

NIST Interagency Report 7864

http://dx.doi.org/10.6028/NIST.IR.7864

The Common Misuse Scoring System
(CMSS): Metrics for Software Feature
Misuse Vulnerabilities

Elizabeth LeMay
University of Illinois at Urbana-Champaign

Karen Scarfone
Scarfone Cybersecurity

Peter Mell
Computer Security Division
Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD

C O M P U T E R S E C U R I T Y
Computer Security Division
Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8930

July 2012

U.S. Department of Commerce

Rebecca M. Blank, Acting Secretary

National Institute of Standards and Technology

Patrick D. Gallagher, Under Secretary of Commerce for
Standards and Technology and Director

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

Table 5. Integrity Impact Scoring Evaluation ...12

Table 6. Availability Impact Scoring Evaluation ...12

Table 7. General Exploit Level Scoring Evaluation ..13

Table 8. General Remediation Level Scoring Evaluation...14

Table 9. Local Vulnerability Prevalence Scoring Evaluation ..15

Table 10. Perceived Target Value Scoring Evaluation...15

Table 11. Local Remediation Level Scoring Evaluation ...16

Table 12. Collateral Damage Potential Scoring Evaluation ...17

Table 13. Confidentiality, Integrity, and Availability Requirements Scoring Evaluation18

Table 14. Base, Temporal, and Environmental Vectors...18

List of Figures

Figure 1. CMSS Metric Groups ...7

 vi

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

1. Overview of Vulnerability Measurement and Scoring

This section provides an overview of vulnerability measurement and scoring. It first defines the major
categories of system vulnerabilities. Next, it discusses the need to measure the characteristics of
vulnerabilities and generate scores based on those measurements. Finally, it discusses existing
vulnerability and measurement scoring systems.

1.1 Categories of System Vulnerabilities

There are many ways in which the vulnerabilities of a system can be categorized. For the purposes of
vulnerability scoring, this report uses three high-level vulnerability categories: software flaws, security
configuration issues, and software feature misuse.3 These categories are described below.

A software flaw vulnerability is caused by an unintended error in the design or coding of software. An
example is an input validation error, such as user-provided input not being properly evaluated for
malicious character strings and overly long values associated with known attacks. Another example is a
race condition error that allows the attacker to perform a specific action with elevated privileges.

A security configuration setting is an element of a software’s security that can be altered through the
software itself. Examples of settings are an operating system offering access control lists that set the
privileges that users have for files, and an application offering a setting to enable or disable the encryption
of sensitive data stored by the application. A security configuration issue vulnerability involves the use of
security configuration settings that negatively affect the security of the software.

A software feature is a functional capability provided by software. A software feature misuse
vulnerability is a vulnerability in which the feature also provides an avenue to compromise the security of
a system. These vulnerabilities are caused by the software designer making trust assumptions that permit
the software to provide beneficial features, while also introducing the possibility of someone violating the
trust assumptions to compromise security. For example, email client software may contain a feature that
renders HTML content in email messages. An attacker could craft a fraudulent email message that
contains hyperlinks that, when rendered in HTML, appear to the recipient to be benign but actually take
the recipient to a malicious web site when they are clicked on. One of the trust assumptions in the design
of the HTML content rendering feature was that users would not receive malicious hyperlinks and click
on them.

Software feature misuse vulnerabilities are introduced during the design of the software or a component
of the software (e.g., a protocol that the software implements). Trust assumptions may have been
explicit—for example, a designer being aware of a security weakness and determining that a separate
security control would compensate for it. However, trust assumptions are often implicit, such as creating a
feature without first evaluating the risks it would introduce. Threats may also change over the lifetime of
software or a protocol used in software. For example, the Address Resolution Protocol (ARP) trusts that
an ARP reply contains the correct mapping between Media Access Control (MAC) and Internet Protocol
(IP) addresses. The ARP cache uses that information to provide a useful service—to enable sending data
between devices within a local network. However, an attacker could generate false ARP messages to
poison a system’s ARP table and thereby launch a denial-of-service or a man-in-the-middle attack. The

3 There are other types of vulnerabilities, such as physical vulnerabilities, that are not included in these categories.

1

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

ARP protocol was standardized over 25 years ago4, and threats have changed a great deal since then, so
the trust assumptions inherent in its design then are unlikely to still be reasonable today.

