Hypomonotonicity of the normal cone and proximal smoothness

G.M. Ivanov

Moscow Institute of Physics and Technology

June 30, 2015

 QQ

K ロ ト K 御 ト K ヨ ト K ヨ

A set $A \subset X$ is said to be proximally smooth with constant R if the distance function $x \to \rho(x, A)$ is continuously differentiable on set $U(R, A) = \{x \in X : 0 < \rho(x, A) < R\}.$

We denote by $\Omega_{PS}(R)$ the set of all closed proximally smooth sets with constant R in X .

つひひ

メロト メタト メミト メミ

Proposition 1.

Let A be a closed set in a Hilbert space H and $R > 0$. The following conditions are equivalent

- \bullet the set $A \in \Omega_{PS}(R)$;
- \bullet for any vectors $x_1, x_2 \in A$, $p_1 \in N(x_1, A)$, $p_2 \in N(x_2, A)$ such that $||p_1|| = ||p_2|| = 1$, the following inequality holds

$$
\langle p_2 - p_1, x_2 - x_1 \rangle \ge -\frac{\|x_2 - x_1\|^2}{R}.
$$

where

$$
N(a_0, A) = \{ p \in X^* : \forall \varepsilon > 0 \,\exists \,\delta > 0 : \quad \forall a \in A \cap \mathfrak{B}_{\delta}(a_0) \langle p, a - a_0 \rangle \leq \varepsilon \, \|a - a_0\| \}.
$$

 Ω

Ξ

K ロ ト K 御 ト K ヨ ト K

Proposition 1.

Let A be a closed set in a Hilbert space H and $R > 0$. The following conditions are equivalent

- \bullet the set $A \in \Omega_{PS}(R)$;
- \bullet for any vectors $x_1, x_2 \in A$, $p_1 \in N(x_1, A)$, $p_2 \in N(x_2, A)$ such that $||p_1|| = ||p_2|| = 1$, the following inequality holds

$$
\langle p_2 - p_1, x_2 - x_1 \rangle \ge -\frac{\|x_2 - x_1\|^2}{R}.
$$

where

$$
N(a_0, A) = \{ p \in X^* : \forall \varepsilon > 0 \,\exists \,\delta > 0 : \quad \forall a \in A \cap \mathfrak{B}_{\delta}(a_0) \langle p, a - a_0 \rangle \leq \varepsilon \, \|a - a_0\| \}.
$$

Question

Are the conditions 1) and 2) of Proposition [1](#page-2-0) equivalent in an arbitrary Banach space?

Definition

The function $\delta_X(\cdot) : [0,2] \to [0,1]$ is referred to as the modulus of convexity $\delta_X(\varepsilon) = \inf \left\{ 1 - \frac{\|x+y\|}{2} \right\}$ $\frac{||+y||}{2}$: $x, y \in \mathfrak{B}_1(o), ||x - y|| \geqslant \varepsilon$.

 Ω

イロト イ母 ト イヨ ト イヨト

Definition

The function $\delta_X(\cdot) : [0,2] \to [0,1]$ is referred to as the modulus of convexity $\delta_X(\varepsilon) = \inf \left\{ 1 - \frac{\|x+y\|}{2} \right\}$ $\frac{||+y||}{2}$: $x, y \in \mathfrak{B}_1(o), ||x - y|| \geqslant \varepsilon$.

Normed space X is called unifomly convex, if $\delta_X(\varepsilon) > 0$ for all $\varepsilon \in (0, 2]$.

 $\left\{ \begin{array}{ccc} 1 & 1 & 1 & 1 \ 1 & 1 & 1 & 1 \end{array} \right.$

Definition

The function $\delta_X(\cdot) : [0,2] \to [0,1]$ is referred to as the modulus of convexity $\delta_X(\varepsilon) = \inf \left\{ 1 - \frac{\|x+y\|}{2} \right\}$ $\frac{||+y||}{2}$: $x, y \in \mathfrak{B}_1(o), ||x - y|| \geqslant \varepsilon$.

