
YubiHSM 2 Component Reference

Yubico

May 19, 2022

CONTENTS

1 Connector Reference 1
1.1 HTTPS Connections . 1
1.2 Configuration . 1

2 YubiHSM Shell Reference 3
2.1 How to Use the Shell . 3
2.2 Data Format . 4
2.3 Enabling Debug . 4

3 YubiHSM 2 Setup Tool Reference 5
3.1 Setup for EJBCA . 5
3.2 How It Works . 6
3.3 Backing Up the YubiHSM 2 . 6

4 Libyubihsm Reference 7
4.1 Backends . 7
4.2 HTTP Connector . 7
4.3 USB Connector . 7

5 Python Library Reference 9

6 Yubihsm Wrap Reference 11

7 Key Storage Provider Reference 13
7.1 Additional Documentation for YubiHSM Key Storage Provider . 14

8 Creating a Code-Signing Certificate using the Key Storage Provider 15
8.1 Configure the Key Storage Provider . 15
8.2 Create the Certificate Request Configuration File . 16
8.3 Create the Certificate Request . 17
8.4 Sign the Certificate Request . 17
8.5 Sign using Signtool . 17
8.6 Troubleshooting . 17
8.7 More Information . 18

9 Move Software Keys to Key Storage Provider 19
9.1 Export your Existing Private Key and Certificate . 19
9.2 Import the Target Private Key . 20
9.3 Restore the Target Certificate . 20

10 Status Codes Reference 23

i

11 PKCS#11 with YubiHSM 2 Reference 27
11.1 Configuration . 27
11.2 Logging In . 27
11.3 PKCS#11 on Windows . 28
11.4 PKCS#11 Attributes . 28
11.5 PKCS#11 Objects . 29
11.6 PKCS#11 Functions . 30
11.7 PKCS#11 Vendor Definitions . 32
11.8 PKCS#11 Configuration . 32

12 PKCS#11 Tool Compatibility, Interoperability and Known Restrictions 35
12.1 pkcs11-tool . 35
12.2 pkcs11test . 35

13 Copyright 41

ii

CHAPTER

ONE

CONNECTOR REFERENCE

The yubihsm-connector performs the communication between the YubiHSM 2 and the applications that use it.

The Connector must have permissions to access the USB device, and different operating systems behave differently
in this regard. The easiest way to get started is to run the Connector with Administrator privileges (e.g. with sudo),
but the safest way to run the Connector is to use your operating system’s configuration to give it only the privileges
necessary to access the YubiHSM 2 USB device.

The Connector is not a trusted component. Sessions are established cryptographically between the application and the
YubiHSM 2 using a symmetric mutual authentication scheme that is both encrypted and authenticated.

The Connector is not required to run on the same host as the applications which access it. In that case the Connector
should be configured to be listening on a different address and port rather than the default localhost:12345, making
sure that the client has access.

The protocol is tunneled over HTTP, but it is not a RESTful API or similar. It is however possible to get information
regarding the Connector by issuing a GET request on the /connector/status URI.

1.1 HTTPS Connections

As mentioned earlier, the Connector is not meant to be a trusted component. For this reason it defaults to HTTP
connections. It is possible to use HTTPS, however this requires providing a key and a certificate to the Connector.

Another option is to use a reverse proxy such as nginx before the Connector and have that handle TLS.

1.2 Configuration

Sample configuration for the Connector: yubihsm-connector-config.yaml

Certificate (X.509)
cert: ""

Certificate key
key: ""

Listening address. Defaults to "localhost:12345".
listen: localhost:12345

Device serial in case of multiple devices
serial: ""

(continues on next page)

1

https://developers.yubico.com/yubihsm-connector/

YubiHSM 2 Component Reference

(continued from previous page)

Log to syslog/eventlog. Defaults to "false".
syslog: false

Use to enable host header filtering. Default to "false".
Use this if there is an absolute need to use a web browser on the
host where the YubiHSM 2 is installed to connect to untrusted web
sites on the Internet.
enable-host-whitelist: false

Default list for the host header filter
host-whitelist: localhost,localhost.,127.0.0.1,[::1]

Sample udev rule to be placed into /etc/udev/rules.d/:

#This udev file should be used with udev 188 and newer
ACTION!="add|change", GOTO="yubihsm2_connector_end"

Yubico YubiHSM 2
The OWNER attribute here has to match the uid of the process
running the Connector
SUBSYSTEM=="usb", ATTRS{idVendor}=="1050", ATTRS{idProduct}=="0030",
OWNER="yubihsm-connector"

LABEL="yubihsm2_connector_end"

2 Chapter 1. Connector Reference

CHAPTER

TWO

YUBIHSM SHELL REFERENCE

The yubihsm-shell is the administrative and testing tool you can use to interact with and configure the YubiHSM 2
device.

The Shell can be invoked in two different ways: interactively, or as a command line tool useful for scripting.

Additional information on the various commands can be obtained with the help command in interactive mode or by
referring to the --help argument for the command line mode.

Examples of commands can also be found in the Command reference.

Note: For operations that take input data (from command line or file), releases prior to and including the current
yubihsm2-sdk release have a size limit - 4kb in interactive mode, or 8kb in non-interactive mode.

2.1 How to Use the Shell

2.1.1 Command Syntax

Commands and subcommands require specific arguments to work. The Shell will return an error message if the com-
mand syntax is incorrect, pointing at the first invalid argument.

Arguments have different types. In interactive mode pre-defined values for command types can be tab-completed (Tab
Completion does not work on Windows).

3

https://developers.yubico.com/yubihsm-shell/yubihsm-shell.html
https://docs.yubico.com/software/yubihsm-2/commands/hsm2-cmd-introduction.html

YubiHSM 2 Component Reference

2.1.2 Possible Command Types

Arg Type Description
u number A generic (hex or dec) unsigned number
w word A generic (hex or dec) 16-bit unsigned number
b byte A generic (hex or dec) 8-bit unsigned number
i input data Input data, generally defaults to standard input
F output

filename
Output file name, generally defaults to standard output

s string A generic string (use quotes for strings including white spaces)
e session The ID of an already-established Session
d domains A list of Domains, either in hex (ex: 0xffff) or string form (ex: 3,5,14)
c capabilities A list of Capabilities in either form: hex (ex: 0xffffffffffffffff) or string (ex: sign-pkcs,sign-

pss, get-log-entries)
a algorithm An algorithm in string form (ex: eccp256)
t type An Object Type in string form (ex: Asymmetric)
o option A device-global option in string form (ex: force-audit)
I format A format specifier in string form (ex: base64)

2.2 Data Format

Different commands have different default formats. These can be listed by invoking help on a specific command. For
example, the help sign will contain the following lines:

pss Sign data using RSASSA-PSS (default input format: binary)
e:session,w:key_id,a:algorithm,i:data=-,F:out=-

As can be seen, the input format is binary. Additionally, arguments to a command that have =- after their type and
name (like i:data and F:out in the example above), use the standard input or standard output by default for reading
data.

2.3 Enabling Debug

Different levels of debug output can be enabled by using the -v flag in command line mode, or by issuing the debug
LEVEL command in interactive mode, where LEVEL is one of all, crypto, error, info, intermediate, none or
raw.

4 Chapter 2. YubiHSM Shell Reference

CHAPTER

THREE

YUBIHSM 2 SETUP TOOL REFERENCE

The SDK ships with a tool called yubihsm-setup that helps with setting up a device for specific use cases. The tool
assumes familiarity with the key concepts of YubiHSM such as Domains, Capabilities and Object IDs. It currently
supports the following:

• setup for KSP/ADCS and EJBCA;

• restoring a previous configuration

• resetting the device to factory defaults

• exporting all existing objects

The tool is based around the concept of secret-sharing. When setting up Objects, those are exported with a freshly
created Wrap Key. The key is never stored on disk, but rather it is printed on the screen as shares. The key concepts
here are:

• The number of shares, which is the number of parts the key should be divided into

• The security threshold, which is the minimum number of shares required to reconstruct the Wrap Key.