It may be hard to differentiate software feature misuse vulnerabilities from the other two categories. For
example, both software flaws and misuse vulnerabilities may be caused by deficiencies in software design
processes. However, software flaws are purely negative—they provide no positive benefit to security or
functionality—while software feature misuse vulnerabilities occur as a result of providing additional
features.

There may also be confusion regarding misuse vulnerabilities for features that can be enabled or
disabled—in a way, configured—versus security configuration issues. The key difference is that for a
misuse vulnerability, the configuration setting enables or disables the entire feature and does not
specifically alter just its security; for a security configuration issue vulnerability, the configuration setting
alters only the software’s security. For example, a setting that disables all use of HTML in emails has a
significant impact on both security and functionality, so a vulnerability related to this setting would be a
misuse vulnerability. A setting that disables the use of an antiphishing feature in an email client has a
significant impact on only security, so a vulnerability with that setting would be considered a security
configuration issue vulnerability.

1.2 The Need for Vulnerability Measurement and Scoring

No system is 100% secure: every system has vulnerabilities. At any given time, a system may not have
any known software flaws, but security configuration issues and software feature misuse vulnerabilities
are always present. Misuse vulnerabilities are inherent in software features because each feature must be
based on trust assumptions—and those assumptions can be broken, albeit involving significant cost and
effort in some cases. Security configuration issues are also unavoidable for two reasons. First, many
configuration settings increase security at the expense of reducing functionality, so using the most secure
settings could make the software useless or unusable. Second, many security settings have both positive
and negative consequences for security. An example is the number of consecutive failed authentication
attempts to permit before locking out a user account. Setting this to 1 would be the most secure setting
against password guessing attacks, but it would also cause legitimate users to be locked out after
mistyping a password once, and it would also permit attackers to perform denial-of-service attacks against
users more easily by generating a single failed login attempt for each user account.

Because of the number of vulnerabilities inherent in security configuration settings and software feature
misuse possibilities, plus the number of software flaw vulnerabilities on a system at any given time, there
may be dozens or hundreds of vulnerabilities on a single system. These vulnerabilities are likely to have a
wide variety of characteristics. Some will be very easy to exploit, while others will only be exploitable
under a combination of highly unlikely conditions. One vulnerability might provide root-level access to a
system, while another vulnerability might only permit read access to an insignificant file. Ultimately,
organizations need to know how difficult it is for someone to exploit each vulnerability and, if a
vulnerability is exploited, what the possible impact would be.

If vulnerability characteristics related to these two concepts were measured and documented in a
consistent, methodical way, the measurement data could be used by quantitative risk assessment
methodologies for determining which vulnerabilities are most important for an organization to address
using its limited resources. For example, when planning the security configuration settings for a new
system, an organization could use vulnerability measurements as part of determining the relative

4 David Plummer, Request for Comments (RFC) 826, An Ethernet Resolution Protocol (http://www.ietf.org/rfc/rfc826.txt)

2

http://www.ietf.org/rfc/rfc826.txt

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

importance of particular settings and identifying the settings causing the greatest increase in risk.
Vulnerability measurement is also useful when evaluating the security of software features, such as
identifying the vulnerabilities in those features that should have compensating controls applied to reduce
their risk (for example, antivirus software to scan email attachments and awareness training to alter user
behavior) and determining which features should be disabled because their risk outweighs the benefit that
they provide.

Having consistent measures for all types of system vulnerabilities has additional benefits. Organizations
can compare the relative severity of different vulnerabilities from different software packages and on
different systems. Software vendors can track the characteristics of a product’s vulnerabilities over time
to determine if its security is improving or declining. Software vendors can also use the measures to
communicate to their customers the severity of the vulnerabilities in their products. Auditors and others
performing security assessments can check systems to ensure that they do not have unmitigated
vulnerabilities with certain characteristics, such as high impact measures or high overall severity scores.

