
YubiHSM 2 Concepts

Yubico

May 11, 2022

CONTENTS

1 Introduction 1

2 YubiHSM Auth 3
2.1 Overview . 3
2.2 YubiHSM Introduction . 3
2.3 Credentials and PIN Codes . 3
2.4 YubiHSM 2 Secure Channel . 4
2.5 Architecture Overview . 4
2.6 YubiHSM Auth Flowchart . 5
2.7 Software and Tools . 7

3 Concept: Object and Object Types 9
3.1 Objects . 9
3.2 Object Type . 9
3.3 Protocol Details . 10

4 Concept: Algorithms 11
4.1 Algorithms . 11

5 Concept: Attestation 13
5.1 Attestation . 13

6 Concept: Capability 15
6.1 Capability . 15
6.2 Protocol Details . 15

7 Concept: Domain 23
7.1 Domain . 23
7.2 Protocol Details . 23

8 Concept: Effective Capabilities 25
8.1 Effective Capabilities (Tying It All Together) . 25
8.2 Workflow . 26

9 Concept: Errors 27
9.1 Errors . 27

10 Concept: Label 29
10.1 Label . 29
10.2 Protocol Details . 29

i

11 Concept: Logs 31
11.1 Logs . 31

12 Concept: Object ID 33
12.1 Object ID . 33
12.2 Protocol Details . 33

13 Concept: Options 35
13.1 Options . 35
13.2 Force Audit . 35
13.3 Command Audit . 35

14 Concept: Sequence 37
14.1 Sequence . 37
14.2 Protocol Details . 37

15 Concept: Session 39
15.1 Session . 39

16 Copyright 41

ii

CHAPTER

ONE

INTRODUCTION

This document contains and explains the main concepts required to understand and use the YubiHSM 2 correctly.

1

YubiHSM 2 Concepts

2 Chapter 1. Introduction

CHAPTER

TWO

YUBIHSM AUTH

2.1 Overview

YubiHSM Auth is a new YubiKey module that serves as a key storage for authenticating against a YubiHSM 2 with a
YubiKey instead of just using a session password alone. To leverage this functionality, use the latest release of YubiHSM
2 SDK.

YubiHSM Auth is a YubiKey CCID application that stores the long-lived credentials used to establish secure sessions
to a YubiHSM 2. The secure session protocol is based on Secure Channel Protocol 3 (SCP03). YubiHSM Auth is
supported by YubiKey v5.4.0 and higher.

2.2 YubiHSM Introduction

YubiHSM Auth uses hardware to protect the long-lived credentials for accessing a YubiHSM 2. This increases the
security of the authentication credentials, as compared to the authentication solution for the YubiHSM 2 based on soft-
ware credentials derived from the Password-Based Key Derivation Function 2 (PBKDF2) algorithm with a password
as input.

2.3 Credentials and PIN Codes

Each YubiHSM Auth credential is comprised of two AES-128 keys which are used to derive the three session-specific
AES-128 keys. The YubiHSM Auth application can store up to 32 YubiHSM Auth credentials in the YubiKey.

Each YubiHSM Auth credential is protected by a 16-byte user access code provided to the YubiKey for each YubiHSM
Auth operation. The access code is used to access the YubiHSM Auth Credential to derive the session-specific AES-128
keys.

Storing or deleting YubiHSM Auth credentials requires a separate 16-byte admin access code.

Each access code has a limit of eight retries and optionally, verification of user presence (touch).

3

https://developers.yubico.com/YubiHSM2/Releases/
https://developers.yubico.com/YubiHSM2/Releases/
https://docs.yubico.com/hardware/yubikey/yk-5/tech-manual/yk5-secure-channel-tech-desc.html

YubiHSM 2 Concepts

2.4 YubiHSM 2 Secure Channel

Use the YubiKey YubiHSM Auth application to establish an encrypted and authenticated session to a YubiHSM 2.
Although the YubiHSM 2 secure channel is based on the protocol Global Platform Secure Channel Protocol ‘03’
(SCP03), there are two important differences:

• The YubiHSM 2 secure channel protocol does not use APDUs, so the commands and possible options are not
those of the complete SCP03 specification.

• SCP03 uses key sets with three long-lived AES keys, while the YubiHSM 2 secure channel uses key sets with
two long-lived AES keys.

The YubiHSM 2 authentication protocol uses a set of static credentials called a long-lived key set. This consists of two
AES-128 keys:

• ENC: Used for deriving keys for command and response encryption, as specified in SCP03.

• MAC: Used for deriving keys for command and response authentication, as specified in SCP03.

The identical long-lived keyset is protected in the YubiHSM 2 and in the YubiKey YubiHSM Auth application.

Those long-lived key sets are used by the YubiHSM Auth application to derive a set of three session-specific AES-128
keys using the challenge-response protocol as defined in SCP03:

• Session Secure Channel Encryption Key (S-ENC): Used for data confidentiality.

• Secure Channel Message Authentication Code Key for Command (S-MAC): Used for data and protocol integrity.

• Secure Channel Message Authentication Code Key for Response (S-RMAC): Used for data and protocol integrity.

The YubiHSM Auth session-specific keys are output from the YubiKey to the calling library, which uses the session
keys to encrypt and authenticate commands and responses during a single session. The session keys are discarded
afterwards.

2.5 Architecture Overview

The figure below shows how the YubiHSM Auth application fits in to the YubiHSM 2 architecture.

