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Abstract 
This paper discusses methods for evaluating the first-stage sample design of complex 
sample designs. We need these methods because the Bureau of Labor Statistics is in the 
process of redesigning the 2020 sample design of the Consumer Expenditures Surveys. The 
research is important because we only have the opportunity to redesign the first stage every 
ten years. The paper provides expressions for the variance of the collapsed strata estimator 
and the with replacement variance estimator and uses those expressions to evaluate 
alternative sample designs for the 2020 redesign of the Consumer Expenditures Surveys. 
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1. Introduction

The Consumer Expenditure Survey (CE) collects data on the buying habits of U.S. 
consumers. The CE data are used to produce estimates of household expenditures in the 
U.S; it is used by researchers in government, business, labor, and academic analysts; and 
it is used with the periodic revision of the Consumer Price Index (CPI). The survey is 
conducted by the U.S. Census Bureau for the Bureau of Labor Statistics and consists of 
two components: an interview survey in which expenditures of consumer units1 (CUs) are 
obtained in four interviews conducted at three-month intervals and a diary survey 
completed by participating consumer units for two consecutive one-week periods.

Historically, the sample design of CE has been redesigned every ten years. The timing of 
the redesign is shortly after the decennial census which allows the redesign to make use of 
the results from the most recent census.  

The 2020 redesign will be unique as compared with prior redesigns: it will have two new 
goals. First, the sample design should produce a sample of PSUs that are geographically 
close to each other. This new goal is an attempt to control costs: it should help reduce 
costs because interviewers from nearby PSUs should be able to assist in other PSUs with 
shorter 

1 The unit from which the CE seeks to collect expenditure data is a “consumer unit.” A CU is a 
group of people living together who are (1) related by blood, marriage, adoption, or some other legal 
arrangement such as foster children; (2) unrelated but who pool their incomes to make joint 
expenditure decisions; or (3) is a person living alone or sharing a housing unit with other people but 
who is financially independent of the other people. Approximately 99 percent of all occupied 
housing units have one CU, hence the terms “household” and “consumer unit” are often used 
interchangeably.” 



 
 

travel. Second, the sample design should produce improved state-level estimates for 
California, Florida, New York, and Texas. 
 
Our research examines the impact of the preliminary 2020 sample design on variances and 
the estimates of variances. Our specific objectives correspond to the following three sets 
of analyses: 
 

1) Compare the bias and variances of the 2010 and 2020 sample designs with respect 
to the estimate of mean total expenditures – the variable of interest for CE.  

2) Optimize the CE’s Balanced Repeated Replication (BRR) variance estimator with 
respect to bias and variance.  

3) Explore how we can estimate the variance of the CE’s BRR variance estimator. 
 
Before we consider the objectives further, we begin by reviewing the sample design of CE 
in section 2 and variance estimation for CE in section 3. Section 4 describes the simulation, 
section 5 reviews the analysis of the three objectives using the simulation, and section 6 
provides our conclusions. 
 

2. Sample Design of CE 
 
In this background section, we review the aspects of the CE sample design that are needed 
to understand our research. Since the 2010 and 2020 sample designs will share many 
features, we begin by describing the 2010 sample design. For the 2020 sample design, we 
only highlight the new features, instead of repeating the aspects of the sample design that 
will not change between 2010 and 2020. For a more detailed description of the 2010 sample 
design, see Neiman et al. (2015). Although the sample design is shared with CPI, CPI is 
not in the scope of our research. 
 
 
2.1 2010 Sample Design 
CE employs a two-stage sample design. In the first stage, both the Interview and Diary 
Surveys use the same first-stage sample design. In the first stage, the counties of the U.S. 
are grouped into Primary Sample Units (PSUs), which are single counties or groups of 
contiguous counties. In urban areas, PSUs were defined as the Core-Based Statistical Areas 
(CBSA) as defined by the Office of Management and Budget that use the results of the 
most recent decennial census. The PSUs were then grouped into strata that are either self-
representing (SR) or non-self-representing (NSR).  
 
In 2010, the SR PSUs included the 23 largest metropolitan areas and are selected with 
certainty. NSR PSUs were grouped at two levels: a high-level stratification and a low-level 
stratification within the high level. At the high level, NSR PSUs were grouped by urban 
and rural status (N-size and R-size, respectively) and the nine Census Divisions. The NSR 
PSUs were further grouped into low-level strata that maximize the homogeneity of a set of 
variables that are associated with total expenditures. Additionally, the low-level 
stratification was constrained to produce approximately equal-size strata with respect to 
the Measure of Size (MOS) within the high-level stratification. For more details on the 
2010 stratification, see King, Schilp, and Bergmann (2011).  
 
One PSU was selected within each stratum with probability proportion to the MOS, where 
the MOS is the most recent decennial census population estimates. The selection procedure 
maximizes the overlap between the previous and current first-stage samples. Maximizing 



 
 

the overlap reduces costs by reducing the number of 2010 PSUs that need to replace 2000 
PSUs which reduces the number of field staff that that need to be replaced.  
 
In the second stage of the sample design, the address frame, maintained by the Census 
Bureau, was stratified and a sample of addresses was selected with equal probability within 
each of the first-stage sample PSUs. The allocation of the second-stage sample sizes is 
completed separately for the Interview and Diary surveys and is generally proportional 
allocation but with limits on minimum sample sizes. For more details on the 2010 
allocation, see Ash et al. (2012).  
 
2.2 2020 First-Stage Sample Design 
At the time of our research, we are in the middle of developing the 2020 sample design and 
not all decisions have been finalized. Therefore, what we describe presently is not final, 
but we use it with our research.  
 