Although having a set of measures for a vulnerability provides the level of detail necessary for in-depth
analysis, sometimes it is more convenient for people to have a single measure for each vulnerability. So
quantitative measures can be combined into a score—a single number that provides an estimate of the
overall severity of a vulnerability. Vulnerability scores are not as quantitative as the measures that they
are based on, so they are most helpful for relative comparisons, such as a vulnerability with a score of 10
(on a 0 to 10 scale) being considerably more severe than a vulnerability with a score of 4.5 Small scoring
differences, such as vulnerabilities with scores of 4.8 and 5.1, do not necessarily indicate a significant
difference in severity because of the margin of error in individual measures and the equations that
combine those measures.6

1.3 Vulnerability Measurement and Scoring Systems

To provide standardized methods for vulnerability measurement and scoring, three specifications have
been created, one for each of the categories of system vulnerabilities defined in Section 1.1. The first
specification, the Common Vulnerability Scoring System (CVSS), addresses software flaw
vulnerabilities. The first version of CVSS was introduced in 2004, and the second version became
available in 2007.7 CVSS has been widely adopted by the Federal government, industry, and others.
CVSS was originally intended for use in prioritizing the deployment of patches, but there has been
considerable interest in applying it more broadly, such as using its measures as inputs to risk assessment
methodologies.

The second vulnerability measurement and scoring specification is the Common Configuration Scoring
System (CCSS).8 CCSS was designed for measuring and scoring software security configuration issue
vulnerabilities. CCSS uses the basic components of CVSS and adjusts them to account for the differences
between software flaws and security configuration issues.

5 CMSS is ordinal scoring, not cardinal. For example, a score of 10 isn’t twice as bad as a score of 5.
6 See http://www.first.org/cvss/history (current as of May 31, 2012) for more information on the margin of error and the

origin of the equations. To summarize, scoring differences less than 0.5 are not intended to be statistically significant. The
scores were arrived at heuristically with the intention of providing an even spread of scores across the possible range.

7 The official CVSS version 2 specification is available at http://www.first.org/cvss/cvss-guide.html. NIST has also published
a Federal agency-specific version of the specification in NIST IR 7435, The Common Vulnerability Scoring System (CVSS)
and Its Applicability to Federal Agency Systems (http://csrc.nist.gov/publications/PubsNISTIRs.html).

8 NIST IR 7502, The Common Configuration Scoring System (CCSS): Metrics for Software Security Configuration
Vulnerabilities

3

http://csrc.nist.gov/publications/PubsNISTIRs.html
http://www.first.org/cvss/cvss-guide.html
http://www.first.org/cvss/history

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

PerceivedTargetValue = case PerceivedTargetValue of
 low: 0.8
 medium: 1.0
 high: 1.2
 not defined: 1.0

LocalRemediationLevel = case LocalRemediationLevel of
 none: 1.0

 low: 0.8
 medium: 0.6
 high: 0.4
 not defined: 1.0

24

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

4. Examples

The examples below show how CMSS would be used to score software feature misuse vulnerabilities.

4.1 Example One: ARP Cache Poisoning

The Address Resolution Protocol (ARP) trusts that each ARP reply contains the correct mapping between
Media Access Control (MAC) and Internet Protocol (IP) addresses. The ARP cache uses that information
to provide a useful service—to enable sending data between devices within a local network. However, a
misuse vulnerability exists when an attacker can poison the ARP table with incorrect address mappings
and thereby launch a denial-of-service or a man-in-the-middle attack.

Since the attacker must have access to the local subnetwork to send malicious ARP replies, the Access
Vector is “Adjacent Network.” No authentication is required to broadcast ARP replies, so the
Authentication is scored as “None.” The Access Complexity is “Low” because exploitation of the
vulnerability requires little skill on the part of the attacker. The attacker must craft a message in valid
ARP reply format; the ARP reply message may contain arbitrary IP and MAC addresses.