4 Chapter 2. YubiHSM Auth

YubiHSM 2 Concepts

The identical long-lived credentials (key sets) are protected in both the YubiKey YubiHSM Auth application and in the
YubiHSM 2. The YubiHSM-Shell software tool can be used for generating the key sets in the YubiHSM 2, and the
YubiHSM-Auth software tool can be used for importing the same key sets to the YubiKey YubiHSM Auth application.

At the client, the YubiHSM authentication protocol is implemented in the libykhsmauth library, which derives the
three session AES-keys by calling the YubiKey YubiHSM Auth CCID application. The session objects that are created
can be used by the libyubihsm in the communication with YubiHSM.

The YubiHSM session keys are therefore generated on the basis of the long-lived credentials that are protected in the
YubiHSM 2 and YubiKey YubiHSM Auth in conjunction with the SCP03 derivation scheme.

2.6 YubiHSM Auth Flowchart

The flowchart below illustrates the authentication protocol communication with YubiHSM using the static keys on
YubiHSM Auth. It is assumed that the YubiHSM and YubiHSM Auth application share the same static keyset. The
steps are explained below.

2.6. YubiHSM Auth Flowchart 5

YubiHSM 2 Concepts

1. The user launches YubiHSM-Shell and enters the commands connect and session open, with the flag ykopen
that indicates that the YubiKey with YubiHSM Auth shall be used.

2. The YubiHSM-Shell invokes the libyubihsm library, with a request to open a session to the YubiHSM 2.

3. The libyubihsm library generates a host challenge, and opens a session to the YubiHSM 2 device.

4. The YubiHSM 2 device generates an HSM challenge, and generates the session keys based on the HSM challenge,
the host challenge, and the static key set in the YubiHSM 2 device. The YubiHSM 2 returns the HSM challenge
in an HSM response to the libyubihsm library.

5. The libyubihsm library propagates the host challenge and HSM challenge to the YubiHSM Shell.

6. The user enters the Credential password for unlocking the static keyset in the YubiHSM Auth application in the
YubiKey. The YubiHSM Shell invokes the libykhsmauth library, with a request to generate session keys.

7. The libykhsmauth library invokes the YubiHSM Auth application in the YubiKey with the Credential password,
the HSM challenge and host challenge are used as input parameters.

8. The Credential password unlocks the static keyset in the YubiHSM Auth application, and the YubiHSM Auth
application generates the session keys based on the static keys, HSM challenge, and host challenge.

9. The libykhsmauth library returns the session keys to YubiHSM Shell.

10. The YubiHSM Shell acknowledges the protocol handshake to libyubihsm.

11. The libyubihsm sends the host response to the YubiHSM 2 device. The session keys can now be used for secure
channel communication between YubiHSM-Shell/libyubihsm in the host and the YubiHSM device.

6 Chapter 2. YubiHSM Auth

YubiHSM 2 Concepts

2.7 Software and Tools

2.7.1 YubiHSM-Auth Software Tool

The YubiHSM-Auth software tool is part of the YubiHSM Shell, which is installed with the YubiHSM SDK. YubiHSM-
Auth tool can be used for:

• Storing the YubiHSM Auth credentials on a YubiKey

• Deleting the YubiHSM Auth credentials on a YubiKey

• Listing the YubiHSM Auth credentials on a YubiKey

• Changing the YubiHSM Auth management key on a YubiKey

• Checking the number of retries of the YubiHSM Auth credential password

• Checking the version of the YubiHSM Auth application

• Calculating session keys, mainly for debugging and test purposes

• Resetting the YubiHSM Auth application on a YubiKey

First, the YubiHSM 2 device needs to be configured with an authentication key. The default authentication key password
on KeyID=1 is set to “password”, and this should be changed or replaced with other authentication keys. For the
examples in this section, however, it is assumed that the default authentication key is still present on the YubiHSM 2.

In order to generate and store the equivalent YubiHSM Auth credentials on the YubiKey, the yubihsm-auth com-
mand line tool can be used. To invoke YubiHSM-Auth simply run yubihsm-auth with the required commands and
parameters.

To get a list of available commands, parameters and their syntax, run: yubihsm-auth --help.

An example of how to use yubihsm-auth for storing YubiHSM Auth credentials on a YubiKey is shown below:

$ yubihsm-auth -a put --label="default key" --derivation-password="password" --credpwd=
→˓"MyPassword" --touch=on --mgmkey="00000000000000000000000000000000" --verbose=5
Credential successfully stored

Where:

• -a put is the action to insert a YubiHSM Auth credential on the YubiKey

• --label is the label of the YubiHSM Auth credential on the YubiKey

• --derivation-password is used as input to the PBKDF2 algorithm, which is used for generating the two
AES-128 keys that constitute the YubiHSM Auth credentials to be stored on the YubiKey

• --credpwd is the password protecting the YubiHSM Auth credentials on the YubiKey

• --touch is set to ‘on’, which requires the user to touch the YubiKey when accessing the YubiHSM Auth cre-
dential

• --mgmkey is the management key that is needed for writing the YubiHSM Auth credentials on the YubiKey

• --verbose is used to print more information as output

Note: We recommend using an offline air-gapped computer when storing the YubiHSM Auth credentials on the
YubiKey.

Now the YubiKey YubiHSM Auth application can be used with YubiHSM Shell for authentication to the YubiHSM 2.

