Consecutive integers divisible
by the square of their largest prime factors
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Abstract

Given fixed integers £ > 1 and ¢ > 1, let Ej, be the set of those pos-
itive integers n such that P(n +4) | n + i for each i = 0,1,...,k — 1,
where P(n) stands for the largest prime factor of n. We study the count-
ing function given by E(z) = #{n < z : n € Ej»}, showing in particular
that E(z) > z'/*/logx and that there exists a positive constant ¢ such that
E(z) < zexp{—cylogzloglogx}. Then, given an integer r > 2, we consider
the problem of searching for consecutive integers each of which is divisible by
a power of its r-th largest prime factor.
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1 Introduction

Let P(n) stand for the largest prime factor of an integer n > 2. Set P(1) = 1. Given
an arbitrary positive integer ¢ and a finite set of distinct primes, say {po, p1,- .-, Pk—1},
the Chinese Remainder Theorem guarantees the existence of infinitely many integers
n such that p¢ | n+ifori =0,1,..., k—1. However, this theorem does not guarantee
that such integers n will also have the property that P(n+i) = p; fori =0,1,..., k—1,
although such is the case in some particular instances, for example when ¢ =2, k = 3
and n = 1294 298, in which case we indeed have

1294298 = 2-61-103?,
1294299 = 3*.19.29?%
1294300 = 22-5%.7-43%

This motivates the following definition. Given fixed positive integers k£ and ¢, set
Epy={neN:Pn+i)|n+i foreachi=0,1,... k—1}.

Many elements of Eso, Fs3, Es4, o5 and Es3 4 are given in the book of the first
author [2]. However, no elements of F33 and Ejy9 are known. In fact, if n belongs to
any one of these last two sets, it can be shown that n > 103,

Nevertheless, it seems reasonable to conjecture that, given any fixed integers k > 2
and ¢ > 2, then #Ej, = oc.

This is certainly true in the particular case k = ¢ = 2, as it is an immediate
consequence of the fact that the Fermat-Pell equation 22 — 2y?> = 1 has infinitely
many positive integer solutions (z,y).



Here we focus our attention on the size of
E(z) = Egp(x) :=#{n <z :n € Eys}.

Then, for a given integer r > 2, we consider the problem of searching for consec-
utive integers each of which is divisible by a power of its r-th largest prime factor.

2 Preliminary results

Theorem 1. Let p and q be two distinct prime numbers. Then, there are only finitely
many integers n for which P(n)? | n and P(n 4+ 1)* | (n + 1) with P(n) = p and
Pn+1)=gq.

Proof. This follows immediately from the fact that, as n becomes large,
(2.1) max(P(n), P(n+ 1)) > loglogn.

How does one obtain (2.1)? There is a deep theorem in diophantine analysis which
asserts that if f(x) € Z[z] is a polynomial with at least two distinct roots, then
there exists a positive constant C' := C(f) such that P(f(n)) > C loglogn if n is
sufficiently large. This result can be found in the book of Shorey and Tijdeman [8] (see
inequality (31) on Page 134). Thus, choosing f(x) = (x + 1)(x + 2), we immediately
obtain (2.1). O

3 Evaluating the size of FE(x)

One can obtain the expected size of E(x) as follows. Let us first recall the ¥ function
defined as
U(z,y) =#{n<w:Pn) <y} (2<y<uw)

It is known that, setting u = log z/ log y, then, keeping u fixed, we have
U(z,y) = (1+o(1))p(u)z  (z = o0),
where p(u) is the Dickman function, whose behavior is given by
(3.1) p(u) = exp{—u(logu +loglogu —1+0(1))} as (u— o0)
(see for instance Theorem 9.3 in the book of De Koninck and Luca [4]).
The probability Q that P(n)? | n is
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say, as © — 0o. Here,

F0) = o (BT -2) (o2 <0 < (loga)y2)

vev v
Define
n(x) := +/log xloglog x.
Setting
(3.2)

1 1 1 1
h(v) = Eexp{—v— ( Oix —2) (log ( Oi;x —2) + loglog ( Oix —2))},

so that f(v) = (1 + o(1))h(v) as z — oo in such a way that v = o(logz) (here,
we used estimate (3.1)), we observe that the maximum of hA(v) is obtained when
v = (v/2/2 + o(1))n(x) as x — co. Substituting this value in (3.2), we obtain that

(3.3) Q = e~ (IHoM)V2n(@) (r — o).