The impact metrics measure only the direct impact of exploitation of the vulnerability. The
Confidentiality Impact of this misuse vulnerability is “None” because there is no direct impact on the
confidentiality of the system. The Integrity Impact is “Partial” because the attacker can override valid
ARP cache entries and can add false entries. The attacker can only modify data in this limited context.
The Availability Impact is “Partial” because ARP cache poisoning can create a denial of service that
impacts the availability of network functions, yet non-network functions remain available. The Privilege
Level is “Not Defined.”

The base vector is AV:A/AC:L/Au:N/C:N/I:P/A:P/PL:ND. This vector produces an impact subscore of
4.9, an exploitability subscore of 6.5, and a base score of 4.8.

Temporal metrics describe the general prevalence of attacks against this vulnerability and the general
availability of remediation measures. The General Remediation Level for the ARP cache poisoning
vulnerability would be considered “Low” because there are limited mitigation techniques available. For
very small networks, administrators can configure static IP addresses and static ARP tables, but this
approach quickly becomes unmanageable as the network grows in size. For larger networks, switches can
be configured to allow only one MAC address for each physical port. ARP cache poisoning attacks occur
against typical systems rarely, so the General Exploit Level is scored as “Low”. The temporal vector is
GEL:L/GRL:L. The temporal exploitability subscore is 4.1, as opposed to the base exploitability subscore
of 6.5, and the temporal score is 3.7, compared to the base score of 4.8. In general, the temporal score can
be lower than the base score when the General Exploit Level is lower than “Medium” or the General
Remediation Level is higher than “None.”

Environmental metrics describe the vulnerability severity with respect to a particular organization.
Consider an organization in which the Local Vulnerability Prevalence is “High,” the Perceived Target
Value is “Medium”, and the Local Remediation Level is rated “None.” Because the Local Vulnerability
Prevalence is higher than the default value and the Local Remediation Level is lower than the General
Remediation Level, the environmental exploitability subscore, 6.2, is higher than the temporal
exploitability subscore, 4.1.

Now consider the impact subscore of the environmental score. Suppose that the Collateral Damage
Potential in this case is “None”; this metric would not then modify the impact subscore in the
environmental score calculation. The organization follows recommended practices, so it sets the three

25

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

Environmental Impact metrics to “Not Defined”, which causes no change to the impact subscore. Scores
of “Medium” assigned to the Confidentiality Requirement and Availability Requirement also do not
modify the impact subscore. However, if the organization gives a score of “High” for the Integrity
Requirement because of the importance of integrity in the environment, then the impact subscore will
increase because this vulnerability happens to impact integrity. The environmental impact subscore, 6.2,
is slightly higher than the base impact subscore of 4.9.

The final environmental score is 5.4. The environmental vector is
LVP:H/PTV:M/LRL:N/EC:ND/EI:ND/EA:ND/CDP:N/CR:M/IR:H/AR:M.

4.2 Example Two: Malicious File Transfer Via Instant Messaging Software

Instant messaging (IM) software allows a user to send and receive files. The user may trustingly assume
that when a file appears to come from a friend, the file was sent by that friend and can be trusted.
However, an attacker may violate that trust by sending a malicious file that appears to come from the
friend. (This could be accomplished in several ways, such as the attacker gaining control of the friend’s
IM client, the attacker spoofing the friend’s IM user identity, or the attacker using social engineering to
trick the friend into sending the file. The method used to accomplish this is irrelevant in terms of the
user’s vulnerability.) This is a misuse vulnerability: an attacker can exploit the user’s trust and lead the
user to compromise the security of his computer.

Since an attacker can exploit this vulnerability remotely, the Access Vector is "Network." The
Authentication is scored as "None" because the attacker does not need to authenticate to the target
computer. To enable the exploitation of this vulnerability, the user must perform an easy, ordinary action
(accepting and downloading a file appearing to come from a friend). The success of this attack depends
on social engineering that could occasionally fool cautious users. Thus, the Access Complexity is rated
"Medium."