Normed space X is called unifomly convex, if $\delta_X(\varepsilon) > 0$ for all $\varepsilon \in (0, 2]$.

Definition

The function $\rho_X : [0, +\infty) \to \mathbb{R}$ is referred to as the modulus of smoothness $\rho_X(\tau) = \sup \left\{ \frac{\|x+y\| + \|x-y\|}{2} - 1 : \|x\| = 1, \|y\| = \tau \right\}.$

メロト メタト メミト メミ

Definition

The function $\delta_X(\cdot) : [0,2] \to [0,1]$ is referred to as the modulus of convexity $\delta_X(\varepsilon) = \inf \left\{ 1 - \frac{\|x+y\|}{2} \right\}$ $\frac{||+y||}{2}$: $x, y \in \mathfrak{B}_1(o), ||x - y|| \geqslant \varepsilon$.

Normed space X is called unifomly convex, if $\delta_X(\varepsilon) > 0$ for all $\varepsilon \in (0, 2]$.

Definition

The function $\rho_X : [0, +\infty) \to \mathbb{R}$ is referred to as the modulus of smoothness $\rho_X(\tau) = \sup \left\{ \frac{\|x+y\| + \|x-y\|}{2} - 1 : \|x\| = 1, \|y\| = \tau \right\}.$

Normed space X is called uniformly smooth, if $\lim_{\tau \to +0} \frac{\rho \chi(\tau)}{\tau} = 0$.

イロト イ押ト イヨト イヨト

PREVIOUS RESULTS

Proposition 2.

Let X be a uniformly convex and uniformly smooth Banach space. Let $\rho_X(\tau) \asymp \tau^2$ as $\tau \to 0$. Then the proximally smooth set $A \subset X$ with constant $r > 0$ satisfies condition 2) of Proposition [1](#page-2-0) for some constant $R > 0$.

Proposition 3.

Let the convexity and smoothness moduli be of power order at zero in the Banach space X. Let $\delta_X(\varepsilon) \asymp \varepsilon^2$ as $\varepsilon \to 0$. Then, if the set A satisfies condition 2) of Proposition [1,](#page-2-0) it is proximally smooth with some constant $r > 0$.

Let f and q be two non-negative functions, each one defined on a segment $[0, \varepsilon]$. We shall consider f and q as *equivalent at zero*, denoted by $f(t) \approx q(t)$ as $t \to 0$, if there exist positive constants a, b, c, d, e such that $af(bt) \leqslant q(t) \leqslant cf(dt)$ for $t \in [0, e]$.

 Ω

イロト イ御 ト イヨ ト イヨト

Let a function $\psi : [0, +\infty) \to [0, +\infty)$ be given. The set $A \subset X$ satisfies the ψ -hypomonotonity condition with constant $R > 0$ if for some $\varepsilon > 0$ and for any $x_1, x_2 \in A$, $p_1 \in N(x_1, A)$, $p_2 \in N(x_2, A)$, $||p_1|| = ||p_2|| = 1$ such that $||x_1 - x_2|| \leq \varepsilon$, the inequality

$$
\langle p_2 - p_1, x_2 - x_1 \rangle \ge -R\psi\left(\frac{\|x_2 - x_1\|}{R}\right)
$$

holds.

つひひ

 $\left\{ \begin{array}{ccc} 1 & 1 & 1 & 1 \ 1 & 1 & 1 & 1 \end{array} \right.$

Let a function $\psi : [0, +\infty) \to [0, +\infty)$ be given. The set $A \subset X$ satisfies the ψ -hypomonotonity condition with constant $R > 0$ if for some $\varepsilon > 0$ and for any $x_1, x_2 \in A$, $p_1 \in N(x_1, A)$, $p_2 \in N(x_2, A)$, $||p_1|| = ||p_2|| = 1$ such that $||x_1 - x_2|| \leq \varepsilon$, the inequality

$$
\langle p_2 - p_1, x_2 - x_1 \rangle \ge -R\psi\left(\frac{\|x_2 - x_1\|}{R}\right)
$$

holds.