In addition to all the features described for the 2010 sample design, the 2020 sample design 
has been asked to do more. The first new goal is to produce a sample of PSUs that are 
geographically close so that interviewers from different PSUs can assist in other PSUs. To 
accomplish this goal, the high-level strata will be expanded. The N-size NSR PSUs will be 
further divided into three substrata: (1) PSUs with population greater than 200,000, (2) 
PSUs with populations less than 200K and within 20 miles of a Stage 1 sample PSU, and 
(2R) remote PSUs. Urban Remote PSUs or (2R) will be identified as being 20 miles from 
any SR PSU or Substrata (1) sample PSU.  
 
NSR Rural PSUs will be further divided into two substrata that will be defined after we 
select the NSR Urban sample. The PSUs of substrata (3) include PSUs being within 20 
miles from any SR PSU or previously selected NSR Urban PSU. The rural remote PSUs 
or (3R) include PSUs that are outside of 20 miles of any previously selected PSU. Table 1 
summaries the expanded urban/rural status for the high-level stratification of the 2020 
sample design.  
 

Table 1: Preliminary Urban/Rural Status for the High-Level Stratification of the 2020 Sample Design 
High-Level Strata Definition 

Type of 
PSU 

Substrata 
CBSAs with 
population… 

… and... 

SR  > 2.8 M Honolulu and Anchorage 
NSR Urban (1) in [200 K, 2.8M)  
 (2) < 200 K ≤ 20 miles from an SR or Stage 1 sample PSU 
 (2R) Remote < 200 K > 20 miles from an SR or Stage 1 sample PSU 
NSR Rural (3) Not a CBSA ≤ 20 miles from an SR, Stage 1 or Stage 2 sample PSU 
 (3R) Remote Not a CBSA > 20 miles from an SR, Stage 1, or Stage 2 sample PSU 

 
The second new goal of the 2020 sample design is to improve state-level estimates for the 
selected states California, Florida, New York, and Texas. To accomplish this goal, the 



 
 

high-level strata will be defined by the combination of the boundaries of the nine Census 
Divisions and the four selected states.  
 
Within the high-level strata, PSUs will be further grouped into low-level strata with a data 
science algorithm. The Expectation-Maximation algorithm will group the PSUs into strata 
that maximizes the homogeneity of four variables related to total expenditures: percent 
households (HHs) with income greater than or equal to $75,000, percent of HHs with a 
computer, percent HHs with a Bachelor degree or more education, and percent of the 
population urban. The four variables will be generated from the American Community 
Survey. Although this may change, the algorithm will not employ any constraints for equal 
size strata as was done in the 2010 redesign,. 
 

3. Variances and Variance Estimation for CE 
 
3.1 Variance Estimation for CE 
Because there is no unbiased estimator of the variance for sample designs that select one 
unit per strata, all variance estimators produce a certain amount of bias. CE’s solution is to 
collapse the NSR strata into pseudo strata and then apply balanced repeated replication 
(BRR) [McCarthy 1966] to the pseudo strata. With SR PSUs, each PSU is partitioned into 
two approximately equal parts, except very large SR PSUs, which are partitioned into four 
approximately equal parts; the parts are collapsed into pseudo strata; and then BRR is 
applied to the pseudo strata. See also Swanson (2017) for more details on variance 
estimation for CE. 
 
For our research, the estimation of variances for SR strata is out of scope because the 
current plan is to have the same set of SR PSUs and the estimation of variances for SR 
strata is a much different problem. See Ash (2014) for more about estimating variances for 
SR PSUs. We are more interested in the NSR PSUs and the impact of the first-stage 
stratification and estimators of the variance; therefore, the SR PSUs will be excluded in 
most of the analyses of our paper.  
 
3.2 CE’s use of BRR with NSR PSUs 
With CE’s use of BRR, there are two choices that impact the bias and variance of the BRR 
variance estimator. First, we can use the replicate factors described by Judkins (1990) that 
mitigate the impact of unequal strata within a pseudo stratum. Second, we can minimize 
the bias and variance with our choice of criteria for collapsing strata into pseudo strata. To 
minimize the bias and variance, we need expressions of the bias and variance. The key to 
the expressions of variance and bias of the BRR estimator is understanding that BRR is 
mathematically equivalent to the collapsed-strata (cs) estimator. Then expressions for the 
bias and variance of the cs estimator are also expressions of the bias and variance of the 
BRR estimator. Before we discuss BRR and the cs estimators in more detail, we define 
some basic notations that will be used throughout the paper.  
 
The two-stage stratified total of some characteristic of interest 𝑌௜ is defined as: 
 

𝑌 = ෍ ෍ 𝑌௜

௜∈௎೓௛

 

 
where h is an index on the first-stage strata, i is an index on the first-stage units or PSUs, 
and Uh is the set of PSUs in first-stage stratum h. We define the PSU total 𝑌௜ = ∑ 𝑦௞௞∈௎೓೔

 



 
 

where k is an index on the second-stage CUs of Uh, and Uhi is the set of second-stage CUs 
in PSU i of stratum h.  
 
Sometimes the statistic of interest is the ratio of two totals or R = Y / X, where X is a 
different total defined analogous to Y. With CE, the statistic of interest is mean total 
expenditures and we define 𝑦௞ as the total expenditures for CU k and 𝑥௞ as an indicator 
variable that identifies whether the sample unit is an eligible CU or not: 𝑥௞ = 1 for eligible 
CU k and 𝑥௞ = 0 for ineligible sample CU k. The two-stage stratified with replacement 
estimator (wr) of Y with a first-stage sample size of 𝑛௛ is: 
 

𝑌෠ = ෍
1

𝑛௛
෍

𝑌෠௜

𝑝௜
௜∈௦೓௛

 

 
where 𝑌෠௜ is the estimator of the total of 𝑌௜ for PSU i, sh is the first-stage sample for stratum 
h, 𝑛௛ is the first-stage sample size for first-stage stratum h, and pi is the select one unit 
probability of selection for PSU i within first-stage stratum h. For CE, we have the special 
case of 𝑛௛ = 1 for all strata h. 
 
