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Definition

A set A C X is said to be prozimally smooth with constant R if the distance
function x — p(x, A) is continuously differentiable on set
UR,A)={xeX:0<p(z,A) <R}.

We denote by Qps(R) the set of all closed proximally smooth sets with
constant R in X.
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Proposition 1.

Let A be a closed set in a Hilbert space H and R > 0. The following conditions
are equivalent

Q the set A € Qps(R);

Q for any vectors x1,x9 € A, p1 € N(z1,A), p2 € N(x2,A) such that
lp1]l = llp2ll = 1, the following inequality holds

22 — 21|

(p2 —p1,22 — 1) = — I

where

N(ag,A)={peX*:Ve>036>0: Vaec ANDBs(ao)
(p,a—ao) <ella—aoll}-
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Proposition 1.

Let A be a closed set in a Hilbert space H and R > 0. The following conditions

are equivalent
Q the set A € Qps(R);

Q for any vectors x1,x9 € A, p1 € N(z1,A), p2 € N(x2,A) such that
lp1]l = llp2ll = 1, the following inequality holds

2
(pz—p1,x2—x1>>—@- ‘
where
N(ag,A)={peX*:Ve>036>0: Vaec ANDBs(ao)
(p,a —ag) < ella—aol}-
Question

Are the conditions 1) and 2) of Proposition 1 equivalent in an arbitrary
Banach space?
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SPECIAL BANACH SPACES

Definition

The function 0x(-) : [0,2] — [0, 1] is referred to as the modulus of convezity
ox(e) = inf {1 - Ll oy € By(0), flo—yll >}
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SPECIAL BANACH SPACES

Definition

The function 0x(-) : [0,2] — [0, 1] is referred to as the modulus of convezity
ox(e) = inf {1 - Ll oy € By(0), flo—yll >}
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Definition

The function px : [0,4+00) — R is referred to as the modulus of smoothness
px(r) = sup { L=l 1+ gl =1, Jy| = 7}
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SPECIAL BANACH SPACES

Definition
The function 0x(-) : [0,2] — [0, 1] is referred to as the modulus of convezity
ox(e) = inf {1 - Ll oy € By(0), flo—yll >}

Normed space X is called unifomly convez, if dx () > 0 for all e € (0, 2]. J

Definition
The function px : [0,4+00) — R is referred to as the modulus of smoothness

px(r) = sup {letelilesl 1+ ) =1,y =7}

Normed space X is called uniformly smooth, if liIEO "Xy) =0.
T—
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PREVIOUS RESULTS

Proposition 2.

Let X be a uniformly conver and uniformly smooth Banach space. Let
px(7) <72 as 7 — 0. Then the prozimally smooth set A C X with constant
r > 0 satisfies condition 2) of Proposition 1 for some constant R > 0.

Proposition 3.

Let the convexity and smoothness moduli be of power order at zero in the
Banach space X . Let x(¢) < €2 as e — 0. Then, if the set A satisfies
condition 2) of Proposition 1, it is prozimally smooth with some constant
r > 0.

Let f and g be two non-negative functions, each one defined on a segment
[0, e]. We shall consider f and g as equivalent at zero, denoted by f(t) =< g(t)
as t — 0, if there exist positive constants a, b, ¢, d, e such that

af(bt) < g(t) < cf(dt) for ¢t € [0, ¢€].
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Definition

Let a function v : [0,4+00) — [0, 4+00) be given. The set A C X satisfies the
W-hypomonotonity condition with constant R > 0 if for some € > 0 and for
any T1,x2 € A, p1 € N(z1, A), p2 € N(x2, A), ||p1]| = ||p2|| = 1 such that
lz1 — z2|| < e, the inequality

<p2 —P1,%2 — 1;1> > —sz(”:UL]%fl”)

holds.
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Definition

Let a function v : [0,4+00) — [0, 4+00) be given. The set A C X satisfies the
W-hypomonotonity condition with constant R > 0 if for some € > 0 and for
any T1,x2 € A, p1 € N(z1, A), p2 € N(x2, A), ||p1]| = ||p2|| = 1 such that
|z1 — z2|| < e, the inequality

<p2 —P1,%2 — x1> > _R,I/J<HIBLFZII?1”>

holds.

