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The twin problems of determining if a given positive integer n is prime and, if it
isn’t, finding a nontrivial factorization of it are so fundamental that they demand
serious theoretical attention. They are also peculiarly rewarding; even today one
can imagine the satisfaction Euler must have felt when he discovered that

232 4 1 = 4294967297 = (641)(6700417),

disproving Fermat’s guess that the numbers 22" + 1 are prime in general. Perhaps
this is because these problems cater to the competitive spirit; unlike many math-
ematical problems they are rather clearly graded by difficulty — my prime beats
yours if it has more digits. Whatever the reason, mathematicians from Fermat’s
time to the present have been bringing the best techniques available from all areas
of mathematics to extend the range of numbers that they can factor or prove prime.
The discovery in the 1970’s of public-key cryptography and its relation to factor-
ing and primality testing has added the profit motive as a driving force behind
understanding factoring, further stimulating work on these problems.

The elementary school method for solving both the primality proving problem
and the factoring problem is to systematically divide a candidate number N by
the numbers less than N. Either a factor turns up, or, by ruling out all potential
factors less than /N, one proves N prime. This beautiful method is, unfortunately,
completely useless for attacking the general problem once the wider world of large
numbers comes under study. For example, suppose that it is possible to do 10°
trial divisions per second. To determine if an 80 digit number is prime would require
about 1040 trial divisions, requiring about 103 seconds. This would take more than
1029 years, or far longer than the time since the big bang.

The most powerful methods today for factoring are Pollard’s Number Field Sieve
(NFS) and Lenstra’s Elliptic Curve Method (ECM), while for primality proving
the best methods, such as the Atkin-Morain method, are also derived from elliptic
curves. Using these methods, the current recordholders have been able to achieve
primality proofs of numbers of thousands of digits and factorizations of numbers of
sizes approaching 200 digits.

Describing these algorithms is a challenge for any author, because the general
subject of factoring and primality proving includes a wide spectrum of problems.
At one end of the spectrum, understanding what to expect from the running time
of these algorithms, and optimizing the parameter choices they involve, requires
deep techniques in analytic number theory. At the other end of the spectrum,
implementing the algorithms so as to get practical results at the limit of what is
possible requires expertise in the more delicate aspects of computer programming.

The book under review, Prime numbers: A computational perspective, by Richard
Crandall and Carl Pomerance, is a survey of the most important modern methods
for primality proving and factoring that represents a collaboration between two
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authors, one theoretically and one computationally inclined (Pomerance and Cran-
dall respectively). Thanks to this collaboration, the book represents a satisfying
balance between theory and practice. The authors include detailed information on
implementing these algorithms, including psuedocode and numerical examples that
can be used for testing. They also include a convincing discussion of the underly-
ing number theory, often quoting results and explaining the role they play in the
algorithms, rather than proving theorems in analytic number theory. Not exactly
a textbook in the traditional sense, this book’s informal style, open-ended prob-
lems, and myriad references capture the freewheeling nature of work in this area.
The vast assortment of problems is an outstanding source of ideas for experimental
projects for undergraduate research and also contains many suggestions for pos-
sible directions for new research at the frontiers of the subject. This book is an
excellent resource for anyone who wants to understand these algorithms, learn how
to implement them, and make them go fast. It’s also a lot of fun to read.

Prime numbers begins with an eclectic survey of problems, known results, and
“curiosities” about prime numbers. The topics include up-to-date status reports on
such chestnuts as the twin prime conjecture and the Goldbach conjecture. There
is also a survey of results related to the prime number theorem and the Riemann
hypothesis. To get a sense of the flavor of the book, look more closely at how one
of these topics is presented. Section 1.3.1 discusses Mersenne primes (primes of the
form M, = 27—1). In this brief section Crandall and Pomerance give proofs of some
elementary results on such numbers, such as the relation to even perfect numbers
due to Euler. They provide a table of known Mersenne primes as of November 2000,
where we see that Mgg72953 was the largest known proven prime at that time. They
discuss a range of conjectures about numbers M, and derive a heuristic estimate
on the chance of M, being prime that relies on Mertens’ theorem; the estimate
is that M, is prime with probability e 1n(q)/qIn(2) where v is Euler’s constant.
Finally they offer Problem 1.29, which begins by suggesting some computational
problems such as ruling out odd perfect numbers below some bound, finding an
odd number n such that o(n) > 2n where o is the sum of divisors function, and
studying numerically o(n) —n, and ends by posing an unsolved problem related to
o(n) —n with references to related work of H. Lenstra and P. Erdos. This is a truly
“wide-ranging” treatment.