Variance Estimation with Balanced Repeated Replication. Using Fay’s method of 
BRR, as described by Dippo, Fay, and Morganstein (1984) and Judkins (1990), we can 
express the BRR variance estimator of 𝑌෠ as: 
 

𝑣ො஻ோோ൫𝑌෠൯ =
1

𝑅(𝜅 − 1)ଶ
෍൫𝑌෠௥ − 𝑌෠൯

ଶ

௥

, 

 
where R is the number of replicates, r is the index for the replicates, and 𝜅 has values 
0 ≤ 𝜅 < 1. The replicate estimates for each replicate r are defined as  
𝑌෠௥ = ∑ ൫𝑌෠௥,௚,௛ୀଵ + 𝑌෠௥,௚,௛ୀଶ൯௚  and 𝑌෠௥,௚,௛ is estimated as: 
 

𝑌෠௥,௚,௛ = ෍ 𝑤௜𝑤௞𝐹௥,௚,௛𝑦௞

௞∈௦೓೔

. 

 
where g is the index on the pseudo strata. For CE, the first-stage weight 𝑤௜ for PSU i is 
equal to the inverse of the first-stage probability of selection 𝑝௜ for PSU i or 𝑤௜ = 𝑝௜

ିଵ. 
Within each PSU, the second-stage weight is wk. We define the replicate factors 𝐹௥,௚,௛ୀଵ 
as generally as possible. Following Judkins (1990), the replicate factor of replicate r, 
pseudo strata g, and stratum h = 1 is defined as: 
 
                                             F௥,௚,௛ୀଵ

 = 1 + 2𝑎௥௚(1 − 𝜅)𝑃௚,௛ୀଶ                                                (1) 
 
and the replicate factor of replicate r, pseudo strata g, and stratum h = 2 is defined as: 
 
                                              F௥,௚,௛ୀଶ

 = 1 − 2𝑎௥௚(1 − 𝜅)𝑃௚,௛ୀଵ.                                              (2) 
 
We will see later that different values of Pgh can be used to minimize the bias and/or 
variance of the estimator.  Also note that Pg,h=2 = 1 - Pg,h=1. The covariance generalization 
of the BRR estimator is: 
 



 
 

𝑐𝑜𝑣ෞ ஻ோோ൫𝑋෠, 𝑌෠൯ =
1

𝑅(𝜅 − 1)ଶ
෍൫𝑋෠௥ − 𝑋෠൯൫𝑌෠௥ − 𝑌෠൯

௥

, 

 
where 𝑋෠௥ is defined analogous to 𝑌෠௥. 
 
3.3 Collapsed-Strata Estimator 
Hansen , Hurwitz, and Madow (1953; chapter 9, section 15) and Wolter (1985; section 2.5) 
discuss a cs variance estimator that collapses multiple strata into a pseudo stratum. We 
limit our discussion to only collapsing two PSUs – no triples or multiple strata. Therefore, 
we define our cs variance estimator specialized for two collapsed strata and using the 
generally defined replicate factors (1) and (2) as: 
 

𝑣ො௖௦൫𝑌෠൯ = 4 ෍൫𝑃௚ଶ𝑌෠௚ଵ − 𝑃௚ଵ𝑌෠௚ଶ൯
ଶ

௚

 

 
and covariance generalization as: 
 

𝑐𝑜𝑣ෞ ௖௦൫𝑋෠, 𝑌෠൯ = 4 ෍൫𝑃௚ଶ𝑋෠௚ଵ − 𝑃௚ଵ𝑋෠௚ଶ൯൫𝑃௚ଶ𝑌෠௚ଵ − 𝑃௚ଵ𝑌෠௚ଶ൯

௚

. 

 
We are interested in the cs variance and covariance estimators because they are equivalent 
to the BRR variance and covariance estimators (Ash 2022b). So, if we know the 
expectation, bias, and variance of the cs estimator, we also know the expectation, bias, and 
variance of the BRR estimator. The expectation and the bias of the cs estimator are: 
 

𝐸 ቀ𝑣ො௖௦൫𝑌෠൯ቁ = 4 ෍൫𝑃௚ଶ𝑌௚ଵ − 𝑃௚ଵ𝑌௚ଶ൯
ଶ

௚

+ 4 ෍ ቀ𝑃௚ଶ
ଶ 𝑣൫𝑌෠௚ଵ൯ + 𝑃௚ଵ

ଶ 𝑣൫𝑌෠௚ଶ൯ቁ

௚

 

= 𝑣൫𝑌෠൯ + 𝑏𝑖𝑎𝑠 ቀ𝑣ො௖௦൫𝑌෠൯ቁ 

and 
 

𝑏𝑖𝑎𝑠 ቀ𝑣ො௖௦൫𝑌෠൯ቁ = 4 ෍൫𝑃௚ଶ𝑌௚ଵ − 𝑃௚ଵ𝑌௚ଶ൯
ଶ

௚

− ෍ ቀ൫1 − 4𝑃௚ଶ
ଶ ൯𝑣൫𝑌෠௚ଵ

 ൯ + ൫1 − 4𝑃௚ଵ
ଶ ൯𝑣൫𝑌෠௚ଶ

 ൯ቁ

௚

. 

