alpha t)^2}};$

b. Suppose that conditions (i)-(iv) hold. Let $\alpha_k = \alpha \in (0, \frac{2}{M}]$. Then the sequence x_k , generated by the rule (2), converges to the solution of (1) and the estimate holds: $||x_{k+1} - x_*|| \le q_k ||x_k - x_*||$, where $q_k = \sqrt[4]{\frac{R^2}{R^2 + \alpha^2 ||f'(x_k)||^2}}$.

a. Suppose that conditions (i)-(iv) hold. Let $\alpha_k = \alpha \in (0, \frac{2}{M}]$. Let $t = \min_{x \in \partial A} \|f'(x)\| > 0$.

Then the sequence x_k , generated by the rule (2), converges to the solution of (1) at a rate of geometric progression: $||x_{k+1} - x_*|| \le q ||x_k - x_*||$, where $q = \frac{R}{\sqrt[4]{(R^2 + \alpha^2 t^2)(R + \alpha t)^2}}$; **b.** Suppose that conditions (i)-(iv) hold. Let $\alpha_k = \alpha \in (0, \frac{2}{M}]$. Then the sequence x_k , generated by the rule (2), converges to the solution of (1) and the estimate holds: $||x_{k+1} - x_*|| \le q_k ||x_k - x_*||$

solution of (1) and the estimate holds:
$$||x_{k+1} - x_*|| \le q_k ||x_k - x_*||$$

where $q_k = \sqrt[4]{\frac{R^2}{R^2 + \alpha^2 ||f'(x_k)||^2}}$.

Suppose that conditions (i)-(ii) hold. Let $\frac{RM}{t} < 1$, where $t = \min_{x \in \partial A} \|f'(x)\| > 0$.

The sequence x_k is generated by the rule (2) with $\alpha_k = \alpha > 0$ for any k.

a. if $\alpha \in \left(\frac{2R}{t}, \frac{2}{M}\right]$ then the sequence x_k converges to the solution of (1) at a rate of geometric progression: $\|x_{k+1} - x_*\| \leq q \|x_k - x_*\|$, where $q = \frac{R}{\alpha t - R}$; **b.** if $\alpha > \frac{2}{M}$ then the sequence x_k converges to the solution of (1) at a rate of geometric progression: $\|x_{k+1} - x_*\| \leq q \|x_k - x_*\|$, where $q = \frac{R(\alpha M - 1)}{\alpha t - R}$.

Suppose that conditions (i)-(ii) hold. Let $\frac{RM}{+} < 1$, where $t = \min_{x \in \partial A} \|f'(x)\| > 0.$ The sequence x_k is generated by the rule (2) with $\alpha_k = \alpha > 0$ for anv k. **a.** if $\alpha \in \left(\frac{2R}{t}, \frac{2}{M}\right)$ then the sequence x_k converges to the solution of (1) at a rate of geometric progression: $||x_{k+1} - x_*|| \le q ||x_k - x_*||$, where $q = \frac{R}{\alpha t - R}$;

Suppose that conditions (i)-(ii) hold. Let $\frac{RM}{+} < 1$, where $t = \min_{x \in \partial \Delta} \|f'(x)\| > 0.$ The sequence x_k is generated by the rule (2) with $\alpha_k = \alpha > 0$ for anv k. **a.** if $\alpha \in \left(\frac{2R}{t}, \frac{2}{M}\right)$ then the sequence x_k converges to the solution of (1) at a rate of geometric progression: $||x_{k+1} - x_*|| \le q ||x_k - x_*||$, where $q = \frac{R}{\alpha t - R}$; **b.** if $\alpha > \frac{2}{M}$ then the sequence x_k converges to the solution of (1) at a rate of geometric progression: $||x_{k+1} - x_*|| \leq q ||x_k - x_*||$, where $q = \frac{R(\alpha M - 1)}{\alpha t R}$.

Suppose that subset $U \subset \mathbb{H}$ is convex. Function $f: U \to \mathbb{R}$ is called strongly convex with constant $\gamma > 0$ on the subset U if function $f(x) - \frac{\gamma}{2} ||x||^2$ is convex on the subset U.

