R1. SOFTWARE DIVERSITY IN ETHEREUM

The State of Software Diversity in the Software
Supply Chain of Ethereum Clients

Noak Jonsson

Abstract—The software supply chain constitutes all the re-
sources needed to produce a software product. A large part of
this is the use of open-source software packages. Although the
use of open-source software makes it easier for vast numbers of
developers to create new products, they all become susceptible to
the same bugs or malicious code introduced in components out-
side of their control. Ethereum is a vast open-source blockchain
network that aims to replace several functionalities provided
by centralized institutions. Several software clients are indepen-
dently developed in different programming languages to maintain
the stability and security of this decentralized model. In this
report, the software supply chains of the most popular Ethereum
clients are cataloged and analyzed. The dependency graphs of
Ethereum clients developed in Go, Rust, and Java, are studied.
These client are Geth, Prysm, OpenEthereum, Lighthouse, Besu,
and Teku. To do so, their dependency graphs are transformed
into a unified format. Quantitative metrics are used to depict
the software supply chain of the blockchain. The results show a
clear difference in the size of the software supply chain required
for the execution layer and consensus layer of Ethereum. Varying
degrees of software diversity are present in the studied ecosystem.
For the Go clients, 97% of Geth dependencies also in the supply
chain of Prysm. The Java clients Besu and Teku share 69% and
60% of their dependencies respectively. The Rust clients showing
a much more notable amount of diversity, with only 43% and
35% of OpenEthereum and Lighthouse respective dependencies
being shared.

Sammanfattning—Mjukvaruleverantorskedjan sammanfattar
all resurer som behovs for att producera en mjukvaruprodukt.
En stor del av detta dr anvindningen av 6ppen killkod. Trots att
anvindningen av oppen Killkod tillater snabb produktion av nya
produkter, utsétter sig alla som anviinder den for potentiella bug-
gar samt attacker som kan tillféras utanfor deras kontrol. Ethere-
um ir ett stort blockkedje néitverk baserad pa éppen kiillkod som
forsoker konkurera med tjinster som tidigare endast erbjudits
av centraliserade instutitioner. Det finns flera implementationer
av mjukvaran som implementerar Ethereum som alla utvecklas
oberoende av varandra i olika programmerings sprak for att 6ka
stabiliteten och sikerheten av den decentraliserade modellen. I
denna rapport studeras mjukvaruleverantorskedjorna av de mest
populéra klienterna som implementerar Ethereum. Dessa utveck-
las i programmeringspraken Go, Rust, och Java. Dom studerade
klienterna dr Geth, Prysm, OpenEthereum, Lighthouse, Besu, och
Teku. For att genomfora studied transformeras klienternas mjuk-
varuleverantorskedjor till ett standardiserat format. Kvantitiva
matt anviinds for att beskriva dessa leverantorskedjor. Resultaten
visar en stor skillnad i storlek av leverantorskedjor for olika
lager i Ethereum. Det visas att det finns en varienda mangfald
av mjukvara baserat pa de sprak som klienter ir utvecklade med.
Leverantorskedjorna av Go klienter sammanfaller i princip fullt,
medan de av Java klienter sammanfaller med en stor majoritet,
och de av Rust Kklienter visar pa mest mangfald i mjukvarupaket.

Index Terms—Software Supply Chain, Dependency
Graphs, Open Source Software, Software Diversity,
Ethereum, Blockchain

Supervisors: Benoit Baudry, César Soto-Valero

TRITA number: TRITA-EECS-EX-2022:183

I. INTRODUCTION

The software supply chain is comprised of all resources,
human and technological, required to produce a software pro-
duct [1]. A significant component of this software supply chain
are package managers, which are programming language-
specific collections of open-source software packages. Package
managers distribute open-source packages through online re-
positories and provide methods of collecting all dependencies
required for a certain package. These package managers are
often referred to as ecosystems, as the packages they constitute
are interconnected through dependencies. The use of open-
source packages from these software ecosystems is not only
limited to use for other open-source projects. Instead, it has
been shown that 85% of the source code for an average enter-
prise application is from open source packages [2]. Although
the reuse of open-source software packages can allow faster
development of new projects, all dependent projects become
susceptible to the same bugs that emerge in a dependency, as
well as malicious code injections.

Software supply chain attacks are one of the most prevalent
methods used by malicious actors in order to compromise
software, and a growing concern for both developers and
policy makers [3]. One common method is Typosquatting,
where malicious actors release software packages with names
that are slight spelling variations of popular open-source pac-
kages, hoping to trick developers into including these infected
packages [4]. Malicious actors may also try to infect existing
packages by gaining access to the repository where the source
code is hosted either by social engineering or by hacking the
account of someone who already has access.