2.7. Software and Tools 7

https://docs.yubico.com/software/yubihsm-2/component-reference/hsm2-ref-shell.html
https://developers.yubico.com/YubiHSM2/Releases/
https://docs.yubico.com/software/yubihsm-2/component-reference/hsm2-ref-shell.html

YubiHSM 2 Concepts

2.7.2 Using YubiHSM-Auth with YubiHSM Shell

It is now possible to authenticate to the YubiHSM 2 device with static credentials that are protected in the YubiKey
application called YubiHSM Auth. For more information on this YubiKey feature and how to configure it, see Using
YubiHSM Auth.

The YubiHSM Shell tool supports authentication with YubiHSM Auth credentials in both interactive mode and com-
mand line mode.

In order to use yubihsm-shell with the YubiHSM Auth-enabled YubiKey in interactive mode, open a session by ex-
ecuting the following yubihsm-shell command: yubihsm> session ykopen <authkey> <label> <password>
where, in the context of using YubiHSM-Shell with the YubiHSM Auth application, the following parameters are used:

• authkey is the identifier of the authentication key in the YubiHSM 2

• label is the label of the YubiHSM-Auth credentials stored in the YubiKey

• password is the password that protects the YubiHSM-Auth credentials stored in the YubiKey.

Below is an example of an interactive command with YubiHSM Shell:

yubihsm> session ykopen 1 "default key" "MyPassword"
trying to connect to reader 'Yubico YubiKey OTP+FIDO+CCID 0'
Created session 0

To use yubihsm-shell with YubiHSM Auth in command line mode, add the parameter --ykhsmauth-label that im-
plicitly invokes the YubiHSM Auth application at the YubiKey. Below is an example of how to use YubiHSM Shell in
command line mode:

$ yubihsm-shell --ykhsmauth-label "default key" -p "MyPassword" -a generate-asymmetric -
→˓A rsa2048 -i 11 -c sign-pss -l Signature_Key

If the YubiKey is configured to require touch when accessing the YubiHSM-Auth credentials, the user needs to touch
the YubiKey sensor in addition to entering the credential password.

Once the user is authenticated with YubiHSM Auth, all YubiHSM-Shell commands can be used.

8 Chapter 2. YubiHSM Auth

CHAPTER

THREE

CONCEPT: OBJECT AND OBJECT TYPES

3.1 Objects

The first concept that we will present is the Object. Any persistently stored and self-contained piece of information
present in a YubiHSM 2 is an Object. This is intentionally a very generic and broad definition which can be easily
rephrased as everything is an Object. Objects have associated properties that characterize them and give them different
meanings. Regardless of the kind and the specific properties, any YubiHSM 2 device can store up to 256 Objects. Their
combined size cannot exceed 126 KB.

3.2 Object Type

To identify what an Object can and cannot do, we define an attribute called Object Type, or simply Type. A Type is
not enough to uniquely identify an Object, but it defines the set of operations that can be performed with or on it. The
following types are defined:

3.2.1 Authentication Key

An Authentication Key is one of the most fundamental Objects there are. Authentication Keys can be used to establish
a session with a device. An Authentication Key is basically two long-lived AES keys: an encryption key and a MAC
key. When establishing a Session, the long-lived keys are used to generate three session keys:

• An encryption key used to encrypt the messages exchanged with the device

• A MAC key used to create an authentication tag for each message sent to the device

• A response MAC key used to create an authentication tag for each response message sent by the device

The session keys are temporary and are destroyed when the Session is no longer in use.

3.2.2 Asymmetric Key

An Asymmetric Key Object is what the YubiHSM 2 uses to represent an asymmetric key-pair where only the private
key can be used to perform cryptographic operations.

9

http://docs.yubico.com/software/yubihsm-2/concepts/pubdocs/hsm2-concept-session/

YubiHSM 2 Concepts

3.2.3 HMAC Key

An HMAC Key is a secret key used when computing and verifying HMAC signatures.

3.2.4 Opaque

An Opaque Object is an unchecked kind of Object, normally used to store raw data in the device. No specific restrictions
(besides size limitations) are imposed to this type of Object.

3.2.5 OTP AEAD Key

An OTP AEAD Key Object is a secret key used to decrypt Yubico OTP values for further verification by a validation
process.

3.2.6 Template

A Template Object is a binary template used for example to validate SSH certificate requests.

3.2.7 Wrap Key

A Wrap Key Object is a secret key used to wrap and unwrap Objects during the export and import process.

3.3 Protocol Details

Object Types are encoded as an 8-bit value.

