Gradient projection method for convex functions and strongly convex sets.

M. O. Golubev maksimkane@mail.ru

Department of Higher Mathematics Moscow Institute of Physics and Technology (SU)

SOPHIA ANTIPOLIS

June 29, 2015

つくい

M. O. Golubev

H - the Hilbert space over **R**. $\langle p, x \rangle$ is scalar product for vectors $p, x \in \mathbb{H}$. Let $B_R(x) = \{y \in \mathbb{H} \mid ||y - x|| \le R\}.$

$$
||a_0-a_1||\leq 1\cdot ||x_0-x_1||.
$$

 \mathbb{H} - the Hilbert space over \mathbb{R} . $\langle p, x \rangle$ is scalar product for vectors **p**, **x** ∈ H. Let $B_R(x) = \{y \in \mathbb{H} \mid ||y - x|| \le R\}.$

$$
||a_0-a_1||\leq 1\cdot ||x_0-x_1||.
$$

 $\mathbb H$ - the Hilbert space over $\mathbb R$. $\langle p, x \rangle$ is scalar product for vectors $p, x \in \mathbb{H}$. Let $B_R(x) = \{ y \in \mathbb{H} \mid ||y - x|| \le R \}.$

The metric projection of the point $x \in \mathbb{H}$ on the set $A \subset \mathbb{H}$ is defined as follows $P_A(x) = \left\{ a \in A \mid ||x - a|| = \inf_{y \in A} ||x - y|| \right\}.$

and for any point $x \in \mathbb{H}$, i.e. $P_A(x) = \{a(x)\}\$. Moreover, for any

$$
||a_0-a_1||\leq 1\cdot ||x_0-x_1||.
$$

$$
U_A(\varrho)=\{x\in\mathbb{H}\mid \varrho_A(x)<\varrho\}.
$$

 $\mathbb H$ - the Hilbert space over $\mathbb R$. $\langle p, x \rangle$ is scalar product for vectors $p, x \in \mathbb{H}$. Let $B_R(x) = \{ y \in \mathbb{H} \mid ||y - x|| \le R \}.$

Definition

The metric projection of the point $x \in \mathbb{H}$ on the set $A \subset \mathbb{H}$ is defined as follows $P_A(x) = \left\{ a \in A \mid ||x - a|| = \inf_{y \in A} ||x - y|| \right\}.$

The set $P_A(x)$ is a singleton for any closed convex subset $A \subset \mathbb{H}$ and for any point $x \in \mathbb{H}$, i.e. $P_A(x) = \{a(x)\}\$. Moreover, for any pair of points $x_0, x_1 \in \mathbb{H}$, $\{a_i\} = P_A(x_i), i \in \{0, 1\}$ we have

$$
||a_0-a_1||\leq 1\cdot ||x_0-x_1||.
$$

$$
U_A(\varrho)=\{x\in\mathbb{H}\mid \varrho_A(x)<\varrho\}.
$$

つくへ

 $\mathbb H$ - the Hilbert space over $\mathbb R$. $\langle p, x \rangle$ is scalar product for vectors $p, x \in \mathbb{H}$. Let $B_R(x) = \{ y \in \mathbb{H} \mid ||y - x|| \le R \}.$

Definition

The metric projection of the point $x \in \mathbb{H}$ on the set $A \subset \mathbb{H}$ is defined as follows $P_A(x) = \left\{ a \in A \mid ||x - a|| = \inf_{y \in A} ||x - y|| \right\}.$

The set $P_A(x)$ is a singleton for any closed convex subset $A \subset \mathbb{H}$ and for any point $x \in \mathbb{H}$, i.e. $P_A(x) = \{a(x)\}\.$ Moreover, for any pair of points $x_0, x_1 \in \mathbb{H}$, $\{a_i\} = P_A(x_i)$, $i \in \{0, 1\}$ we have

$$
||a_0-a_1||\leq 1\cdot ||x_0-x_1||.
$$

For a subset $A \subset \mathbb{H}$ and a number $\rho > 0$ we define the open ρ -neighbourhood of the set A

$$
U_A(\varrho)=\{x\in\mathbb{H}\mid \varrho_A(x)<\varrho\}.
$$

 $\mathbb H$ - the Hilbert space over $\mathbb R$. $\langle p, x \rangle$ is scalar product for vectors $p, x \in \mathbb{H}$. Let $B_R(x) = \{y \in \mathbb{H} \mid ||y - x|| < R\}.$