Suppose that:

(v) $f: \mathbb{H} \to \mathbb{R}$ is strongly convex with $\gamma > 0$, differentiable and the gradient f'(x) satisfies the Lipschitz condition with constant M > 0, i.e. for all $x_1, x_2 \in \mathbb{H}$

$$||f'(x_1) - f'(x_2)|| \le M ||x_1 - x_2||.$$

Suppose that subset $U \subset \mathbb{H}$ is convex. Function $f: U \to \mathbb{R}$ is called strongly convex with constant $\gamma > 0$ on the subset U if function $f(x) - \frac{\gamma}{2} ||x||^2$ is convex on the subset U.

Suppose that:

(v) $f: \mathbb{H} \to \mathbb{R}$ is strongly convex with $\gamma > 0$, differentiable and the gradient f'(x) satisfies the Lipschitz condition with constant M > 0, i.e. for all $x_1, x_2 \in \mathbb{H}$

$$\|f'(x_1) - f'(x_2)\| \le M \|x_1 - x_2\|.$$

a. Suppose that conditions (ii)-(v) hold. Let
$$\alpha_k = \alpha \in \left(0, \min\left\{\frac{2\gamma}{M^2}, \frac{2}{\gamma+M}\right\}\right), M > \gamma$$
. Let $t = \min_{x \in \partial A} \|f'(x)\| > 0$. Define the number

$$L = L(\alpha, \gamma, M) =$$

$$= \min\left\{\sqrt{1 - 2\alpha\gamma + \alpha^2 M^2}, \sqrt{1 - \frac{2\alpha\gamma M}{\gamma + M}}\right\}$$

Then the sequence x_k , generated by the rule (2), converges to the solution of (1) at a rate of geometric progression: $||x_{k+1} - x_*|| \le q ||x_k - x_*||$, where $q = \frac{R}{\sqrt[4]{(R^2 + \alpha^2 t^2)(R + \alpha t)^2}}L$;

a. Suppose that conditions (ii)-(v) hold. Let
$$\alpha_k = \alpha \in \left(0, \min\left\{\frac{2\gamma}{M^2}, \frac{2}{\gamma+M}\right\}\right), M > \gamma$$
. Let $t = \min_{x \in \partial A} \|f'(x)\| > 0$. Define the number

$$L = L(\alpha, \gamma, M) =$$

$$= \min\left\{\sqrt{1 - 2\alpha\gamma + \alpha^2 M^2}, \sqrt{1 - \frac{2\alpha\gamma M}{\gamma + M}}\right\}$$

Then the sequence x_k , generated by the rule (2), converges to the solution of (1) at a rate of geometric progression: $||x_{k+1} - x_*|| \le q ||x_k - x_*||$, where $q = \frac{R}{\sqrt[4]{(R^2 + \alpha^2 t^2)(R + \alpha t)^2}}L$;

b. Suppose that conditions (ii)-(v) hold. Let

$$\alpha_{k} = \alpha \in \left(0, \min\left\{\frac{2\gamma}{M^{2}}, \frac{2}{\gamma+M}\right\}\right). \text{ Define the number}$$

$$L = L(\alpha, \gamma, M) =$$

$$= \min\left\{\sqrt{1 - 2\alpha\gamma + \alpha^{2}M^{2}}, \sqrt{1 - \frac{2\alpha\gamma M}{\gamma+M}}\right\}$$

Then the sequence x_k , generated by the rule (2), converges to the solution of (1) and the estimate holds: $||x_{k+1} - x_*|| \le q_k ||x_k - x_*||$, where $q_k = \sqrt[4]{\frac{R^2}{R^2 + \alpha^2 ||f'(x_k)||^2}} L$.

b. Suppose that conditions (ii)-(v) hold. Let

$$\alpha_{k} = \alpha \in \left(0, \min\left\{\frac{2\gamma}{M^{2}}, \frac{2}{\gamma+M}\right\}\right). \text{ Define the number}$$

$$L = L(\alpha, \gamma, M) =$$

$$= \min\left\{\sqrt{1 - 2\alpha\gamma + \alpha^{2}M^{2}}, \sqrt{1 - \frac{2\alpha\gamma M}{\gamma+M}}\right\}$$

Then the sequence x_k , generated by the rule (2), converges to the solution of (1) and the estimate holds: $||x_{k+1} - x_*|| \le q_k ||x_k - x_*||$, where $q_k = \sqrt[4]{\frac{R^2}{R^2 + \alpha^2 ||f'(x_k)||^2}} L$.

Thank you for your attention!

