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The generalized approximation problem

Let E be a real Banach space.

A set M ⊂ E is called a quasiball if M is convex closed and 0 ∈ intM .

Given A ⊂ E, x ∈ E \A, we consider the problem

to minimize t > 0 such that (x− tM) ∩A 6= ∅.

The M -distance:
%M (x,A) = % = inf{t > 0 | (x− tM)∩A 6= ∅};

The M -projection:
PM (x,A) = A ∩ (x− %M).
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The Minkowski functional

The Minkowski functional (or gauge functional) of the quasiball M :

µM (x) = inf {t > 0 | x ∈ tM} .

We can rewrite the M -distance:

%M (x,A) = % = inf{t > 0 | (x− tM) ∩A 6= ∅}

= inf{t > 0 | ∃a ∈ A : x− a ∈ tM}

= inf
a∈A

µM (x− a),

PM (x,A) = A ∩ (x− %M) = argmin
a∈A

µM (x− a).
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The �rst motivation: the ordinary approximation problem
If M = B1(0) = {x ∈ E : ‖x‖ ≤ 1} is the unit ball, then

µB1(0)(x) = ‖x‖,
%M (x,A) = inf

a∈A
‖x− a‖ is the distance from x to A;

PM (x,A) = argmin
a∈A

‖x− a‖ is the metric projection of the point x onto

the set A.

Instead of the norm we consider the Minkowski functional, that is a
nonsymmetric seminorm, since it is
positively homogeneous:

µM (tx) = tµM (x), ∀t ≥ 0, ∀x ∈ E

and subadditive:

µM (x+ y) ≤ µM (x) + µM (y), ∀x, y ∈ E.

So, we consider the approximation problem with respect to a nonsymmetric
seminorm.
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The second motivation: the minimal time problem

(due to Vladimir Goncharov)

Consider a control system with constant dynamics, described by the
di�erential inclusion

ẏ(τ) ∈ −M

with initial position y(0) = x and the target set A.

Then

% = %M (x,A) is the minimal time nedeed to attain the target set A from
x by trajectory of the di�erential inclusion: % = inf{τ > 0 : y(τ) ∈ A};
PM (x,A) is the set of points y(%) where the optimal trajectories attain
the target set.
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The third motivation: the in�mal convolution problem
The in�mal convolution of the functions f : E → R ∪ {+∞} and
g : E → R ∪ {+∞} is

(f � g)(x) = inf
u∈E

(
f(u) + g(x− u)

)
, x ∈ E.

In particular, if

f(u) =

{
0, u ∈ A,
+∞, u 6∈ A

is the indicator function of the set A, then

(f � g)(x) = inf
u∈A

g(x− u).

If, moreover, g(x) = µM (x) is the Minkowski functional of a quasiball M , then

(f � g)(x) = %M (x,A), argmin
u∈E

(
f(u) + g(x− u)

)
= PM (x,A).
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The third motivation: the in�mal convolution problem

The e�ective domain of a function f : E → R ∪ {−∞,+∞} is

dom f = {x ∈ E | f(x) ∈ R}.

The epigraph of f is epi f = {(x, y) ∈ E × R : y ≥ f(x)}.

Consider the in�mal convolution problem for functions f : E → R ∪ {+∞}
and g : E → R ∪ {+∞}.
Assume that the function g : E → R is convex, continuous, and g(0) < 0.
Then epi g is a quasiball (unbounded!).

Lemma 1.

Denote M = epi g, A = epi f . For any x0 ∈ dom (f � g) we have

u0 ∈ argmin
u∈E

(
f(u) + g(x0 − u)

)
⇔

(
u0, f(u0)

)
∈ PM (z0, A),

where z0 =
(
x0, (f � g)(x0)

)
.
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Well posedness

So, we consider the following minimization problems

inf
a∈A

µM (x− a) (1)

and
inf
u∈E

(
f(u) + g(x− u)

)
. (2)

A minimization problem

to minimize F (x) with x ∈ X

is called well posed if it has a unique solution x∗ and any minimizing sequence
{xk} ⊂ X, i.e.

lim
k→∞

F (xk) = inf
x∈X

F (x)

converges to x∗.

Question. What properties of sets M and A in problem (1) and of functions
f and g in problem (2) are needed for well possedness of these problems?
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Well posedness of the ordinary approximation problem

If A is a convex closed set in
a Hilbert space H, then the
ordinary approximation problem
is well posed for any x ∈ H.

If A ⊂ E is unconvex, then the solution
of the ordinary approximation problem
may be not unique even if E = Rn.

