Hypomonotonicity of the normal cone and proximal smoothness

G.M. Ivanov

Moscow Institute of Physics and Technology

June 30, 2015

G.M. Ivanov (MIPT)

About weak convex sets

A set $A \subset X$ is said to be proximally smooth with constant R if the distance function $x \to \rho(x, A)$ is continuously differentiable on set $U(R, A) = \{x \in X : 0 < \rho(x, A) < R\}$.

We denote by $\Omega_{PS}(R)$ the set of all closed proximally smooth sets with constant R in X.

Proposition 1.

Let A be a closed set in a Hilbert space H and R > 0. The following conditions are equivalent

- the set $A \in \Omega_{PS}(R)$;
- for any vectors $x_1, x_2 \in A$, $p_1 \in N(x_1, A)$, $p_2 \in N(x_2, A)$ such that $||p_1|| = ||p_2|| = 1$, the following inequality holds

$$\langle p_2 - p_1, x_2 - x_1 \rangle \ge -\frac{\|x_2 - x_1\|^2}{R}.$$

where

$$N(a_0, A) = \{ p \in X^* : \forall \varepsilon > 0 \exists \delta > 0 : \quad \forall a \in A \cap \mathfrak{B}_{\delta}(a_0) \\ \langle p, a - a_0 \rangle \leqslant \varepsilon ||a - a_0|| \}.$$

Proposition 1.

Let A be a closed set in a Hilbert space H and R > 0. The following conditions are equivalent

- the set $A \in \Omega_{PS}(R)$;
- for any vectors $x_1, x_2 \in A$, $p_1 \in N(x_1, A)$, $p_2 \in N(x_2, A)$ such that $||p_1|| = ||p_2|| = 1$, the following inequality holds

$$\langle p_2 - p_1, x_2 - x_1 \rangle \ge -\frac{\|x_2 - x_1\|^2}{R}.$$

where

$$N(a_0, A) = \{ p \in X^* : \forall \varepsilon > 0 \exists \delta > 0 : \quad \forall a \in A \cap \mathfrak{B}_{\delta}(a_0) \\ \langle p, a - a_0 \rangle \leqslant \varepsilon ||a - a_0|| \}.$$

Question

Are the conditions 1) and 2) of Proposition 1 equivalent in an arbitrary Banach space?

G.M. Ivanov (MIPT)

Definition

The function $\delta_X(\cdot) : [0,2] \to [0,1]$ is referred to as the modulus of convexity $\delta_X(\varepsilon) = \inf \left\{ 1 - \frac{\|x+y\|}{2} : x, y \in \mathfrak{B}_1(o), \ \|x-y\| \ge \varepsilon \right\}.$

Definition

The function $\delta_X(\cdot) : [0,2] \to [0,1]$ is referred to as the modulus of convexity $\delta_X(\varepsilon) = \inf \left\{ 1 - \frac{\|x+y\|}{2} : x, y \in \mathfrak{B}_1(o), \ \|x-y\| \ge \varepsilon \right\}.$

Normed space X is called *unifomly convex*, if $\delta_X(\varepsilon) > 0$ for all $\varepsilon \in (0, 2]$.

Definition

The function $\delta_X(\cdot) : [0,2] \to [0,1]$ is referred to as the modulus of convexity $\delta_X(\varepsilon) = \inf \left\{ 1 - \frac{\|x+y\|}{2} : x, y \in \mathfrak{B}_1(o), \ \|x-y\| \ge \varepsilon \right\}.$

Normed space X is called *unifomly convex*, if $\delta_X(\varepsilon) > 0$ for all $\varepsilon \in (0, 2]$.

Definition

The function $\rho_X : [0, +\infty) \to \mathbb{R}$ is referred to as the modulus of smoothness $\rho_X(\tau) = \sup\left\{\frac{\|x+y\|+\|x-y\|}{2} - 1 : \|x\| = 1, \|y\| = \tau\right\}.$

Definition

The function $\delta_X(\cdot): [0,2] \to [0,1]$ is referred to as the modulus of convexity $\delta_X(\varepsilon) = \inf \left\{ 1 - \frac{\|x+y\|}{2} : x, y \in \mathfrak{B}_1(o), \ \|x-y\| \ge \varepsilon \right\}.$

Normed space X is called *unifomly convex*, if $\delta_X(\varepsilon) > 0$ for all $\varepsilon \in (0, 2]$.

Definition

The function $\rho_X : [0, +\infty) \to \mathbb{R}$ is referred to as the modulus of smoothness $\rho_X(\tau) = \sup\left\{\frac{\|x+y\|+\|x-y\|}{2} - 1 : \|x\| = 1, \|y\| = \tau\right\}.$

Normed space X is called *uniformly smooth*, if $\lim_{\tau \to +0} \frac{\rho_X(\tau)}{\tau} = 0$.