 
Note that the expectation and bias can be applied to one stage, two stages, or multiple stages 
as long as the variances 𝑣൫𝑌෠௚ଵ

 ൯  and 𝑣൫𝑌෠௚ଶ
 ൯  reflect the same number of stages. The 

expectation and bias of the cs covariance are: 
 

𝐸 ቀ𝑐𝑜𝑣ෞ ௖௦൫𝑌,෡ 𝑋෠൯ቁ = 4 ෍൫𝑃௚ଶ𝑌௚ଵ − 𝑃௚ଵ𝑌௚ଶ൯൫𝑃௚ଶ𝑋௚ଵ − 𝑃௚ଵ𝑋௚ଶ൯ + 4 ෍ ቀ𝑃௚ଶ
ଶ 𝑐𝑜𝑣൫𝑋෠௚ଵ

 , 𝑌෠௚ଵ
 ൯ + 𝑃௚ଵ

ଶ 𝑐𝑜𝑣൫𝑋෠௚ଶ
 , 𝑌෠௚ଶ

 ൯ቁ

௚௚

. 

= 𝑐𝑜𝑣൫𝑌,෡ 𝑋෠൯ + 𝑏𝑖𝑎𝑠 ቀ𝑐𝑜𝑣ෞ ௖௦൫𝑌,෡ 𝑋෠൯ቁ 

 
and

 

𝑏𝑖𝑎𝑠 ቀ𝑐𝑜𝑣ෞ ௖௦൫𝑌,෡ 𝑋෠൯ቁ = 4 ෍൫𝑃௚ଶ𝑋௚ଵ − 𝑃௚ଵ𝑋௚ଶ൯൫𝑃௚ଶ𝑌௚ଵ − 𝑃௚ଵ𝑌௚ଶ൯

௚

− ෍ ቀ൫1 − 4𝑃௚ଶ
ଶ ൯𝑐𝑜𝑣൫𝑌෠௚ଵ, 𝑋෠௚ଵ൯ + ൫1 − 4𝑃௚ଵ

ଶ ൯𝑐𝑜𝑣൫𝑌෠௚ଶ, 𝑋෠௚ଶ൯ቁ

௚

. 

 



 

See Ash (2022b) for the derivation of 𝐸 ቀ𝑣ො௖௦൫𝑌෠൯ቁ, 𝑏𝑖𝑎𝑠 ቀ𝑣ො௖௦൫𝑌෠൯ቁ, 𝐸 ቀ𝑐𝑜𝑣ෞ ௖௦൫𝑌,෡ 𝑋෠൯ቁ, and 

𝑏𝑖𝑎𝑠 ቀ𝑐𝑜𝑣ෞ ௖௦൫𝑌,෡ 𝑋෠൯ቁ. See also Wolter (2007; section 2.5) and Judkins (1990) for alternative 

expressions of 𝐸 ቀ𝑣ො௖௦൫𝑌෠൯ቁ. The variance of the cs variance estimator are: 

 

𝑣 ቀ𝑣ො௖௦൫𝑌෠൯ቁ = 𝐴ଵ + 𝐵ଵ + 𝐶ଵ + 𝐷ଵ 

 
where: 

𝐴ଵ = 16 ෍ ൬𝑃௚ଶ
ସ ቀ𝜇௚ଵ

(ସ)
− 𝜎௚ଵ

ସ ቁ + 𝑃௚ଵ
ସ ቀ𝜇௚ଶ

(ସ)
− 𝜎௚ଶ

ସ ቁ൰

௚

, 

𝐵ଵ = 64 ෍ ൬൫𝑃௚ଶ
 𝑌௚ଵ − 𝑃௚ଵ

 𝑌௚ଶ൯
ଶ

൫𝑃௚ଶ
ଶ 𝜎௚ଵ

ଶ + 𝑃௚ଵ
ଶ 𝜎௚ଶ

ଶ ൯൰

௚

, 

𝐶ଵ = 64 ෍ ൬൫𝑃௚ଶ
 𝑌௚ଵ − 𝑃௚ଵ

 𝑌௚ଶ൯ ቀ𝑃௚ଶ
ଷ 𝜇௚ଵ

(ଷ)
− 𝑃௚ଵ

ଷ 𝜇௚ଶ
(ଷ)

ቁ൰

௚

, 

𝐷ଵ = 64 ෍ 𝑃௚ଵ
ଶ 𝑃௚ଶ

ଶ 𝜎௚ଵ
ଶ 𝜎௚ଶ

ଶ

௚

, 

 
and where we define: 

𝜇௚௛
(௔)

= 𝐸ቀ൫𝑌෠௚௛ − 𝑌௚௛൯
௔

ቁ, 

𝜎௚௛
ଶ = 𝑣൫𝑌෠௚௛൯ = 𝐸 ቀ൫𝑌෠௚௛ − 𝑌௚௛൯

ଶ
ቁ, 

𝜎௚௛
ସ = ൫𝜎௚௛

ଶ ൯
ଶ

. 
 
Rust (1984) and Rust and Kalton (1987) have a more general result for collapsing multiple 
strata, but it does not include Pgh. Wolter (2007; p. 53) provides a different expression for 
the variance for collapsing multiple strata which includes Pgh. The variance of the cs 
covariance is: 
 

𝑣 ቀ𝑐𝑜𝑣ෞ ௖௦൫𝑌,෡ 𝑋෠൯ቁ = 𝐴ଶ + 𝐵ଶ + 𝐶ଶ + 𝐷ଶ, 

 
where: 
 