However, if the boundary of a closed
unconvex set A is smooth, then there
is a positive number r > 0 such that
the ordinary approximation problem is
well posed for any x in r-tube around A

Ur(A) = {x ∈ E | 0 < %B1(0)(x,A) < r}.
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Historical review

Federer (1959) for a set A ⊂ Rn de�ned

reach (A) = sup{r > 0 | PB1(0)(x,A) is a singleton ∀x ∈ Ur(A)}.

Federer proved that the distance function %B1(0)(·, A) is continuously
di�erentiable on the set Ur(A) with r = reach (A).
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Historical review
Clarke, Stern and Wolenski (1995) introduced and studied the proximally
smooth sets in a Hilbert space H. A set A ⊂ H is said to be r-proximally
smooth if the distance function %B1(0)(·, A) is continuously di�erentiable on
Ur(A).

Poliquin and Rockafellar (1996) introduced the notion of prox-regularity. A set
A is called uniformly r-prox-regular if

PB1(0)(a+ rz,A) = {a}, ∀a ∈ A, ∀z ∈ NP (a,A) : ‖z‖ < 1,

where
NP (a,A) = {z ∈ E | ∃t > 0 : a ∈ PB1(0)(a+ tz, A)}.

is the proximal normal cone to a set A ⊂ E at a point a ∈ A.

Poliquin, Rockafellar and Thibault
(2000) showed that in a Hilbert space
the class of r-proximally smooth sets
coincides with the class of uniformly r-
prox-regular sets.
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The moduli of convexity and smoothness

The modulus of convexity of a Banach space E is

δE(ε) = inf

{
1− ‖x+ y‖

2

∣∣∣∣ x, y ∈ ∂B1(0), ‖x− y‖ ≥ ε
}
, ε ∈ (0, 2].

The space E is called uniformly convex if δE(ε) > 0 ∀ε ∈ (0, 2].
The modulus of convexity is of power type q if for some C > 0 one has
δE(ε) ≥ Cεq ∀ε ∈ (0, 2].

The modulus of smoothness of a Banach space E is

βE(τ) = sup

{
‖x+ τy‖+ ‖x− τy‖

2
− 1

∣∣∣∣ x, y ∈ ∂B1(0)

}
, τ ≥ 0.

The space E is called uniformly smooth if limτ→+0
βE(τ)
τ = 0.

The modulus of smoothness is of power type s with s > 1 if for some c > 0 one
has βE(τ) ≤ cτs ∀τ ≥ 0.
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Historical review

Proposition 1. (Bernard, Thibault and Zlateva (2006).)

Assume that the moduli of uniform convexity and uniform smoothness of a
Banach space E are of power types. Then for a closed set A ⊂ E the following
statements are equivalent:

(i) A is uniformly r-prox-regular;

(ii) PB1(0)(·, A) is single-valued and continuous on Ur(A);

(iii) %B1(0)(·, A) is continuously di�erentiable on Ur(A).

We have proved that statements (i) and (ii) of Proposition 1 are equivalent
provided that E is a uniformly convex Banach space without any assumption
about smoothness of E. The assumption of Proposition 1 about power type of
the moduli may be omitted. Moreover, we have extended Proposition 1 for
nonsymmetric seminorm (or a quasiball).
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Weakly convex sets
Let M ⊂ E be a quasiball.
The set of unit M -normals for a set A ⊂ E at a point a ∈ A is de�ned as

N1
M (a,A) = {z ∈ ∂M | ∃t > 0 : a ∈ PM (a+ tz, A)}.

A set A ⊂ E is called weakly convex w.r.t. the quasiball M if N1
M (a0, A) 6= ∅

for some a0 ∈ A and

a ∈ PM (a+ z,A), ∀a ∈ A, ∀z ∈ N1
M (a,A).

Note:

In the case of uniformly convex
space and M = Br(0), r > 0 the
family of weakly convex sets is
exactly the family of
r-prox-regular sets.

Any convex set A ⊂ E is weakly
convex w.r.t. any quasiball M .
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Parabolic sets

If the quasiball is unbounded the M -
projection may be empty even for
a convex closed set A in a �nite
dimensional space.

To avoid this unwanted e�ect we introduce the notion of parabolic set.
A set M ⊂ E is said to be parabolic if it is closed convex and for every b ∈ E
the set M \ (2M − b) is bounded.

Note:

Any bounded set is parabolic.