Chapter 2 presents the algorithms that lie at the foundation of the techniques for
primality proving and factoring treated later in the text. These include methods
for computing greatest common divisors, effective versions of the Chinese remain-
der theorem, and Jacobi symbols. The even more fundamental algorithms con-
cerned with arithmetic (meaning elementary school arithmetic, like multiplication
and division) are treated much later, in considerable detail, in Chapter 9. The
computational perspective of the book is illustrated by the treatment of quadratic
reciprocity, which the authors state without proof. They then present an algorithm
for computing the Jacobi symbol using reciprocity in pseudocode and point out its
complexity. A proof of quadratic reciprocity, based on some computations of Gauss
sums, is posed as Problem 2.24.

The serious study of primality testing and proving begins in Chapter III of
Prime numbers, with an extensive discussion of pseudoprime tests. The simplest
of these tests is the Fermat test: Suppose that N and a are positive integers,
and a” # a (mod N); then N is composite. It is very easy (in comparison with
factoring) to compute a” mod N using for example the algorithms of Chapters 2
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and 9 of Prime numbers, and so testing the values a” mod N for several a is
a good way to test a number N for compositeness. In practice most composite
numbers are detected immediately by Fermat tests. However, there are numbers,
called Carmichael numbers, that are composite yet have the property that ¥ = a
(mod N) for all a. The smallest such number is 561, and Alford, Granville, and
Pomerance proved in 1994 that there are infinitely many more.

The idea behind the Fermat test admits considerable elaboration. The first
such is the strong pseudoprime test, which combines the Fermat test with the
observation that, if N is prime, and 22 = 1 (mod N), then z = +1 (mod N). To
apply the strong pseudoprime test, write N — 1 = 2" M with M odd and compute
the sequence of numbers a™, a?M ... a® M. If N is prime and a is not divisible by
N, then either a™ =1 (mod N) or we must see a 1 in this sequence preceeded by
a —1. There are no Carmichael-type numbers for the strong pseudoprime test; for
any composite N there is some a so that the strong pseudoprime test will detect
this fact. Such an a is called a “witness”. Witnesses are common (at least 3/4 of
the numbers are witnesses; see Theorem 3.4.4), but the smallest witness could be
large (see Section 3.4.1).

While discussions of the Fermat and strong pseudoprime test are common in
number theory texts nowadays, the treatment here is notable for its thoroughness.
Most elementary treatments of pseudoprime tests avoid completely the issue of the
distribution of witnesses, which has led to considerable interesting work in analytic
number theory, but Prime numbers summarizes the state of work on witnesses. In
addition, Prime numbers goes much further than general texts do into the entire
theory of pseudoprime testing, making the point that such tests, which go under
many names, are collectively based on the fact that the multiplicative group of a
finite field is cyclic. For example, the Lucas tests are based on the fact that if N is
prime and 22 + az + b is irreducible mod N (in other words if a® — 4b is a square
mod N which can be tested using quadratic reciprocity), then in the finite field
(Z/NZ|x])/(2? + ax + b) we must have 2V 1 = b.

As is the case throughout the book, the authors pay full attention to the prac-
tical problems involved in implementing such tests, providing pseudocode and ex-
tensive discussion, and offer many open-ended problems based on their discus-
sion. For example, problem 3.43 asks, for each k, for the first number nj with
least witness k. The authors report in one of the problems for this section that
nes = 341550071728321.

