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The generalized approximation problem
Let E be a real Banach space.

A set M C E is called a quasiball if M is convex closed and 0 € int M.
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The generalized approximation problem

Let E be a real Banach space.

A set M C E is called a quasiball if M is convex closed and 0 € int M.

Given A C E, z € E'\ A, we consider the problem

to minimize ¢ > 0 such that (z —tM) N A # .

The M -distance:
om(z, A) = p=inf{t > 0| (x —tM)NA # 0},

The M -projection:
Py(z,A) = AN (z — oM).
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The Minkowski functional

The Minkowski functional (or gauge functional) of the quasiball M:

pp(z) =inf {t > 0|z € tM}.
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The Minkowski functional

The Minkowski functional (or gauge functional) of the quasiball M:

pp(z) =inf {t > 0|z € tM}.

We can rewrite the M-distance:
om(z,A) =po=inf{t >0| (zx —tM)NA#0}
=inf{t>0|Ja€A: z—actM}

=1 f —
inf par(z —a),
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The Minkowski functional

The Minkowski functional (or gauge functional) of the quasiball M:

pp(z) =inf {t > 0|z € tM}.

We can rewrite the M-distance:
om(z,A) =po=inf{t >0| (zx —tM)NA#0}
=inf{t>0|Ja€A: z—actM}

=1 f —
inf par(z —a),

Py(x,A) = AN (x — oM) = argmin up(z — a).
acA
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The first motivation: the ordinary approximation problem
If M =B(0)={xz € FE : ||z|| <1} is the unit ball, then

° up,(0)(x) = [z,
e oy(z,A) = inlf4 ||z — al| is the distance from x to A;
ac

o Py(z, A) = argmin ||z — al| is the metric projection of the point = onto
acA

the set A.
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The first motivation: the ordinary approximation problem
If M =B(0)={xz € FE : ||z|| <1} is the unit ball, then

° up,(0)(x) = [z,
e oy(z,A) = inlf4 ||z — al| is the distance from x to A;
ac

o Py(z, A) = argmin ||z — al| is the metric projection of the point = onto
acA

the set A.

Instead of the norm we consider the Minkowski functional, that is a
nonsymmetric seminorm, since it is
positively homogeneous:

par(tx) = tun (), Vt>0, Veek
and subadditive:

pu(r+y) < pyr(z) +pn(y),  Ve,y € E.

So, we consider the approximation problem with respect to a nonsymmetric
seminorm.
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The second motivation: the minimal time problem
(due to Vladimir Goncharov)

Consider a control system with constant dynamics, described by the
differential inclusion

y(r) e -M
with initial position y(0) = z and the target set A.
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The second motivation: the minimal time problem

(due to Vladimir Goncharov)

Consider a control system with constant dynamics, described by the
differential inclusion

y(r) e -M
with initial position y(0) = z and the target set A.

Then

@ 9= onp(x, A) is the minimal time nedeed to attain the target set A from
x by trajectory of the differential inclusion: ¢ = inf{r > 0 : y(7) € A};

@ Pyr(xz, A) is the set of points y(p) where the optimal trajectories attain
the target set.
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The third motivation: the infimal convolution problem

The infimal convolution of the functions f : E — RU {4+oc0} and
g:E— RU{+oc0}is

(fBg)@) = inf (f(w) +gle—w), ek
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The third motivation: the infimal convolution problem

The infimal convolution of the functions f : E — RU {4+oc0} and
g:E— RU{+oc0}is

(fBg)@) = inf (f(w) +gle—w), ek

In particular, if

0, u€ A,
f(u):{ +o0, uéd A

is the indicator function of the set A, then

(fBg)(z) = mf g(z —u).
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The third motivation: the infimal convolution problem

The infimal convolution of the functions f : E — RU {4+oc0} and
g:E— RU{+oc0}is

(fBg)@) = inf (f(w) +gle—w), ek

In particular, if

0, u € A,
f(u):{ 400, ugA

is the indicator function of the set A, then

(fBg)(z) = mf g(z —u).