The epigraph of the parabola y = x2 is parabolic while the epigraph of
the hyperbola y = 1

x , x > 0 is not parabolic.

The epigraph of any convex coercive function f : E → R is parabolic.

(The function f is called coercive if lim‖x‖→∞
f(x)
‖x‖ = +∞.)
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Bounded uniform convexity

A quasiball M ⊂ E is called uniformly convex if δM (ε) > 0 ∀ε > 0, where

δM (ε) = inf

{
1− µM

(
x+ y

2

)
: x, y ∈M, ‖x− y‖ ≥ ε

}
.

The uniform convexity of the quasiball is essential for the metric projection to
exist and to be unique. But unbounded quasiball can't be uniformly convex.
That's why we introduce the following weakened modi�cation of the uniform
convexity.

A quasiball M ⊂ E is called boundedly uniformly convex if
δM (ε,R) > 0 ∀ε > 0,∀R > 0, where

δM (ε,R) = inf

{
1− µM

(
x+ y

2

)
: x, y ∈M ∩BR(0), ‖x− y‖ ≥ ε

}
.
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Characterization of weakly convex sets

Theorem 1.
Let M ⊂ E be a boundedly uniformly convex and parabolic quasiball, A ⊂ E be
a closed set, UM (A) = {x ∈ E | 0 < %M (x,A) < 1} 6= ∅. Then the assertions
(i)�(iii) are equivalent:

(i) A is weakly convex w.r.t. M ;

(ii) for any x0 ∈ UM (A) the generilized approximation problem

min
a∈A

µM (x− a)

is well posed;

(iii) the M -projection mapping x 7→ PM (x,A) is single-valued and continuous
on UM (A).

If additionally the Minkowski functional of M is Fr�echet di�erentiable on
E \ {0}, then each statement (i)�(iii) is equivalent to

(iv) the function %M (·, A) is Fr�echet di�erentiable on UM (A);

G.E. Ivanov (MIPT) Weakly convex functions and sets 30.06.2015 17 / 30



Characterization of weakly convex sets

Theorem 1.
Let M ⊂ E be a boundedly uniformly convex and parabolic quasiball, A ⊂ E be
a closed set, UM (A) = {x ∈ E | 0 < %M (x,A) < 1} 6= ∅. Then the assertions
(i)�(iii) are equivalent:

(i) A is weakly convex w.r.t. M ;

(ii) for any x0 ∈ UM (A) the generilized approximation problem

min
a∈A

µM (x− a)

is well posed;

(iii) the M -projection mapping x 7→ PM (x,A) is single-valued and continuous
on UM (A).

If additionally the Minkowski functional of M is Fr�echet di�erentiable on
E \ {0}, then each statement (i)�(iii) is equivalent to

(iv) the function %M (·, A) is Fr�echet di�erentiable on UM (A);

G.E. Ivanov (MIPT) Weakly convex functions and sets 30.06.2015 17 / 30



Weakly convex functions
Given a function g : E → R ∪ {+∞} and a number t > 0 we consider the
function

gt(x) = t · g
(x
t

)
, ∀x ∈ E.

Note: epi gt = t · epi g.

The g-predi�erential of a function f : E → R∪ {+∞} at a point x0 ∈ dom f is
de�ned by

πgf(x0) = {u ∈ dom g | ∃t > 0 : (f � gt)(x0 + tu) = f(x) + gt(tu)}.

A function f : E → R ∪ {+∞} is said to be weakly convex with respect to
g : E → R ∪ {+∞} if dom (f � g) 6= ∅ and

(f � g)(x0 + u) = f(x0) + g(u), ∀x ∈ dom f, ∀u ∈ πgf(x0).
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Weakly convex functions

Theorem 2.
Let E = H be a Hilbert space. Assume that a function g : H → R be de�ned

by g(x) = ‖x‖2
2 . Assume that a function f : H → R ∪ {+∞} is lower

semicontinuous and dom f 6= ∅. Then the following statements are equivalent:

(i) f is weakly convex w.r.t. g;

(ii) the function x 7→ f(x) + g(x) is convex.

Theorem 2 implies that in a Hilbert space the weak convexity w.r.t. the

function g(x) = ‖x‖2
2 is equivalent to weak convexity by the terminology of

Vial and lower-C2 property due to Rockafellar.
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Relations between the weak convexity of functions and

sets

Theorem 3.