Chapter 4 turns from detecting composite numbers to proving numbers prime.
Much of primality proving is based on variants of Pocklington’s theorem; the un-
derlying theoretical idea is that if (Z/NZ)* is cyclic of order N — 1, then N is
prime. More explicitly, suppose that N — 1 = FR, with F' > R. Suppose further
that we know the complete factorization of F' and that we can find a such that

a¥"'=1 (mod N) and ged(a'N~Y/9 — 1, N) =1 for each prime q|F.

Then N is prime. Applying Pocklington’s theorem requires a partial factorization
of N — 1 into known primes. Many of the refinements of this approach are based
on getting by with an even more partial factorization (i.e. weakening the condition
F > R) or replacing (Z/NZ)* by the units in (Z/NZ)[z]/(z* + ax + b), or by a
combination of both techniques. The elliptic curve methods that are treated in
Chapter 7 are further elaborations of this idea.
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Chapter 4 concludes with a discussion of the Gauss and Jacobi sum tests of
Adelman, Pomerance, and Rumely. This method is important both theoretically
and practically: theoretically because its running time is rigorously proved to be
very nearly polynomial time in the number of digits in NV, and practically because
it is effective at proving specific large numbers prime. Prime numbers contains
a complete description of the algorithm and a proof that it works, along with a
precise statement of the result from analytic number theory needed to establish
the running time. However this algorithm is considerably more sophisticated than
the other algorithms discussed earlier, and the authors don’t provide any numerical
examples; as a result the presentation of this particular algorithm is less satisfying
(and less useful to someone planning an implementation) than that of many others
in the book.

Chapters 5 and 6 treat factoring algorithms, with Chapter 5 devoted to exponen-
tial time algorithms (meaning algorithms whose running time is O(N*) for some
k) and Chapter 6 to the Number Field Sieve (NFS) and its earlier relative, the still
powerful Quadratic Sieve (QS). QS and NFS, as well as other related algorithms
such as the Brillhart-Morrison continued fraction algorithm, are based on the sim-
ple idea of locating integers X and Y with the property that X? = Y2 (mod N).
Given such a pair of integers, one can hope that ged(X — Y, N) is a non-trivial
factor of N. If one can produce enough random pairs of congruent squares, the
odds of obtaining a factorization in this way becomes very high.

For the quadratic sieve, one creates a “factor base” of primes up to some bound
B. Then, using a technique known as “sieving”, one generates a series of squares
modulo N that factor completely using only primes up to B. Each such successful
factorization yields a relation

a> =p° - pp®  (mod N)

where p1,...,pr are the primes up to N. Given enough such factorizations (and
for the largest factorizations, collecting these relations may require thousands of
computers using their spare cycles for a year) one can use linear algebra on the
exponent vectors to construct a multiplicative combination of the a’s on the left
hand side which is congruent to a product of even powers of the p;. This gives
an equation X2 =Y? (mod N) and a chance at a factorization. The number field
sieve extends this idea but uses instead factorizations in a ring of algebraic integers.

The asymptotic running time of these algorithms depends on how likely numbers
of a certain size are to factor into primes less than B. Here one faces the basic
tradeoff that increasing B makes this factorization more likely, but also increases
the size of the linear algebra problem so that more relations are required. Using
results on the distribution of smooth numbers and making some highly unprovable
heuristic assumptions, especially in the case of the number field sieve, one can show
that these algorithms require subexponential time. For the quadratic sieve, the
accepted asymptotic estimate is on the order of exp((1+ o(1))vIn N Inln N), while
for the number field sieve it is

Time to factor N using NFS = exp ((64/9)Y3 4 o(1))(In N)*/3(Inn N')2/3).

Prime numbers includes many insights into the kinds of optimizations that the
pros use to efficiently implement NFS and QS for large factorizations. One particu-
larly useful feature is that, in the problem section, the authors provide some worked
examples, with numerics, that can be used to check a home-made implementation.
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With this book in hand, one can imagine a determined undergraduate with a back-
ground in elementary number theory and some strong programming ability coming
up with a solid QS implementation in a reasonable time.