The Ethereum blockchain is a distributed software platform
built entirely using open-source software. Through the use of
smart contracts, digital assets can be exchanged between the
parties involved without the need for a centralized governing
institution. These smart contracts can be written to provide
functionalities such as financial services, digital art trade,
online games.

There are exist several Ethereum clients, developed in
different languages. A vast network of nodes, computers which
run these clients, all communicate each other in order to
host the Ethereum Virtual Machine. The clients are split into
to groups; the execution layer (Ethl), which is responsible
for appending new transactions to the blockchain, and the

consensus layer (Eth2), which is responsible for making sure
the added transactions are distributed among all the nodes.

In this paper, we study the software supply chain of
three pairs of Ethereum clients. The analysis is narrowed
down to focus specifically on the software diversity of open
source dependencies and their suppliers. The studied clients
are GoEthereum and Prysm, developed in Go; Besu and
Teku, developed in Java; and OpenEthereum and Lighthouse,
developed in Rust. These clients are chosen for two reasons:
1) they include the most popular clients in use, combined they
total over 90% of all nodes in the Ethl execution and Eth2
consensus layer currently in use; 2) the existence of a client
written in a particular language in both Ethereum layers.

The analysis was conducted by download and build each
client from the the source code. Outputting the dependency
trees of each client using their native package manager.
Reformatting this output into a uniform format and finally
performing analysis on each tree individually, and comparing
trees from the same ecosystem.

In summary, this paper makes the following contributions:

o The notion Unified Dependency Tree as a way to study
the diversity in the software supply chain of distinct
Ethereum clients.

¢ Novel metrics regarding Ethereum Clients including: total
dependencies, unique direct dependencies, unique transi-
tive dependencies, and unique suppliers.

« Insights into the distribution of suppliers within different
ecosystems which validates past research.

II. BACKGROUND
A. Software Supply Chain

Software supply chains are all the resources required to
produce a software product. This includes human resources,
such as developers, teams, and larger organizations. Technical
procedures such as automatic testing and build processes [5].
Lastly, this also includes other software products such as
standard libraries, tools, and third-party software packages.
The focus of this paper will be on the software diversity in
software supply chains with regard to third-party open-source
software (OSS) packages and their suppliers.

The use of OSS by developers to create a new product is
a cornerstone of modern development practices. In order to
feasibly facilitate the reuse and distribution of OSS, develo-
pers often rely on package managers. Package managers are
programming language-specific repositories of OSS packages
[6]. Not only do they host the source code for OSS packages,
but they also provide methods for downloading, updating, and
building packages. Examples of package managers are Gradle
and Maven for Java, PyPi for Python, and Cargo for Rust.
Go, which is used to develop two of the clients studied in this
report, does not utilize a package manager. Although Go does
not have central repositories, the language does provide a tool
for downloading and updating packages.

In order to utilize the functionality provided by an OSS pac-
kage in a project, a developer must declare it as a dependency.
Software dependencies are packages that are required by anot-
her package in order to function. Declaration of dependencies

R1. SOFTWARE DIVERSITY IN ETHEREUM

is accomplished through the use of a file in the root of the
project directory.

Listing 1 shows an example of how dependencies are listed
for a project developed in the language Rust, utilizing the
cargo package manager. Common for all package managers
is to list the name of the package, which is unique. Most,
although not all, package managers also require a specific
version of the dependency package to be declared. Any
package referenced explicitly as a dependency in a project
is defined as a direct dependency on said project. As direct
dependencies themselves may have their own dependencies,
they are also dependencies to the project. These dependencies
are defined as transient dependencies.

[package]

description = "OpenEthereum"

name = "openethereum”

NOTE Make sure to update util/version/Cargo.toml
as well

version = "3.3.4"

license = "GPL-3.0"

authors = [

"OpenEthereum developers",
"Parity Technologies <admin@parity.io>"

]

[dependencies]

blooms-db = { path = "crates/db/blooms-db" }
log = "0.4"

rustc-hex = "1.0"

docopt = "1.0"

clap = "2"

term_size =
textwrap =

num_cpus =

"o, 3"
"o, 9"
nyp.omn

Listing 1. Example of dependency declaration in Rust using Cargo.toml file.

B. Software Supply Chain Attacks

Software supply chain attacks are directed attempts to inject
malicious code into a software package in order to compromise
any and all software packages which are dependent on the
targeted package. In 2021 the EU Agency for Cybersecurity
reported that 66% of cyber attacks target the software supply
chain [7]. Decan et al. [6] analyzed the trends in seven
different software ecosystems. They found that a majority
of software packages are dependent on a minority of core
packages. This highlights how a successful and well-targeted
attack can affect the majority of a software ecosystem.

