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Abstract. Using Ramanujan’s differential equations for Eisenstein series and an idea from Ramanu-
jan’s unpublished manuscript on the partition function p(n) and the tau function τ(n), we provide
simple proofs of Ramanujan’s congruences for p(n) modulo 5, 7, and 11.

Key Words: partition congruences, Eisenstein series, Ramanujan’s lost notebook.

2000 Mathematical Reviews Classification Numbers: Primary, 11P83; Secondary, 11P82.

1. Introduction

In his paper [4], [7, pp. 210–213], Ramanujan gave proofs, for the first time, of the
the first two of his three famous congruences for the partition function p(n), namely,

p(5n+ 4) ≡0 (mod 5), (1.1)

p(7n+ 5) ≡0 (mod 7), (1.2)

p(11n+ 6) ≡0 (mod 11), (1.3)

where n is any nonnegative integer. The congruence (1.3) was stated for the first
time by Ramanujan in [5], [7, p. 230]. After Ramanujan died in 1920, G. H. Hardy
[6], [7, pp. 232–238] extracted proofs of (1.1)–(1.3) from an unpublished manuscript
of Ramanujan on p(n) and τ(n). This manuscript was published for the first time in
handwritten form in a volume [8] containing Ramanujan’s lost notebook. An expanded
and annotated version was prepared by the author and K. Ono [1]. The proofs in [6]
employ Eisenstein series.

Our objective in this paper is to give simple proofs of (1.1)–(1.3) that also utilize
Eisenstein series. The principal idea behind the new proofs is actually due to Ra-
manujan in the aforementioned manuscript. To describe this idea, we need to define
Ramanujan’s Eisenstein series. Let

P :=1− 24
∞∑

n=1

nqn

1− qn
, (1.4)

Q :=1 + 240
∞∑

n=1

n3qn

1− qn
, (1.5)
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and

R :=1− 504
∞∑

n=1

n5qn

1− qn
, (1.6)

where here and in the sequel |q| < 1. These Eisenstein series satisfy Ramanujan’s
famous differential equations [3, eq. (30)]

q
dP

dq
=
P 2 −Q

12
, q

dQ

dq
=
PQ−R

3
, q

dR

dq
=
PR−Q2

2
. (1.7)

Moreover, Q and R satisfy the well-known discriminant relation [3, eq. (44)]

Q3 −R2 = 1728q(q; q)24
∞ =: 1728

∞∑
n=1

τ(n)qn. (1.8)

In his manuscript, Ramanujan proves or states further congruences for p(n). In
particular, he proves that p(13n − 7) ≡ 11τ(n) (mod 13). To prove this congruence,
Ramanujan establishes the “identity”

(q13; q13)∞

∞∑
n=1

p(13n− 7)qn = 11
∞∑

n=1

τ(n)qn + 13J. (1.9)

He then writes, “It is not necessary to know all the details above in order to prove
(1.9). The proof can be very much simplified as follows; using (1.7) and . . . we can
show that

(Q3 −R2)7 = q
dJ

dq
+ 3(Q3 −R2) + 13J.” (1.10)

Here J = J(q) is a power series in q with integral coefficients. We use this notation
of Ramanujan throughout the paper and emphasize that J is not necessarily the same
at each occurrence. Apparently, Ramanujan realized this simplification at precisely
this juncture while writing his paper, for he did not return to his proofs of (1.1)–(1.3)
to utilize this observation and thereby simplify them. In his unpublished doctoral
dissertation, J. M. Rushforth [9] used this idea to simplify Ramanujan’s proof of (1.3),
as extracted by Hardy for [6]. In this paper, we use Ramanujan’s observation above
along with (1.7) and (1.8) to give simplified proofs of (1.1)–(1.3), with the proof of
(1.3) being precisely that of Rushforth. Another approach employing Eisenstein series
to prove congruences for partition functions was developed by A. D. Forbes [2].

For the proofs of (1.2) and (1.3), it is still necessary to use three further basic
Eisenstein series from Table I of Ramanujan’s paper [3], [7, p. 141] (but not nearly as
many identities as used in [6]), namely,

Q2 = 1 + 480
∞∑

n=1

n7qn

1− qn
, (1.11)

QR = 1− 264
∞∑

n=1

n9qn

1− qn
, (1.12)
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and

441Q3 + 250R2 = 691 + 65520
∞∑

n=1

n11qn

1− qn
. (1.13)

2. Proofs of (1.1)–(1.3)

Theorem 2.1. For each nonnegative integer n,

p(5n+ 4) ≡ 0 (mod 5). (2.1)