10 Chapter 3. Concept: Object and Object Types

CHAPTER

FOUR

CONCEPT: ALGORITHMS

4.1 Algorithms

Name Value yubihsm-shell name Comment
RSA PKCS1 SHA1 1 rsa-pkcs1-sha1
RSA PKCS1 SHA256 2 rsa-pkcs1-sha256
RSA PKCS1 SHA384 3 rsa-pkcs1-sha384
RSA PKCS1 SHA512 4 rsa-pkcs1-sha512
RSA PSS SHA1 5 rsa-pss-sha1
RSA PSS SHA256 6 rsa-pss-sha256
RSA PSS SHA384 7 rsa-pss-sha384
RSA PSS SHA512 8 rsa-pss-sha512
RSA 2048 9 rsa2048
RSA 3072 10 rsa3072
RSA 4096 11 rsa4096
EC P256 12 ecp256 secp256r1
EC P384 13 ecp384 secp384r1
EC P521 14 ecp521 secp521r1
EC K256 15 eck256 secp256k1
EC BP256 16 ecbp256 brainpool256r1
EC BP384 17 ecbp384 brainpool384r1
EC BP512 18 ecbp512 brainpool512r1
HMAC SHA1 19 hmac-sha1
HMAC SHA256 20 hmac-sha256
HMAC SHA384 21 hmac-sha384
HMAC SHA512 22 hmac-sha512
ECDSA SHA1 23 ecdsa-sha1
EC ECDH 24 ecdh
RSA OAEP SHA1 25 rsa-oaep-sha1
RSA OAEP SHA256 26 rsa-oaep-sha256
RSA OAEP SHA384 27 rsa-oaep-sha384
RSA OAEP SHA512 28 rsa-oaep-sha512
AES128 CCM WRAP 29 aes128-ccm-wrap
Opaque Data 30 opaque-data

Opaque X509
Certificate

31 opaque-x509-certificate

continues on next page

11

YubiHSM 2 Concepts

Table 1 – continued from previous page
Name Value yubihsm-shell name Comment
MGF1 SHA1 32 mgf1-sha1
MGF1 SHA256 33 mgf1-sha256
MGF1 SHA384 34 mgf1-sha384
MGF1 SHA512 35 mgf1-sha512
SSH Template 36 template-ssh
Yubico OTP AES128 37 aes128-yubico-otp

Yubico AES
Authentication

38
aes128-yubico-
authentication

Yubico OTP AES192 39 aes192-yubico-otp
Yubico OTP AES256 40 aes256-yubico-otp
AES192 CCM WRAP 41 aes192-ccm-wrap
AES256 CCM WRAP 42 aes256-ccm-wrap
ECDSA SHA256 43 ecdsa-sha256
ECDSA SHA384 44 ecdsa-sha384
ECDSA SHA512 45 ecdsa-sha512
ED25519 46 ed25519
EC P224 47 ecp224 secp224r1

12 Chapter 4. Concept: Algorithms

CHAPTER

FIVE

CONCEPT: ATTESTATION

5.1 Attestation

Asymmetric keys in the YubiHSM can be attested by another Asymmetric key. The attestation process creates a new
x509 certificate for the attested key.

The device comes pre-loaded with an attestation key and certificate referenced by ID 0. It is possible to use
your own key and certificate for attestation, these then have to have the same ID and the key has to have the
sign-attestation-certificate Capability set.

5.1.1 Details

• Serial will be a random 16 byte integer

• Issuer will be the subject of the attesting certificate

• Dates will be copied from the attesting certificate

• Subject will be the string YubiHSM Attestation id 0x with the attested ID appended

• If the attesting key is RSA the signature will be SHA256-PKCS#1v1.5

• If the attesting key is EC the signature will be ECDSA-SHA256

5.1.2 Certificate Extensions

Some certificate extensions are added in the generated certificate and the pre-loaded certificate:

OID Description Data Type
1.3.6.1.4.1.41482.4.1 Firmware version Octet String
1.3.6.1.4.1.41482.4.2 Serial number Integer
1.3.6.1.4.1.41482.4.3 Origin Bit String
1.3.6.1.4.1.41482.4.4 Concept: Domain Bit String
1.3.6.1.4.1.41482.4.5 Concept: Capability Bit String
1.3.6.1.4.1.41482.4.6 Concept: Object ID Integer
1.3.6.1.4.1.41482.4.9 Concept: Label Utf8String

13

YubiHSM 2 Concepts

5.1.3 Pre-Loaded Certificates

The pre-loaded certificate can be fetched as an opaque object with ID 0. This will in turn be signed by an intermediate
CA which is signed by a Yubico root CA.

5.1.4 Intermediates:

E45DA5F361B091B30D8F2C6FA040DB6FEF57918E.pem

14 Chapter 5. Concept: Attestation

https://developers.yubico.com/YubiHSM2/Concepts/yubihsm2-attest-ca-crt.pem
https://developers.yubico.com/YubiHSM2/Concepts/E45DA5F361B091B30D8F2C6FA040DB6FEF57918E.pem

CHAPTER

SIX

CONCEPT: CAPABILITY

6.1 Capability

A Capability is an attribute that can be given to an Concept: Object and Object Types allowing specific operations to
be performed on or with it. Commands like digital signature generation and data decryption require (and check) for a
predetermined set of Capabilities to be present on an Object. Further below is the list of existing Capabilities.

It is important to know that there are no restrictions on which Capabilities can be set on an Object. Specifically, this
means that it is possible to assign meaningless Capabilities to Objects that will never be able to use them, for example
it is possible to have an Asymmetric Object with the Capability verify-hmac. Such a Capability only makes sense for
HMAC Key objects, but the device will allow defining a superset. Lack of Capabilities required for a specific operation
will cause a command requiring that Capability to fail.

6.1.1 Delegated Capabilities

Every Object stored on the device has an associated set of Capabilities. There is a second set of so-called Delegated
Capabilities that only Authentication Keys and Wrap Keys have. This is used to capture the indirection that Authen-
tication Keys and Wrap Keys can be used as a means of storing more Objects on a device. In both cases Delegated
Capabilities are used as a filter.

For Authentication Keys, Delegated Capabilities define the set of Capabilities that can be set or “bestowed” onto an
Object created by the Authentication Key. Any operation attempting to create Objects with a Capability outside of this
set will fail.