Software supply chain attacks targeting the dependency tree
can be split into two categories; those infecting existing pac-
kages and those that create new packages containing malicious
code [4]. When infecting an existing package, culprits often
rely on existing known vulnerabilities in the code. Otherwise,
they need access to the project, which can be achieved through
social engineering, i.e., manipulating their way to get main-
tainer privileges for the project or by gaining the credentials
of a person who is a maintainer of the project. When creating
new packages containing malicious code, the culprit must still
inject the package into some software supply chain. This is
most commonly achieved through Typosquatting, which is
when a package given a name that is a slight spelling variation
from that of a popular package. For example a package could

be named ’bloons-db’ instead of ’blooms-db’, as seen in
Listing 1. Other ways of injecting a malicious package include
creating a Trojan Horse, where a package claims to provide
some functionality but has a built-in backdoor mechanism to
allow culprits to extract data from the end-users of the project.

C. Software Diversity

Software diversity is a concept with a broad scope in the
study of software development [8], [9]. In general, it refers
to the existence of multiple software components which are
functionally similar, but implemented and created in separate
ways. The aim of software diversity is to encourage fault
tolerance, security, and reusability [10].

This paper deals mostly with the concept of design diversity
and managed natural diversity. Design diversity refers to the
practice of independently developing multiple software pro-
jects according to the same specification. Utilizing these pro-
jects simultaneously yields a more fault tolerant system due to
the independence of failures among the diverse solutions-[10].
Managed natural diversity emerges as a result of development
practices. As open source licenses give anyone the right to
copy, modify, and redistribute an OSS packages, this practice
has the potential to yield vast amounts of software diversity
[11]. The opposite of software diversity is mono-culture, where
a single software supplier, or a single package, is heavily
reoccurring in a software supply chain. Mono-culture provides
malicious actors a definite target from which a malicious code
injection could have a tremendous impact.

D. Ethereum Ecosystem

Ethereum is an open-source decentralised software platform
used for finance, digital art, and a host of web3 applications
[12]. Based on blockchain technology, Ethereum functions by
allowing users to share and trade digital assets through smart-
contracts, which are recorded in a digital ledger. The contents
of the digital ledger are maintained and agreed upon by a
vast number of nodes, which are computers that support the
Ethereum Virtual Machine (EVM).

The Ethereum Foundation promotes design diversity, in the
form of client diversity [13]. There is no official implemen-
tation, rather there are several clients developed in different
programming languages, as to increase software diversity by
leveraging several ecosystems of OSS packages.

The function of the execution layer (Ethl) is to add new
blocks of transactions to the shared state of the network. Eth1l
uses a proof-of-work (PoW) mechanism in order to ensure
that the new state is valid. When a transaction occurs, and is
to be added to the blockchain, nodes running an Ethl client
compete against each other in completing a computationally
heavy task. The first node to complete the task is allocated
the block, and all other nodes with point to it as the correct
state. The currently available Ethl clients, the language they
are developed in, and the percentage of nodes running them
are shown in Table I.

The function of the consensus layer (Eth2) is to make sure
that the updated state of a new block being added to the
chain is distributed amongst all the nodes in the network. Eth2

R1. SOFTWARE DIVERSITY IN ETHEREUM

Tabell 1
EXECUTION LAYER (ETH1) CLIENTS
Client Programming Language | Distribution
GoEthereum Go 84.33%
Erigon Go 7.26%
OpenEthereum Rust 5.77%
Nethermind C# 1.78%
Besu Java 1.22%
Tabell 1I
CONSENSUS LAYER (ETH2) CLIENTS
Client Programming Language | Distribution
Prysm Go 38.34%
Lighthouse Rust 33.51%
Teku Java 16.51%
Nimbus Nim 11.54%
Lodestar Typescript 0.01%

uses proof-of-stake (PoS) validation. This consensus method
is more energy efficient, as no computationally heavy task
is required. In this method, nodes stake their own capital
as collateral in order to ensure that they behave correctly.
The currently available Eth2 clients, the language they are
developed in, and the percentage of nodes running them are
shown in Table II.

As the Ethereum blockchain is used to provide functio-
nalities such as cryptocurrencies and decentralized finances
any vulnerabilities in its software supply chain can have dire
economic consequences. Mitigating this risk involves both
client diversity, as a critical bug in the Eth2 consensus layer
of a client used by more than 33% could cause the blockchain
to go offline, as well as diversity of dependencies across the
Ethereum ecosystem so that multiple clients are all affected
by the same bug or malicious code injection [13].

III. RELATED WORK

In 2021 the EU Agency for Cybersecurity reported that 66%
of cyber attacks target the software supply chain, and provide
an outline for software consumers to navigate the growing
threats [7]. Following an Executive Order in 2021 to secure
the Software Supply Chains in the USA, the Cybersecurity
and Infrastructure Security Agency of USA released a paper
with the aim to introduce standards for software supply chains
to ensure their security [7].