The direct impact of this vulnerability affects the integrity of the target computer. By exploiting this
vulnerability, the attacker can place a malicious file on the user's computer. Placing untrusted code on the
target computer results in a “Partial” impact on the computer’s integrity. There is no impact on
confidentiality because the attacker is not accessing any information or resources from the computer.
There is also no impact on availability because the transfer of untrusted code onto a machine does not
directly impact availability13. The Privilege Level is “Not Defined.”

The base vector is AV:N/AC:M/Au:N/C:N/I:P/A:N/PL:ND. This vector produces an impact subscore of
2.9, an exploitability subscore of 8.6, and a base score of 4.3.

Temporal metrics describe the prevalence of attacks against a misuse vulnerability and the availability of
remediation measures. Since attacks against this IM file transfer vulnerability are relatively infrequent,
the General Exploit Level would be rated as “Low.” The General Remediation Level would be “None”
because there are no remediation measures available besides uninstalling the vulnerable IM software. The
temporal vector is GEL:L/GRL:N. The temporal environmental subscore is 6.9, and the overall temporal
score is 3.5.

Environmental metrics describe the vulnerability severity with respect to a particular organization.
Consider an organization in which the Local Vulnerability Prevalence is “Medium,” the Perceived Target

13 Executing the untrusted code could overwrite a system or application file and make a service or application unavailable on
the user’s computer, but this is an indirect impact of the IM file transfer misuse vulnerability, not a direct impact, so it is not
included in the metrics for this vulnerability.

26

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

Value is “Low”, and the Local Remediation Level is rated “None.” Because the Perceived Target Value is
less than the default value of “Medium” (and the other score components are at the default values), the
environmental exploitability subscore, 5.5, is lower than the temporal exploitability subscore, 6.9.

The environmental score also includes an impact subscore. Suppose that the organization scored the
Confidentiality Requirement and Integrity Requirement as “Medium,” which do not modify the impact
subscore, and the Availability Requirement is rated “Low”. The Low value has no effect on the impact
subscore because the IM file transfer vulnerability has no impact on availability (recall that the base
Availability Impact is “None”). The organization follows recommended practices and sets the three
Environmental Impact metrics to “Not Defined”. Collateral Damage Potential is set to “None” and does
not modify the base impact subscore. Since none of these metrics have affected the score, the
environmental impact score is 2.9, the same as the base impact subscore.

The final environmental score is 2.8. The environmental vector is
LVP:M/PTV:L/LRL:N/EC:ND/EI:ND/EA:ND/CDP:N/CR:M/IR:M/AR:L.

4.3 Example Three: User Follows Link to Spoofed Web Site

Emails, instant messages, and other forms of electronic communication frequently contain hyperlinks to
Web sites. An attacker may distribute a malicious hyperlink that surreptitiously leads a user to a spoofed
Web site. When the user clicks on the malicious link, the Web browser displays a look-alike imitation of a
legitimate site (often a banking or e-commerce site). The vulnerability is that a hyperlink purporting to
lead to a legitimate site instead takes the user to a malicious site. The hyperlink capability is misused.

The Access Vector for this misuse vulnerability is “Network” because the attacker providing the link and
operating the phishing site does not require local network access or local access to the user’s computer.
The Authentication is “None” because the attacker is not required to authenticate to exploit this
vulnerability. To enable the exploitation of this vulnerability, the user must perform an easy, ordinary step
(clicking on a hyperlink). The attack depends on social engineering that could occasionally fool cautious
users (when the link and the site look okay to the casual observer). Therefore, the Access Complexity is
“Medium.”

The impact subscore for this misuse vulnerability considers only the direct impact of a hyperlink exploit.
The direct Confidentiality Impact is “None.” Even though users may subsequently choose to enter
personal information at a phishing site, this loss of confidentiality is only an indirect impact from clicking
on a hyperlink to a spoofed site. The Integrity Impact is “Partial” because the link to the spoofed website
is not trustworthy. From the viewpoint of the user, the integrity of the hyperlink is compromised because
the link does not lead to the Web site to which it appears to lead. The Availability Impact is “None”
because the existence of a malicious hyperlink to a spoofed site does not prevent access to the legitimate
site using the correct URL. The Privilege Level is “Not Defined.”