If, moreover, g(x) = pp(x) is the Minkowski functional of a quasiball M, then

(fB9)(r) = on(r, ), axgmin (f(w) + gl —w)) = P(z, ).
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The third motivation: the infimal convolution problem
The effective domain of a function f: F — RU{—o00,400} is
dom f={z e F| f(z) e R}.

The epigraph of fis epi f={(z,y) e EXR :y > f(x)}.
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The third motivation: the infimal convolution problem
The effective domain of a function f: F — RU{—o00,400} is
dom f={z e F| f(z) e R}.

The epigraph of fis epi f={(z,y) e EXR :y > f(x)}.

Consider the infimal convolution problem for functions f : £ — RU {+o0}
and g : E — RU {4o0}.

Assume that the function g : E — R is convex, continuous, and ¢(0) < 0.
Then epi g is a quasiball (unbounded!).

Lemma 1.

Denote M = epi g, A =epi f. For any z¢ € dom (f H g) we have

uo € axgmin (f(u) + gwo —w)) & (uo, f(uo)) € Par(z0, 4),

where zyg = (xo, (f 8 g)(xo)).
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Well posedness

So, we consider the following minimization problems

sl paie =)

and

inf (f(u)+ g(z —u)).
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Well posedness
So, we consider the following minimization problems
inf pn(z — a) (1)

and

inf (f(u) + g(z ). 2)

A minimization problem
to minimize F(x) with v € X

is called well posed if it has a unique solution z* and any minimizing sequence
{zx} C X, ie.

g, Flo) = S £

converges to r*.
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Well posedness

So, we consider the following minimization problems

inf pn(z — a) (1)
and
inf (f(u) + g(z ). 2)

A minimization problem
to minimize F(x) with v € X
is called well posed if it has a unique solution z* and any minimizing sequence

{zx} C X, ie.
lim F(xzg) = xlg(F(x)

k—o0

converges to r*.

Question. What properties of sets M and A in problem (1) and of functions
f and g in problem (2) are needed for well possedness of these problems?
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Well posedness of the ordinary approximation problem

If A is a convex closed set in
a Hilbert space H, then the
ordinary approximation problem
is well posed for any x € H.
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Well posedness of the ordinary approximation problem

If A is a convex closed set in
a Hilbert space H, then the
ordinary approximation problem
is well posed for any x € H.

If A C F is unconvex, then the solution
of the ordinary approximation problem
may be not unique even if £ = R".
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Well posedness of the ordinary approximation problem

If A is a convex closed set in
a Hilbert space H, then the
ordinary approximation problem
is well posed for any x € H.

If A C F is unconvex, then the solution
of the ordinary approximation problem
may be not unique even if £ = R".

However, if the boundary of a closed
unconvex set A is smooth, then there
is a positive number r > 0 such that
the ordinary approximation problem is
well posed for any x in r-tube around A

U'(A)={z € E|0< op,(0(x,A) <r}.
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Historical review
Federer (1959) for a set A C R™ defined

reach (A) = sup{r > 0| Pg,(0)(7, A) is a singleton Vo € U"(A)}.
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Historical review

Federer (1959) for a set A C R™ defined

reach (A) = sup{r > 0| Pg,(0)(, A) is a singleton Vo € U"(A)}

r=reach(4)>0

reach(4)=0
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Historical review

Federer (1959) for a set A C R™ defined

reach (A) = sup{r > 0| Pg,(0)(, A) is a singleton Vo € U"(A)}

r=reach(4)>0

reach(4)=0
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Federer proved that the distance function gp, (o)(-, 4) is continuously
differentiable on the set U"(A) with r = reach (A4).
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Historical review

Clarke, Stern and Wolenski (1995) introduced and studied the prozimally
smooth sets in a Hilbert space H. A set A C H is said to be r-proximally

smooth if the distance function gp, (o)(-, 4) is continuously differentiable on
U"(A).
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Historical review

Clarke, Stern and Wolenski (1995) introduced and studied the prozimally
smooth sets in a Hilbert space H. A set A C H is said to be r-proximally

smooth if the distance function gp, (o)(-, 4) is continuously differentiable on
U"(A).