In 2017, Decan et al. published an analysis comparing
the evolution of dependency trees in 7 popular software
ecosystems. Common trends among all studied ecosystems
were that they all tend to grow in number of projects and
dependencies. Also, in every ecosystem the majority of pro-
jects are dependant on a minority of core projects. Diffe-
rences between ecosystems included the degree of transitive
dependencies, where some ecosystems remained stable while
others saw an increase in the ratio of transient dependencies to
direct dependencies over time. The paper also introduced new
quantitative metrics to determine the health of ecosystems [6].

One major contribution to the study of software supply
chains and software ecosystems is the Maven Dependency
Graph. Presented in a 2019 paper, the Maven Dependency

R1. SOFTWARE DIVERSITY IN ETHEREUM

%

Data Collection

Data Processing Analysis

Qutput & .
Run build Dependency Raw () 1 Oiifed Tree Analysis
Download process to Tree {_usmg | Dependency . Strip excess Pame s »| Dependency
Source Code collect all native Tree data | Tree
dependencies package \
manager)

Ecosystem Analysis

R

Unified
Dependency
Tree

(From other
client)

Figur 1. Data pipeline for the analysis of the software supply chain of a single Ethereum client.

Graph is a snapshot of the Maven Central Repository, a
package manager for Java projects. The dependency graph
contains 2,4 million artifacts and 9 million dependencies,
stored in a graph database with an accompanying API for
querying the data set [14].

Studying software supply chains in PyPI, the package
manager for Python projects, Benthal et. al introduced a model
for identifying hot spots of risk in ecosystems [15]. These hot
spots are determined through static analysis and show projects
that is highly connected to the rest of the ecosystem through
reverse dependencies, and is exposed to a large number of
vulnerabilities through their dependencies.

In 2020, Ohm et al. released a paper reviewing several
malicious software packages, which have been used to attack
software supply chains, and outlined the main methods used to
inject malicious code into the supply chain. Most commonly
malicious code is introduced through typosquating [16], rele-
asing a project with a name with a slight variation to that of
a prominent package [4]. The second most common way is
by infecting an established project, which requires the culprit
to have gained access to the project either by taking over
a maintainers credentials, or becoming a maintainer through
social engineering.

Conducting a longitudinal analysis of Java projects from
the Maven ecosystem Soto-Valero et al. focused on the usage
status of dependencies in projects. They found that bloated
dependencies, that is dependencies which are not actually used
by the project, in most cases remain bloated [17]. Also, they
showed that bloat tends to grow over time, even in cases where
developers remove direct bloat. This shows that developers sel-
dom encounter negative implications from removing currently
bloated dependencies, and that all developers who maintain
projects need to be diligent in pruning their supply chain for
the entire ecosystem to improve.

Pashchenko et al. studied the supply chains of 200 popular
Java projects, which totaled over 10000 distinct dependencies,
in order to analyse the effect of software vulnerabilities.
Their study showed that 20% of known vulnerabilities are
never deployed and do not pose a threat to the dependant

project [18]. It was also found that 81% of vulnerabilities
in a projects supply chain could be fixed by updating the
vulnerable dependency to a newer version. Of the studied
vulnerable dependencies 1% were halted, ie abandoned by
their maintainers, and posed a severe problem for downstream
projects.

In 2020 Zamani et al. conducted a review of 40 security
breaches of the Ethereum blockchain. They found that vul-
nerabilities in clients was the 2nd most prominent cause of
security incidents [19].

Aumasson et al. released a security review of the Ethereum
beacon chain. They discuss that although bugs in dependencies
required for cryptography procedures would have more severe
outcomes to the performance of the network, dll dependencies
execute code at the same privilege leveldnd therefore potenti-
ally harmful [20].

In 2022 Soto-Valero et al. released the first study into
the software supply chain of Ethereum clients from the Java
ecosystem, and looked at the evolution of the supply chains
over a one year period. They found that both the number of
dependencies and suppliers increased over this period. They
also found that the majority of dependencies were shared
amongst both clients supply chain. [21]

In a 2022 report Enck et al. summarized 3 summits they
held with organisations representing both enterprise and USA
policy makers discussing challenges in securing the software
supply chain. [3]. A frequently recommended security measure
which was discussed and disagreed upon was that of automatic
version updates of dependencies. Although security experts
maintain this practice eliminates exposure to vulnerabilities,
many developers argued this often led to bugs and breaking
changes being introduced to their projects due to unmature co-
de. It was also mentioned that there have been incidents where
software projects had been infected with malicious code, as
mentioned in [4], which shows that automatically updating is
not a bullet proof strategy. Another point of discussion was the
practice of providing a standardized Software Bill of Materials
(SBoM).