Proof. From the definitions (1.5) and (1.6), respectively,

Q = 1 + 5J and R = P + 5J, (2.2)

since n5 ≡ n (mod 5) by Fermat’s little theorem. It follows from (2.2) and (1.7) that

Q3 −R2 = Q(1 + 5J)2 − (P + 5J)2 =Q− P 2 + 5J

=− 12q
dP

dq
+ 5J = 3q

dP

dq
+ 5J. (2.3)

But, by (1.8) and the binomial theorem,

Q3 −R2 = 1728q(q; q)24
∞ = 3q

(q; q)25
∞

(q; q)∞
+ 5J = 3q

(q5; q5)5
∞

(q; q)∞
+ 5J. (2.4)

Combining (2.3) and (2.4) and using the generating function for p(n), we find that

q(q5; q5)5
∞

∞∑
n=0

p(n)qn = q
dP

dq
+ 5J. (2.5)

We now equate those terms on both sides of (2.5) whose powers are of the form q5n to
find that

(q5; q5)5
∞

∞∑
n=0

p(5n+ 4)q5n+5 = 5J. (2.6)

Ramanujan’s congruence (2.1) follows immediately from (2.6). �

Theorem 2.2. For each nonnegative integer n,

p(7n+ 5) ≡ 0 (mod 7). (2.7)

Proof. The first two steps of our proof are the same as those of Ramanujan and Hardy
[6], [7, p. 235]. From the definition of R, it is obvious that

R = 1 + 7J. (2.8)

Using (1.11), Fermat’s little theorem, and the definition (1.4), we also find that

Q2 = P + 7J. (2.9)

Hence, from (2.8), (2.9), and (1.7),

(Q3 −R2)2 =(PQ− 1 + 7J)2

=P 2Q2 − 2PQ+ 1 + 7J

=P (P 2 −Q)− PQ+R + 7J
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=5Pq
dP

dq
− 3q

dQ

dq
+ 7J

=6q
d

dq
P 2 − 3q

dQ

dq
+ 7J = q

dJ

dq
+ 7J. (2.10)

On the other hand, by (1.8) and the binomial theorem,

(Q3 −R2)2 = q2 (q; q)49
∞

(q; q)∞
= q2 (q7; q7)7

∞
(q; q)∞

+ 7J = (q7; q7)7
∞

∞∑
n=0

p(n)qn+2 + 7J. (2.11)

We now equate the right sides of (2.10) and (2.11) and then extract those terms in-
volving q7. Equating these terms, we find that

(q7; q7)7
∞

∞∑
n=0

p(7n+ 5)q7n+7 = 7J,

from whence (2.7) immediately follows. �

Theorem 2.3. For each nonnegative integer n,

p(11n+ 6) ≡ 0 (mod 11). (2.12)

Proof. The beginning of the proof is identical to that of Ramanujan as related by Hardy
[6], [7, pp. 235–236]. Let it suffice to say that using (1.13), one can easily show that

Q3 − 3R2 = −2P + 11J, (2.13)

and, from (1.12), it is trivial that

QR = 1 + 11J. (2.14)

Using (2.13) and (2.14), Ramanujan and Hardy [6] then prove that

(Q3 −R2)5 = P 5 − 3P 3Q− 4P 2R + 6QR + 11J. (2.15)

We refer readers to the details in [6], [7, p. 236] demonstrating (2.15).
Invoking Ramanujan’s differential equations (1.7), we find that

P 5 − 3P 3Q− 4P 2R + 6QR =(P 3 + 3PQ+ 5R)(P 2 −Q)− 5P 2(PQ−R)

− 3P (PR−Q2) + 11J

=12(P 3 + 3PQ+ 5R)q
dP

dq
− 15P 2q

dQ

dq
− 6Pq

dR

dq
+ 11J

=(P 3 + 3PQ+ 5R)q
dP

dq
− 4P 2q

dQ

dq
+ 5Pq

dR

dq
+ 11J

=3q
d

dq
P 4 − 4q

d

dq
(P 2Q) + 5q

d

dq
(PR) + 11J

=q
dJ

dq
+ 11J. (2.16)
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Now, by (1.8), the binomial theorem, (2.15), and (2.16),

(Q3 −R2)5 = q5 (q; q)121
∞

(q; q)∞
= q5(q11; q11)11

∞

∞∑
n=0

p(n)qn = q
dJ

dq
+ 11J. (2.17)

Equating the terms involving the powers q11n on both sides of (2.17), we easily deduce
that

(q11; q11)11
∞

∞∑
n=0

p(11n+ 6)q11n+11 = 11J,

from which (2.12) is apparent. �

The author is grateful to Professor Norrie Everitt, the School of Mathematics, and
the Library at the University of Birmingham for providing a copy of Rushforth’s thesis.
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