Poliquin and Rockafellar (1996) introduced the notion of prox-regularity. A set
A is called uniformly r-prox-regular if

Pg,(0)(a+1z,A) = {a}, Vac A, Vze NP(a,A): 2| <1,
where
NP(a,A)={z€ E|3t>0: a€ Pp,)(a+tz,A)}.

is the proximal normal cone to a set A C E at a point a € A.

Poliquin, Rockafellar and Thibault
(2000) showed that in a Hilbert space
the class of r-proximally smooth sets
coincides with the class of uniformly r-
prox-regular sets.

] = = =
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The moduli of convexity and smoothness

The modulus of convexity of a Banach space E is

5E<e>=inf{1—M\ 2y € DB, (0), |x—y||ze}, c (0.2

The space E is called uniformly convez if dg(c) > 0 Ve € (0,2].

The modulus of convexity is of power type q if for some C' > 0 one has
0r(e) > Cel Ve € (0,2].
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The moduli of convexity and smoothness

The modulus of convexity of a Banach space E is
Op(e) = inf{l - M ‘ z,y € 9B;(0), ||z —yl| > e} , ee(0,2.

The space E is called uniformly convez if dg(c) > 0 Ve € (0,2].
The modulus of convexity is of power type q if for some C' > 0 one has
0r(e) > Cel Ve € (0,2].

The modulus of smoothness of a Banach space FE is

r+TY|+|r—T
Bu(r) :Sup{n eyl

ac,yeaBl(O)}7 T > 0.

Be(r) _

The space E is called uniformly smooth if lim, _, 1o ==

The modulus of smoothness is of power type s with s > 1 if for some ¢ > 0 one
has Bg(7) < et V7 > 0.
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Historical review

Proposition 1. (Bernard, Thibault and Zlateva (2006).)

Assume that the moduli of uniform convezity and uniform smoothness of a

Banach space E are of power types. Then for a closed set A C E the following
statements are equivalent:

(i) A is uniformly r-proz-reqular;
(ii) Pp,(0)(+, A) is single-valued and continuous on U"(A);
(iii) 0B, (0)(-; A) is continuously differentiable on U (A).
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Historical review

Proposition 1. (Bernard, Thibault and Zlateva (2006).)

Assume that the moduli of uniform convezity and uniform smoothness of a

Banach space E are of power types. Then for a closed set A C E the following
statements are equivalent:

(i) A is uniformly r-proz-reqular;
(ii) Pp,(0)(+, A) is single-valued and continuous on U"(A);
(iii) 0B, (0)(-; A) is continuously differentiable on U (A).

We have proved that statements (i) and (i7) of Proposition 1 are equivalent
provided that F is a uniformly convex Banach space without any assumption
about smoothness of E. The assumption of Proposition 1 about power type of
the moduli may be omitted. Moreover, we have extended Proposition 1 for
nonsymmetric seminorm (or a quasiball).
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Weakly convex sets
Let M C E be a quasiball.
The set of unit M-normals for a set A C E at a point a € A is defined as

Nif(a,A)={2€0M|3t>0: ac Pyla+tz, A)}.
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Weakly convex sets
Let M C E be a quasiball.
The set of unit M-normals for a set A C E at a point a € A is defined as

Nij(a,A)={2€0M|3t>0: ac Pyla+tz,A)}.

A set A C E is called weakly convez w.r.t. the quasiball M if N3, (ag, A) # 0
for some ag € A and

a € Pyla+z,A), VYac A, Vze Ni(a,A).
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Weakly convex sets
Let M C E be a quasiball.
The set of unit M-normals for a set A C E at a point a € A is defined as

Nif(a,A)={2€0M|3t>0: ac Pyla+tz, A)}.

A set A C E is called weakly convez w.r.t. the quasiball M if N3, (ag, A) # 0
for some ag € A and

a € Py(a+z,A), VYac A, Vze Ni(a,A).
Note:

o In the case of uniformly convex
space and M = B,(0), r > 0 the
family of weakly convex sets is
exactly the family of
r-prox-regular sets.