Hence, if we could assume that P%(n) | n and P?*(n+ 1) | n + 1 are two independent
events, the following conditional result would then follow from (3.3):

(34) E(.Cl}) — x67(2+0(1))\/§n(z) _ xe*(2+o(l))\/2logzloglog:p (I N OO)

Remark 1. This method can be extended to obtain heuristic estimates for Ey ((x) for
arbitrary integers k > 2, £ > 2. Let a({) be the real number uniquely defined by

#{n < a: P(n)‘[n} = zexp(—(1 + o(1))a(O)n(w)).

Ivié [7] has given an unconditional proof of the heuristic estimate (3.3) showing in
particular that a(2) exists and a(2) = /2. We therefore conjecture that

#{n<xz:Pn+i)(n+i),i=0,1,....k—1} = zexp(—(1 + o(1))a(0)kn(z))

as r — O0.



4 The quest for a lower bound for E(x)

Theorem 2. As x becomes large,
(4.1) E(x) > 2"/*/logx.
Proof. For any prime p, we easily check that

(2p° =1 —1=4p°(p— 1)(p+1),

implying that
E(z) > z'*/log .
Under the reasonable conjecture that the set of integers n for which P(n) > P(n+1)

and P(n) > P(n — 1) is of positive lower density, the denominator on the right hand
side of (4.1) can be dropped, in which case we would get E(z) > x'/%. O

Remark 2. Another polynomial identity yielding to the same conclusion is
n(dn + 32 +1=(n+1)4n +1)>2

The integers n(4n + 3)* + 1 will be counted by E(z) whenever the conditions
P(4n+3) > P(n) and P(4n+1) > P(n+ 1) are simultaneously satisfied. The set of
integers simultaneously satisfying these conditions is believed to be of density 1/4. If

one could show that this set is indeed of positive lower density, then we would obtain
E(x) > z'/3.

Based on the above heuristics, we strongly believe E(x) to be larger than z'~¢ for
any € > 0 once x is large, which would at least support the more ambitious estimate
(3.4). The problem of proving stronger lower bounds on E(x) is however intrinsically
difficult.

Remark 3. Assuming that for some function f such that lim, . f(z) = oo,

(4.2) E(z) > z/f(z),
one can show that
(4.3) #{n < : Pln(n+1) < f(0)*} > o/ ().

This observation follows directly from the fact that

#{n <z :P(n) > f(2)=, P(n)2n} < ﬁ

The distribution of P(n(n + 1)) has been the topic of several studies and has
proven to be a very tough nut to crack. In order to hope to improve significantly our
lower bound (say to obtain E(z) > x'"°M)) one would have to show that inequality
(4.3) holds for some function f(z) satisfying f(z) = 2° as  — 0o; however, no tool
seems currently available to achieve this. Obtaining a lower bound with the right
order of magnitude would imply that inequality (4.3) holds with f(z) < exp(n(z)),
which seems a remote achievement.



5 An upper bound for F(z)
Let

U(z,y;q,0) = #{n<z:Pn)<y, n=a (modq)},
Starting from a trivial estimate in the initial range, Granville proved (see formulas

(1.2) and (1.3) in [5]) that, for any fixed positive number A and uniformly in the
range r > y > 2, ¢ < min(x,y*), and (a,q) = 1, the estimate

(5.1) U(z,y;q,a) = @‘I’q(%y) {HOA GZEZ)}

holds. By a more delicate argument, in the same paper, Granville proved the following
stronger result.

Theorem 3 (Granville). For any fized ¢ > 0 and uniformly in the range x >y > 2,
1 <q<y'*, and (a,q) = 1, we have

o1 logg | !
(5.2) U(z,y:q,a) = (@) ¥y(z,y) {1 +0a (u logy logy) } ’

where ¢ is some positive constant.