𝐴ଶ = 16 ෍ ቆ𝑃௚ଶ
ସ ൬𝜙௚ଵ

(ଶ,ଶ)
− ቀ𝑐𝑜𝑣൫𝑌෠௚ଵ, 𝑋෠௚ଵ൯ቁ

ଶ

൰ + 𝑃௚ଵ
ସ ൬𝜙௚ଶ

(ଶ,ଶ)
− ቀ𝑐𝑜𝑣൫𝑌෠௚ଶ, 𝑋෠௚ଶ൯ቁ

ଶ

൰ቇ

௚

, 

𝐵ଶ = 64 ෍ ൬൫𝑃௚ଶ
 𝑌௚ଵ − 𝑃௚ଵ

 𝑌௚ଶ൯൫𝑃௚ଶ
 𝑋௚ଵ − 𝑃௚ଵ

 𝑋௚ଶ൯ ቀ𝑃௚ଶ
ଶ 𝑐𝑜𝑣൫𝑌෠௚ଵ, 𝑋෠௚ଵ൯ + 𝑃௚ଵ

ଶ 𝑐𝑜𝑣൫𝑌෠௚ଶ, 𝑋෠௚ଶ൯ቁ൰

௚

, 

𝐶ଶ = 64 ෍ ቆ൫𝑃௚ଶ
 𝑌௚ଵ − 𝑃௚ଵ

 𝑌௚ଶ൯൫𝑃௚ଶ
 𝑋௚ଵ − 𝑃௚ଵ

 𝑋௚ଶ൯ ൬𝑃௚ଶ
ଷ ቀ𝜙௚ଵ

(ଵ,ଶ)
+ 𝜙௚ଵ

(ଶ,ଵ)
ቁ − 𝑃௚ଵ

ଷ ቀ𝜙௚ଶ
(ଵ,ଶ)

+ 𝜙௚ଶ
(ଶ,ଵ)

ቁ൰ቇ

௚

, 

𝐷ଶ = 64 ෍ ቀ𝑃௚ଶ
ଶ 𝑃௚ଵ

ଶ 𝑐𝑜𝑣൫𝑌෠௚ଵ, 𝑋෠௚ଵ൯𝑐𝑜𝑣൫𝑌෠௚ଶ, 𝑋෠௚ଶ൯ቁ
ସ

௚

, 

 
and where we define: 

𝜙௚௛
(௔,௕)

= 𝐸 ቀ൫𝑌෠௚௛ − 𝑌௚௛൯
௔

൫𝑋෠௚௛ − 𝑋௚௛൯
௕

ቁ, 

𝑐𝑜𝑣൫𝑌෠௚௛, 𝑋෠௚௛൯ = 𝜙௚௛
(ଵ,ଵ)

= 𝐸 ቀ൫𝑌෠௚௛ − 𝑌௚௛൯൫𝑋෠௚௛ − 𝑋௚௛൯ቁ. 



 

 

See Ash (2022b) for the derivation of 𝑣 ቀ𝑣ො௖௦൫𝑌෠൯ቁ and 𝑣 ቀ𝑐𝑜𝑣ෞ ௖௦൫𝑌,෡ 𝑋෠൯ቁ. 

 
Unlike BRR, the cs estimator only applies to totals. However, we can apply the cs estimator 
to a ratio estimator with linearization. We linearize the one-stage estimator for a ratio 
estimator 𝑅෠ =  𝑌෠/𝑋෠ as 𝑍መ௜ = ൫𝑌௜ − 𝑅෠𝑋௜൯/𝑋෠. For the two-stage estimator, 
𝑍መ௜ = ൫𝑌෠௜ − 𝑅෠𝑋෠௜൯/𝑋෠ for the first stage and 𝑧௞ = ൫𝑦௞ − 𝑅෠𝑥௞൯/𝑋෠ for the second stage. 
 
3.4 Choices for the BRR and Collapsed-Strata Estimator 
 
In applications of BRR and cs to sample designs with nh =1, there are two choices that we 
need to make: (1) how to define Pgh and (2) what criteria should we use for collapsing the 
strata into pseudo strata?  
 
(1) How to choose Pgh? The simplest choice is Pgh = 1/2. This is reasonable because it 
makes the second term of 𝑏𝑖𝑎𝑠(𝑣ො௖௦(𝑌෠)) equal to zero. A second option is to choose Pgh 
proportional to the MOS, which reduces the first term of 𝑏𝑖𝑎𝑠(𝑣ො௖௦(𝑌෠)) when MOS is 
proportional to the strata totals Ygh (Wolter 2007; p. 52). This can be expressed as 
Pg1 = MOSg1 / MOSg and Pg2 = MOSg2 / MOSg, where MOSg is the MOS for pseudo 
stratum g and MOSgh is the MOS for stratum h of pseudo stratum g. Note that MOSg = 

MOSg1 + MOSg2. For CE, the MOS is the population count from the most recent Decennial 
Census. 
 
The value of Pg1 that minimizes 𝑏𝑖𝑎𝑠(𝑣ො௖௦(𝑌෠)) is: 
 

𝑃௚ଵ,௠௜௡ ௕௜௔௦ =
𝑌௚ଵ𝑌௚ + 𝑣൫𝑌෠௚ଵ൯

𝑌௚
ଶ + 𝑣൫𝑌෠௚൯

 

 
and Pg2,min bias = 1 - Pg1,min bias.  
 

The value of Pg1 that minimizes ൫𝑏𝑖𝑎𝑠(𝑣ො௖௦(𝑌෠)) ൯
ଶ
 is:  

 

𝑃௚ଵ,௠௜௡ ௕௜௔௦మ = ൜
𝑃௚ଵ,௠௜௡ ௕௜௔௦ ± 𝑞 𝑟 < 0

𝑃௚ଵ,௠௜௡ ௕௜௔௦ 𝑟 ≥ 0
 

where: 
 

𝑞 =
ට4 ቀ𝑌௚ଵ𝑌௚ + 𝑣൫𝑌෠௚൯ቁ

ଶ
− ቀ𝑌௚

ଶ + 𝑣൫𝑌෠௚൯ቁ ൬4𝑌௚ଵ
ଶ − ቀ𝑣൫𝑌෠௚൯ − 4𝑣൫𝑌෠௚ଵ൯ቁ൰

2 ቀ𝑌௚
ଶ + 𝑣൫𝑌෠௚൯ቁ

 

and 
𝑟 = ൫1 − 4𝑃௚ଶ,௠௜௡ ௕௜௔௦

ଶ ൯𝑣൫𝑌෠௚ଵ
 ൯ + ൫1 − 4𝑃௚ଵ,௠௜௡ ௕௜௔௦

ଶ ൯𝑣൫𝑌෠௚ଶ
 ൯. 