Through $\Omega_N^{\psi}(R)$ we denote the class of all closed sets $A \subset X$ that satisfy the ψ -hypomonotonity condition with constant $R > 0$.

 $\left\{ \begin{array}{ccc} 1 & 1 & 1 & 1 \ 1 & 1 & 1 & 1 \end{array} \right.$

Let a function $\psi : [0, +\infty) \to [0, +\infty)$ be given. The set $A \subset X$ satisfies the ψ -hypomonotonity condition with constant $R > 0$ if for some $\varepsilon > 0$ and for any $x_1, x_2 \in A$, $p_1 \in N(x_1, A)$, $p_2 \in N(x_2, A)$, $||p_1|| = ||p_2|| = 1$ such that $||x_1 - x_2|| \leq \varepsilon$, the inequality

$$
\langle p_2 - p_1, x_2 - x_1 \rangle \ge -R\psi\left(\frac{\|x_2 - x_1\|}{R}\right)
$$

holds.

Through $\Omega_N^{\psi}(R)$ we denote the class of all closed sets $A \subset X$ that satisfy the ψ -hypomonotonity condition with constant $R > 0$.

Definition

Through M denote the class of convex functions $\psi : [0, +\infty) \to [0, +\infty)$ such that $\psi(0) = 0$.

 Ω

メロメ メ御 メメモメ メ

Theorem 1.

In a uniformly convex and uniformly smooth Banach space X the following statements are equivalent for the function $\psi \in \mathfrak{M}$:

1 there exists $k_1 > 0$ such that $\Omega_{PS}(R) \subset \Omega_N^{k_1 \psi}(R)$ for any $R > 0$;

$$
\bullet \ \rho_X(\tau) = \mathcal{O}(\psi(\tau)) \ \text{as} \ \tau \to 0.
$$

We shall say that function $x(\tau)$ is big-O of function $y(\tau)$, and write $x(\tau) = O(y(\tau))$ as $\tau \to 0$, if the following inequality holds

 $|x(\tau)| \leq A|y(\tau)| \quad \forall \tau \in [0, \varepsilon] \quad \text{(for some } \varepsilon > 0, A > 0\text{).}$

イロト イ母 ト イヨ ト イヨト

Theorem 1.

In a uniformly convex and uniformly smooth Banach space X the following statements are equivalent for the function $\psi \in \mathfrak{M}$:

1 there exists $k_1 > 0$ such that $\Omega_{PS}(R) \subset \Omega_N^{k_1 \psi}(R)$ for any $R > 0$;

$$
\bullet \ \rho_X(\tau) = \mathcal{O}(\psi(\tau)) \ \text{as} \ \tau \to 0.
$$

We shall say that function $x(\tau)$ is big-O of function $y(\tau)$, and write $x(\tau) = O(y(\tau))$ as $\tau \to 0$, if the following inequality holds

$$
|x(\tau)| \leqslant A|y(\tau)| \quad \forall \tau \in [0, \varepsilon] \quad \text{(for some } \varepsilon > 0, A > 0\text{)}.
$$

Lemma 1.

In a uniformly smooth and uniformly convex Banach space X the inclusion

$$
(X\setminus \mathrm{int}\,\mathfrak{B}_1(0))\in \Omega_N^{\frac{1}{17}\rho_X(\cdot)}(1)
$$

holds.

ഹൈ

K ロ ト K 倒 ト K 走 ト K

We say that the function $N : [0, +\infty) \to [0, +\infty)$ such that $N(0) = 0$, satisfies the Figiel condition if there exists a constant K such that the function $N(\cdot)$ on some interval $(0, \varepsilon)$ satisfies the condition

$$
\frac{N(s)}{s^2} \leqslant K \frac{N(t)}{t^2} \quad \forall \ 0 < t \leqslant s < \varepsilon.
$$

 Ω

K ロ ト K 御 ト K ヨ ト

We say that the function $N : [0, +\infty) \to [0, +\infty)$ such that $N(0) = 0$, satisfies the Figiel condition if there exists a constant K such that the function $N(\cdot)$ on some interval $(0, \varepsilon)$ satisfies the condition

$$
\frac{N(s)}{s^2} \leqslant K \frac{N(t)}{t^2} \quad \forall \ 0 < t \leqslant s < \varepsilon.
$$

Remark 1.