IV. METHODOLOGY

A. Project Pipeline

In order to generate a data set depicting the software supply
chain of the Ethereum ecosystem, each studied client was
treated according to Figure 1 individually. For each client,
the latest version of the source code was downloaded from
their respective GitHub repository. The build process was
then invoked in order to download all direct and transient
dependencies. The client software was then run to ensure
that all dependencies were fetched and that the software was
functional. Using the native package manager of the client
their dependency tree was output. From this step in the
pipeline until the analysis of the unified dependency trees,
the implementation of the procedure varied depending on the
package managers used. In general terms the next step was to
strip the raw dependency tree of data irrelevant to the study.
Examples of irrelevant data include internal (non-third-party)
dependencies as well as paths pointing to the location of de-
pendency source files on the system. Next, the raw dependency
tree was parsed. Individual packages were formatted according
to the artifacts schema, and the dependency relationships were
formatted according to the dependency schema, both defined
in IV-B. This process differed depending on the format of the
raw dependency trees, which were either nested trees or lists
of package pairs. Once the data was structured in the unified
dependency tree format, the same procedure for analysis was
utilized for all clients. Individual trees were analysed in order
to collect metrics defined in section IV-C. Unified Dependency
Trees of clients developed in the same programming language
were also analysed together in order to collect data regarding
to the intersection of their dependencies. Details of differences
in implementation, and technical difficulties, of clients are
described below.

1) Go: Package management in Go differs from most other
programming languages in that it does not utilize a third-party
package manager, nor a central repository to host software
packages. Where packages are hosted is instead left up to
the supplier. From manual inspection of the dependencies in
the studied Go clients, GitHub is the most common hosting
solution. Go does not use differentiate dependencies by scope,
rather all dependencies are compiled when build procedures
are invoked. In order to define dependencies in a Go project,
a developer lists each dependency by the URL which points
to where the package is hosted followed by its version. This
is done in a file named go.mod in the project directory.
The command go mod graph will output a list of all
dependencies in the project, including internal non-third-party
dependencies, with each line containing a dependent package
and its dependency separated by a space. In order to remove
internal dependencies, the command go list -m is used
to curate a list of third party packages. These lists are used
together to ensure that the unified dependency tree only
consists of third party dependencies.

2) Rust - Cargo: The Ethereum clients written in Rust all
use the Cargo package manager. All dependencies for a project
are listed in a file named Cargo.lock. The dependency
tree for a Cargo project can be output using the cargo

R1. SOFTWARE DIVERSITY IN ETHEREUM

tree command. The output of this command is a nested tree
structure.

3) Java - Gradle: The Ethereum clients written in Java
all use the Gradle package manager. Projects using gradle
lists all dependencies in a file named build.gradle. The
dependency tree is output using the command gradle -g
dependencies. The output consists of several nested trees,
separated by the scope of the dependencies. The output also
includes non-third-party dependencies, however these were
easily identified through machine-readable means and removed
systematically.

B. Unified Dependency Tree

As seen in the end of section 1, the collection of data
regarding a projects software supply chain is not trivial, and
differs greatly between package managers. In order to faci-
litate easier analysis of supply chains across several software
ecosystems a uniform format for this data is desirable. Also, as
efforts are being made to introduce a the practice of providing
software bill-of-materials (SBoM) in the software industry, a
standardised model for supply chains is needed [3]. In this
report, the notion of a Unified Dependency Tree is introduced.
The model defines data structures using json format, as it is
structured text-based format which is both human-readable and
recognized by several scripting languages [22]. The model
represents software packages using the data type Artifact.
This structure has four key-value pairs which are, artifactld,
which is the name of the package, groupld, the supplier of the
package, version, and finally the gav, which is a concatenation
of the first the values. The gav is used as the unique identifier
for the artifact. All the dependencies for a project are stored
in a json object. The unique id gav of each dependent artifact
in the project is entered into this object and points to a list of
the gav of all its dependency artifacts.

C. Metrics

For the analysis of individual clients the following metrics
were collected

« Total dependencies

« Unique direct dependencies

« Unique transient dependencies

o Unique suppliers

Total dependencies is the sum of all dependencies. A
package which is a dependency of several packages is counted
once for each dependent package. If a dependent package
is featured multiple times, its dependencies are only counted
once for the dependent package.

Unique dependencies is the sum of all packages which the
client is directly dependent upon as declared in their source
code according to the methods described in section IV-A.

Unique transient dependencies are the sum of all packages
which are featured in the dependency tree, but not directly de-
pendent. Packages which are dependencies to several packages
are only counted once.