Besides splitting the Wrap Key into shares, the tool (by default) also exports under wrap all the newly created objects
and saves them in the current directory. This can be used at a later time to “clone” or recover a device. This operation
can be performed either with yubihsm-setup or manually if the Wrap Key is known.

By default, the Authentication Key used to establish a Session with the device is also normally deleted at the end of the
process.

Default behavior can be altered with command line options. For more information, consult the tool’s help.

3.1 Setup for EJBCA

When setting up the device for use by EJBCA, the setup tool will also generate an asymmetric keypair and an X509
certificate suitable for use as a CA key. The setup tool kan be re-run as many times as the number of asymmetric keys
to be generated since each run will produce only one keypair and one corresponding X509 certificate.

Note: Using the --no-new-authkey flag will prevent generation of a new Wrap Key and a new Authentication Key.

5

https://developers.yubico.com/yubihsm-setup/
https://docs.yubico.com/software/yubihsm-2/concepts/hsm2-concept-domain.html
https://docs.yubico.com/software/yubihsm-2/concepts/hsm2-concept-capabilities.html
https://docs.yubico.com/software/yubihsm-2/concepts/hsm2-concept-objectid.html

YubiHSM 2 Component Reference

3.2 How It Works

For the JAVA implementation, a keypair can be used to perform PKCS#11 operations only if the key and its correspond-
ing X509 certificate are stored under the same ID on the device (the value of their CKA_ID attributes is the same). To
store them under the same ID, run the YubiHSM 2 Setup tool with the ejbca subcommand:

1. Generate an Asymmetric Key on the YubiHSM 2.

2. Generate an attestation certificate for the asymmetric key and import it into the YubiHSM 2 under the same ID
as the Asymmetric Key.

The attestation certificate stored on the YubiHSM 2 is, in fact, only a placeholder certificate for the public key. It is
never used by EJBCA because EJBCA stores the CAs’ certificates in a dedicated database.

3.3 Backing Up the YubiHSM 2

To back up the entire content of the device, we recommend you use the dump subcommand on one YubiHSM and then
the restore subcommand on another YubiHSM. For more information, consult the Setup tool’s online help.

6 Chapter 3. YubiHSM 2 Setup Tool Reference

CHAPTER

FOUR

LIBYUBIHSM REFERENCE

Libyubihsm is the C library used to communicate natively with a YubiHSM 2. It implements and exposes convenience
functions for all the commands supported by the device. It also allows the sending of unformatted “raw” messages over
an established session or in plain text.

The library is used by:

• yubihsm-shell, see YubiHSM Shell Reference

• PKCS#11 module, see PKCS#11 with YubiHSM 2 Reference

• KSP, see Key Storage Provider Reference

Documentation of the library API can be found as comments within the header file (yubihsm.h) in the SDK, or as a
pre-built Doxygen bundle.

4.1 Backends

Libyubihsm requires a Connector component to talk to a YubiHSM device. This component can be one of two different
types.

4.2 HTTP Connector

This kind of Connector is a multiplexer daemon that speaks USB to a YubiHSM device and HTTP to the libyubihsm.
This is the component described as the yubihsm-connector, see Connector Reference.

In order to select this type of backend the connector URL should use the http or https scheme; for example, to use
a local HTTP Connector use http://127.0.0.1:12345.

4.3 USB Connector

This kind of Connector is a direct-access USB backend that talks directly with a YubiHSM device. The USB Connector
is built into libyubihsm. This renders it unnecessary to run an additional component (i.e., the external Connector) at
the cost of requiring exclusive access to a YubiHSM device.

In order to select this type of backend the connector URL should use the yhusb scheme. For example, to use a local
device with serial number 123456 use yhusb://serial=123456.

7

https://developers.yubico.com/yubihsm-shell/libyubihsm.html
https://developers.yubico.com/YubiHSM2/Releases
https://developers.yubico.com/YubiHSM2/Releases

YubiHSM 2 Component Reference

8 Chapter 4. Libyubihsm Reference

CHAPTER

FIVE

PYTHON LIBRARY REFERENCE

The Python library allows you to interface with a YubiHSM 2 through the Connector service using the Python pro-
gramming language. It supports both Python 2 and Python 3.

The recommended way to install the library is by using pip inside a virtualenv. To create and activate a virtualenv,
just run:

$ virtualenv yubihsm
Running virtualenv with interpreter /usr/bin/python3
New python executable in /home/user/yubihsm/bin/python3
Also creating executable in /home/user/yubihsm/bin/python
Installing setuptools, pkg_resources, pip, wheel...done.

$ source yubihsm/bin/activate
(yubihsm) $ pip install yubihsm[http,usb]
Collecting yubihsm-2.0.0
...
Successfully installed asn1crypto-0.22.0 cffi-1.10.0 cryptography-1.8.1

enum34-1.1.6 idna-2.5 ipaddress-1.0.18 pycparser-2.17 pyusb-1.0.2
requests-2.13.0 yubihsm-2.0.0

(yubihsm) $

Note: The cryptography dependency uses C extensions, and therefore has some build dependencies. For detailed
instructions, see: https://cryptography.io/en/latest/installation/

from yubihsm import YubiHsm
from yubihsm.objects import AsymmetricKey
from yubihsm.defs import ALGORITHM, CAPABILITY

Connect to the Connector and establish a session using the default
auth key:
hsm = YubiHsm.connect("http://localhost:12345/connector/api")
session = hsm.create_session_derived(1, "password")

Create a new EC key for signing:
key = AsymmetricKey.generate(session, 0, "EC Key", 1, CAPABILITY.SIGN_ECDSA, ALGORITHM.
→˓EC_P256)

Sign a message
data = b'Hello world!'

(continues on next page)

9

https://developers.yubico.com/python-yubihsm/
https://cryptography.io/en/latest/installation/

YubiHSM 2 Component Reference

(continued from previous page)

signature = key.sign_ecdsa(data)

Delete the key from the YubiHSM 2
key.delete()

Close session and connection:
session.close()
sm.close()

10 Chapter 5. Python Library Reference

CHAPTER

SIX

YUBIHSM WRAP REFERENCE

Yubihsm Wrap is a tool that allows the creation of importable objects offline. This is useful when bootstrapping secrets,
for example on an air-gapped computer.

The tool requires an unencrypted Wrap Key in binary format and uses that to wrap objects with given Type, Algorithm,
ID, Capabilities and, where applicable, Delegated Capabilities.

For the resulting Object to be successfully imported on a YubiHSM 2, the Wrap Key used by yubihsm-wrap must
already be present on the device.

Currently not all Object Types are supported. Refer to Known Issues and Limitations for more information.

11

https://developers.yubico.com/yubihsm-shell/yubihsm-wrap.html
https://docs.yubico.com/software/yubihsm-2/concepts/hsm2-concept-object.html
https://docs.yubico.com/software/yubihsm-2/concepts/hsm2-concept-algorithms.html
https://docs.yubico.com/software/yubihsm-2/concepts/hsm2-concept-objectid.html
https://docs.yubico.com/software/yubihsm-2/concepts/hsm2-concept-capabilities.html
https://docs.yubico.com/software/yubihsm-2/concepts/hsm2-concept-capabilities.html
https://developers.yubico.com/YubiHSM2/Releases/Known_issues.html

YubiHSM 2 Component Reference

12 Chapter 6. Yubihsm Wrap Reference

CHAPTER

SEVEN

KEY STORAGE PROVIDER REFERENCE

The Key Storage Provider (KSP) for Windows Cryptography API: Next Generation (CNG) has been thoroughly tested
with Active Directory Certificate Services (AD CS) plus 2048-bit, 3072-bit, and 4096-bit keys. It also works with other
types of keys, but those have not been tested to the same extent.

The following installs the KSP and the Connector Service, using them for ADCS with the default Authentication Key
(1) and password (password).