Definition

The metric projection of the point $x \in \mathbb{H}$ on the set $A \subset \mathbb{H}$ is defined as follows $P_A(x) = \left\{ a \in A \mid ||x - a|| = \inf_{y \in A} ||x - y|| \right\}.$

The set $P_A(x)$ is a singleton for any closed convex subset $A \subset \mathbb{H}$ and for any point $x \in \mathbb{H}$, i.e. $P_A(x) = \{a(x)\}\)$. Moreover, for any pair of points $x_0, x_1 \in \mathbb{H}$, $\{a_i\} = P_{\mathbf{\Delta}}(x_i)$, $i \in \{0, 1\}$ we have

$$
||a_0-a_1||\leq 1\cdot ||x_0-x_1||.
$$

For a subset $A \subset \mathbb{H}$ and a number $\rho > 0$ we define the open ρ -neighbourhood of the set A

$$
U_A(\varrho)=\{x\in\mathbb{H}\mid \varrho_A(x)<\varrho\}.
$$

A nonempty subset $A \subset \mathbb{H}$ is called a strongly convex set of radius $R > 0$ if it can be represented as the intersection of closed balls of radius R $>$ 0, that is there exists a subset $X \subset \mathbb{H}$ such that $A = \bigcap B_R(x)$. x∈X

Normal cone to the set $A \subset \mathbb{H}$ at the point $a \in A$ is the following set

$$
N(A; a) = \left\{ p \in \mathbb{H} \mid \sup_{x \in A} \langle p, x \rangle \leq \langle p, a \rangle \right\}
$$

A nonempty subset $A \subset \mathbb{H}$ is called a strongly convex set of radius $R > 0$ if it can be represented as the intersection of closed balls of radius R $>$ 0, that is there exists a subset $X \subset \mathbb{H}$ such that $A = \bigcap B_R(x)$. x∈X

Definition

Normal cone to the set $A \subset \mathbb{H}$ at the point $a \in \overline{A}$ is the following set

$$
\mathsf{N}(\mathsf{A};\mathsf{a})=\left\{ \mathsf{p}\in\mathbb{H}\mid \sup_{\mathsf{x}\in\mathsf{A}}\langle\mathsf{p},\mathsf{x}\rangle\leq\langle\mathsf{p},\mathsf{a}\rangle\right\}.
$$

Theorem (M. V. Balashov, M. O. Golubev)

Let $A \subset \mathbb{H}$ be a closed convex subset. Then the following properties are equivalent

1) A is a strongly convex set of radius $R > 0$.

$$
||a_0 - a_1|| \leq \frac{R}{(R+\varrho)} \cdot ||x_0 - x_1||.
$$

Theorem (M. V. Balashov, M. O. Golubev)

Let $A \subset \mathbb{H}$ be a closed convex subset. Then the following properties are equivalent

1) A is a strongly convex set of radius $R > 0$,

2) $\forall \varrho > 0, \forall x_0, x_1 \in \mathbb{H} \setminus U_A(\varrho), \{a_i\} = P_A(x_i), i \in \{0, 1\},$

$$
||a_0 - a_1|| \leq \frac{R}{(R+\varrho)} \cdot ||x_0 - x_1||.
$$

Theorem (M. V. Balashov, M. O. Golubev)

Let $A \subset \mathbb{H}$ be a closed convex subset. Then the following properties are equivalent

1) A is a strongly convex set of radius $R > 0$,

2) $\forall \rho > 0, \forall x_0, x_1 \in \mathbb{H} \setminus U_A(\rho), \{a_i\} = P_A(x_i), i \in \{0, 1\},$

$$
||a_0-a_1||\leq \frac{R}{(R+\varrho)}\cdot ||x_0-x_1||.
$$

Consider the minimization problem

$$
f(x) \to \min, \quad x \in A \subset \mathbb{H}.\tag{1}
$$

-41

つくへ

Consider the standard gradient projection algorithm:

$$
x_{k+1} = P_A(x_k - \alpha_k f'(x_k)), \quad x_1 \in \partial A, \quad \alpha_k > 0. \tag{2}
$$

Consider the minimization problem

$$
f(x) \to \min, \quad x \in A \subset \mathbb{H}.\tag{1}
$$

-41

つくへ

Consider the standard gradient projection algorithm:

$$
x_{k+1} = P_A(x_k - \alpha_k f'(x_k)), \quad x_1 \in \partial A, \quad \alpha_k > 0. \tag{2}
$$