 
Note that 𝑃௚ଶ,௠௜௡ ௕௜௔௦మ = 1 − 𝑃௚ଵ,௠௜௡ ௕௜௔௦మ. When r < 0 and there are two solutions, we 
suggest using the value of Pg1,min bias ± q that is closest to ½ because the second term of the 
bias is equal to zero when Pgh = ½. See Ash (2022b) for the derivation of Pg1,min bias and 
𝑃௚ଵ,௠௜௡ ௕௜௔௦మ . 



 

 
Note that both Pg1,min bias and 𝑃௚ଵ,௠௜௡ ௕௜௔௦మ  may be difficult to calculate in practice because 

they require good information about the strata totals Ygh and strata variances 𝑣൫𝑌෠௚௛൯.  
 
(2) What criteria should we use for collapsing strata into pseudo strata? There are two 
reasonable choices: collapsing strata that are similar with respect to the variable of interest 
or MOS. Collapsing strata with respect to the variable of interest minimizes the first term 
of 𝑏𝑖𝑎𝑠(𝑣ො௖௦(𝑌෠)) . This is important because the first term of 𝑏𝑖𝑎𝑠(𝑣ො௖௦(𝑌෠))  usually 
contributes the most to the overall bias. It is also reasonable to collapse with respect to 
MOS because, when done in conjunction with defining Pgh proportional to MOS, the 
second term of 𝑏𝑖𝑎𝑠(𝑣ො௖௦(𝑌෠)) is zero or close to zero. 
 
If you do not have good information about the strata totals 𝑌௚௛ and strata variances 𝑣൫𝑌෠௚௛൯, 
the best scenario may be to start with equal-size strata, collapse strata with respect to the 
variable of interest and use Pgh proportional to MOS. Then, the first term of the bias is 
minimized by collapsing strata with respect to the variable of interest and the second term 
of the bias is zero or close to zero because Pgh = ½ due to the equal-size strata.  
 
3.5 Estimating the Variance of the wr Variance Estimator 
We wanted to go one step further and estimate the variance of BRR with a sample. The cs 
estimator of the previous section is most appropriate; however, it has no unbiased estimator 
of the variance. For this reason, we took a different route and considered the wr estimator 
because it is appropriate for sample designs with a sample size of nh = 1. However, it has 
its own drawbacks, as we shall see. Before we discuss those drawbacks, we first define the 
wr estimator for one stage with two different approaches – by assuming independence and 
assuming a multinomial distribution. We shall see that the two approaches often produce 
the same or a very similar result for the wr estimator; however, we will also see that they 
sometimes produce different expressions for the same result. 
 
Assuming Independence. We can express the wr estimator of the total Y for a single stage 
as: 

𝑌෠௜௡ௗ =
1

𝑛
෍

𝑌௜

𝑝௜
௜∈௦

. 

 
The independence assumption says that the 𝑌௜/𝑝௜ are independent random variables with 
no explicit distribution, but E(𝑌௜/𝑝௜) = 𝑌. We add the subscript ind to 𝑌෠௜௡ௗ to indicate 
that the wr estimator uses the independence assumption. The variance of 𝑌෠௜௡ௗ is: 
 

𝑣൫𝑌෠௜௡ௗ൯ =
1

𝑛
෍ 𝑝௜

௜∈௎

൬
𝑌௜

𝑝௜
− 𝑌൰

ଶ

. 

 
We can estimate 𝑣൫𝑌෠௜௡ௗ൯ as: 
 

𝑣ො൫𝑌෠௜௡ௗ൯ =
1

𝑛(𝑛 − 1)
෍ ൬

𝑌௜

𝑝௜
− 𝑌෠൰

ଶ

௜∈௦

 

 



 

and the variance of 𝑣ො൫𝑌෠௜௡ௗ൯ can be expressed as 
 

𝑣 ቀ𝑣ො൫𝑌෠௜௡ௗ൯ቁ =
1

𝑛ଷ
൬𝜇ସ − ൬

𝑛 − 3

𝑛 − 1
൰ 𝜎 

ସ൰ 

 
where: 

𝜎 
ଶ = ෍ 𝑝௜ ൬

𝑌௜

𝑝௜
− 𝑌൰

ଶ 

௜∈௎

            and             𝜇ସ = ෍ 𝑝௜ ൬
𝑌௜

𝑝௜
− 𝑌൰

ସ

௜∈௎

. 

 
Hansen, Hurwitz, and Madow (1953) and Valliant and Rust (2010) provide the same 

expression for 𝑣 ቀ𝑣ො൫𝑌෠௜௡ௗ൯ቁ. An unbiased estimator of 𝑣 ቀ𝑣ො൫𝑌෠௜௡ௗ൯ቁ is: 

 

𝑣ො ቀ𝑣ො൫𝑌෠௜௡ௗ൯ቁ =
1

𝑛ଶ(𝑛 − 2)(𝑛 − 3)
ቆ𝜇̂ସ −

(𝑛ଶ − 3)

𝑛
 𝜎ො 

ସቇ 

 
where: 

𝜎ො 
ଶ =

1

(𝑛 − 1)
෍ ൬

𝑌௜

𝑝௜
− 𝑌෠ ൰

ଶ

௜∈௦

 and    𝜇̂ସ = ෍ ൬
𝑌௜

𝑝௜
− 𝑌෠ ൰

ସ

௜∈௦

. 