When you run the Install-AdcsCertificationAuthority command, you should see the YubiHSM 2 light flash
rapidly, because AD CS uses the KSP to generate a 2048-bit key in hardware. For AD CS to work properly,
Restart-Computer may be needed.

PS1> msiexec /i "yubihsm-connector-windows-amd64.msi" /passive ACCEPT=yes
PS1> msiexec /i "yubihsm-cngprovider-windows-amd64.msi" /passive ACCEPT=yes
PS1> Install-WindowsFeature AD-Certificate -Verbose
PS1> Install-AdcsCertificationAuthority -CAType EnterpriseRootCa \

-CryptoProviderName "RSA#YubiHSM Key Storage Provider" \
-KeyLength 2048 -HashAlgorithmName SHA256 -ValidityPeriod Years \
-ValidityPeriodUnits 5

PS1> Install-AdcsOnlineResponder

If you are using a different Authentication Key, password, or Connector for the KSP, you can specify them as follows
(defaults are shown):

PS1> Set-ItemProperty -path HKLM:\SOFTWARE\Yubico\YubiHSM \
-name ConnectorURL -Type String -Value http://127.0.0.1:12345

PS1> Set-ItemProperty -path HKLM:\SOFTWARE\Yubico\YubiHSM \
-name AuthKeysetPassword -Type String -Value password

PS1> Set-ItemProperty -path HKLM:\SOFTWARE\Yubico\YubiHSM \
-name AuthKeysetID -Type DWord -Value 1

Warning: Design considerations for Key Storage Providers in Windows prevent the direct USB functionality of
libyubihsm (Connector URL yhusb://), therefore it is not supported in this version of the YubiHSM KSP.

The default configuration for the connector is: ProgramData\YubiHSM\yubihsm-connector.yaml - Administrator
rights are required to access the file.

13

YubiHSM 2 Component Reference

7.1 Additional Documentation for YubiHSM Key Storage Provider

• For instructions on how to move a software-based key into the YubiHSM 2 for use with the KSP, see Move
Software Keys to Key Storage Provider.

• For an example of how to create an HSM-backed code signing certificate for Windows through the KSP, see
Creating a Code-Signing Certificate using the Key Storage Provider.

• For more information about status codes, see YubiHSM 2 status codes in Windows.

• For details on how to configure the 32-bit and 64-bit KSP DLLs, please see YubiHSM 2 Windows Deployment
Guide.

14 Chapter 7. Key Storage Provider Reference

https://docs.yubico.com/software/yubihsm-2/component-reference/hsm2-ref-ksp-move-sw-keys.html
https://docs.yubico.com/software/yubihsm-2/component-reference/hsm2-ref-ksp-move-sw-keys.html
https://docs.yubico.com/software/yubihsm-2/component-reference/hsm2-ref-ksp-code-signing-cert.html
https://docs.yubico.com/software/yubihsm-2/component-reference/hsm2-ref-ksp-status-codes.html
https://docs.yubico.com/software/yubihsm-2/usage-guides/yubihsm2-windows-deploy-guide/hsm2-win-server-introduction.html
https://docs.yubico.com/software/yubihsm-2/usage-guides/yubihsm2-windows-deploy-guide/hsm2-win-server-introduction.html

CHAPTER

EIGHT

CREATING A CODE-SIGNING CERTIFICATE USING THE KEY
STORAGE PROVIDER

This example will show you how to create a code-signing certificate request using a key generated and stored in the
YubiHSM 2 via the Key Storage Provider (KSP). This type of code-signing certificate is appropriate for use with the
Microsoft signtool utility for digitally signing Windows binaries.

In this example, we will use the command line certreq utility. All procedures documented here are available in the
Certificate Manager (certmgr.msc) MMC snap-in if you prefer to use a GUI.

Note: For operations that take input data (from command line or file), releases prior to and including the current
yubihsm2-sdk release have a size limit - 4kb in interactive mode, or 8kb in non-interactive mode.

8.1 Configure the Key Storage Provider

By default, the KSP will use the factory authentication key in slot 1. If the factory authentication key no longer exists
or a different authentication key is desired, the KSP must first be configured with the desired key ID and password.

Note: The configured authentication key must at a minimum have the capabilities generate-asymmetric-key,
sign-pkcs and delegated capability sign-pkcs. If you want the generated key to be exportable, then add the
exportable-under-wrap delegated capability.

8.1.1 Authentication Key Example

Create a new Authentication Key capable of generating exportable asymmetric keys through KSP.

yubihsm> put authkey 0 0 "GenerateKey" 1 generate-asymmetric-key,
sign-pkcs sign-pkcs,exportable-under-wrap password

Stored Authentication key 0x0e32

15

YubiHSM 2 Component Reference

8.2 Create the Certificate Request Configuration File

To specify your request, the certreq utility requires an .inf file as input. An example file is supplied here:

sign.inf

[Version]
Signature="$Windows NT$"

[NewRequest]
Subject = "CN=My Publisher" ; Entity name (dns name/upn for other␣
→˓cert types)
HashAlgorithm = sha256 ; Request uses sha256 hash
KeyAlgorithm = RSA ; Key pair generated using RSA algorithm
Exportable = FALSE ; Private key is not exportable
ExportableEncrypted = FALSE ; Private key is not exportable␣
→˓encrypted
KeyLength = 2048 ; YubiHSM KSP key sizes: 2048, 3072,␣
→˓4096
KeySpec = 2 ; 1 = AT_KEYEXCHANGE, 2 = AT_SIGNATURE
KeyUsage = 0x80 ; 80 = Digital Signature, 20 = Key␣
→˓Encipherment (bitmask)
MachineKeySet = FALSE ; True: cert belongs the local computer,
→˓ False: current user
KeyUsageProperty = NCRYPT_ALLOW_SIGNING_FLAG ; Private key only used for signing,␣
→˓not decryption
UseExistingKeySet = FALSE ; Do not use an existing key pair
ProviderName = "YubiHSM Key Storage Provider"
ProviderType = 1
SMIME = FALSE ; No secure email function
UseExistingKeySet = FALSE ; Do not use an existing key pair
RequestType = PKCS10 ; Can be CMC, PKCS10, PKCS7 or Cert␣
→˓(self-signed)

[Strings]
szOID_ENHANCED_KEY_USAGE = "2.5.29.37"
szOID_CODE_SIGN = "1.3.6.1.5.5.7.3.3"
szOID_BASIC_CONSTRAINTS = "2.5.29.19"

[Extensions]
%szOID_ENHANCED_KEY_USAGE% = "{text}%szOID_CODE_SIGN%"
%szOID_BASIC_CONSTRAINTS% = "{text}ca=0&pathlength=0"

; If you are using ADCS with certificate templates, you may add
; a specific template under [RequestAttributes]
;[RequestAttributes]
;CertificateTemplate= CodeSigning

16 Chapter 8. Creating a Code-Signing Certificate using the Key Storage Provider

YubiHSM 2 Component Reference

8.3 Create the Certificate Request

Once you have created the certificate request configuration file, pass it to certreq as the input file argument, e.g:

certreq -new sign.inf sign.req

8.4 Sign the Certificate Request

In the above example, the certificate request was written to sign.req. Take this file and submit its contents to your CA
for signature. Once signed, open the resulting file (e.g., sign.crt) and install the certificate to your personal store.

8.5 Sign using Signtool

Open a prompt with signtool in the path and use the following command to sign your binary.

> signtool sign <binary name>

If you have multiple certificates available for code signing, it may be necessary to identify your signing certificate by
hash. If this occurs, signtool will show you a list of valid certificates. Simply re-run sign tool with the sha1 hash of
the certificate:

> signtool sign /sha1 <certificate hash> <binary name>

When importing the certificate for the first time on a new computer, it may be necessary to manually bind the certificate
to the private key. This is because the key is not stored with the certificate and Windows doesn’t automatically create
an association between the two.

After importing the certificate to your personal store, use the certutil utility provided by Windows to associate the
YubiHSM private key to the certificate.