Note that (5.2) implies the lower estimate

U(z,y;q,a) > Uy(z,y)

1
¢(q)
provided ¢ is less than a sufficiently small power of y, while (5.1) shows that the
corresponding upper bound holds whenever ¢ does not exceed x and is bounded by a

fixed, but arbitrarily large power of y.
For one, we have

E(z) < Bya(z) = ze” VoM@ (1 o0,
On the other hand, recall that from the previous section, we expect to have
E(z) = ze~(3V2He)n(@) (x — o).
We will now prove an intermediate result.

Theorem 4. The inequality
E(z) < ze~@)

holds for large x with ¢ = (25/24)v2 € (V/2,2V/2).



Proof. Let 0 < a < v/2/2 be a constant whose exact value will be determined later,
and consider the interval

Lo(@) = [exp (V2/2 = a)n() ) ,exp (V2/2 + an(@))]

We split the positive integers n < z counted by F(z) in two categories.

Category 1. Numbers n < z for which both P(n) € I,(x) and P(n+ 1) € I,(z)
hold.

Category 2. Numbers n < z for which P(n) & I,(x) or P(n+ 1) & I,(x).

Let C1(z) (resp. Cy(x)) be the number of integers n < = which belong to Category
1 (resp. Category 2).

In order to count the number of integers n < z falling into Category 1 we first
consider those integers n for which the corresponding largest primes p = P(n) and
q = P(n+ 1) satisfy p > ¢ and let C(x) be their counting number. Let C7(x) stand
for the other n < z counted by Ci(x).

Writing n = mp? with P(m) < p and mp? +1 =0 (mod ¢?), we then get

(5.3) EIZ EIZ (2,p,q 7“)

where r stands for the inverse of —p? modulo ¢?. In order to be able to use the
Granville estimate (5.2), we choose a small € > 0 and relax (5.3) to

54 <Y ¥ w(prtde),
pela(z) g€la(x)
Now, using (5.2), we obtain from (5.4) that
(55) <X Y o ( ) .
p€Ely(z) qela(x)

Since

Yoo< Y o<en(-(v2r-anm),

q€lq () 1 n>exp((v2/2—a)n(x))
it follows from (5.5) that

(5.6) Ci(z) < exp (—(\/5/2 — a)n(m)) Z v (%,p%E) .
p€Ely(x) p
Setting ¥ = p and proceeding as in Section 3, we easily obtain that

(V2/2+a)n(z) ¢ 1 )
(5.7) g v (%,pQJ’E) < x/ p ( 8T ) dv.
P (V3/2-aym(z) V€' \(2+e)v  2+¢€

p€ly(z)




Bringing together (5.6) and (5.7), recalling the known estimate
(5.8) p(u) < exp(—ulogu)
(see for instance Corollary 9.18 in the book of De Koninck and Luca [4]), we obtain

(5 gj*i(x) R
' <o (- oo () 0 +o).

Setting v = ¢n(x), we get that

log x log x
—v — 1 1 1
eurgfaa}é) P ( ! (24 e o8 ((2 + 5)1}) (140 )))

1
= max ex —c— —+o(1 T
V2/2—-a<c<v/2/2+a P (( 22 +e)c ( )) i >>

e (021200~ gy o) )

(5.10) — exp ((—(\/5/2 —a) — o 5)(\1/5 2] + 0(1)) n@;)) .

Gathering (5.9) and (5.10), we obtain that

(5.11) C!(z) < zexp ((—\/5 +2a — o 6)(\1/5 o) + 0(1)) n(g;)) .

Since e can be taken arbitrarily small (it particular, it can be made to tend to zero),
(5.11) can be replaced by the simpler estimate

(5.12) Cl(x) <z exp <(—\/§+ 20 — m + 0(1)) n(x)) |

The case where ¢ > p can be treated in a similar way, this time by setting mqg? = n+1
where m < x/¢* must satisfy a congruence condition modulo p?, in which case we
obtain an upper bound for C}(z) similar to the one in (5.12), implying that in the
end we have that

(5.13)  Oy(x) < zexp ((—ﬁ+ 20 — m + 0(1)> n(x)) |

As we did in the case of C}(z), we split the counting function Cy(z) in two. Let
Ch(z) (resp. C¥(x)) be the cardinality of those numbers n < x such that P(n) & I,(x)
(resp. P(n+1) & I,(x)), so that Cy(z) < Ch(x) + CY(x).

We first deal with C%(z).