For Wrap Keys, Delegated Capabilities define the set of Capabilities that an Object can have when imported or exported
using the Wrap Key. A larger set of Capabilities will cause the import operation to fail.

6.2 Protocol Details

A Set of Capabilities is an 8-byte value. Each Capability is identified by a specific bit, as shown in the Hex Mask
column below.

Name Hex Mask Applicable
Objects

Description

—————————Asymmetric Keys——————————–
continues on next page

15

YubiHSM 2 Concepts

Table 1 – continued from previous page

Name Hex Mask Applicable
Objects

Description

delete-asymmetric
-key

0x0000020000000000
authentication
-key

Delete
Delete
Asymmetric
Key Objects

generate-asymmetric
-key

0x0000000000000010
authentication
-key

Generate
Asymmetric Key
Objects

put-asymmetric-key
0x0000000000000008

authentication
-key

Write
Asymmetric Key
Objects

—————————Authentication Keys—————————-

delete-authen-
tication-key

0x0000010000000000
authentication
-key

Delete
Authentication
Key Objects

put-authentication
-key

0x0000000000000004
authentication
-key

Write
Authentication
Key Objects

change-
authentication-key

0x0000400000000000
authentication
-key

Replace
Authentication
Key Objects

——————————–Certificate——————————-

sign-attestation-
certificate

0x0000000400000000
authentication
-key,
asymmetric-key

Attest
properties of
Asymmetric
Key Objects

sign-ssh-certificate 0x0000000002000000
authentication
-key,
asymmetric-key

Sign SSH
certificates

———————————–Data———————————–
continues on next page

16 Chapter 6. Concept: Capability

YubiHSM 2 Concepts

Table 1 – continued from previous page

Name Hex Mask Applicable
Objects

Description

decrypt-oaep 0x0000000000000400
authentication
-key,
asymmetric-key

Decrypt
data using
RSA-OAEP

decrypt-pkcs 0x0000000000000200
authentication
-key,
asymmetric-key

Decrypt
data using
RSA-PKCS1v1.5

———————————–ECDH———————————–
derive-ecdh 0x0000000000000800

authentication
-key,
asymmetric-key

Perform
ECDH

———————————–Global———————————
get-option 0x0000000000040000

authentication
-key

Read device-
global options

set-option 0x0000000000020000
authentication
-key

Write device-
global options

———————————–HMAC———————————–
delete-hmac-key 0x0000080000000000

authentication
-key

Delete HMAC
Key Objects

generate-hmac-key 0x0000000000200000
authentication
-key

Generate HMAC
Key Objects

put-mac-key 0x0000000000100000
authentication
-key

Write HMAC
Key Objects

sign-hmac 0x0000000000400000
authentication
-key, hmac-key

Compute HMAC
of data

continues on next page

6.2. Protocol Details 17

YubiHSM 2 Concepts

Table 1 – continued from previous page

Name Hex Mask Applicable
Objects

Description

verify-hmac 0x0000000000800000
authentication
-key, hmac-key

Verify HMAC
of data

—————————————Log——————————–
get-log-entries 0x0000000001000000

authentication
-key

Read the Log
Store

———————————–Opaque———————————
delete-opaque 0x0000008000000000

authentication
-key

Delete Opaque
Objects

get-opaque 0x0000000000000001
authentication
-key

Read Opaque
Objects

put-opaque 0x0000000000000002
authentication
-key

Write Opaque
Objects

———————————–OTP————————————
create-otp-aead 0x0000000040000000

authentication
-key,
otp-aead-key

Create OTP
AEAD

decrypt-otp 0x0000000020000000
authentication
-key,
otp-aead-key

Decrypt OTP

delete-otp-aead-key 0x0000200000000000
authentication
-key

Delete OTP
AEAD Key
Objects

generate-otp-aead
-key

0x0000001000000000
authentication
-key

Generate OTP
AEAD Key
Objects

continues on next page

18 Chapter 6. Concept: Capability

YubiHSM 2 Concepts

Table 1 – continued from previous page

Name Hex Mask Applicable
Objects

Description

put-otp-aead-key
certificate

0x0000000800000000
authentication
-key

Write OTP AEAD
Key Objects

randomize-otp-aead 0x0000000080000000
authentication
-key,
otp-aead-key

Create OTP
AEAD from
random data

rewrap-from-otp-
aead-key

0x0000000100000000
authentication
-key,
otp-aead-key

Rewrap AEADs
from one OTP
AEAD Key
Object to
another

rewrap-to-otp-
aead-key

0x0000000200000000
authentication
-key,
otp-aead-key

Rewrap AEADs
to one OTP
AEAD Key
Object from
another

———————————–Random———————————
get-pseudo-random 0x0000000000080000

authentication
-key

Extract
random bytes

————————————–Reset——————————-
reset-device 0x0000000010000000

authentication
-key

Perform a
factory reset
on the device

———————————–Signatures—————————–
sign-ecdsa 0x0000000000000080

authentication
-key,
asymmetric-key

Compute
digital
signatures
using ECDSA

continues on next page

6.2. Protocol Details 19

YubiHSM 2 Concepts

Table 1 – continued from previous page

Name Hex Mask Applicable
Objects

Description

sign-eddsa 0x0000000000000100
authentication
-key,
asymmetric-key

Compute
digital
signatures
using EDDSA

sign-pkcs 0x0000000000000020
authentication
-key,
asymmetric-key

Compute
signatures
using RSA-
PKCS1v1.5

sign-pss 0x0000000000000040
authentication
-key,
asymmetric-key

Compute
digital
signatures
using using
RSA-PSS

———————————–Template——————————-
delete-template 0x0000100000000000

authentication
-key

Delete
Template
Objects

get-template 0x0000000004000000
authentication
-key