Unique suppliers are the sum of all suppliers of packages
featured in the dependency tree. Suppliers who provide more
than one package, or who supply a package which is featured
multiple times, are only counted once.

V. RESULTS
RQI. What is in the supply chain of Ethereum Clients?

After analyzing all Ethereum clients individually, there is
an evident size difference between the supply chains of the
two Ethereum layers as shown in Table III. Besides Besu
having more unique direct dependencies than Teku, the supply
chain metrics gathered are much larger for the Eth2 clients
compared to the Ethl clients of the same ecosystem. The
biggest difference is seen in the Go ecosystem, in which the
metrics of the Eth2 client Prysm is at least twice the size of
the metrics of the Ethl client Geth.

All the Ethl clients require roughly the same amount
of unique direct dependencies, while having vastly different
amounts of unique transitive dependencies. For Geth (Go),
there are 3.2 unique transient dependencies per unique direct
dependencies; for OpenEthereum (Rust) this ratio is 5.7; for
Besu (Java) it is 3.0. Although the Eth2 clients have vastly
differing amounts of unique direct dependencies, the ratio of
unique direct dependencies to unique transient dependencies
are similar to the Ethl clients from the same ecosystem; Prysm
(Go) 4.3; Lighthouse (Rust) 5.6; Teku (Java) 3.0.

There are no clear patterns between the number of sup-
pliers in the different Ethereum layers. There are however
clear similarities between the number of suppliers per unique
dependencies between clients written in the same ecosystem.
For the Go ecosystem each supplier provides on average 1.7
and 2.0 unique artifacts for Geth and Prysm respectively. For
the Rust ecosystem each supplier provides on average 1.5
and 1.3 unique artifacts for OpenEthereum and Lighthouse
respectively. For the Java ecosystem this value is 2.7 and 2.4
for Besu and Teku respectively.

RQ2. What is the diversity of the software supply chain of
Ethereum across ecosystems?

Looking at figures 2, 3, and 4, there is a drastic difference
in software diversity between the studied ecosystems. For
Go, shown in figure 2, there is nearly a complete overlap
of unique dependencies. 95% of the unique dependencies
which are required by Geth are also dependencies of the
Prysm client. Of the overlapping dependencies the largest
providers of monoculture are btcsuite, influxdata, mattn, and
prometheus. Btcsuite provides a collection of tools for Bitcoin
and cryptography in Go. Influxdata are an enterprise grade
software provider which specializes in platforms for time
series databases. Prometheus is also a provider of monitoring
and time series database tools. Mattn is the largest provider
of monoculture who is a sole developer.

The supply chains of the Java Ethereum clients are more
diverse, as seen in figure 4, although the majority of unique
dependencies are shared amongst both Teku and Besu. 69% of
the unique dependencies in Teku, and 60% of the unique de-
pendencies in Besu, are overlapping. The largest monoculture
providers in the Java supply chain are Netty, OpenTelemetry,
and Apache. Netty is by far the largest supplier for the Java
clients, providing 30 dependencies which are required by both
Teku and Besu. Netty provides APIs and tools for develo-
ping asynchronous server communication. OpenTelemetry is

R1. SOFTWARE DIVERSITY IN ETHEREUM

geth
15 263 396

prysm

Figur 2. Intersection of Go Ethereum Dependencies

openethereum .
lighthouse

Figur 3. Intersection of Rust Ethereum Dependencies

a provider of APIs for monitoring and logging data. They
are the second largest supplier of dependencies, providing 12
dependencies for both clients. Apache is a vast organization
and one of the most prominent contributors of open source
software and support a large number of various projects.
Notable packages which Apache provides both Teku and
Besu are Tuweni, which aids development of cryptography
functions, and log4j, a utility for creating customized log
messages for running processes.

The Rust Ethereum clients have the most diverse supply chain.
The majority of unique dependencies are not in the intersect of
OpenEthereum and Lighthouse. Only 43% of OpenEthereum
dependencies and 35% of Lighthouse dependencies are over-
lapping. There are very few providers of monoculture in the
Rust developed clients. The most prevalent providers in Rust
are Crossbeam, Parity, and Serde. Crossbeam is a provider of
tools for concurrent programming in Rust. Parity are providers
of numerous tools used in blockchain development in Rust.
Serde is a set of tools used for serializing and deserializing
data structures, which is used for storing data or transferring
data over networks.