The base vector is AV:N/AC:M/Au:N/C:N/I:P/A:N/PL:ND. This vector produces an impact subscore of
2.9, an exploitability subscore of 8.6, and a base score of 4.3.

Temporal metrics describe the prevalence of attacks against a misuse vulnerability and the availability of
remediation measures. The General Exploit Level would be “Medium” because exploits of this nature are
frequently observed. The General Remediation Level would be “Medium” because several technical
measures exist that can alert users about suspected spoofed Web sites or block emails containing links to
known phishing sites. Some Web browsers include antiphishing toolbars or maintain blacklists of known
phishing sites. The temporal vector is GEL:M/GRL:M. The temporal exploitability subscore is 5.2, and
the overall temporal score is 2.7.

27

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

Environmental metrics describe the vulnerability severity with respect to a particular organization.
Consider an organization in which the Local Vulnerability Prevalence is “High,” the Perceived Target
Value is “High”, and the Local Remediation Level is rated “Medium.” Because the Local Vulnerability
Prevalence and the Perceived Target Value are higher than the default value of “Medium” (and the Local
Remediation Level is the same as the General Remediation Level), the environmental exploitability
subscore, 7.4, is higher than the temporal exploitability subscore, 5.2.

The environmental score also includes an impact subscore. Consider an organization that sets the
Collateral Damage Potential to “Low” (higher than the default value “None”), the Confidentiality
Requirement and Integrity Requirement to “High”, and the Availability Requirement to “Medium.” Since
this misuse vulnerability has a “Partial” score for Integrity Impact, the “High” Integrity Requirement will
boost the severity rating of the vulnerability in the portion of the score related to integrity impact. For this
vulnerability, the Collateral Damage Potential component will also increase the severity rating in the
impact subscore. The organization follows recommended practices and sets the three Environmental
Impact metrics to “Not Defined”. The environmental impact subscore is 5.4.

The final environmental score is 5.5. The environmental vector is
LVP:H/PTV:H/LRL:M/EC:ND/EI:ND/EA:ND/CDP:L/CR:H/IR:H/AR:M.

Note that the misuse vulnerabilities in examples two and three receive the same base score; however,
differences in the temporal metric components and environmental metric components produce different
temporal and environmental scores for the two vulnerabilities.

28

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

5. Comparing CMSS to CVSS and CCSS

CMSS is based on CVSS and CCSS, so there are many similarities among the three specifications.
However, there are some important differences as well. This section provides a brief discussion of the
major differences between the specifications. Individuals interested in more details on the differences are
encouraged to compare the specifications side-by-side. The specifications have similar structures, making
such comparisons easy.14

For the base metrics, all three specifications use the same six metrics and the same equations for
calculating scores. The descriptions for each metric have been adjusted to fit the characteristics of the
category of vulnerabilities that they cover. The most notable difference is that CCSS also measures the
type of exploitation: active or passive. Active exploitation refers to an attacker performing actions to take
advantage of a weakness, while passive exploitation refers to vulnerabilities that prevent authorized
actions from occurring, such as a configuration setting that prevents audit log records from being
generated for security events. The Exploitability base metrics in CCSS are defined differently for active
and passive exploitation because of the differences in the ease of exploitation.

The temporal and environmental components of the three specifications are quite different. The temporal
and environmental components of CMSS and CCSS are based on those from CVSS, but have major
differences. The temporal metrics in CVSS measure the availability of exploit code, the level of available
remediations for the software flaw (e.g., patches), and the confidence in the existence of the vulnerability.
These are not relevant for the types of vulnerabilities addressed by CMSS and CCSS, because their
vulnerabilities can be used without exploit code and are already known to exist. Also, CMSS
vulnerabilities and many CCSS vulnerabilities do not have complete remediations. So CMSS and CCSS
have similar sets of temporal metrics, quite different from those of CVSS, that address the general
prevalence of attacks against the vulnerability and the general effectiveness of available remediation
measures, such as using antivirus software or conducting awareness activities.