@ Any convex set A C FE is weakly
convex w.r.t. any quasiball M.
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Parabolic sets

If the quasiball is unbounded the M-
projection may be empty even for
a convex closed set A in a finite
dimensional space.
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Parabolic sets

If the quasiball is unbounded the M-
projection may be empty even for
a convex closed set A in a finite

o o -

To avoid this unwanted effect we introduce the notion of parabolic set.
A set M C E is said to be parabolic if it is closed convex and for every b € E
the set M \ (2M — b) is bounded.
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Parabolic sets

If the quasiball is unbounded the M-
projection may be empty even for
a convex closed set A in a finite

o o -

To avoid this unwanted effect we introduce the notion of parabolic set.
A set M C E is said to be parabolic if it is closed convex and for every b € E
the set M \ (2M — b) is bounded.

Note:
@ Any bounded set is parabolic.

o The epigraph of the parabola y = 22 is parabolic while the epigraph of
the hyperbola y = %, x > 0 is not parabolic.

@ The epigraph of any convex coercive function f : E — R is parabolic.
(The function f is called coercive if lim;| o0 % = +00.)
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Bounded uniform convexity

A quasiball M C FE is called uniformly convez if dps(e) > 0 Ve > 0, where

5M(€)=inf{1—HM (%ﬂ) vy €M, |lz—y] 26}-

The uniform convexity of the quasiball is essential for the metric projection to
exist and to be unique. But unbounded quasiball can’t be uniformly convex.

That’s why we introduce the following weakened modification of the uniform
convexity.
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Bounded uniform convexity

A quasiball M C FE is called uniformly convez if dps(e) > 0 Ve > 0, where

5M(e):inf{1—uM (xTer) vy €M, |lz—y] 26}-

The uniform convexity of the quasiball is essential for the metric projection to
exist and to be unique. But unbounded quasiball can’t be uniformly convex.
That’s why we introduce the following weakened modification of the uniform
convexity.

A quasiball M C E is called boundedly uniformly convez if
oym(e,R) >0 Ve > 0,VR > 0, where

on(e, R) :inf{l — un (#) : x,y € M N Bg(0), ||z — vy ZE}.
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Characterization of weakly convex sets

Theorem 1.

Let M C E be a boundedly uniformly convex and parabolic quasiball, A C E be

a closed set, Uy (A) ={x € E| 0 < onm(z, A) <1} # 0. Then the assertions
(1)—(iii) are equivalent:

(i) A is weakly convex w.r.t. M;
(ii) for any xo € Upr(A) the generilized approzimation problem

min py (z — a)

1s well posed;

(iii) the M -projection mapping x — Pp(x, A) is single-valued and continuous
on Up(A).
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Characterization of weakly convex sets

Theorem 1.

Let M C E be a boundedly uniformly convex and parabolic quasiball, A C E be

a closed set, Uy (A) ={x € E| 0 < onm(z, A) <1} # 0. Then the assertions
(1)—(iii) are equivalent:

(i) A is weakly convex w.r.t. M;

(ii) for any xo € Upr(A) the generilized approzimation problem

min py (z — a)

1s well posed;

(iii) the M -projection mapping x — Pp(x, A) is single-valued and continuous
on Up(A).

If additionally the Minkowski functional of M is Fréchet differentiable on
E\ {0}, then each statement (i)—(iii) is equivalent to

(iv) the function op(-, A) is Fréchet differentiable on Upr(A);
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Weakly convex functions

Given a function ¢g : E — RU {400} and a number ¢ > 0 we consider the
function

x
gt(x):t-g<—), Vx € E.
Note: epi g =t-epig.
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Weakly convex functions

Given a function ¢g : E — RU {400} and a number ¢ > 0 we consider the
function

gt(x):t-g<£), Vx € E.
Note: epi g =t-epig.

The g-predifferential of a function f : E — RU{+0co0} at a point z¢ € dom f is
defined by

mgf(20) = {u € dom g| 3t >0 (f B g:)(wo + tu) = f(2) + g:(tu)}-
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Weakly convex functions

Given a function ¢g : E — RU {400} and a number ¢ > 0 we consider the
function

gt(x):t-g<£), Vx € E.
Note: epi g =t-epig.

The g-predifferential of a function f : E — RU{+0co0} at a point z¢ € dom f is
defined by

7o f(x0) ={u € dom g| 3t > 0: (fHge)(wo +tu) = f(x) + ge(tu)}.
A function f: F — RU {400} is said to be weakly convezr with respect to
g: E— RU{+oc} if dom (fHyg) # 0 and
(fBg)(xo+u) = f(xo) + g(u), Vo e dom f, Vue m,f(x).