VI. DISCUSSION

There is an apparent difference in size of the software
supply chains of the Eth1 Execution layer and Eth2 Consensus
layer of the Ethereum Blockchain. Although Ethl was released
5 years before Eth2, and studies have shown that a project’s
dependencies tend to grow over time, the dependency metrics
of the Eth2 clients are all larger than the Ethl clients from the
same ecosystem, save for Besu. This points to that the Eth2

R1. SOFTWARE DIVERSITY IN ETHEREUM

Tabell III
SOFTWARE SUPPLY CHAIN METRICS OF ETHEREUM CLIENTS
Client Programming Language | Total Dependencies | Unique Direct Dependencies | Unique Transitive Dependencies | Suppliers

Geth (Ethl) Go 362 67 211 166
OpenEthereum (Eth1) Rust 1447 67 382 299
Besu (Ethl) Java 1473 63 149 80
Prysm (Eth2) Go 901 123 536 328
Lighthouse (Eth2) Rust 2044 71 435 387
Teku (Eth2) Java 2998 59 178 99

into a unified format. In this unified format, the dependency

trees of the clients were analysed individually as well as

together with clients developed in the same language. This

analysis resulted in a novel data set of quantitative metrics

describing this size of the Ethereum software supply chain.

® = » The data set shows that the Eth2 consensus layer requires a

far greater amount of dependencies to function compared to

the Eth1 execution layer. The data set is also used to show that

there is a significant overlap of dependencies used by clients

developed in the same language. This overlap was largest in

teku besu the Go developed clients, where 95% of dependencies of the

Figur 4. Intersection of Java Ethereum Dependencies

Consensus layer is a more complex system of cryptography
procedures, requiring far more external software packages in
order to function. This idea is supported best by the findings
shown in figure 2, which shows that 95% of the supply chain
of Geth only constitues 40% of the supply chain of Prysm.

The gathered data also shows interesting trends between
different ecosystems. As the clients within each Ethereum
layer are functionally equal on a macro level, the study of their
supply chains should reflect well on the ecosystems which they
are built upon. From this study we can see that Java, the oldest
of the studied ecosystems, is dominated by larger organisations
who supply large amounts of Open Source software. This is
assumed to be due to the effects of hype driven development
over a long period of time. As time progresses, developers tend
to choose software packages supplied by reputable vendors,
and larger reputable organisations outlast and take over deve-
lopment from smaller vendors. Although Rust and Go are only
released a year apart, 2010 and 2009 respectively, Rust is much
more diverse in both software packages and suppliers. It is
assumed that this is due to Go being maintained by a Google,
a large corporation with more stringent software requirements,
compared to Rust which is community driven.

It is self admitted that the Ethereum Foundations ambitions
to achieve client diversity is far off the mark, however the data
gathered in this paper points to that the software diversity is
in a far worse state.

VII. CONCLUSSION

In this paper, the first systematic analysis of the software
diversity, with a focus on open-source software dependencies,
in the Ethereum ecosystem is presented. The dependency
trees of three pairs of Ethereum clients, developed in the
languages Go, Rust, and Java, were collected and transformed

Ethl client Geth were also dependencies of the Eth2 client
Prysm. The smallest overlap seen was between the Rust clients
OpenEthereum and Lighthouse, which shared 43% and 35%
of their dependencies respectively.

ACKNOWLEDGEMENT

The author would like to thank the supervisors of this
project, Benoit Baudry and César Soto-Valero, for their un-
wavering support, guidance, and words of encouragement
throughout this project.

REFERENSER
[1]
[2]

C. Lamb and S. Zacchiroli, “Reproducible builds: Increasing the integri-
ty of software supply chains,” IEEE Software, pp. 1-10, 2021.

“2019 state of the software supply chain,” Sonatype, Tech. Rep.,
2019. [Online]. Available: https://www.sonatype.com/hubfs/SSC/2019%
20SSC/SON_SSSC-Report-2019_jun16-DRAFT.pdf

W. Enck and L. Williams, “Top five challenges in software supply chain
security: Observations from 30 industry and government organizations,”
IEEE Security Privacy, vol. 20, no. 2, pp. 96-100, 2022.

M. Ohm, H. Plate, A. Sykosch, and M. Meier, “Backstabber’s knife
collection: A review of open source software supply chain attacks,”
in Detection of Intrusions and Malware, and Vulnerability Assessment,
C. Maurice, L. Bilge, G. Stringhini, and N. Neves, Eds. Cham: Springer
International Publishing, 2020, pp. 23-43.

J. Yang, Y. Lee, and A. P. McDonald, SolarWinds Software Supply Chain
Security: Better Protection with Enforced Policies and Technologies.
Cham: Springer International Publishing, 2022, pp. 43-58. [Online].
Available: https://doi.org/10.1007/978-3-030-92317-4_4

A. Decan, T. Mens, and P. Grosjean, “An empirical comparison of
dependency network evolution in seven software packaging ecosystems,”
Empirical Software Engineering, vol. 24, 02 2019.