PREVIOUS RESULTS

Proposition 2.

Let X be a uniformly convex and uniformly smooth Banach space. Let $\rho_X(\tau) \approx \tau^2$ as $\tau \to 0$. Then the proximally smooth set $A \subset X$ with constant r > 0 satisfies condition 2) of Proposition 1 for some constant R > 0.

Proposition 3.

Let the convexity and smoothness moduli be of power order at zero in the Banach space X. Let $\delta_X(\varepsilon) \simeq \varepsilon^2$ as $\varepsilon \to 0$. Then, if the set A satisfies condition 2) of Proposition 1, it is proximally smooth with some constant r > 0.

Let f and g be two non-negative functions, each one defined on a segment $[0, \varepsilon]$. We shall consider f and g as equivalent at zero, denoted by $f(t) \asymp g(t)$ as $t \to 0$, if there exist positive constants a, b, c, d, e such that $af(bt) \leq g(t) \leq cf(dt)$ for $t \in [0, e]$.

Let a function $\psi : [0, +\infty) \to [0, +\infty)$ be given. The set $A \subset X$ satisfies the ψ -hypomonotonity condition with constant R > 0 if for some $\varepsilon > 0$ and for any $x_1, x_2 \in A$, $p_1 \in N(x_1, A)$, $p_2 \in N(x_2, A)$, $||p_1|| = ||p_2|| = 1$ such that $||x_1 - x_2|| \leq \varepsilon$, the inequality

$$\langle p_2 - p_1, x_2 - x_1 \rangle \ge -R\psi\left(\frac{\|x_2 - x_1\|}{R}\right)$$

holds.

Let a function $\psi : [0, +\infty) \to [0, +\infty)$ be given. The set $A \subset X$ satisfies the ψ -hypomonotonity condition with constant R > 0 if for some $\varepsilon > 0$ and for any $x_1, x_2 \in A$, $p_1 \in N(x_1, A)$, $p_2 \in N(x_2, A)$, $||p_1|| = ||p_2|| = 1$ such that $||x_1 - x_2|| \leq \varepsilon$, the inequality

$$\langle p_2 - p_1, x_2 - x_1 \rangle \ge -R\psi\left(\frac{\|x_2 - x_1\|}{R}\right)$$

holds.

Through $\Omega_N^{\psi}(R)$ we denote the class of all closed sets $A \subset X$ that satisfy the ψ -hypomonotonity condition with constant R > 0.

Let a function $\psi : [0, +\infty) \to [0, +\infty)$ be given. The set $A \subset X$ satisfies the ψ -hypomonotonity condition with constant R > 0 if for some $\varepsilon > 0$ and for any $x_1, x_2 \in A$, $p_1 \in N(x_1, A)$, $p_2 \in N(x_2, A)$, $||p_1|| = ||p_2|| = 1$ such that $||x_1 - x_2|| \leq \varepsilon$, the inequality

$$\langle p_2 - p_1, x_2 - x_1 \rangle \ge -R\psi\left(\frac{\|x_2 - x_1\|}{R}\right)$$

holds.

Through $\Omega_N^{\psi}(R)$ we denote the class of all closed sets $A \subset X$ that satisfy the ψ -hypomonotonity condition with constant R > 0.

Definition

Through \mathfrak{M} denote the class of convex functions $\psi : [0, +\infty) \to [0, +\infty)$ such that $\psi(0) = 0$.

Theorem 1.

In a uniformly convex and uniformly smooth Banach space X the following statements are equivalent for the function $\psi \in \mathfrak{M}$:

• there exists $k_1 > 0$ such that $\Omega_{PS}(R) \subset \Omega_N^{k_1\psi}(R)$ for any R > 0;

$$P_X(\tau) = \mathcal{O}(\psi(\tau)) \ as \ \tau \to 0.$$

We shall say that function $x(\tau)$ is *big-O* of function $y(\tau)$, and write $x(\tau) = O(y(\tau))$ as $\tau \to 0$, if the following inequality holds

 $|x(\tau)| \leqslant A |y(\tau)| \quad \forall \tau \in [0, \varepsilon] \quad (\text{for some } \varepsilon > 0, A > 0).$

イロト イロト イヨト イヨト

Theorem 1.