We clearly have
(5.14) Cy) < #{n < @ : P, P(n) & L(2)}.
The right hand side of (5.14) can be estimated as we did in Section 3 so that

Cy(z) < Li(z) + Ix(2),

WE/2-am@) | /]
Li(z) ::x/ p(ng—Q) dv
1

0g2 vey v

Lioga 1 1

2

IQ<$> = I‘/ _vp ( o8 % — 2) dv.
(V2/2+a)n(x) V€ v

Again using (5.8), we easily obtain that

I < xexp ((— (%ﬁ - a) - ﬁ) n(m))
I, < rexp ((— <§ +a> — ﬁ) n(x)) :

Combining these upper bounds, we obtain that

(5.15) Cy(z) < wexp ((— (? + a) — ﬁ) 77(1:)) :

The same reasoning leads to an upper bound for C¥(x) similar to the one in (5.15),
thus implying that

(5.16) Cy(z) < wexp ((— (? + a> - ﬁ) n(x)) :

The choice of a is optimal when the bounds in (5.13) and (5.16) coincide, that is
when

where

and

and

1 V2 1
V2420 - ——=-—"T"—a—-——.
22 — 4a 2 V2 +2a

The above equation simplifies to

2 —/2
2 4 — 8a?

Thus, in the end, a is given by the solution to the third degree equation

24a> — 4\/5@2 — 6a + \/§ =0.



Setting a* as the solution of this last equation, we find that a* = v/2/6, so that

1 25
ci=V2—2a*+ ———— = =\/2,
22 —da* 24
which completes the proof of the theorem. n

Remark 4. This method can be extended to show that

Ere(z) < zexp(=pB(k, On(x)),
where the constants 5(k,{) satisfy the two properties
a(l) < B(k,l) < ka(l)
and
Bk, 0) =VE (k= o0)
for any fized integer £.

6 Consecutive integers divisible by a power of their
r-th largest prime factor

In this section, we will use the prime k-tuples Conjecture, namely:

Conjecture 1. (PRIME k-TUPLES CONJECTURE (weak form)). Let k > 2 be an
integer. Let ay,...,ar and by, ..., by be integers such that each a; > 00 and for which
there ezist no fixed prime number dividing (a;n + by) - - (agn + bg) for all positive
integers n. Then there exist infinitely many integers n for which the numbers a;n + b;
fori=1,... k are simultaneously primes.

This conjecture is also believed to hold in the following quantitative form:

Conjecture 2. (PRIME k-TUPLES CONJECTURE (strong form)). Let k > 2 be an
integer. Let ay,...,a and by,..., by be integers such that each a; > 00 and for
which there exist no fized prime number dividing (ain + by)--- (agn + by) for all
positive integers n. Define S(x) as the set of integers n < x for which an + b;

fori=1,... k, are simultaneously primes. Then there exists a positive constant C
depending on ay,...,ag, by, ..., by such that
x
6.1 S(z) = (1 1))C — 00).
(61) #9() = (LHo(D)Clsy (2 20)

The above conjectures can be found in Chapter 2 of our book [4].
The upper bound implied in the above conjecture has been proved unconditionally
using sieve methods (see Chapter 2 of [6]). We state it as follows.
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Theorem 5. Let k > 2 be an integer. Let ay,...,a; and by, ..., by be integers such
that each a; > 0 and such that there exists no fixed prime number which divides
(an +by) - - (agn + by) for all positive integers n. Define S(x) as the set of integers

n < x for which a;n + b; fori=1,...,k, are simultaneously primes. Then
x

6.2 S .

(62) #5(0) < o

Given an integer n > 2, let w(n) stand for its number of distinct prime factors and
let p(n) be its smallest prime factor. Set w(1) = 0 and p(1) = 1. Given an integer
n > 2 written as n = ¢ - - - ¢2*, where ¢; < --- < ¢s are primes, and given a positive
integer r < s := w(n), we let P,(n) stand for the r-th largest prime factor of n, that
is P,(n) = gs—r41. In particular, Py(n) = P(n).

Finally, given positive integers k, ¢, r, let

E") = {neN:Pln+i)|n+i for i=0,1,... k—1},
E,grg(x) = #{ngx:nEE,(;)}.

We will now prove two conditional results and a third unconditional one.