Read Template
Objects

put-template 0x0000000008000000
authentication
-key

Write Template
Objects

———————————–Wrap ———————————-
delete-wrap-key 0x0000040000000000

authentication
-key

Delete
Delete Wrap
Key Objects

export-wrapped 0x0000000000001000
authentication
-key, wrap-key

Export other
Objects under
wrap

continues on next page

20 Chapter 6. Concept: Capability

YubiHSM 2 Concepts

Table 1 – continued from previous page

Name Hex Mask Applicable
Objects

Description

exportable-under
-wrap

0x0000000000010000 all
Mark an Object
as exportable
under wrap

generate-wrap-key 0x0000000000008000
authentication
-key

Generate Wrap
Key Objects

import-wrapped 0x0000000000002000
authentication
-key, wrap-key

Import wrapped
Objects

put-wrap-key 0x0000000000004000
authentication
-key

Write Wrap Key
Objects

unwrap-data 0x0000004000000000
authentication
-key, wrap-key

Unwrap user-
provided data

wrap-data 0x0000002000000000
authentication
-key, wrap-key

Wrap user-
provided data

6.2. Protocol Details 21

YubiHSM 2 Concepts

22 Chapter 6. Concept: Capability

CHAPTER

SEVEN

CONCEPT: DOMAIN

7.1 Domain

A Domain is a logical partition that can be conceptually mapped to a container. In a YubiHSM 2 there are 16 indepen-
dent Domains; an Object can belong to one or more Domains.

Note: Authentication Keys are Objects and thus can belong to multiple Domains.

Domains serve as a means to secure Objects so that they cannot be addressed by independent applications running on
the same device. This is achieved by specifying the Object’s Domain. Only users or applications that belong to the
same Domain as an Object can access it or use it.

The details involved in accessing an Object are explained in the Concept: Effective Capabilities page.

7.2 Protocol Details

Domains are encoded as 16-bit values, where each Domain is represented by a bit

Domain Number Hex Mask
1 0x0001
2 0x0002
3 0x0004
4 0x0008
5 0x0010
6 0x0020
7 0x0040
8 0x0080
9 0x0100
10 0x0200
11 0x0400
12 0x0800
13 0x1000
14 0x2000
15 0x4000
16 0x8000

23

YubiHSM 2 Concepts

24 Chapter 7. Concept: Domain

CHAPTER

EIGHT

CONCEPT: EFFECTIVE CAPABILITIES

8.1 Effective Capabilities (Tying It All Together)

This document describes how Object-related concepts interact with each another.

Let us assume that we are establishing a Session with Authentication Key 0xabcd so that the Session can use the
Asymmetric Key 0x1234 to sign some data. We are assuming that Asymmetric Key 0x1234 is an RSA 2048-bit key
and that we would like to generate a signature using RSASSA-PSS.

8.1.1 Create and Authenticate a Session

Creating and authenticating a Session requires knowledge of what the long-lived keys are (or what the associated
derivation password is).

When a valid Session is established, certain properties of the Authentication Key used to create the Session are inherited
by the Session itself. These are:

• The Domain(s) to which the Authentication Key belongs (for more information, see Concept: Domain),

• The Capabilities of the Authentication Key (see Concept: Capability) and

• The Delegated Capabilities (see Concept: Capability) associated with Authentication Key 0xabcd .

The Session’s inherited properties serve to ensure that the only Objects stored in the HSM 2 that we can see and access
are those that belong to the same Domain(s) as Authentication Key 0xabcd.

8.1.2 Generate a Signature

The required capability must be set on both the Authentication Key used to establish the Session (Authentication Key
0xabcd) and the target Object used to perform the operation (Asymmetric Key 0x1234).

Assuming that Asymmetric Key 0x1234 is in one such Domain, we can now continue and ask the HSM 2 to generate
a signature. To do so we will send the Sign Data command over the Session. It will not execute successfully unless
the arguments of the command are valid, i.e., no malformed data can be sent to the device or an error will occur.

Both Authentication Key 0xabcd and Asymmetric Key 0x1234 must have the Capability sign-pss set.

25

YubiHSM 2 Concepts

8.1.3 Effective Capabilities and Role Definition

The overlap between

• The Capabilities of the Authentication Key used to establish the Session and

• The Capabilities of the target Object involved in the operation

defines the Effective Capabilities. An operation on a given target Object over a given Session can succeed only if the
Capabilities required by the operation are included in the Effective Capabilities.

The interaction between Domains and Effective Capabilities enables flexible setup and role definition. For example,

• It is possible to assign a set of Capabilities to an Object, and then distribute those Capabilities across different
Authentication Keys so that each key is enabled to perform only a single operation on the target Object, and no
key performs the same operation as any other key.

• Similarly, it is possible to disable specified operations by not assigning the requisite Capabilities to an Authen-
tication Key. For example, an “Administrator” Authentication Key could be enabled only to create keys while a
“User” Authentication Key could be enabled only to use those same keys.