CMSS and CCSS also offer similar sets of environmental metrics, which are considerably more complex
than CVSS’s metrics. CVSS has three: Collateral Damage Potential, Target Distribution, and Security
Requirements. These metrics are all part of CMSS and CCSS as well, although Target Distribution has
been renamed Local Vulnerability Prevalence. Two other metrics have been added to CMSS and CCSS:
Perceived Target Value, which measures how attackers value the targets in the environment as opposed to
other environments, and Local Remediation Level, which measures the effectiveness of mitigation
measures in the local environment. CMSS and CCSS also divide their environmental metrics into two
groups: Exploitability and Impact. This allows Exploitability and Impact environmental subscores to be
generated for CMSS and CCSS; such subscores are not available in CVSS.

The other specifications are NIST IR 7435 and NIST IR 7502 (http://csrc.nist.gov/publications/PubsNISTIRs.html).

29

14

http://csrc.nist.gov/publications/PubsNISTIRs.html

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

6. Appendix A—Additional Resources

The following are resources related to CMSS.

 CVSS calculators can be used to calculate base CMSS scores since they use the same metric
values and equations. The NIST CVSS calculator can be found at
http://nvd.nist.gov/cvss.cfm?calculator&adv&version=2.

 The CVSS version 2 specification is available at http://www.first.org/cvss/cvss-guide.html.
General information on CVSS’s development is documented at http://www.first.org/cvss/.

 NISTIR 7435, The Common Vulnerability Scoring System (CVSS) and Its Applicability to
Federal Agency Systems, describes the CVSS version 2 specification and also provides insights as
to how CVSS scores can be customized for Federal agency-specific purposes. The report is
available at http://csrc.nist.gov/publications/PubsNISTIRs.html.

 NISTIR 7502, The Common Configuration Scoring System (CCSS): Metrics for Software
Security Configuration Vulnerabilities, describes the CCSS specification. The report is available
at http://csrc.nist.gov/publications/PubsNISTIRs.html.

30

http://csrc.nist.gov/publications/PubsNISTIRs.html
http://csrc.nist.gov/publications/PubsNISTIRs.html
http://www.first.org/cvss
http://www.first.org/cvss/cvss-guide.html
http://nvd.nist.gov/cvss.cfm?calculator&adv&version=2

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

7. Appendix B—Acronyms and Abbreviations

This appendix contains selected acronyms and abbreviations used in the publication.

A Adjacent Network
A Application Level
A Availability Impact
AC Access Complexity
AR Availability Requirement
ARP Address Resolution Protocol
Au Authentication
AV Access Vector
C Complete
C Confidentiality Impact
CCE Common Configuration Enumeration
CCSS Common Configuration Scoring System
CDP Collateral Damage Potential
CMSS Common Misuse Scoring System
CR Confidentiality Requirement
CVE Common Vulnerabilities and Exposures
CVSS Common Vulnerability Scoring System
DNS Domain Name System
EA Environment Availability Impact
EC Environment Confidentiality Impact
EI Environment Integrity Impact
FIPS Federal Information Processing Standards
FIRST Forum of Incident Response and Security Teams
FISMA Federal Information Security Management Act
FTP File Transfer Protocol
GEL General Exploit Level
GRL General Remediation Level
H High
HTML Hypertext Markup Language
I Integrity Impact
IM Instant Messaging
IP Internet Protocol
IR Integrity Requirement
IR Interagency Report
IT Information Technology
ITL Information Technology Laboratory
L Local
L Low
LM Low-Medium
LRL Local Remediation Level
LVP Local Vulnerability Prevalence
M Medium
M Multiple
MAC Media Access Control
MH Medium-High
N Network
N None

31

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

ND Not Defined
NIST National Institute of Standards and Technology
NISTIR National Institute of Standards and Technology Interagency Report
P Partial
PAM Pluggable Authentication Module
PL Privilege Level
PTV Perceived Target Value
R Root Level
RFC Request for Comments
S Single
U User Level
URL Uniform Resource Locator

32

