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Definitions 1

H - the Hilbert space over R. 〈p, x〉 is scalar product for vectors
p, x ∈ H. Let BR(x) = {y ∈ H | ‖y − x‖ ≤ R}.

Definition

The metric projection of the point x ∈ H on the set A ⊂ H is

defined as follows PA(x) =

{
a ∈ A | ‖x − a‖ = inf

y∈A
‖x − y‖

}
.

The set PA(x) is a singleton for any closed convex subset A ⊂ H
and for any point x ∈ H, i.e. PA(x) = {a(x)}. Moreover, for any
pair of points x0, x1 ∈ H, {ai} = PA(xi ), i ∈ {0, 1} we have

‖a0 − a1‖ ≤ 1 · ‖x0 − x1‖.

For a subset A ⊂ H and a number % > 0 we define the open
%-neighbourhood of the set A

UA(%) = {x ∈ H | %A(x) < %}.
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Definitions 2

Definition

A nonempty subset A ⊂ H is called a strongly convex set of radius
R > 0 if it can be represented as the intersection of closed balls of
radius R > 0, that is there exists a subset X ⊂ H such that
A =

⋂
x∈X

BR(x).

Definition

Normal cone to the set A ⊂ H at the point a ∈ A is the following
set

N(A; a) =

{
p ∈ H | sup

x∈A
〈p, x〉 ≤ 〈p, a〉

}
.
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Theorem A

Theorem (M. V. Balashov, M. O. Golubev)

Let A ⊂ H be a closed convex subset. Then the following
properties are equivalent
1) A is a strongly convex set of radius R > 0,
2) ∀% > 0, ∀x0, x1 ∈ H\UA(%), {ai} = PA(xi ), i ∈ {0, 1},

‖a0 − a1‖ ≤
R

(R + %)
· ‖x0 − x1‖.

M.O.Golubev



Theorem A

Theorem (M. V. Balashov, M. O. Golubev)

Let A ⊂ H be a closed convex subset. Then the following
properties are equivalent
1) A is a strongly convex set of radius R > 0,
2) ∀% > 0, ∀x0, x1 ∈ H\UA(%), {ai} = PA(xi ), i ∈ {0, 1},

‖a0 − a1‖ ≤
R

(R + %)
· ‖x0 − x1‖.

M.O.Golubev



Theorem A

Theorem (M. V. Balashov, M. O. Golubev)

Let A ⊂ H be a closed convex subset. Then the following
properties are equivalent
1) A is a strongly convex set of radius R > 0,
2) ∀% > 0, ∀x0, x1 ∈ H\UA(%), {ai} = PA(xi ), i ∈ {0, 1},

‖a0 − a1‖ ≤
R

(R + %)
· ‖x0 − x1‖.

M.O.Golubev



Consider the minimization problem

f (x)→ min, x ∈ A ⊂ H. (1)

Consider the standard gradient projection algorithm:

xk+1 = PA(xk − αk f
′(xk)), x1 ∈ ∂A, αk > 0. (2)
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Conditions

Suppose that:

(i) f : H→ R is convex, differentiable and the gradient
f ′(x) satisfies the Lipschitz condition with constant
M > 0, i.e. for all x1, x2 ∈ H

‖f ′(x1)− f ′(x2)‖ ≤ M‖x1 − x2‖,

(ii) A ⊂ H is strongly convex with radius R,

(iii) for any k ∈ N there exists a unit vector
n(xk) ∈ N(A; xk) such that 〈n(xk), f ′(xk)〉 ≤ 0, (i.e.
xk − αk f

′(xk) /∈ A for any αk > 0),

(iv) the problem (1) has a unique solution x∗ ∈ ∂A.
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Theorem 1

Theorem

a. Suppose that conditions (i)-(iv) hold. Let αk = α ∈
(
0, 2

M

]
. Let

t = min
x∈∂A

‖f ′(x)‖ > 0.

Then the sequence xk , generated by the rule (2), converges to the
solution of (1) at a rate of geometric progression:
‖xk+1 − x∗‖ ≤ q‖xk − x∗‖, where q = R

4
√

(R2+α2t2)(R+αt)2
;

b. Suppose that conditions (i)-(iv) hold. Let αk = α ∈
(
0, 2

M

]
.

Then the sequence xk , generated by the rule (2), converges to the
solution of (1) and the estimate holds: ‖xk+1 − x∗‖ ≤ qk‖xk − x∗‖,
where qk = 4

√
R2

R2+α2‖f ′(xk )‖2
.
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Theorem 2

Theorem

Suppose that conditions (i)-(ii) hold. Let RM
t < 1, where

t = min
x∈∂A

‖f ′(x)‖ > 0.

The sequence xk is generated by the rule (2) with αk = α > 0 for
any k.
a. if α ∈

(
2R
t ,

2
M

]
then the sequence xk converges to the solution

of (1) at a rate of geometric progression:
‖xk+1 − x∗‖ ≤ q‖xk − x∗‖, where q = R

αt−R ;

b. if α > 2
M then the sequence xk converges to the solution of (1)

at a rate of geometric progression: ‖xk+1 − x∗‖ ≤ q‖xk − x∗‖,
where q = R(αM−1)

αt−R .
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Conditions

Definition

Suppose that subset U ⊂ H is convex. Function f : U → R is
called strongly convex with constant γ > 0 on the subset U if
function f (x)− γ

2‖x‖
2 is convex on the subset U.

Suppose that:

(v) f : H→ R is strongly convex with γ > 0,
differentiable and the gradient f ′(x) satisfies the
Lipschitz condition with constant M > 0, i.e. for all
x1, x2 ∈ H

‖f ′(x1)− f ′(x2)‖ ≤ M‖x1 − x2‖.
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Theorem 3.a

Theorem

a. Suppose that conditions (ii)-(v) hold. Let

αk = α ∈
(

0,min
{

2γ
M2 ,

2
γ+M

})
, M > γ. Let

t = min
x∈∂A

‖f ′(x)‖ > 0. Define the number

L =L(α, γ,M) =

= min

{√
1− 2αγ + α2M2,

√
1− 2αγM

γ + M

}

Then the sequence xk , generated by the rule (2), converges to the
solution of (1) at a rate of geometric progression:
‖xk+1 − x∗‖ ≤ q‖xk − x∗‖, where q = R

4
√

(R2+α2t2)(R+αt)2
L;
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Theorem 3.b

Theorem

b. Suppose that conditions (ii)-(v) hold. Let
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(

0,min
{

2γ
M2 ,

2
γ+M

})
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√
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γ + M
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Thank you for your attention!
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