> certutil -repairstore my <certificate hash>

8.6 Troubleshooting

The error messages returned from signtool are often unhelpful in diagnosing why a signing operation failed. In these
situations there are a few commands you can use to track down the root cause.

When using signtool, use the /v and /debug flags to get more detailed output. The example below shows a response
you may receive if the certificate is installed but the YubiHSM is not connected or is misconfigured.

> signtool sign /v /debug <binary name>
After EKU filter, 1 certs were left.
After expiry filter, 1 certs were left.
After Hash filter, 1 certs were left.
After Private Key filter, 0 certs were left.
SignTool Error: No certificates were found that met all the given criteria.

Use certutil to check the validity of the imported certificate.

8.3. Create the Certificate Request 17

YubiHSM 2 Component Reference

> certutil -verifystore my <certificate hash>
================ Certificate 0 ================
Serial Number: 029fe48291dd587c1e6f42bca341291
...
Certificate is valid

Use certutil to check whether the KSP has been installed correctly. You should see Provider Name: YubiHSM
Key Storage Provider as one of the entries with no errors.

> certutil -csplist
...
Provider Name: YubiHSM Key Storage Provider
...

Use certutil to check if the key is accessible through the storage provider. You can also add the -v flag to get
additional details.

> certutil -csp "YubiHSM Key Storage Provider" -key
YubiHSM Key Storage Provider:
tq-75c94c4b-5e40-4e44-bcd2-ee3330d4942f
RSA
AT_SIGNATURE

Use certutil to dump certificate information. This command may show Cannot find the certificate and
private key for decryption. when using a new computer if certutil -repairstore hasn’t yet been per-
formed.

> certutil -store my <certificate hash>
================ Certificate 0 ================
Serial Number: 029fe48291dd587c1e6f42bca341291
...
Private key is NOT exportable
Signature test passed

8.7 More Information

For a detailed explanation of all options available in the request .inf file, see the documentation for the certreq utility.

To generate a similar request using the Certificate Manager, open the Certificate Manager snap-in, select the Per-
sonal/Certificates store, right click and select All Tasks > Advanced Operations > Create Custom Request.

18 Chapter 8. Creating a Code-Signing Certificate using the Key Storage Provider

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/certreq_1

CHAPTER

NINE

MOVE SOFTWARE KEYS TO KEY STORAGE PROVIDER

If the target private key is managed by the Microsoft Software Key Storage Provider, another software provider, or any
other KSP that allows export via PKCS#12 PFX, it is possible to move your key to the YubiHSM 2, but results may
vary.

This process relies on using the -repairstore functionality of the certutil command, so the private key must
only be present via the YubiHSM Key Storage Provider when performing this step. Please refer to the source storage
provider documentation for how to cleanly and completely delete a private key.

Because KSP implementations differ, we recommend testing this procedure using your existing provider before affecting
a live system.

9.1 Export your Existing Private Key and Certificate

Refer to your current KSP documentation on how to obtain a PKCS#12 PFX export of your certificate and private key.

Once you have obtained your PFX file, split the certificate from the PFX file using certutil:

PS1> certutil -split -dump <pfx file>

This will create a file named <Cert Hash>.crt.

If you are moving the key to the YubiHSM 2 on the same machine, you must delete the original private key in your
current provider. To do so, first execute

PS1> certutil -key

Locate the key that corresponds with the CA. It may look something like this:

Microsoft Software Key Storage Provider:
EXAMPLE-CA abcdef1234fedcba4321abcdef123456_9cfc1053-1b5a-44d7-8a7e
-3a8a1c0d0db0 RSA AT_KEYEXCHANGE

To delete this example private key, execute:

PS1> certutil -delkey -csp "Microsoft Software Key Storage Provider"
"abcdef1234fedcba4321abcdef123456_9cfc1053-1b5a-44d7-8a7e-3a8a1c0d0db0"

19

YubiHSM 2 Component Reference

9.2 Import the Target Private Key

Using the instructions for importing a PFX private key via yubihsm-shell, import the target private key file to your
YubiHSM 2.

Record the Label property of your imported key.

Important: The certutil utility does not provide an easy way to split a key exported from the Software KSP into an
unencrypted PEM file. It may be necessary to use another tool like OpenSSL to convert the key file to an unencrypted
format for import into the HSM. For example, to export the private key, execute

PS1> openssl pkcs12 -in <pfx file> -nocerts -out ca.key -nodes

To remove the passphrase from the private key, execute

PS1> openssl rsa -in ca.key -out ca.key

9.3 Restore the Target Certificate

Move the target certificate file (<Cert Hash>.crt) to the target machine.

Import the certificate to the LocalMachine “My” store via your favorite method. At this point, the certificate will not
have an associated private key. We’ll use the -repairstore functionality of certutil to re-associate the certificate
to the private key.

Make sure that the target private key is visible via the YubiHSM KSP, using

PS1> certutil -key -csp "YubiHSM Key Storage Provider"

This command will list all private keys (and their corresponding container names - which are equal to the Label property
in the YubiHSM 2) visible to the current Authentication Key.

Open an elevated prompt and execute the command

PS1> certutil -repairstore MY <Cert Hash>

Verify that the certificate has been associated with the YubiHSM KSP and has the correct Key Container property
value by running

PS1> certutil -store My

and inspecting the Key Container and Provider properties.

Warning: If you are moving your CA key to the YubiHSM 2 on the same machine, Windows Certificate Services
(CertSvc) on the local machine writes the name of the KSP to its configuration section in the registry. When signing
requests, the certificate service will fail if the KSP name does not match the name in the registry.

To update the KSP name for the local certificate service, open an elevated prompt and execute the commands:

20 Chapter 9. Move Software Keys to Key Storage Provider

https://docs.yubico.com/software/yubihsm-2/commands/hsm2-cmd-put-asymmetric-key.html
https://docs.yubico.com/software/yubihsm-2/concepts/hsm2-concept-label.html
https://docs.yubico.com/software/yubihsm-2/concepts/hsm2-concept-label.html

YubiHSM 2 Component Reference

PS1> certutil -setreg CA\CSP\Provider "YubiHSM Key Storage Provider"
PS1> certutil -setreg CA\EncryptionCSP\Provider "YubiHSM Key Storage

Provider"

If you have multiple CAs on the same machine, or prefer to edit the registry directly, these settings can be found under

HKLM\System\CurrentControlSet\Services\CertSVC\Configuration\
<CA Name>\[CSP | EncryptionCSP]

9.3. Restore the Target Certificate 21

YubiHSM 2 Component Reference

22 Chapter 9. Move Software Keys to Key Storage Provider

CHAPTER

TEN

STATUS CODES REFERENCE

The YubiHSM software components have a standard set of status codes to report the status of an HSM operation. To
comply with the expectations of specific platforms, these status codes are converted to the appropriate API status code.

Currently, this translation is only performed for the Windows Key Storage Provider. The error codes, their meanings
and translated values are as follows:

Libyubihsm Error Code Description Windows CNG Translation
YHR_BUFFER_TOO_SMALL

Not enough space to
store data

NTE_BUFFER_TOO_SMALL

YHR_CONNECTION_ERROR Transport Backend error NTE_DEVICE_NOT_READY
YHR_CONNECTOR_ERROR

Connector operation
failed

NTE_DEVICE_NOT_READY

YHR_CONNECTOR_NOT_FOUND
Unable to find a
suitable connector

NTE_DEVICE_NOT_READY

YHR_CRYPTOGRAM_MISMATCH
Unable to verify
cryptogram

NTE_BAD_SIGNATURE

YHR_DEVICE
_AUTHENTICATION_FAILED

Message encryption /
verification failed

NTE_INCORRECT_PASSWORD

YHR_DEVICE_COMMAND
_UNEXECUTED

The HSM attempted to
execute a command, but
it did not complete in
the time allotted. The
command has not
terminated, and the
current state of the
session is unavailable

NTE_SYS_ERR

continues on next page

23

YubiHSM 2 Component Reference

Table 1 – continued from previous page
Libyubihsm Error Code Description Windows CNG Translation
YHR_DEVICE_DEMO_MODE