Through Q% (R) we denote the class of all closed sets A C X that satisfy the
1-hypomonotonity condition with constant R > 0.
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Definition

Let a function v : [0,4+00) — [0, 4+00) be given. The set A C X satisfies the
W-hypomonotonity condition with constant R > 0 if for some € > 0 and for
any T1,x2 € A, p1 € N(z1, A), p2 € N(x2, A), ||p1]| = ||p2|| = 1 such that
|z1 — z2|| < e, the inequality

<p2 — P1,T2 — x1> > _sz(H:BL]%le)

holds.

Through Q% (R) we denote the class of all closed sets A C X that satisfy the
1-hypomonotonity condition with constant R > 0.

Definition

Through M denote the class of convex functions v : [0,+00) — [0, +00) such
that 1(0) = 0.
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Theorem 1.

In a uniformly convex and uniformly smooth Banach space X the following
statements are equivalent for the function ¢ € M:

Q there exists k1 > 0 such that Qpgs(R) C Q]f\}w(R) for any R > 0;
Q px (1) =0((7)) as T — 0.

We shall say that function x(7) is big-O of function y(7), and write
z(7) = O(y(7)) as 7 — 0, if the following inequality holds

lz(7)| < Aly(7)| V7 €[0,e] (for somee > 0,4>0).
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Theorem 1.

In a uniformly convex and uniformly smooth Banach space X the following
statements are equivalent for the function ¢ € 9M:

Q there exists k1 > 0 such that Qpgs(R) C Q]f\}w(R) for any R > 0;
Q px (1) =0((7)) as T — 0.

We shall say that function x(7) is big-O of function y(7), and write
z(7) = O(y(7)) as 7 — 0, if the following inequality holds

lz(7)| < Aly(7)| V7 €[0,e] (for somee > 0,4>0).

Lemma 1.

In a uniformly smooth and uniformly convex Banach space X the inclusion

(X \ int B, (0)) € Q) (1)

holds.
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Definition

We say that the function N : [0,+00) — [0, 4+00) such that N(0) = 0, satisfies
the Figiel condition if there exists a constant K such that the function N(-) on
some interval (0,€) satisfies the condition

Ao

il

<Kt2 Vo<t<s<e.
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Definition

Through 9y denote the class of functions from 9M that satisfy the Figiel
condition.
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Theorem 2.

In a uniformly convex and uniformly smooth Banach space X the following
statements are equivalent for the function ¢» € My

Q there exists ky > 0 such that Q2% (R) C Qpg(R) for any R > 0;
Q Y(e) = 0(dx(e)) ase — 0.
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Theorem 2.

In a uniformly convex and uniformly smooth Banach space X the following
statements are equivalent for the function ¥ € My

Q there exists ko > 0 such that Qﬁ?w(R) C Qpgs(R) for any R > 0;
Q Y(e) = 0(dx(e)) ase — 0.

Theorem 3.

Suppose in a Banach space X for some function ¢» € M there exist ky > 0,
ko > 0 such that the inclusions

QMY (R) c Qps(R) C Q2% (R)

hold. Then dx(¢) < px(e) < &2 as e — 0, and, therefore, the space X is
isomorphic to a Hilbert space.

G.M. Ivanov (MIPT) About weak convex sets June 30, 2015 9 /11



OPEN QUESTIONS

Hypothesis 1.

The equality Qps(R) = Q}{’,(R) holds only in a Hilbert space provided that
b(t) = &2
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OPEN QUESTIONS

Hypothesis 1.

The equality Qps(R) = Q}/\’,(R) holds only in a Hilbert space provided that
P(t) = t2.

Hypothesis 2.

If in a uniformly convex and uniformly smooth Banach space X the set A C X
belongs to the class Qps(R) and to the class Q% (r) for some function

¥ € M\ My and constants R > 0, > 0, then it belongs to the class QR (r),
where 1 (t) = ct? for some ¢ > 0.
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