8.2 Workflow

1. Determine which Objects will have operations performed on them

2. Determine which Authentication Keys you will use

3. Determine which operations will be performed

4. Use a spreadsheet (if necessary) to map out the interaction between the first three items

5. With the aid of the spreadsheet, create domains to enable the interaction.

Note: Authentication Keys are Objects and thus can belong to multiple Domains.

6. You could construct your domains:

• per operation - put an Object and an Authentication Key into each domain, or

• per Object - put the Authentication Key(s) for all the operations to be performed on each Object into a
single domain

• per Authentication Key - put the requisite Object(s) into each Domain.

For example, if you wanted Jan to do the signing and Ola to do the importing, you could adopt any of the above
options, but the Effective Capabilities enable you to assign far more complex webs of responsibilities.

7. Use the spreadsheet to set the Capabilities and Delegated Capabilities appropriately, “appropriateness” being
determined by the Objects and operations to be performed on them.

26 Chapter 8. Concept: Effective Capabilities

CHAPTER

NINE

CONCEPT: ERRORS

9.1 Errors

Below are error codes returned by a YubiHSM device.

Name Value Description
OK 0x00 Success
INVALID COMMAND 0x01 Unknown command
INVALID DATA 0x02 Malformed data for the command
INVALID SESSION 0x03 The session has expired or does not

exist
AUTHENTICATION FAILED 0x04 Wrong Authentication Key
SESSIONS FULL 0x05 No more available sessions
SESSION FAILED 0x06 Session setup failed
STORAGE FAILED 0x07 Storage full
WRONG LENGTH 0x08 Wrong data length for the command

INSUFFICIENT
PERMISSIONS

0x09 Insufficient permissions for the com-
mand

LOG FULL 0x0a The log is full and force audit is en-
abled

OBJECT NOT FOUND 0x0b No object found matching given ID
and Type

INVALID ID 0x0c Invalid ID

SSH CA CONSTRAINT
VIOLATION

0x0e Constraints in SSH Template not
met

INVALID OTP 0x0f OTP decryption failed
DEMO MODE 0x10 Demo device must be power-cycled
OBJECT EXISTS 0x11 Unable to overwrite object

27

YubiHSM 2 Concepts

28 Chapter 9. Concept: Errors

CHAPTER

TEN

CONCEPT: LABEL

10.1 Label

A Label is a sequence of bytes that can be used to add a mnemonic reference to Objects.

10.2 Protocol Details

Labels are 40 bytes long. As far as the YubiHSM is concerned, the label is only a string of raw bytes and are not
restricted to printable characters or valid UTF-8 glyphs.

29

YubiHSM 2 Concepts

30 Chapter 10. Concept: Label

CHAPTER

ELEVEN

CONCEPT: LOGS

11.1 Logs

A YubiHSM 2 device maintains a list of recently executed commands in a portion of non-volatile memory known as
the Log Store. This allows to log commands across different power cycles. Specific commands are used to extract logs
from the device. Since the Log Store uses non-volatile memory, it can only store up to 62 different entries. When the
Log Store is full, it is used as a circular buffer, meaning that the least recently used entry is overwritten.

It is possible to set the device in Force Audit mode. When this is done entries from the Log Store must be retrieved or
commands that cannot be logged will fail. Together with individual commands, also power-on and reboot events are
logged.

Establishing a session is logged like any other operation, however those commands are always allowed, independent of
the current status of the Log Store. This is so that it is always possible to retrieve logs and free up the Log Store, even
when the device is in Force Audit mode and the Log Store is full. However, the number of unlogged authentication and
power-up events is stored in a counter that is retrieved as part of the log retrieval.

Entries in the Log Store are organized to form a chain of hashes. This allows auditors to verify that a given set of entries
has not been tampered with after extraction, and that all entries are present. More details on the format of log entries
can be found in the protocol description document for extracting logs entries.

31

https://docs.yubico.com/software/yubihsm-2/commands/hsm2-cmd-get-log-entries.html

YubiHSM 2 Concepts

32 Chapter 11. Concept: Logs

CHAPTER

TWELVE

CONCEPT: OBJECT ID

12.1 Object ID

The ID property is used to identify an Object of a given Type. This means that to uniquely identify an Object stored
on a YubiHSM 2, the couple (Type, ID) is required. There can be more than one Object with a given ID and more
than one Object with a given Type, but only one Object with a specific ID and Type. This is so that logical connections
between Objects can be established by giving a set of connected Objects of different Types the same ID.

An Object ID can have values in the range [0-65535] or [0x0000-0xffff] in hexadecimal. Note that this range is
larger than the maximum number of Objects that can be stored in the device (256). Regardless of the type, ID 0x0000
and 0xffff are reserved for internal Objects.

12.2 Protocol Details

Object IDs are encoded as 16-bit values.

33

YubiHSM 2 Concepts

34 Chapter 12. Concept: Object ID

CHAPTER

THIRTEEN

CONCEPT: OPTIONS

13.1 Options

Options are device-global settings. The following Options are defined:

Option Name Hex Value
force-audit 0x01
command-audit 0x03

The data payload is Option-specific.

13.2 Force Audit

This Option is used to enable Force Audit mode which prevents the device from performing additional operations whilst
the Concept: Logs is full.