Theorem 6. Assume that the Prime k-tuples Conjecture (weak form) is true. Given
integersr > 2, k> 1 and £ > 1, then #E,(fg = +o00.

Theorem 7. Assume that the Prime k-tuples Conjecture (strong form) is true. Given
integers k > 1 and ¢ > 1, then
x

(2) _
B () = (Tog )T+ (x — o0).

Theorem 8. Given integers k > 1 and ¢ > 1, then

T
(log x )k

Proof of Theorem 6. In fact, we will prove more, namely that given an arbitrary
integer ¢ and any k primes py < p; < --- < pr_1 with pg > k, there exist infinitely
many positive integers n such that P‘(n + i) | n + i and P.(n + i) = p; for all
i=0,1,....,k—1.

We will apply a technique used by the first author [3] to prove the existence of
infinitely many integers n such that g(n) = f(n+1) = --- = B(n+ k — 1), where
B(n) = Zp‘m p<p(n) D> assuming the Prime k-tuples Conjecture.

Let us first consider the case r = 2. Set

EZ)(z) <

10



Then let @) = Hi:ol (; and consider the system of congruences

n = Qo (mod Q3),
(63) n+1 = Q; (mod Q?),
ntk—1 = Qe (mod Q).

By the Chinese Remainder Theorem, this system of congruences has a positive solu-
tion n = ny < Q?, all other solutions being given by

n = ng +mQ? m=20,1,2,... .

Observe that

6.4 cd (P 0 =1 for i=o0.1,.. k-1
g o

Then, for each i = 0,1,...,k — 1, we have

Un + ) Q2
)
say. Observe that each p;(m) is a linear polynomial in m of the form p;(m) = a;+b;m,
where ged(a;, b;) = 1, in light of (6.4). For each i € {0,1,...,k — 1}, write a; = ala/,
where a} is the largest divisor of a; with P(a}) < k. Let also A = lem[a : 0 < ¢ <
k — 1]. Note that A is a multiple of all primes ¢ < k. Indeed, for each ¢ < k, there
exists 7 € {0,1,...,k— 1} such that q | ng +i = Q;a;, and since ¢ does not divide @);,
it follows that ¢ | a;. Now take m = A%(. Then p;(m) = al(a! + (A%/a})¢) = alq:({)
for + = 0,1,...,k — 1. If we could find an infinite sequence of positive integers
r < re < --- such that, for each positive integer j, the corresponding number g;(r;)
is a prime number larger than p,_; for = 0,1,...,k — 1, then our result would be
proved for the case r = 2. Indeed, in this case, we would have that, for each positive
integer j and each i € {0,1,...,k — 1},

n+i:n0+i+mQ2:Qi(

) — Quni(m).

Py(n +i) = Pa(Qia; ¢i(rj)) = pi,

and since by construction, we already have pf|n + i, the result would follow immedi-
ately.

But, assuming the Prime k-tuples Conjecture, there exist infinitely many integers
¢ such that qo(¢), ..., qx_1(¢) are simultaneously primes, provided that we show that
the condition that qo(¢) - - - gx—1(¢) is not a multiple of a fixed prime ¢ for all positive
integers ¢. Well, if ¢ < k, then ¢;(¢) = af (mod q) for all i = 0,...,k — 1, so in
fact qo(¢) - - - qx—1(¢) is never a multiple of such a ¢ for any ¢. If ¢ > k, then either ¢
is not one of pg,...,pr_1, in which case choosing ¢ to be any residue class different
from the residue classes a/(A?/a;)™" (mod ¢) (in total, at most k of them) will make

11



qo(€) - - - gx—1(¢) not a multiple of ¢, while if ¢ = p; for some j =0,...,k — 1, then b,
is a multiple of ¢ for all i = 0,...,k — 1, so that ¢; = a/ (mod q) fori =0,...,k—1,
and this is nonzero, for if not, then p; | a;, which is false because p; | b; and a; and b;
are coprime. This takes care of the case r = 2.

It remains to consider the case r > 3. This time, we let mg, my, ..., my_1 be
distinct positive integers satisfying the following conditions:

() god(mi,m;) = 1if i #
(i) p(m;) > p; fori=0,1,... .k —1;

(iii) w(m;) =r—2fori=0,1,....k—1;
(iv)

Then, set

ged(my,p;) = 1 forall 4,5 € {0,1,...,k —1}.