(i) $f: \mathbb{H} \to \mathbb{R}$ is convex, differentiable and the gradient $f'(x)$ satisfies the Lipschitz condition with constant $M > 0$, i.e. for all $x_1, x_2 \in \mathbb{H}$

$$
||f'(x_1)-f'(x_2)|| \leq M||x_1-x_2||,
$$

ふくぼう く

つくい

(ii) $A \subset \mathbb{H}$ is strongly convex with radius R,

(i) $f: \mathbb{H} \to \mathbb{R}$ is convex, differentiable and the gradient $f'(x)$ satisfies the Lipschitz condition with constant $M > 0$, i.e. for all $x_1, x_2 \in \mathbb{H}$

$$
||f'(x_1)-f'(x_2)|| \leq M||x_1-x_2||,
$$

医阿里氏阿里氏

つくい

(ii) $A \subset \mathbb{H}$ is strongly convex with radius R, (iii) for any $k \in \mathbb{N}$ there exists a unit vector $n(x_k) \in N(A; x_k)$ such that $\langle n(x_k), f'(x_k) \rangle \leq 0$, (i.e. $x_k - \alpha_k f'(x_k) \notin A$ for any $\alpha_k > 0$),

(i) $f: \mathbb{H} \to \mathbb{R}$ is convex, differentiable and the gradient $f'(x)$ satisfies the Lipschitz condition with constant $M > 0$, i.e. for all $x_1, x_2 \in \mathbb{H}$

$$
||f'(x_1)-f'(x_2)|| \leq M||x_1-x_2||,
$$

つくい

(ii) $A \subset \mathbb{H}$ is strongly convex with radius R, (iii) for any $k \in \mathbb{N}$ there exists a unit vector $n(x_k) \in N(A; x_k)$ such that $\langle n(x_k), f'(x_k) \rangle \leq 0$, (i.e. $x_k - \alpha_k f'(x_k) \notin A$ for any $\alpha_k > 0$),

(iv) the problem [\(1\)](#page-12-0) has a unique solution $x_* \in \partial A$.

(i) $f: \mathbb{H} \to \mathbb{R}$ is convex, differentiable and the gradient $f'(x)$ satisfies the Lipschitz condition with constant $M > 0$, i.e. for all $x_1, x_2 \in \mathbb{H}$

$$
||f'(x_1)-f'(x_2)|| \leq M||x_1-x_2||,
$$

つくい

(ii) $A \subset \mathbb{H}$ is strongly convex with radius R, (iii) for any $k \in \mathbb{N}$ there exists a unit vector $n(x_k) \in N(A; x_k)$ such that $\langle n(x_k), f'(x_k) \rangle \leq 0$, (i.e. $x_k - \alpha_k f'(x_k) \notin A$ for any $\alpha_k > 0$),

(iv) the problem [\(1\)](#page-12-0) has a unique solution $x_* \in \partial A$.

a. Suppose that conditions (i)-(iv) hold. Let $\alpha_{\bm{k}}=\alpha \in \left(0, \frac{2}{b}\right)$ $\frac{2}{M}$. Let $t = \min_{x \in \partial A} ||f'(x)|| > 0.$

Then the sequence x_k , generated by the rule [\(2\)](#page-12-1), converges to the solution of [\(1\)](#page-12-0) at a rate of geometric progression:

$$
||x_{k+1} - x_{*}|| \leq q||x_{k} - x_{*}||
$$
, where $q = \frac{R}{\sqrt[4]{(R^{2} + \alpha^{2} t^{2})(R + \alpha t)^{2}}}$;

b. Suppose that conditions (i)-(iv) hold. Let $\alpha_k = \alpha \in (0, \frac{2}{k})$ $\frac{2}{M}$. Then the sequence x_k , generated by the rule [\(2\)](#page-12-1), converges to the solution of [\(1\)](#page-12-0) and the estimate holds: $||x_{k+1} - x_*|| \le q_k ||x_k - x_*||$, where $q_k = \sqrt[4]{\frac{R^2}{R^2 + \alpha^2 ||f'(x_k)||^2}}$.

a. Suppose that conditions (i)-(iv) hold. Let $\alpha_{\bm{k}}=\alpha \in \left(0, \frac{2}{b}\right)$ $\frac{2}{M}$. Let $t = \min_{x \in \partial A} ||f'(x)|| > 0.$