 

See Ash (2022a) for the derivation of 𝑣൫𝑌෠௜௡ௗ൯, 𝑣ො൫𝑌෠௜௡ௗ൯, 𝑣 ቀ𝑣ො൫𝑌෠௜௡ௗ൯ቁ, and 𝑣ො ቀ𝑣ො൫𝑌෠௜௡ௗ൯ቁ. 

 
Assuming Multinomial Distribution. We can also express the wr estimator of the total Y 
for a single stage as: 

𝑌෠௠௨௟௧ =
1

𝑛
෍ 𝑋௜

௜∈௎

𝑌௜

𝑝௜
. 

 
Here we assume that 𝑋௜ is a multinomial random variable that represents the number of 
times that a sample unit i is selected wr with probability pi. We use the subscript mult to 
indicate that the wr estimator uses the multinomial assumption. The expectations of the 
multinomial distribution that are needed to derive the next set of variances and variance 
estimators are described by Newcomer, Neerchal, and Morel (2008) and Ouimet (2020). 
Using the mult assumption, it can be shown that 𝑣൫𝑌෠௠௨௟௧൯ = 𝑣൫𝑌෠௜௡ௗ൯ . An unbiased 
estimator of 𝑣൫𝑌෠௠௨௟௧൯ is:  

𝑣ො൫𝑌෠௠௨௟௧൯ =
1

𝑛(𝑛 − 1)
෍ 𝑋௜

௜∈௎

൬
𝑌௜

𝑝௜
− 𝑌෠൰

ଶ

. 

 
With the multinomial assumption, the variance of 𝑣ො൫𝑌෠௠௨௟௧൯ can be expressed as:

𝑣 ቀ𝑣ො൫𝑌෠௠௨௟௧൯ቁ =
1

𝑛ଷ(𝑛 − 1)

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ (𝑛 − 2) ෍ ෍ 𝑝௜

 𝑝௝
 ൫𝑝௜

 + 𝑝௝
 ൯ ቆ

𝑌௜

𝑝௜

−
𝑌௝

𝑝௝

ቇ

ସ

௝∈௎
௜ழ௝

௜∈௎

+ ෍ ෍ 𝑝௜
 𝑝௝

 ቆ
𝑌௜

𝑝௜

−
𝑌

𝑝௝

ቇ

ସ

௝∈௎
௜ழ௝

௜∈௎

+2(𝑛 − 2) ෍ ෍ ෍ 𝑝௜𝑝௝
 𝑝௞ ൥ቆ

𝑌௜

𝑝௜

−
𝑌௝

𝑝௝

ቇ

ଶ

൬
𝑌௜

𝑝௜

−
𝑌௞

𝑝௞

൰
ଶ

+ ቆ
𝑌௜

𝑝௜

−
𝑦௝

𝑝௝

ቇ

ଶ

ቆ
𝑌௝

𝑝௝

−
𝑌௞

𝑝௞

ቇ

ଶ

+ ൬
𝑌௜

𝑝௜

−
𝑌௞

𝑝௞

൰
ଶ

ቆ
𝑌௝

𝑝௝

−
𝑌௞

𝑝௞

ቇ

ଶ

൩

௞∈௎௝∈௎
௜ழ௝ழ௞

௜∈௎

−2𝑛ଶ(2𝑛 − 3) ቀ𝑣൫𝑌෠௠௨௟௧൯ቁ
ଶ

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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and an unbiased estimator of 𝑣 ቀ𝑣ො൫𝑌෠௠௨௟௧൯ቁ is: 

𝑣ො ቀ𝑣ො൫𝑌෠௠௨௟௧൯ቁ =
1

𝑛ଷ(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ ෍ ෍ 𝑋௜

ଶ𝑋௝ ቆ
𝑌௜

𝑝௜

−
𝑌௝

𝑝௝

ቇ

ଶ

௝∈௎
௜ழ௝

௜∈௎

+ ෍ ෍ 𝑋௜𝑋௝
ଶ ቆ

𝑌௜

𝑝௜

−
𝑌௝

𝑝௝

ቇ

ଶ

௝∈௎
௜ழ௝

௜∈௎

− ෍ ෍ 𝑋௜
 𝑋௝

 ቆ
𝑌௜

𝑝௜

−
𝑌௝

𝑝௝

ቇ

ସ

௝∈௎
௜ழ௝

௜∈௎

+2 ෍ ෍ ෍ 𝑋௜𝑋௝
 𝑋௞ ൥ቆ

𝑌௜

𝑝௜

−
𝑦௝

𝑝௝

ቇ

ଶ

൬
𝑌௜

𝑝௜

−
𝑌௞

𝑝௞

൰
ଶ

+ ቆ
𝑌௜

𝑝௜

−
𝑌௝

𝑝௝

ቇ

ଶ

ቆ
𝑌௝

𝑝௝

−
𝑌௞

𝑝௞

ቇ

ଶ

+ ൬
𝑌௜

𝑝௜

−
𝑌௞

𝑝௞

൰
ଶ

ቆ
𝑌௝

𝑝௝

−
𝑌௞

𝑝௞

ቇ

ଶ

൩

௞∈௎௝∈௎
௜ழ௝ழ௞

௜∈௎

−2𝑛ଷ(𝑛 − 1)ଶ(2𝑛 − 3) ቀ𝑣ො൫𝑌෠௠௨௟௧൯ቁ
ଶ

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

See Ash (2022a) for the derivation of 𝑣൫𝑌෠௠௨௟௧൯ , 𝑣ො൫𝑌෠௠௨௟௧൯ , 𝑣 ቀ𝑣ො൫𝑌෠௠௨௟௧൯ቁ , and 

𝑣ො ቀ𝑣ො൫𝑌෠௠௨௟௧൯ቁ.  