Qi=pm; (i=0,1,...,k—1)

and let Q) = H ' ;. Now consider the corresponding system of congruences (6.3).
Again, by the Chlnese Remainder Theorem, this system has a solution n = ny < Q*
and all solutions n are of the form n = ny + mQ? for some integer m > 0. Now,
proceeding along the same lines as for the case r = 2, we obtain that, for each
i=01,... k-1,

; 2

where each p;(m) is a linear polynomial in m of the form p;(m) = a; + bym, where
ged(ag, b;) = 1. And again, taking m = A?(, writing

pi(m) = ajaj + bi(A*/a})l) = ajq;(()

and applying the Prime k-tuples Conjecture to the polynomials go(¢), - - - gx—1(¢), we

can say that, for some positive integer ¢, the numbers gy(¢),q(¢),...,q_1({) are
simultaneously primes and in fact that this phenomenon occurs for infinitely many
positive integers ¢, thus completing the proof of Theorem 6. O

Proof of Theorem 7. The proof is similar to the one of Theorem 6. Indeed assume
that Py(n) = p1, Pa(n+1) =po,..., Po(n+k—1) = pi. Let @ be defined as above.
Then, according to the strong from of the Prime k-tuples Conjecture, we obtain that

1 T
E¥(x) = > z = —
i k,é(x) o (p1p2 -+~ pr)t (logx)k — (log 2)k(+e(D) (z = 00),
sP25--, Pk

thus establishing our claim. O

12



Proof of Theorem 8. We can proceed exactly as we did with the proof of Theorem
7 except that we replace the conditional equality (6.1) by the unconditional upper
bound (6.2). O

Remark 5. If we relax our definition of E,E? to

E,gg’*:{nEN:Pf(n—l—i)\n—i—z’forsomejgr and for i=0,1,...,k— 1},

then the argument developed in the proof of Theorem 6 yields unconditionally that the
sets E,grg* are infinite as long as r > k({ —1) + 1.

7 Numerical data

Let p = p(x) be the unique positive real number satisfying F(z) = 2, then we have
the following table:

10 | 10* | 10° 10* 10° 10° 107 108 107 | 10" | 10"

T
E(x) | 1 2 5 13 28 79 204 549 | 1509 | 4231 | 12072
p(x) || 0 | 0.15]0.233 | 0.278 | 0.289 | 0.316 | 0.330 | 0.342 | 0.353 | 0.363 | 0.371

8 Conjectures and related problems

We conjecture that for each pair of positive integers k, ¢, the set Ej, is non empty.
In particular, #Ej , = oo.

We also conjecture that, given any two positive integers k and /¢, there exists
a constant C' = Cj, such that any k-tuples of primes (po,p1,...,pr—1) satisfying
ming<;<x—1 p; > C, there exists n € £}, for which

(8.1) Pn+i)=p; for0<i<k-—1.

However, observe that given fixed positive integers k and ¢ and a particular k-tuples
of primes (po,p1,...,pr—1) satisfying condition (8.1) for some n € Ej,, then, by
Theorem 1, the number of such n’s is finite for £ > 2 and ¢ > 2.

While the problem of determining how often consecutive integers are divisible by
a given power of their largest prime factor is very hard, it is easy to determine how
often consecutive integers are divisible by a power of their smallest prime factors.
Indeed, one could easily show that, if p(n) stands for the smallest prime factor of
n > 2, then, as r — o0,

#{n<z:pn+i)n+i)i=01,.. k-1 =(1+0(1)xF,

for some positive constant Fy, that can be numerically computed for any given values
of k and ¢. This simple observation leads naturally to the two related following
problems:

13



1. What is the asymptotic behavior of Fj, as k and/or £ tends to infinity ?

2. What can one say about the quantity
#{n < xps(n+z)é|(n+z),z :Oa17"'7k_ 1}7

where ps(n) stands for the s-th smaller prime factor of n, if s is a function of z
and/or of n7 At first glance the problem becomes increasingly difficult when s
is a rapidly growing function of n or of x. For instance, setting s = |0.5w(n)],
one could try to examine how often consecutive integers are divisible by a power
of their middle prime factor.
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