The modulus of smoothness of an arbitrary Banach space satisfies the Figiel condition

つひひ

K ロ ト K 御 ト K ヨ ト K

We say that the function $N : [0, +\infty) \to [0, +\infty)$ such that $N(0) = 0$, satisfies the Figiel condition if there exists a constant K such that the function $N(\cdot)$ on some interval $(0, \varepsilon)$ satisfies the condition

$$
\frac{N(s)}{s^2} \leqslant K \frac{N(t)}{t^2} \quad \forall \ 0 < t \leqslant s < \varepsilon.
$$

Remark 1.

The modulus of smoothness of an arbitrary Banach space satisfies the Figiel condition

Definition

Through \mathfrak{M}_2 denote the class of functions from \mathfrak{M} that satisfy the Figiel condition.

つひひ

メロト メタト メミト メミ

Theorem 2.

In a uniformly convex and uniformly smooth Banach space X the following statements are equivalent for the function $\psi \in \mathfrak{M}_2$:

- **1** there exists $k_2 > 0$ such that $\Omega_N^{k_2\psi}(R) \subset \Omega_{PS}(R)$ for any $R > 0$;
- $\Phi \psi(\varepsilon) = O(\delta_X(\varepsilon))$ as $\varepsilon \to 0$.

 Ω

 4 O \rightarrow 4 \overline{m} \rightarrow \rightarrow \overline{m} \rightarrow \rightarrow

Theorem 2.

In a uniformly convex and uniformly smooth Banach space X the following statements are equivalent for the function $\psi \in \mathfrak{M}_2$:

1 there exists $k_2 > 0$ such that $\Omega_N^{k_2\psi}(R) \subset \Omega_{PS}(R)$ for any $R > 0$;

$$
\bullet \ \psi(\varepsilon) = \mathcal{O}(\delta_X(\varepsilon)) \ \ as \ \varepsilon \to 0.
$$

Theorem 3.

Suppose in a Banach space X for some function $\psi \in \mathfrak{M}$ there exist $k_1 > 0$, $k_2 > 0$ such that the inclusions

$$
\Omega_N^{k_1\psi}(R) \subset \Omega_{PS}(R) \subset \Omega_N^{k_2\psi}(R)
$$

hold. Then $\delta_X(\varepsilon) \asymp \rho_X(\varepsilon) \asymp \varepsilon^2$ as $\varepsilon \to 0$, and, therefore, the space X is isomorphic to a Hilbert space.

4 ロ ト - 4 伺 ト - 4 ヨ ト - 4 .

OPEN QUESTIONS

Hypothesis 1.

The equality $\Omega_{PS}(R) = \Omega_N^{\psi}(R)$ holds only in a Hilbert space provided that $\psi(t)=t^2.$

 $2Q$

イロト イ押ト イヨト イヨト

OPEN QUESTIONS

Hypothesis 1.

The equality $\Omega_{PS}(R) = \Omega_N^{\psi}(R)$ holds only in a Hilbert space provided that $\psi(t)=t^2.$

Hypothesis 2.

If in a uniformly convex and uniformly smooth Banach space X the set $A \subset X$ belongs to the class $\Omega_{PS}(R)$ and to the class $\Omega_N^{\psi}(r)$ for some function $\psi \in \mathfrak{M} \setminus \mathfrak{M}_2$ and constants $R > 0, r > 0$, then it belongs to the class $\Omega_N^{\psi_1}(r)$, where $\psi_1(t) = ct^2$ for some $c \geqslant 0$.

K ロ ト マ 何 ト マ ヨ ト

THANK YOU FOR YOUR ATTENTION!

重

 $2Q$

a. Ε

K ロ ト K 御 ト K ヨ ト