Demo mode, power cycle
device

NTE_DEVICE_NOT_READY

YHR_DEVICE_INSUFFICIENT
_PERMISSIONS

Wrong permissions for
operation

NTE_PERM

YHR_DEVICE_INVALID
_COMMAND

Invalid command NTE_NOT_SUPPORTED

YHR_DEVICE_INVALID_DATA
Malformed command /
invalid data

NTE_INVALID_PARAMETER

YHR_DEVICE_INVALID_ID Illegal ID used
NTE_INVALID
PARAMETER[]

YHR_DEVICE_INVALID_OTP Invalid OTP NTE_INCORRECT_PASSWORD

YHR_DEVICE_INVALID
_SESSION

Invalid session NTE_DEVICE_NOT_READY

YHR_DEVICE_LOG_FULL
Log buffer is full and
forced audit is set

NTE_DEVICE_NOT_READY

YHR_DEVICE_OBJECT_EXISTS
An object with the
specified ID already
exists

NTE_EXISTS

YHR_DEVICE_OBJECT
_NOT_FOUND

Object not found NTE_NOT_FOUND

YHR_DEVICE_OK
No error NTE_OP_OK

YHR_DEVICE_SESSION
_FAILED

Session creation failed NTE_DEVICE_NOT_READY

YHR_DEVICE_SESSIONS_FULL
All sessions are
allocated

NTE_DEVICE_NOT_READY

continues on next page

24 Chapter 10. Status Codes Reference

YubiHSM 2 Component Reference

Table 1 – continued from previous page
Libyubihsm Error Code Description Windows CNG Translation

YHR_DEVICE_STORAGE
_FAILED

Storage failure
NTE_TOKEN_KEYSET
_STORAGE_FULL

YHR_DEVICE_WRONG_LENGTH Wrong length NTE_BAD_LEN
YHR_GENERIC_ERROR Generic error NTE_FAIL
YHR_INIT_ERROR

Unable to initialize
libyubihsm

NTE_PROVIDER_DLL_FAIL

YHR_INVALID_PARAMETERS
Invalid argument to a
function

NTE_INVALID_PARAMETER

YHR_MAC_MISMATCH Unable to verify MAC NTE_BAD_SIGNATURE
YHR_MEMORY_ERROR

The YubiHSM or software
library was not able to
allocate memory to
perform the requested
operation

NTE_NO_MEMORY

YHR_SESSION
_AUTHENTICATION
_FAILED

Unable to authenticate
session

NTE_INCORRECT_PASSWORD

YHR_SUCCESS
The operation completed
successfully

ERROR_SUCCESS

YHR_WRONG_LENGTH
This error may occur if
there is a mismatch
between the YubiHSM
firmware version and
libyubihsm library
version

NTE_BAD_LEN

25

YubiHSM 2 Component Reference

26 Chapter 10. Status Codes Reference

CHAPTER

ELEVEN

PKCS#11 WITH YUBIHSM 2 REFERENCE

11.1 Configuration

The PKCS#11 module requires a configuration file, default location for this file is current directory and default name is
yubihsm_pkcs11.conf using the environment variable YUBIHSM_PKCS11_CONF one can point to a custom location
and name.

Configuration options can also be passed as a string in the pReserved field of C_Initialize, using the OpenSSL
PKCS#11 engine this can be set in the INIT_ARGS configuration value. This is technically a violation of the PKCS#11
specification (which mandates pReserved to be set to NULL) and is not supported by all applications.

Accepted configuration options:

• connector: URL pointing at the connector to contact, mandatory

• debug: Turn on PKCS#11 debugging, default off

• dinout: Turn on call tracing, default off

• ibdebug: Turn on debug of libyubihsm, default off

• debug-file: File to write debug information to, default stderr

• cacert: File with cacert to verify connector https cert with (not available on Windows)

• proxy: Proxy server for reaching the connector (not available on Windows)

• timeout: Timeout to use for initial connection to the connector (in seconds), default 5

A Configuration File Sample can be found below.

11.2 Logging In

All interesting operations through the PKCS#11 interface require a logged-in session, and one peculiarity of the
PKCS#11 interface is that the user PIN MUST be prefixed by the ID (16 bits, in hexadecimal, zero padded if required)
of the corresponding Authentication Key.

Assuming the default Authentication Key with ID 1 and password password, the user PIN would then be
0001password. To be compliant with PKCS#11 standards, the Authentication Key password MUST be at least 8
characters long.

Note that the concept of a Security Officer (SO) is not supported by the device, and the PIN management functions are
not implemented for neither user nor SO.

It is recommended that PIN (Authentication Key) management is performed via the yubihsm-shell utility or the
libyubihsm functions.

27

https://developers.yubico.com/yubihsm-shell/yubihsm-pkcs11.html

YubiHSM 2 Component Reference

11.3 PKCS#11 on Windows

After installing yubihsm-shell using the windows installer, in addition to setting YUBIHSM_PKCS11_CONF environment
variable, the YubiHSM Shell\bin directory needs to be added to the system path in order for other applications to
be able to load it. This is because the yubihsm-pkcs11.dll is dynamically linked to the libyubihsm*.dll and
libcrypto-1_1.dll libraries and they need to be accessible for the PKCS#11 module to be useful.

On Windows 10, setting the system path is done by following these steps:

Step 1 Go to Control Panel > System and Security > System > Advanced system setting

Step 2 Click Environment Variables. . .

Step 3 Under System Variables, highlight Path and click Edit. . .

Step 4 Click New and add the absolute path to YubiHSM Shell/bin

Step 5 Under System Variables, click New and add the environment variable YUBIHSM_PKCS11_CONF
and set it to the path to the YubiHSM2 PKCS11 configuration file

If setting the system path is not desirable, the libyubihsm*.dll and libcrypto-1_1.dll can be copied into the
same directory as the application that needs to access the PKCS#11 module.

11.3.1 Note for Developers

If LoadLibrary is called with an absolute path, it will not look for dependencies of the specified DLL in that directory,
but rather in the startup directory of the application that calls LoadLibrary. The solution is to either:

• Call LoadLibraryEx with the flag LOAD_WITH_ALTERED_SEARCH_PATH for absolute paths

• Add the directory where the PKCS#11 module is located to the system PATH

• Or copy the dependencies into the application directory.

Please note that calling LoadLibraryEx with that flag for a non-absolute path is undefined behavior according to MS
docs. For example, the way Pkcs11Interop does it is to set a variable to LOAD_WITH_ALTERED_SEARCH_PATH if the
path looks absolute, and 0 otherwise; and then always calling LoadLibraryEx. If the flags is 0 then LoadLibraryEx
behaves exactly like LoadLibrary.

11.3.2 Software Operations

C_Encrypt and C_Verify for Asymmetric Keys are performed in software, as well as all of the C_Digest operations.

11.4 PKCS#11 Attributes

There are a number of attributes defined in PKCS#11 that do not translate to Capabilities of the YubiHSM 2 device,
and are therefore treated as always having a fixed value.

28 Chapter 11. PKCS#11 with YubiHSM 2 Reference

YubiHSM 2 Component Reference

PKCS#11 YubiHSM 2 Rationale
CKA_PRIVATE CK_TRUE Login is always required
CKA_DESTROYABLE CK_TRUE

Objects can always be deleted from
the device

CKA_MODIFIABLE CK_FALSE Objects are immutable on the device
CKA_COPYABLE CK_FALSE Objects are immutable on the device
CKA_SENSITIVE CK_TRUE All objects are sensitive
CKA_ALWAYS_SENSITIVE CK_TRUE Objects are immutable on the device

11.4.1 Capabilities and Domains

Objects created via the PKCS#11 module inherit the Domains of the Authentication Key used to establish the session.
The Domains cannot be changed or modified via the module.

Object Capabilities are set on creation, depending on their Type, e.g. an RSA signing key (CKK_RSA) created via
C_CreateObject with the attribute CKA_SIGN set will have the following Capabilities set sign-pkcs,sign-pss.