Let g : E → R ∪ {+∞} be a convex lower semicontinuous function, g(0) < 0,
and 0 ∈ int dom g. Then for any function f : E → R ∪ {+∞} the following
statements are equivalent:

(i) the function f is weakly convex w.r.t. the function g;

(ii) the set epi f is weakly convex w.r.t. the quasiball epi g.
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Well posedness of the in�mal convolution problem

Theorem 4.
Let g : E → R be a coercive function, bounded on any bounded set, and
uniformly convex on any convex bounded set. Suppose that a function
f : E → R ∪ {+∞} is lower semicontinuous. The following statements are
equivalent:

(i) the function f is weakly convex w.r.t. the function g;

(ii) for any t ∈ (0, 1) and x0 ∈ E the problem

min
u∈E

(
f(u) + gt(x0 − u)

)
is well posed.

G.E. Ivanov (MIPT) Weakly convex functions and sets 30.06.2015 21 / 30



Continuity modulus of the metric projection

Proposition 2. (Bernard, Thibault and Zlateva (2011).)

Assume that the moduli of uniform convexity and smoothness of the space E
are of power types q and s ≥ 1, respectively. Let 0 < r′ < r

2 and let the set
A ⊂ E be uniformly r-prox-regular. Then for any R > 0 the metric projection
x 7→ PB1(0)(x,A) is H�older continuous with the exponent 1

q on Ur
′
(A)∩BR(0).

Theorem 5.
Assume that the moduli of uniform convexity and smoothness of the quasiball
M are of power types q and s ≥ 1, respectively. Let 0 < r′ < r and let the set
A ⊂ E be weakly convex w.r.t. the quasiball M . Then the metric projection
x 7→ PM (x,A) is H�older continuous with the exponent s

q on Ur
′
(A).
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Continuity modulus of the metric projection

Theorem 5 is the direct consequence of the following one.

Theorem 6.
Let the set A ⊂ E be weakly convex w.r.t. the quasiball M ,
Bσ(0) ⊂M ⊂ Bκσ(0) for some σ,κ > 0. Assume that

x1, x2 ∈ E, %M (x1, A) = % ∈ (0, 1), a1 ∈ PM (x1, A), a2 ∈ PM (x2, A).

Then

‖a1 − a2‖ ≤ 4%δ−1M

(
βM

(
(1 + κ)‖x1 − x2‖
min{%, 1− %}

))
,

where δ−1M (·) is the inverse function of the modulus of convexity δM (·) and

βM (τ) = sup

{
µM (x+ τy) + µM (x− τy)

2
− 1

∣∣∣∣ x ∈ ∂M, y ∈ ∂B1(0)

}
is the modulus of smoothnes of the quasiball M .
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Hausdor� continuity and selections of the intersection of

multifunctions
The Pompeiu�Hausdor� distance between A ⊂ E and C ⊂ E is

h(A,C) = max

{
sup
a∈A

%B1(0)(a,C), sup
c∈C

%B1(0)(c, A)

}
.

Let (T, %T ) be a metric space. A multifunction F : T → 2E is called Hausdor�
continuous if for all t0 ∈ T we have h(F (t), F (t0))→ 0 as t→ t0.

Consider two Hausdor� continuous multifunctions A : T → 2E and
C : T → 2E .
What properties of the multifunctions are su�cient for the multifunction
F (t) = A(t) ∩ C(t) to be Hausdor� continuous and to have a continuous
selection on T?
Balashov and Repov�s (2010) showed that to obtain the desired properties of
F (·) it su�ces to assume that C(t) is closed and uniformly convex and A(t) is
closed and convex or satisfy some condition in terms of of the modulus of
nonconvexity. The latter condition for unconvex sets may be satis�ed only if
the convexity modulus of the Banach space is of the second order.
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Hausdor� continuity and selections of the intersection of

multifunctions
The following theorem in terms of weak convexity states some su�cient
conditions for F (·) to be continuous and to have a continuous selection.

Theorem 7.

Suppose that the multifunctions A : T → 2E and C : T → 2E are Hausdor�
continuous. Assume that for any t ∈ T the set C(t) is a quasiball and the
family {C(t)}t∈T is equi uniformly convex, i.e.

inf
t∈T

δC(t)(ε) > 0 ∀ε > 0.

Suppose that there exists a constant r ∈ (0, 1) such that for any t ∈ T the set
rA(t) is weakly convex w.r.t. the quasiball C(t). Assume that

F (t) = A(t) ∩ C(t) 6= ∅ ∀t ∈ T.

Then the multifunction F (·) is Hausdor� continuous and has a continuous
selection on T .
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Hausdor� continuity of the intersection of multifunctions
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Thank you!
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