Sxy)

S

C-g,(tutxy =) Cg(utay)

0

G.E. Ivanov (MIPT) Weakly convex functions and sets 30.06.2015 18 / 30



Weakly convex functions
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Weakly convex functions

Theorem 2.

Let £ = H be a Hilbert space. Assume that a function g : H — R be defined

2
by g(x) = ”g” . Assume that a function f: H — RU {+o0} is lower
semicontinuous and dom f # (). Then the following statements are equivalent:

(i) f is weakly convex w.r.t. g;
(ii) the function z — f(z) + g(x) is convex.
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Weakly convex functions

Theorem 2.
Let £ = H be a Hilbert space. Assume that a function g : H — R be defined

2
by g(x) = ”g” . Assume that a function f: H — RU {+o0} is lower
semicontinuous and dom f # (). Then the following statements are equivalent:

(i) f is weakly convex w.r.t. g;
(ii) the function z — f(z) + g(x) is convex.

Theorem 2 implies that in a Hilbert space the weak convexity w.r.t. the

2
function g(x) = @ is equivalent to weak convexity by the terminology of

Vial and lower-C? property due to Rockafellar.
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Relations between the weak convexity of functions and
sets

Theorem 3.

Let g : E — RU {400} be a convex lower semicontinuous function, g(0) < 0,
and 0 € intdom g. Then for any function f: E — R U {400} the following
statements are equivalent:

(i) the function f is weakly convex w.r.t. the function g;

(ii) the set epi f is weakly convex w.r.t. the quasiball epi g.
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Well posedness of the infimal convolution problem

Theorem 4.

Let g : E — R be a coercive function, bounded on any bounded set, and
uniformly convex on any convex bounded set. Suppose that a function

f:E — RU{+0o0} is lower semicontinuous. The following statements are
equivalent:

(i) the function f is weakly convex w.r.t. the function g;
(ii) for any t € (0,1) and z € E the problem

min (£(u) + gi(0 — )

is well posed.
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Continuity modulus of the metric projection

Proposition 2. (Bernard, Thibault and Zlateva (2011).)

Assume that the moduli of uniform convezity and smoothness of the space E
are of power types q and s > 1, respectively. Let 0 <1’ < 5 and let the set

A C E be uniformly r-prox-regular. Then for any R > 0 the metric projection
x +— Pp, o)(x, A) is Holder continuous with the exponent % on U™ (A) N Bg(0).
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Continuity modulus of the metric projection

Proposition 2. (Bernard, Thibault and Zlateva (2011).)

Assume that the moduli of uniform convezity and smoothness of the space E
are of power types q and s > 1, respectively. Let 0 <1’ < 5 and let the set

A C E be uniformly r-prox-regular. Then for any R > 0 the metric projection
x> Pp,(0)(x, A) is Hélder continuous with the exponent % on U™ (A) N Bg(0).

y

Theorem 5.

Assume that the moduli of uniform convexity and smoothness of the quasiball
M are of power types q and s > 1, respectively. Let 0 < 1’ < r and let the set
A C E be weakly convex w.r.t. the quasiball M. Then the metric projection

x — Py, A) is Holder continuous with the exponent & on U™ (A).
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Continuity modulus of the metric projection

Theorem 5 is the direct consequence of the following one.

Theorem 6.
Let the set A C E be weakly convex w.r.t. the quasiball M,
B,(0) C M C B,.;(0) for some o, > 0. Assume that

x1,20 € E, opm(z1,A) =0€(0,1), a1 € Py(x1,A), as € Py(xa, A).