In a uniformly convex and uniformly smooth Banach space X the following statements are equivalent for the function $\psi \in \mathfrak{M}$:

• there exists $k_1 > 0$ such that $\Omega_{PS}(R) \subset \Omega_N^{k_1\psi}(R)$ for any R > 0;

$$P_X(\tau) = \mathcal{O}(\psi(\tau)) \ as \ \tau \to 0.$$

We shall say that function $x(\tau)$ is *big-O* of function $y(\tau)$, and write $x(\tau) = O(y(\tau))$ as $\tau \to 0$, if the following inequality holds

$$|x(\tau)| \leq A|y(\tau)| \quad \forall \tau \in [0, \varepsilon] \quad (\text{for some } \varepsilon > 0, A > 0).$$

Lemma 1.

In a uniformly smooth and uniformly convex Banach space X the inclusion

$$(X \setminus \operatorname{int} \mathfrak{B}_1(0)) \in \Omega_N^{\frac{1}{17}\rho_X(\cdot)}(1)$$

holds.

・ロト ・日下・ ・ヨト・

We say that the function $N : [0, +\infty) \to [0, +\infty)$ such that N(0) = 0, satisfies the Figiel condition if there exists a constant K such that the function $N(\cdot)$ on some interval $(0, \varepsilon)$ satisfies the condition

$$\frac{N(s)}{s^2} \leqslant K \frac{N(t)}{t^2} \quad \forall \ 0 < t \leqslant s < \varepsilon.$$

We say that the function $N : [0, +\infty) \to [0, +\infty)$ such that N(0) = 0, satisfies the Figiel condition if there exists a constant K such that the function $N(\cdot)$ on some interval $(0, \varepsilon)$ satisfies the condition

$$\frac{N(s)}{s^2} \leqslant K \frac{N(t)}{t^2} \quad \forall \ 0 < t \leqslant s < \varepsilon.$$

Remark 1.

The modulus of smoothness of an arbitrary Banach space satisfies the Figiel condition

We say that the function $N : [0, +\infty) \to [0, +\infty)$ such that N(0) = 0, satisfies the Figiel condition if there exists a constant K such that the function $N(\cdot)$ on some interval $(0, \varepsilon)$ satisfies the condition

$$\frac{N(s)}{s^2} \leqslant K \frac{N(t)}{t^2} \quad \forall \ 0 < t \leqslant s < \varepsilon.$$

Remark 1.

The modulus of smoothness of an arbitrary Banach space satisfies the Figiel condition

Definition

Through \mathfrak{M}_2 denote the class of functions from \mathfrak{M} that satisfy the Figiel condition.

Theorem 2.

In a uniformly convex and uniformly smooth Banach space X the following statements are equivalent for the function $\psi \in \mathfrak{M}_2$:

- there exists $k_2 > 0$ such that $\Omega_N^{k_2\psi}(R) \subset \Omega_{PS}(R)$ for any R > 0;
- $\psi(\varepsilon) = \mathcal{O}(\delta_X(\varepsilon)) \ as \ \varepsilon \to 0.$

Theorem 2.

In a uniformly convex and uniformly smooth Banach space X the following statements are equivalent for the function $\psi \in \mathfrak{M}_2$:

• there exists $k_2 > 0$ such that $\Omega_N^{k_2\psi}(R) \subset \Omega_{PS}(R)$ for any R > 0;

$$\psi(\varepsilon) = \mathcal{O}(\delta_X(\varepsilon)) \ as \ \varepsilon \to 0.$$

Theorem 3.

Suppose in a Banach space X for some function $\psi \in \mathfrak{M}$ there exist $k_1 > 0$, $k_2 > 0$ such that the inclusions

$$\Omega_N^{k_1\psi}(R) \subset \Omega_{PS}(R) \subset \Omega_N^{k_2\psi}(R)$$

hold. Then $\delta_X(\varepsilon) \simeq \rho_X(\varepsilon) \simeq \varepsilon^2$ as $\varepsilon \to 0$, and, therefore, the space X is isomorphic to a Hilbert space.

OPEN QUESTIONS

Hypothesis 1.

The equality $\Omega_{PS}(R) = \Omega_N^{\psi}(R)$ holds only in a Hilbert space provided that $\psi(t) = t^2$.

OPEN QUESTIONS

Hypothesis 1.

The equality $\Omega_{PS}(R) = \Omega_N^{\psi}(R)$ holds only in a Hilbert space provided that $\psi(t) = t^2$.

Hypothesis 2.

If in a uniformly convex and uniformly smooth Banach space X the set $A \subset X$ belongs to the class $\Omega_{PS}(R)$ and to the class $\Omega_N^{\psi}(r)$ for some function $\psi \in \mathfrak{M} \setminus \mathfrak{M}_2$ and constants R > 0, r > 0, then it belongs to the class $\Omega_N^{\psi_1}(r)$, where $\psi_1(t) = ct^2$ for some $c \ge 0$.

THANK YOU FOR YOUR ATTENTION!

æ

э

・ロト ・ 日下 ・ モート