Similarly for EC (CKK_EC), the key would have sign-ecdsa set.

See the following tables for mappings:

PKCS#11 RSA (CKK_RSA) EC (CKK_EC) Wrap
(CKK_YUBICO
_AES* _CCM
_WRAP)

HMAC
(CKK_SHA*
_HMAC)

CKA_ENCRYPT N/A N/A wrap-data N/A

CKA_EXTRACTABLE

export-under-wrap export-under-wrap export-under-wrap export-under-wrap

CKA_DECRYPT decrypt-pkcs,
decrypt-oaep

N/A unwrap-data N/A

CKA_DERIVE N/A derive-ecdh N/A N/A
CKA_SIGN sign-pkcs, sign-pss sign-ecdsa N/A sign-hmac
CKA_VERIFY N/A N/A N/A verify-hmac
CKA_WRAP N/A N/A export-wrapped N/A
CKA_UNWRAP N/A N/A import-wrapped N/A

11.5 PKCS#11 Objects

Not all PKCS#11 Object types are implemented, this is a list of what is implemented and what it maps to.

11.5. PKCS#11 Objects 29

YubiHSM 2 Component Reference

PKCS#11 Supported CKK Comment
CKO_CERTIFICATE

Opaque object with algorithm
YH_ALGO_OPAQUE_X509
_CERTIFICATE

CKO_DATA

Opaque object with algorithm
YH_ALGO_OPAQUE_DATA

CKO_PRIVATE_KEY CKK_RSA, CKK_EC

RSA 2048, 3072 & 4096 with
e=0x10001, EC with secp224r1,
secp256r1, secp384r1, secp521r1,
secp256k1, brainpool256r1,
brainpool384r1, brainpool512r1

CKO_PUBLIC_KEY

does not exist in device, only
as a property of a private key

CKO_SECRET_KEY

CKK_SHA_1_HMAC,
CKK_SHA256_HMAC,
CKK_SHA384_HMAC,
CKK_SHA512_HMAC,
CKK_YUBICO_AES128
_CCM_WRAP,
CKK_YUBICO_AES192
_CCM_WRAP,
CKK_YUBICO_AES256
_CCM_WRAP

11.6 PKCS#11 Functions

Not all functions in PKCS#11 are implemented in the module, this is a list of what is implemented.

PKCS#11 Comment
C_CloseSession
C_CloseAllSessions

continues on next page

30 Chapter 11. PKCS#11 with YubiHSM 2 Reference

YubiHSM 2 Component Reference

Table 1 – continued from previous page
PKCS#11 Comment
C_CreateObject

Use with CKO_PRIVATE_KEY,
CKO_SECRET_KEY,
CKO_CERTIFICATE or CKO_DATA

C_Decrypt
C_DecryptFinal
C_DecryptInit Decrypt with Wrap Key or RSA key
C_DecryptUpdate
C_DeriveKey Derive key using ECDH as a PKCS#11 session object
C_DestroyObject
C_Digest
C_DigestFinal
C_DigestInit

Do software digest with CKM_SHA_1,
CKM_SHA256,
CKM_SHA384 or CKM_SHA512

C_DigestUpdate
C_Encrypt
C_EncryptFinal
C_EncryptInit

Encrypt with Wrap Key or do software encryption
for RSA key

C_EncryptUpdate
C_Finalize
C_FindObjects
C_FindObjectsFinal
C_FindObjectsInit
C_GenerateKey Generate HMAC Key or Wrap Key
C_GenerateKeyPair Generate Asymmetric Key
C_GenerateRandom Generate up to 2021 bytes of random
C_GetAttributeValue
C_GetFunctionList
C_GetInfo
C_GetMechanismList
C_GetMechanismInfo
C_GetObjectSize
C_GetSessionInfo
C_GetSlotInfo
C_GetSlotList
C_GetTokenInfo
C_Initialize
C_Login
C_Logout
C_OpenSession
C_Sign
C_SignFinal

continues on next page

11.6. PKCS#11 Functions 31

YubiHSM 2 Component Reference

Table 1 – continued from previous page
PKCS#11 Comment
C_SignInit Sign with HMAC Key or Asymmetric Key
C_SignUpdate
C_Verify
C_VerifyFinal
C_VerifyInit Verify HMAC or software verify asymmetric
C_VerifyUpdate
C_UnwrapKey Unwrap an object with Wrap Key
C_WrapKey Wrap an object with Wrap Key

11.7 PKCS#11 Vendor Definitions

Working with the device Wrap Keys requires using vendor-specific definitions, these are listed in the table below. The
Wrap Keys can be used with C_WrapKey, C_Unwrapkey, C_Encrypt & C_Decrypt.

Wrap Type Wrap Key
CKM_YUBICO_AES_CCM_WRAP 0xd9554204
CKK_YUBICO_AES128_CCM_WRAP 0xd955421d
CKK_YUBICO_AES192_CCM_WRAP 0xd9554229
CKK_YUBICO_AES256_CCM_WRAP 0xd955422a

11.8 PKCS#11 Configuration

11.8.1 Configuration File Sample

Below is a sample of a yubihsm_pkcs11.conf configuration file.

This is a sample configuration file for the YubiHSM PKCS#11 module
Uncomment the various options as needed

URL of the connector to use. This can be a comma-separated list
connector = http://127.0.0.1:12345

Enables general debug output in the module
#
debug

Enables function tracing (ingress/egress) debug output in the module
#
dinout

Enables libyubihsm debug output in the module
#
libdebug

Redirects the debug output to a specific file. The file is created
if it does not exist. The content is appended
#

(continues on next page)

32 Chapter 11. PKCS#11 with YubiHSM 2 Reference

YubiHSM 2 Component Reference

(continued from previous page)

debug-file = /tmp/yubihsm_pkcs11_debug

CA certificate to use for HTTPS validation. Point this variable to
a file containing one or more certificates to use when verifying
a peer. Currently not supported on Windows
#
cacert = /tmp/cacert.pem

Proxy server to use for the connector
Currently not supported on Windows
#
proxy = http://proxyserver.local.com:8080

Timeout in seconds to use for the initial connection to the connector
timeout = 5

11.8.2 INIT_ARGS Sample

Below is a sample of using the INIT_ARGS configuration with an openssl.cnf file.

openssl_conf = openssl_init

[openssl_init]
engines = engine_section

[engine_section]
pkcs11 = pkcs11_section

pkcs11_section]
engine_id = pkcs11
dynamic_path = /path/to/engine_pkcs11.so
MODULE_PATH = /path/to/yubihsm_pkcs11.so
INIT_ARGS = connector=http://127.0.0.1:12345 debug
init = 0

Note: OpenSSL 1.1 will auto-load modules present in the system engine directory (like /usr/lib/
x86_64-linux-gnu/engines-1.1) so the dynamic_path line has to be dropped there. The error shown will mention
“conflicting engine id”.

11.8. PKCS#11 Configuration 33

YubiHSM 2 Component Reference

34 Chapter 11. PKCS#11 with YubiHSM 2 Reference

CHAPTER

TWELVE

PKCS#11 TOOL COMPATIBILITY, INTEROPERABILITY AND KNOWN
RESTRICTIONS

This topic contains information about the different tools that are either known to work or known not to work with the
current version of the YubiHSM 2.

12.1 pkcs11-tool

This is the tool produced by OpenSC.

Running with HEAD on master (currently dfd18389346296f8e4617832e0d5f4171835620d) the command used is

pkcs11-tool --module yubihsm_pkcs11.so -l -p 0001password -t

All relevant tests are passing with the following notable exceptions: - RSA-PKCS-OAEP decryption: the test ap-
pears to be broken. It calls into OpenSSL’s EVP_PKEY_encrypt/EVP_PKEY_encrypt_old which uses PKCS1v1.5
padding - mechtype-0xD9554204 decryption: this a Yubico custom mechanism (AES-CCM wrapping) and can’t
be handled by the tool

12.2 pkcs11test

This is a PKCS#11 tester tool by Google. It is built as a test target in the source code. We maintain an internal version
to accommodate some differences at https://github.com/Yubico/pkcs11test.