Then (1 )| |
B + x)||x1 — X2
— ao|| < 4067 | Bu
a1 — a2l < 00y (B ( min{p, 1 — o} )) ’

where &, (+) is the inverse function of the modulus of convewity 5/(-) and

B () = sup{ Y Ch) ; mu(=1y) _

x €0M, y¢€ 831(0)}

is the modulus of smoothnes of the quasiball M.
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Hausdorft continuity and selections of the intersection of
multifunctions

The Pompeiu—Hausdorff distance between A C F and C C E is
h(A,C) = max {sup 2B, (0)(a, C), sup op, (0)(c, A)} .
a€A ceC

Let (T, or) be a metric space. A multifunction F : T — 2F is called Hausdorff
continuous if for all tyg € T we have h(F(t), F(ty)) — 0 as t — to.
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Hausdorft continuity and selections of the intersection of
multifunctions
The Pompeiu—Hausdorff distance between A C F and C C E is

h(A,C) = max {sup 2B, (0)(a, C), sup op, (0)(c, A)} .
acA ceC

Let (T, or) be a metric space. A multifunction F : T — 2F is called Hausdorff
continuous if for all tyg € T we have h(F(t), F(ty)) — 0 as t — to.

Consider two Hausdorff continuous multifunctions A : T'— 2€ and
C:T —2E.
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Hausdorft continuity and selections of the intersection of
multifunctions
The Pompeiu—Hausdorff distance between A C F and C C E is

h(A,C) = max {sup 2B, (0)(a, C), sup op, (0)(c, A)} .
acA ceC

Let (T, or) be a metric space. A multifunction F : T — 2F is called Hausdorff
continuous if for all tyg € T we have h(F(t), F(ty)) — 0 as t — to.

Consider two Hausdorff continuous multifunctions A : T — 2F and

C:T — 2%,

What properties of the multifunctions are sufficient for the multifunction
F(t) = A(t) N C(t) to be Hausdorff continuous and to have a continuous
selection on 77
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Hausdorft continuity and selections of the intersection of
multifunctions
The Pompeiu—Hausdorff distance between A C F and C C E is

h(A,C) = max {sup 2B, (0)(a, C), sup op, (0)(c, A)} .
acA ceC

Let (T, or) be a metric space. A multifunction F: T — 2F is called Hausdorff
continuous if for all tyg € T we have h(F(t), F(ty)) — 0 as t — to.

Consider two Hausdorff continuous multifunctions A : T — 2F and

C:T —2F,

What properties of the multifunctions are sufficient for the multifunction

F(t) = A(t) n C(t) to be Hausdorff continuous and to have a continuous
selection on 77

Balashov and Repovs (2010) showed that to obtain the desired properties of
F(-) it suffices to assume that C(t) is closed and uniformly convex and A(¢) is
closed and convex or satisfy some condition in terms of of the modulus of
nonconvexity. The latter condition for unconvex sets may be satisfied only if
the convexity modulus of the Banach space is of the second order.
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Hausdorft continuity and selections of the intersection of
multifunctions

The following theorem in terms of weak convexity states some sufficient
conditions for F'(-) to be continuous and to have a continuous selection.
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Hausdorft continuity and selections of the intersection of
multifunctions

The following theorem in terms of weak convexity states some sufficient
conditions for F'(-) to be continuous and to have a continuous selection.

Theorem 7.

Suppose that the multifunctions A : T — 2F and C : T — 2F are Hausdorff
continuous. Assume that for any t € T the set C(t) is a quasiball and the
family {C(t)}rer is equi uniformly convez, i.e.

tlg’; dcw(e) >0 Ve > 0.

Suppose that there exists a constant r € (0,1) such that for any t € T the set
rA(t) is weakly convex w.r.t. the quasiball C(t). Assume that

Fit)=At)nCt)#0 VteT.

Then the multifunction F(-) is Hausdorff continuous and has a continuous
selection on T'.

y
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Hausdorft continuity of the intersection of multifunctions

cw A0

1) A®

o)

G.E. Ivanov (MIPT) Weakly convex functions and sets 30.06.2015 26 / 30



Hausdorft continuity of the intersection of multifunctions
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Hausdorft continuity of the intersection of multifunctions
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Hausdorft continuity of the intersection of multifunctions
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Hausdorft continuity of the intersection of multifunctions
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Hausdorft continuity of the intersection of multifunctions
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Hausdorft continuity of the intersection of multifunctions
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Hausdorft continuity of the intersection of multifunctions
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Hausdorft continuity of the intersection of multifunctions
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Hausdorft continuity of the intersection of multifunctions
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