Then the sequence x_k , generated by the rule [\(2\)](#page-12-1), converges to the solution of [\(1\)](#page-12-0) at a rate of geometric progression: $\|x_{k+1} - x_*\| \leq q \|x_k - x_*\|$, where $q = \frac{R}{\sqrt[4]{(R^2 + \alpha^2 t^2)(R + \alpha t)^2}},$ **b.** Suppose that conditions (i)-(iv) hold. Let $\alpha_k = \alpha \in \left(0, \frac{2}{k}\right)$ $\frac{2}{M}$. Then the sequence x_k , generated by the rule [\(2\)](#page-12-1), converges to the solution of [\(1\)](#page-12-0) and the estimate holds: $||x_{k+1} - x_*|| \le q_k ||x_k - x_*||$, where $q_k = \sqrt[4]{\frac{R^2}{R^2 + \alpha^2 ||f'(x_k)||^2}}$.

つくへ

Suppose that conditions (i)-(ii) hold. Let $\frac{RM}{t} < 1$, where

 $t = \min_{x \in \partial A} ||f'(x)|| > 0.$

The sequence x_k is generated by the rule [\(2\)](#page-12-1) with $\alpha_k = \alpha > 0$ for any k.

a. if $\alpha \in (\frac{2R}{t})$ $\frac{R}{t}$, $\frac{2}{N}$ $\left[\frac{2}{M}\right]$ then the sequence x_k converges to the solution of [\(1\)](#page-12-0) at a rate of geometric progression: $||x_{k+1} - x_{*}|| \leq q||x_{k} - x_{*}||$, where $q = \frac{R}{\alpha t - R}$;

Suppose that conditions (i)-(ii) hold. Let $\frac{RM}{t} < 1$, where $t = \min_{x \in \partial A} ||f'(x)|| > 0.$ The sequence x_k is generated by the rule [\(2\)](#page-12-1) with $\alpha_k = \alpha > 0$ for any k. **a.** if $\alpha \in (\frac{2R}{t})$ $\frac{R}{t}$, $\frac{2}{N}$ $\left[\frac{2}{M}\right]$ then the sequence x_k converges to the solution of [\(1\)](#page-12-0) at a rate of geometric progression: $||x_{k+1} - x_{*}|| \leq q||x_{k} - x_{*}||$, where $q = \frac{R}{\alpha t - R}$; **b.** if $\alpha > \frac{2}{M}$ then the sequence x_k converges to the solution of (1) at a rate of geometric progression: $||x_{k+1} - x_*|| \leq q||x_k - x_*||$, where $q = \frac{R(\alpha M - 1)}{\alpha t - R}$ $\frac{\alpha w-1}{\alpha t-R}$.

Suppose that conditions (i)-(ii) hold. Let $\frac{RM}{t} < 1$, where $t = \min_{x \in \partial A} ||f'(x)|| > 0.$ The sequence x_k is generated by the rule [\(2\)](#page-12-1) with $\alpha_k = \alpha > 0$ for any k. **a.** if $\alpha \in (\frac{2R}{t})$ $\frac{R}{t}$, $\frac{2}{N}$ $\left[\frac{2}{M}\right]$ then the sequence x_k converges to the solution of [\(1\)](#page-12-0) at a rate of geometric progression: $||x_{k+1} - x_*|| \leq q||x_k - x_*||$, where $q = \frac{R}{\alpha t - R}$; **b.** if $\alpha > \frac{2}{M}$ then the sequence x_k converges to the solution of (1) at a rate of geometric progression: $||x_{k+1} - x_*|| \leq q||x_k - x_*||$, where $q = \frac{R(\alpha M - 1)}{\alpha t - R}$ $\frac{\alpha_{W-1}}{\alpha t-R}$.

Suppose that subset $U \subset \mathbb{H}$ is convex. Function $f: U \to \mathbb{R}$ is called strongly convex with constant $\gamma > 0$ on the subset U if function $f(x) - \frac{\gamma}{2}$ $\frac{\gamma}{2} \|x\|^2$ is convex on the subset U .

Suppose that:

(v) $f: \mathbb{H} \to \mathbb{R}$ is strongly convex with $\gamma > 0$, differentiable and the gradient $f'(x)$ satisfies the Lipschitz condition with constant $M > 0$, i.e. for all $x_1, x_2 \in \mathbb{H}$

$$
||f'(x_1)-f'(x_2)|| \leq M||x_1-x_2||.
$$

Suppose that subset $U \subset \mathbb{H}$ is convex. Function $f: U \to \mathbb{R}$ is called strongly convex with constant $\gamma > 0$ on the subset U if function $f(x) - \frac{\gamma}{2}$ $\frac{\gamma}{2} \|x\|^2$ is convex on the subset U .