[3]

[4]

[5]

[6]

[71 “Understanding the increase in supply chain
security attacks,” ENISA, Jul 2021. [Onli-
nej. Available: https://www.enisa.europa.eu/news/enisa-news/

understanding-the-increase-in-supply-chain-security-attacks

F. B. Cohen, “Operating system protection through program evolution,”
Comput. Secur., vol. 12, pp. 565-584, 1993.

S. Forrest, A. Somayaji, and D. Ackley, “Building diverse computer
systems,” 06 1997, pp. 67-72.

B. Baudry and M. Monperrus, “The multiple facets of software
diversity: Recent developments in year 2000 and beyond,” ACM
Comput. Surv., vol. 48, no. 1, sep 2015. [Online]. Available:
https://doi.org/10.1145/2807593

[8]
[9]
[10]

https://www.sonatype.com/hubfs/SSC/2019%20SSC/SON_SSSC-Report-2019_jun16-DRAFT.pdf
https://www.sonatype.com/hubfs/SSC/2019%20SSC/SON_SSSC-Report-2019_jun16-DRAFT.pdf
https://doi.org/10.1007/978-3-030-92317-4_4
https://www.enisa.europa.eu/news/enisa-news/understanding-the-increase-in-supply-chain-security-attacks
https://www.enisa.europa.eu/news/enisa-news/understanding-the-increase-in-supply-chain-security-attacks
https://doi.org/10.1145/2807593

[11]
[12]
[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

“The open source definition,” April 2007. [Online]. Available:
https://opensource.org/osd

“What is ethereum?” Feb 2022. [Online]. Available: https://ethereum.
org/en/what-is-ethereum/

“Client diversity,” Feb 2022. [Online]. Available: https://ethereum.org/
en/developers/docs/nodes-and-clients/client-diversity/

A. Benelallam, N. Harrand, C. Soto-Valero, B. Baudry, and O. Barais,
“The maven dependency graph: A temporal graph-based representation
of maven central,” in Proceedings of the 16th International Conference
on Mining Software Repositories, ser. MSR "19. IEEE Press, 2019, p.
344-348. [Online]. Available: https://doi.org/10.1109/MSR.2019.00060
S. Benthall, T. Pinney, J. Herz, and K. Plummer, “An ecological approach
to software supply chain risk management,” 01 2016, pp. 130-136.
D.-L. Vu, 1. Pashchenko, F. Massacci, H. Plate, and A. Sabetta, “Ty-
posquatting and combosquatting attacks on the python ecosystem,” in
2020 IEEE European Symposium on Security and Privacy Workshops
(EuroS PW), 2020, pp. 509-514.

C. Soto-Valero, T. Durieux, and B. Baudry, “A longitudinal
analysis of bloated java dependencies,” in Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2021. New York, NY, USA: Association for
Computing Machinery, 2021, p. 1021-1031. [Online]. Available:
https://doi.org/10.1145/3468264.3468589

1. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci,
“Vulnerable open source dependencies: Counting those that matter,” in
Proceedings of the 12th International Symposium on Empirical Software
Engineering and Measurement (ESEM), Oct 2018.

E. Zamani, Y. He, and M. Phillips, “On the security risks
of the blockchain,” Journal of Computer Information Systems,
vol. 60, no. 6, pp. 495-506, 2020. [Online]. Available: https:
//doi.org/10.1080/08874417.2018.1538709

J.-P. Aumasson, D. Kolegov, and E. Stathopoulou, “Security review of
ethereum beacon clients,” arXiv preprint arXiv:2109.11677, 2021.

C. Soto-Valero, M. Monperrus, and B. Baudry, “The multi-billion
dollar software supply chain of ethereum,” 2022. [Online]. Available:
https://arxiv.org/abs/2202.07029

“Working with json,” April 2022. [Online]. Available: https://developer.
mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON

R1. SOFTWARE DIVERSITY IN ETHEREUM

https://opensource.org/osd
https://ethereum.org/en/what-is-ethereum/
https://ethereum.org/en/what-is-ethereum/
https://ethereum.org/en/developers/docs/nodes-and-clients/client-diversity/
https://ethereum.org/en/developers/docs/nodes-and-clients/client-diversity/
https://doi.org/10.1109/MSR.2019.00060
https://doi.org/10.1145/3468264.3468589
https://doi.org/10.1080/08874417.2018.1538709
https://doi.org/10.1080/08874417.2018.1538709
https://arxiv.org/abs/2202.07029
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON

	Introduction
	Background
	Software Supply Chain
	Software Supply Chain Attacks
	Software Diversity
	Ethereum Ecosystem

	Related Work
	Methodology
	Project Pipeline
	Go
	Rust - Cargo
	Java - Gradle

	Unified Dependency Tree
	Metrics

	Results
	Discussion
	Conclussion
	Referenser