Crandall and Pomerance also outline the heuristics supporting the running time
estimates quoted above. These heuristics require understanding the function

¥(x,y) = {Number of a < x with all prime factors p of a smaller than y}

that controls how likely the numbers a? generated by the sieving algorithms are to
factor into primes less than B. The study of this function (psixyology) is an interest-
ing branch of analytic number theory that contributes directly to the understanding
of factoring algorithms, but reflecting the book’s bias towards computation as op-
posed to analytic number theory, the authors content themselves with quoting the
results on ¢ (z,y) that they need.

Chapter 7 covers applications of elliptic curves to factoring and primality proving
and discusses the Schoof algorithm for determining the number of points on an
elliptic curve mod p. The factoring and primality proving applications of elliptic
curves are natural modifications of the methods of Chapter 5 based on finite fields.
For example, the p — 1 method discussed in Chapter 5 uses the fact that, if N is
composite, the multiplicative group (Z/NZ)* splits as (Z/AZ)* x (Z/BZ)*; we
could hope to find a power M and an integer mod N so that ¢™ = 1 (mod A)
but ™ # 1 (mod B); then (a™ — 1, N) would detect a factor of N. The elliptic
curve method relies similarly on the idea that the group of sections E(Z/NZ) on an
elliptic curve over Z/N Z splits as E(Z/AZ) x E(Z/BZ), and we could hope to find
a point P on F and a multiple b so that [b]P = 0in E(Z/AZ) but not in E(Z/BZ).
This phenomenon can easily be detected in the course of the computation of the
multiples of P and reveals a factor of IV.

The influence of a computational perspective shows up rather strikingly in the
elliptic curve chapter. The authors quote Hasse’s famous theorem that the number
of points on E mod p is within 2,/p of p + 1, and they spend a significant amount
of time analyzing the formulae used to compute multiples of points on F, trying to
reduce the number of time consuming operations like inversion modulo N. As with
the QS and NFS, they provide pseudocode and numerical examples which will be
very helpful to anyone setting out to construct an ECM implementation.

The other topics of Chapter 7 are primality proving using elliptic curves and point
counting on elliptic curves via Schoof’s algorithms. This is one of the few places
where these topics are treated in a reasonably comprehensive and yet accessible
way.

Chapter 8 introduces some applications of prime numbers to “applied” prob-
lems. The cryptographic applications are widely known and widely discussed, and
they are treated here with dispatch. More interesting, and again a good source
of projects, are the sections on Monte Carlo methods, quantum computation, and
random number generators.

The book concludes with a survey of methods for carrying out multiple precision
integer arithmetic and fast polynomial arithmetic. This topic tends to be neglected
in textbook treatments of number theoretical algorithms, but it is absolutely central
to the efficient implementation of any of the algorithms discussed earlier in the book.
The authors discuss many of the different flavors of the Fast Fourier Transform, with
pseudocode and numerical examples, along with references to specific applications
in factoring. This chapter includes 21 pages of problems for further investigation.



454 BOOK REVIEWS

For a variety of reasons, Prime numbers: A computational perspective brings
to mind Knuth’s Art of computer programming, especially Volume II of that work.
Some of this resemblance is superficial — for example, both books include algorithms
in pseudocode, and both include problems of widely varying difficulty. Indeed,
Crandall and Pomerance might have helped their readers a bit by including some
form of Knuth’s system of rating problem difficulty. Some of the resemblance is a
feature of subject matter; many of the topics treated by Crandall and Pomerance
figure also in Knuth’s work, and indeed on many of these topics, such as fast mul-
tiplication and the euclidean algorithm, Knuth has a great many relevant things to
say. But most importantly, Prime numbers, like Knuth’s work, teaches the unity
of mathematics, and the inherently mathematical nature of efficient computation,
by freely drawing on a wide range of mathematical techniques to illustrate compu-
tational problems from many points of view and by emphasizing the mathematical
ideas which make efficient computation possible. It’s rare to say this of a math book,
but open Prime numbers to a random page and it’s hard to put down. Crandall
and Pomerance have written a terrific book.
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