Suppose that:

(v) $f: \mathbb{H} \to \mathbb{R}$ is strongly convex with $\gamma > 0$, differentiable and the gradient $f'(x)$ satisfies the Lipschitz condition with constant $M > 0$, i.e. for all $x_1, x_2 \in \mathbb{H}$

$$
||f'(x_1)-f'(x_2)|| \leq M||x_1-x_2||.
$$

 200

a. Suppose that conditions (ii)-(v) hold. Let
$$
\alpha_k = \alpha \in \left(0, \min\left\{\frac{2\gamma}{M^2}, \frac{2}{\gamma + M}\right\}\right)
$$
, $M > \gamma$. Let $t = \min_{x \in \partial A} ||f'(x)|| > 0$. Define the number

$$
L = L(\alpha, \gamma, M) =
$$

= min $\left\{ \sqrt{1 - 2\alpha\gamma + \alpha^2 M^2}, \sqrt{1 - \frac{2\alpha\gamma M}{\gamma + M}} \right\}$

Then the sequence x_k , generated by the rule [\(2\)](#page-12-1), converges to the solution of (1) at a rate of geometric progression: $\|x_{k+1} - x_*\| \leq q \|x_k - x_*\|$, where $q = \frac{R}{\sqrt[4]{(R^2 + \alpha^2 t^2)(R + \alpha t)^2}}L$;

a. Suppose that conditions (ii)-(v) hold. Let
$$
\alpha_k = \alpha \in \left(0, \min\left\{\frac{2\gamma}{M^2}, \frac{2}{\gamma + M}\right\}\right)
$$
, $M > \gamma$. Let $t = \min_{x \in \partial A} ||f'(x)|| > 0$. Define the number

$$
L = L(\alpha, \gamma, M) =
$$

= min $\left\{ \sqrt{1 - 2\alpha\gamma + \alpha^2 M^2}, \sqrt{1 - \frac{2\alpha\gamma M}{\gamma + M}} \right\}$

Then the sequence x_k , generated by the rule [\(2\)](#page-12-1), converges to the solution of (1) at a rate of geometric progression: $\|x_{k+1} - x_*\| \leq q \|x_k - x_*\|$, where $q = \frac{R}{\sqrt[4]{(R^2 + \alpha^2 t^2)(R + \alpha t)^2}}L$;

b. Suppose that conditions (ii)-(v) hold. Let
\n
$$
\alpha_k = \alpha \in (0, \min\left\{\frac{2\gamma}{M^2}, \frac{2}{\gamma + M}\right\})
$$
. Define the number
\n
$$
L = L(\alpha, \gamma, M) =
$$
\n
$$
= \min\left\{\sqrt{1 - 2\alpha\gamma + \alpha^2 M^2}, \sqrt{1 - \frac{2\alpha\gamma M}{\gamma + M}}\right\}
$$

Then the sequence x_k , generated by the rule [\(2\)](#page-12-1), converges to the solution of [\(1\)](#page-12-0) and the estimate holds: $||x_{k+1} - x_*|| \le q_k ||x_k - x_*||$, where $q_k = \sqrt[4]{\frac{R^2}{R^2 + \alpha^2 ||f'(x_k)||^2}} L$.

つくい

AP ▶ - ◀ 三 ▶ - ◀

b. Suppose that conditions (ii)-(v) hold. Let
\n
$$
\alpha_k = \alpha \in \left(0, \min\left\{\frac{2\gamma}{M^2}, \frac{2}{\gamma + M}\right\}\right). \text{ Define the number}
$$
\n
$$
L = L(\alpha, \gamma, M) =
$$
\n
$$
= \min\left\{\sqrt{1 - 2\alpha\gamma + \alpha^2 M^2}, \sqrt{1 - \frac{2\alpha\gamma M}{\gamma + M}}\right\}
$$

Then the sequence x_k , generated by the rule [\(2\)](#page-12-1), converges to the solution of [\(1\)](#page-12-0) and the estimate holds: $||x_{k+1} - x_*|| \le q_k ||x_k - x_*||$, where $q_k = \sqrt[4]{\frac{R^2}{R^2+\alpha^2\|f'(x_k)\|^2}} L$.

 200

Thank you for your attention!

-41 Ð 299

∍