The command used

pkcs11test -myubihsm_pkcs11.so -l. -u0001password --gtest_filter=
-${SKIPPED_TESTS_STR}

where SKIPPED_TESTS_STR is the list below.

All relevant tests pass. The following tests have been explicitly skipped:

Slot.NoInit
PKCS11Test.EnumerateMechanisms
ReadOnlySessionTest.GenerateRandom
ReadOnlySessionTest.GenerateRandomNone
ReadOnlySessionTest.UserLoginWrongPIN
ReadOnlySessionTest.SOLoginFail
ReadOnlySessionTest.CreateKeyPairObjects

(continues on next page)

35

https://github.com/Yubico/pkcs11test

YubiHSM 2 Component Reference

(continued from previous page)

ReadOnlySessionTest.CreateSecretKeyAttributes
ReadOnlySessionTest.SecretKeyTestVectors
ReadOnlySessionTest.SignVerifyRecover
ReadOnlySessionTest.GenerateKeyInvalid
ReadOnlySessionTest.GenerateKeyPairInvalid
ReadOnlySessionTest.WrapUnwrap
ReadOnlySessionTest.WrapInvalid
ReadOnlySessionTest.UnwrapInvalid
ReadWriteSessionTest.CreateCopyDestroyObject
ReadWriteSessionTest.SetLatchingAttribute
ReadWriteSessionTest.FindObjectSubset
ReadWriteSessionTest.ReadOnlySessionSOLoginFail
ReadWriteSessionTest.SOLogin
ReadWriteSessionTest.TookanAttackA1
ReadWriteSessionTest.TookanAttackA3
ReadWriteSessionTest.TookanAttackA4
ReadWriteSessionTest.TookanAttackA5a
ReadWriteSessionTest.TookanAttackA5b
ReadWriteSessionTest.PublicExponent4Bytes
ReadWriteSessionTest.ExtractKeys
ReadWriteSessionTest.AsymmetricTokenKeyPair
RWUserSessionTest.SOLoginFail
DataObjectTest.CopyDestroyObjectInvalid
DataObjectTest.GetMultipleAttributes
DataObjectTest.GetSetAttributeInvalid
RWSOSessionTest.SOSessionFail
RWSOSessionTest.UserLoginFail
RWEitherSessionTest.TookanAttackA2
KeyPairTest.EncryptDecrypt
Ciphers/SecretKeyTest.EncryptDecrypt/0
Ciphers/SecretKeyTest.EncryptDecrypt/1
Ciphers/SecretKeyTest.EncryptDecrypt/2
Ciphers/SecretKeyTest.EncryptDecrypt/3
Ciphers/SecretKeyTest.EncryptDecrypt/4
Ciphers/SecretKeyTest.EncryptDecrypt/5
Ciphers/SecretKeyTest.EncryptFailDecrypt/0
Ciphers/SecretKeyTest.EncryptFailDecrypt/1
Ciphers/SecretKeyTest.EncryptFailDecrypt/2
Ciphers/SecretKeyTest.EncryptFailDecrypt/3
Ciphers/SecretKeyTest.EncryptFailDecrypt/4
Ciphers/SecretKeyTest.EncryptFailDecrypt/5
Ciphers/SecretKeyTest.EncryptDecryptGetSpace/0
Ciphers/SecretKeyTest.EncryptDecryptGetSpace/1
Ciphers/SecretKeyTest.EncryptDecryptGetSpace/2
Ciphers/SecretKeyTest.EncryptDecryptGetSpace/3
Ciphers/SecretKeyTest.EncryptDecryptGetSpace/4
Ciphers/SecretKeyTest.EncryptDecryptGetSpace/5
Ciphers/SecretKeyTest.EncryptDecryptParts/0
Ciphers/SecretKeyTest.EncryptDecryptParts/1
Ciphers/SecretKeyTest.EncryptDecryptParts/2
Ciphers/SecretKeyTest.EncryptDecryptParts/3
Ciphers/SecretKeyTest.EncryptDecryptParts/4

(continues on next page)

36 Chapter 12. PKCS#11 Tool Compatibility, Interoperability and Known Restrictions

YubiHSM 2 Component Reference

(continued from previous page)

Ciphers/SecretKeyTest.EncryptDecryptParts/5
Ciphers/SecretKeyTest.EncryptDecryptInitInvalid/0
Ciphers/SecretKeyTest.EncryptDecryptInitInvalid/1
Ciphers/SecretKeyTest.EncryptDecryptInitInvalid/2
Ciphers/SecretKeyTest.EncryptDecryptInitInvalid/3
Ciphers/SecretKeyTest.EncryptDecryptInitInvalid/4
Ciphers/SecretKeyTest.EncryptDecryptInitInvalid/5
Ciphers/SecretKeyTest.EncryptErrors/0
Ciphers/SecretKeyTest.EncryptErrors/1
Ciphers/SecretKeyTest.EncryptErrors/2
Ciphers/SecretKeyTest.EncryptErrors/3
Ciphers/SecretKeyTest.EncryptErrors/4
Ciphers/SecretKeyTest.EncryptErrors/5
Ciphers/SecretKeyTest.DecryptErrors/0
Ciphers/SecretKeyTest.DecryptErrors/1
Ciphers/SecretKeyTest.DecryptErrors/2
Ciphers/SecretKeyTest.DecryptErrors/3
Ciphers/SecretKeyTest.DecryptErrors/4
Ciphers/SecretKeyTest.DecryptErrors/5
Ciphers/SecretKeyTest.EncryptUpdateErrors/0
Ciphers/SecretKeyTest.EncryptUpdateErrors/1
Ciphers/SecretKeyTest.EncryptUpdateErrors/2
Ciphers/SecretKeyTest.EncryptUpdateErrors/3
Ciphers/SecretKeyTest.EncryptUpdateErrors/4
Ciphers/SecretKeyTest.EncryptUpdateErrors/5
Ciphers/SecretKeyTest.EncryptModePolicing1/0
Ciphers/SecretKeyTest.EncryptModePolicing1/1
Ciphers/SecretKeyTest.EncryptModePolicing1/2
Ciphers/SecretKeyTest.EncryptModePolicing1/3
Ciphers/SecretKeyTest.EncryptModePolicing1/4
Ciphers/SecretKeyTest.EncryptModePolicing1/5
Ciphers/SecretKeyTest.EncryptModePolicing2/0
Ciphers/SecretKeyTest.EncryptModePolicing2/1
Ciphers/SecretKeyTest.EncryptModePolicing2/2
Ciphers/SecretKeyTest.EncryptModePolicing2/3
Ciphers/SecretKeyTest.EncryptModePolicing2/4
Ciphers/SecretKeyTest.EncryptModePolicing2/5
Ciphers/SecretKeyTest.EncryptInvalidIV/0
Ciphers/SecretKeyTest.EncryptInvalidIV/1
Ciphers/SecretKeyTest.EncryptInvalidIV/2
Ciphers/SecretKeyTest.EncryptInvalidIV/3
Ciphers/SecretKeyTest.EncryptInvalidIV/4
Ciphers/SecretKeyTest.EncryptInvalidIV/5
Ciphers/SecretKeyTest.DecryptInvalidIV/0
Ciphers/SecretKeyTest.DecryptInvalidIV/1
Ciphers/SecretKeyTest.DecryptInvalidIV/2
Ciphers/SecretKeyTest.DecryptInvalidIV/3
Ciphers/SecretKeyTest.DecryptInvalidIV/4
Ciphers/SecretKeyTest.DecryptInvalidIV/3
Ciphers/SecretKeyTest.DecryptInvalidIV/4
Ciphers/SecretKeyTest.DecryptInvalidIV/5
Ciphers/SecretKeyTest.DecryptUpdateErrors/0