The Option accepts three different values:

• 0x00: Option disabled

• 0x01: Option enabled

• 0x02: Option permanently enabled (only possible to turn off through factory reset)

13.3 Command Audit

This Option is used to enable or disable logging of specific commands. Logging commands has a noticeable impact
on performance. By default logging is enabled for all operations.

The Option accepts three different values:

• 0x00: Option disabled

• 0x01: Option enabled

• 0x02: Option permanently enabled (only possible to turn off through factory reset)

Multiple commands can be specified at once with the syntax C1 V1, C2 V2, ..., Cn Vnwhere Ci is the Command
Code and Vi is the Option Value. An example of this syntax can be found at the Set Option Command description.

35

https:/docs.yubico.com/software/yubihsm-2/commands/hsm2-cmd-set-option.html

YubiHSM 2 Concepts

36 Chapter 13. Concept: Options

CHAPTER

FOURTEEN

CONCEPT: SEQUENCE

14.1 Sequence

Sequence is a one-byte value that is part of the metadata associated with an Object. The Sequence describes how many
times an Object with a given ID and Type has been written. This is mostly useful for caching to determine if new data
needs to be fetched from the device.

14.2 Protocol Details

Sequence is 8 bits long and will wrap.

37

YubiHSM 2 Concepts

38 Chapter 14. Concept: Sequence

CHAPTER

FIFTEEN

CONCEPT: SESSION

15.1 Session

A Session is not a property of a specific Object, but rather it is used to describe a logical connection between an
application and a device. Sessions are end-to-end encrypted and authenticated using Session Keys. Those keys are
derived from long-lived, pre-shared Authentication Key Objects as part of the sessions authentication process. The
Session creation and authentication protocol is based on Global Platform SCP03.

On a single YubiHSM 2 it is possible to establish up to 16 independent and concurrent Sessions. Note that while
multiple concurrent Sessions can be active at a given time, the device still serves as a rendezvous point. This means
that time-consuming operations, like generating a long RSA key, will block commands in other Sessions. Sessions are
addressed with a number in the range [0-15].

Sessions have an expiration period of 30 seconds of inactivity in order to prevent resource starvation. After such a
period, the device will consider a Session inactive and will move it to the pool of re-usable Sessions. Whenever a
command is executed on a given Session, the inactivity timer is reset, meaning that if a Session is being constantly
used then it will not expire.

Some of the operations that can be performed on a YubiHSM 2 do not require a Session. The implications are that the
command and its response will travel unencrypted to and from the device. These commands are only generic status
commands, making Sessions effectively required for any meaningful operation.

The long-lived keys required to derive Sessions can be explicitly used in the relevant commands. There are however
built-in functionalities to derive those keys from a password using 10,000 iterations of PBKDF2 with the salt Yubico,
making the process more human-friendly. Every new or factory-reset YubiHSM 2 has a default Authentication
Key with ID 1 and all Capabilities and all Domains set. This is equivalent to a superuser or an administrator. The
long-lived keys for this Object are derived using the process described before with the password password.

Warning: It is crucial to delete this well-known Authentication Key before deployment.

39

YubiHSM 2 Concepts

40 Chapter 15. Concept: Session

CHAPTER

SIXTEEN

COPYRIGHT

© 2022 Yubico AB. All rights reserved.

Trademarks

Yubico and YubiKey are registered trademarks of Yubico AB. All other trademarks are the property of their respective
owners.

Disclaimer

The contents of this document are subject to revision without notice due to continued progress in methodology, design,
and manufacturing. Yubico shall have no liability for any error or damages of any kind resulting from the use of this
document.

The Yubico Software referenced in this document is licensed to you under the terms and conditions accompanying the
software or as otherwise agreed between you or the company that you are representing.

Contact Information

Yubico Inc.
530 Lytton Street
Suite 301
Palo Alto, CA 94301
USA

Click the links to:

• Submit a support request

• Send a Contact Me request

• See additional contact options for getting touch with us

Document Updated

2022-05-11 22:40:36 UTC

41

http://yubi.co/support
https://www.yubico.com/support/contact/
https://www.yubico.com/support/contact/

	Introduction
	YubiHSM Auth
	Overview
	YubiHSM Introduction
	Credentials and PIN Codes
	YubiHSM 2 Secure Channel
	Architecture Overview
	YubiHSM Auth Flowchart
	Software and Tools
	YubiHSM-Auth Software Tool
	Using YubiHSM-Auth with YubiHSM Shell

	Concept: Object and Object Types
	Objects
	Object Type
	Authentication Key
	Asymmetric Key
	HMAC Key
	Opaque
	OTP AEAD Key
	Template
	Wrap Key

	Protocol Details

	Concept: Algorithms
	Algorithms

	Concept: Attestation
	Attestation
	Details
	Certificate Extensions
	Pre-Loaded Certificates
	Intermediates:

	Concept: Capability
	Capability
	Delegated Capabilities

	Protocol Details

	Concept: Domain
	Domain
	Protocol Details

	Concept: Effective Capabilities
	Effective Capabilities (Tying It All Together)
	Create and Authenticate a Session
	Generate a Signature
	Effective Capabilities and Role Definition

	Workflow

	Concept: Errors
	Errors

	Concept: Label
	Label
	Protocol Details

	Concept: Logs
	Logs

	Concept: Object ID
	Object ID
	Protocol Details

	Concept: Options
	Options
	Force Audit
	Command Audit

	Concept: Sequence
	Sequence
	Protocol Details

	Concept: Session
	Session

	Copyright