(continues on next page)

12.2. pkcs11test 37

YubiHSM 2 Component Reference

(continued from previous page)

Ciphers/SecretKeyTest.DecryptUpdateErrors/1
Ciphers/SecretKeyTest.DecryptUpdateErrors/2
Ciphers/SecretKeyTest.DecryptUpdateErrors/3
Ciphers/SecretKeyTest.DecryptUpdateErrors/4
Ciphers/SecretKeyTest.DecryptUpdateErrors/5
Ciphers/SecretKeyTest.EncryptFinalImmediate/0
Ciphers/SecretKeyTest.EncryptFinalImmediate/1
Ciphers/SecretKeyTest.EncryptFinalImmediate/2
Ciphers/SecretKeyTest.EncryptFinalImmediate/3
Ciphers/SecretKeyTest.EncryptFinalImmediate/4
Ciphers/SecretKeyTest.EncryptFinalImmediate/5
Ciphers/SecretKeyTest.EncryptFinalErrors1/0
Ciphers/SecretKeyTest.EncryptFinalErrors1/1
Ciphers/SecretKeyTest.EncryptFinalErrors1/2
Ciphers/SecretKeyTest.EncryptFinalErrors1/3
Ciphers/SecretKeyTest.EncryptFinalErrors1/4
Ciphers/SecretKeyTest.EncryptFinalErrors1/5
Ciphers/SecretKeyTest.EncryptFinalErrors2/0
Ciphers/SecretKeyTest.EncryptFinalErrors2/1
Ciphers/SecretKeyTest.EncryptFinalErrors2/2
Ciphers/SecretKeyTest.EncryptFinalErrors2/3
Ciphers/SecretKeyTest.EncryptFinalErrors2/4
Ciphers/SecretKeyTest.EncryptFinalErrors2/5
Ciphers/SecretKeyTest.DecryptFinalErrors1/0
Ciphers/SecretKeyTest.DecryptFinalErrors1/1
Ciphers/SecretKeyTest.DecryptFinalErrors1/2
Ciphers/SecretKeyTest.DecryptFinalErrors1/3
Ciphers/SecretKeyTest.DecryptFinalErrors1/4
Ciphers/SecretKeyTest.DecryptFinalErrors1/5
Ciphers/SecretKeyTest.DecryptFinalErrors2/0
Ciphers/SecretKeyTest.DecryptFinalErrors2/1
Ciphers/SecretKeyTest.DecryptFinalErrors2/2
Ciphers/SecretKeyTest.DecryptFinalErrors2/3
Ciphers/SecretKeyTest.DecryptFinalErrors2/4
Ciphers/SecretKeyTest.DecryptFinalErrors2/5
Digests/DigestTest.DigestKey/0
Digests/DigestTest.DigestKey/1
Digests/DigestTest.DigestKey/2
Digests/DigestTest.DigestKey/3
Digests/DigestTest.DigestKey/4
Digests/DigestTest.DigestKeyInvalid/0
Digests/DigestTest.DigestKeyInvalid/1
Digests/DigestTest.DigestKeyInvalid/2
Digests/DigestTest.DigestKeyInvalid/3
Digests/DigestTest.DigestKeyInvalid/4
Signatures/SignTest.SignVerify/0
Signatures/SignTest.SignFailVerifyWrong/0
Signatures/SignTest.SignFailVerifyShort/0
Duals/DualSecretKeyTest.DigestEncrypt/0
Duals/DualSecretKeyTest.DigestEncrypt/1
Duals/DualSecretKeyTest.DigestEncrypt/2
Duals/DualSecretKeyTest.DigestEncrypt/3

(continues on next page)

38 Chapter 12. PKCS#11 Tool Compatibility, Interoperability and Known Restrictions

YubiHSM 2 Component Reference

(continued from previous page)

Duals/DualSecretKeyTest.DigestEncrypt/4
Duals/DualSecretKeyTest.DigestEncrypt/5

12.2.1 python-pkcs11tester

This is a Yubico tool, developed to run additional tests

The command used is

python setup.py test

All relevant tests pass.

12.2.2 p11tool

This is a tool shipped with GnuTLS. From version 3.5.2 it can work with the YubiHSM 2. Keys can be generated like

p11tool --provider=yubihsm_pkcs11.so "pkcs11:pin-value=0001password"
--login --generate-rsa --label="rsa test key" --bits=2048

and signatures tested and verified with the command

p11tool --provider=yubihsm_pkcs11.so "pkcs11:pin-
value=0001password;object=rsakey" --login --test-sign

12.2.3 OpenDNSSEC

OpenDNSSEC contains a libhsm and two tools, ods-hsmutil and ods-hsmspeed, both of these work with the
YubiHSM 2 with a small configuration file:

<?xml version="1.0" encoding="UTF-8"?>

<Configuration>
<RepositoryList>

<Repository name="default">
<Module>yubihsm_pkcs11.so</Module>
<TokenLabel>YubiHSM</TokenLabel>
<PIN>0001password</PIN>

</Repository>
</RepositoryList>

</Configuration>

Using this, it is possible to run through tests with the command

ods-hsmutil -c conf-yubihsm.xml test default

This passes all tests using algorithms supported by the YubiHSM 2 (rsa2048, rsa4096, ecp256, ecp384 & randomness).

12.2. pkcs11test 39

YubiHSM 2 Component Reference

40 Chapter 12. PKCS#11 Tool Compatibility, Interoperability and Known Restrictions

CHAPTER

THIRTEEN

COPYRIGHT

© 2022 Yubico AB. All rights reserved.

Trademarks

Yubico and YubiKey are registered trademarks of Yubico AB. All other trademarks are the property of their respective
owners.

Disclaimer

The contents of this document are subject to revision without notice due to continued progress in methodology, design,
and manufacturing. Yubico shall have no liability for any error or damages of any kind resulting from the use of this
document.

The Yubico Software referenced in this document is licensed to you under the terms and conditions accompanying the
software or as otherwise agreed between you or the company that you are representing.

Contact Information

Yubico Inc.
530 Lytton Street
Suite 301
Palo Alto, CA 94301
USA

Click the links to:

• Submit a support request

• Send a Contact Me request

• See additional contact options for getting touch with us

Document Updated

2022-05-19 21:46:27 UTC

41

http://yubi.co/support
https://www.yubico.com/support/contact/
https://www.yubico.com/support/contact/

	Connector Reference
	HTTPS Connections
	Configuration

	YubiHSM Shell Reference
	How to Use the Shell
	Command Syntax
	Possible Command Types

	Data Format
	Enabling Debug

	YubiHSM 2 Setup Tool Reference
	Setup for EJBCA
	How It Works
	Backing Up the YubiHSM 2

	Libyubihsm Reference
	Backends
	HTTP Connector
	USB Connector

	Python Library Reference
	Yubihsm Wrap Reference
	Key Storage Provider Reference
	Additional Documentation for YubiHSM Key Storage Provider

	Creating a Code-Signing Certificate using the Key Storage Provider
	Configure the Key Storage Provider
	Authentication Key Example

	Create the Certificate Request Configuration File
	Create the Certificate Request
	Sign the Certificate Request
	Sign using Signtool
	Troubleshooting
	More Information

	Move Software Keys to Key Storage Provider
	Export your Existing Private Key and Certificate
	Import the Target Private Key
	Restore the Target Certificate

	Status Codes Reference
	PKCS#11 with YubiHSM 2 Reference
	Configuration
	Logging In
	PKCS#11 on Windows
	Note for Developers
	Software Operations

	PKCS#11 Attributes
	Capabilities and Domains

	PKCS#11 Objects
	PKCS#11 Functions
	PKCS#11 Vendor Definitions
	PKCS#11 Configuration
	Configuration File Sample
	INIT_ARGS Sample

	PKCS#11 Tool Compatibility, Interoperability and Known Restrictions
	pkcs11-tool
	pkcs11test
	python-pkcs11tester
	p11tool
	OpenDNSSEC

	Copyright