 
We admit that the expressions for 𝑌෠௜௡ௗ and 𝑌෠௠௨௟௧, and the variance estimators 𝑣ො൫𝑌෠௜௡ௗ൯ and 
𝑣ො൫𝑌෠௠௨௟௧൯ are essentially equivalent. The duplicate sample units of the ind assumption 
(sample units selected multiple times) are represented by 𝑋௜  in the mult assumption. 
However, the variance and variance estimators of 𝑣ො൫𝑌෠௜௡ௗ൯ and 𝑣ො൫𝑌෠௠௨௟௧൯ are completely 
different expressions that produce the same values. Raj (1968; p. 120) also notes that the 
two assumptions result in two different variances and variance estimators when used in the 
first-stage of a two-stage sample design. 
 
In our notation, we will sometimes include the sample size in our notation. For example, 
𝑣൫𝑌෠௠௨௟௧,௡ୀସ൯ refers to the wr variance using the multinomial assumption with n = 4 and 
𝑣ො൫𝑌෠௜௡ௗ,௡ୀସ൯ refers to the wr variance estimator using the independence assumption with 
n = 4. 
 

Although 𝑣ො ቀ𝑣ො൫𝑌෠௜௡ௗ൯ቁ  and 𝑣ො ቀ𝑣ො൫𝑌෠௠௨௟௧൯ቁ  are unbiased estimators of the wr variance 

estimator, they have the drawback that they both require n ≥ 4. To work around this, we 
can collapse four original strata into a pseudo stratum. The analysis of the next section 

considers whether this method produces a safe overestimate of 𝑣 ቀ𝑣ො஻ோோ൫𝑌෠൯ቁ . We say an 

estimator produces a safe overestimate because it is “conservative in stating the sampling 
error of the estimate.” (Hansen, Hurwitz, and Madow 1953; p. 439) 
 

4. Description of the Simulation 
 
The only CE data we have is for the 2010 sample PSUs; we have not observed the value 
of total expenditures for every CU of every PSU in the U.S. Therefore, without a complete 
universe, we cannot speak definitively about the variances of alternative sample designs. 
Our solution is to produce a “plausible” or “reasonable” universe using the 2010 sample 
and simulation. Since our interest is with the variances, the universe does not need to make 
100% accurate estimates of total expenditures. What the universe needs to do is to make 
reasonable variances for making relative comparisons of the variances arising from the 
alternative sample designs. We are interested in the impact of the first-stage stratification 
on the variances of estimates and the how well we can estimate those variances. We are 
not trying to replicate 100% accurate estimates of expenditures. 
 



 

For the first step of the development of our plausible universe, we applied the SAS PROC 
SERVERITY ®2 to the CE data to find the best distribution to represent total expenditures. 
From this analysis, we determined that a gamma distribution best fit mean total 
expenditures, given the distributions that SAS considered.  
 
Next, we needed the parameters of the gamma distribution for every PSU in the U.S. To 
get those values, we modeled PSU-level mean total expenditures 𝑅෠௜ and its second-stage 

standard error 𝑠𝑒ෞଶ൫𝑅෠௜൯ = ቀ𝑣ොଶ൫𝑅෠௜൯ቁ
ଵ/ଶ

, using the observed 2010 sample PSUs. Our 

regression models were simple and included variables known for all PSUs in the U.S.  
 
Figures 2 and 3 show the fit of the predicted values with the actual values for both the 
estimate of mean total expenditures and the standard errors of mean total expenditures. 
Each point in Figures 2 and 3 represents a NSR sample PSU from the 2010 sample design. 
We generally considered these predicted values as reasonable. 
 

 
Figure 2: Model and Actual Values for Mean Total Expenditures. 

 
2  SAS and all other SAS Institute Inc. product or service names are registered trademarks or 
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. 



 

 
 

 
Figure 3: Model and Actual Values for Standard Error of Mean Total Expenditures. 

 
 
With the predicted values, we defined the shape and scale parameters of the gamma 

distribution as 𝑠ℎ𝑎𝑝𝑒௜ = ቀ𝑅෠𝑖/𝑠𝑒ෞ2൫𝑅෠𝑖൯ቁ
ଶ
 and 𝑠𝑐𝑎𝑙𝑒௜ = ቀ𝑠𝑒ෞ2൫𝑅෠𝑖൯ቁ

ଶ
/𝑅෠𝑖 and used them to 

randomly generated a universe of 3.5M CUs where the universe size Ni of each PSU was 
equal to the maximum of either the actual population size or 2,500. A weighting adjustment 
was calculated and applied to totals to adjust for the difference between 2,500 and Ni. To 
make the simulation more like actual survey data, we used Bernoulli sampling to change 
10% of the sample into ineligible units. Since Bernoulli sampling produces a random 
number of units with a mean of 10%, the sample sizes of completed interviews are random 
within the PSUs.  
 
We generated a full universe of CUs because we want to examine the two-stage variance 
and the variance of the first-stage only (a census within the second stage). 
 
The 2010 and 2020 estimates, produced for our analyses, will use the 2010 PSU definitions, 
the 2010 MOS, and the same simulated population to facilitate comparisons. We know that 
the 2020 PSU definitions and MOS will be updated for the 2020 sample design, but we use 
the 2010 values because we are interested in the impact of the stratification and not the 
impact of the PSU definitions or the MOS. Additionally, we made one simulated 
population; our results are not averaged over multiple simulated populations. 
 
We define the simulation expectation and variance for a general estimator 𝜃෠ respectively 

as 𝐸௦௜௠൫𝜃෠൯ =  𝑛௦௜௠
ିଵ ∑ 𝜃෠௦௦ ,  and 𝑣௦௜௠൫𝜃෠൯ = 𝑛௦௜௠

ିଵ ∑ ቀ𝜃෠௦ − 𝐸௦௜௠൫𝜃෠൯ቁ
ଶ

௦ .  Note that 𝑛௦௜௠ =

∑ 1௦ , 𝑠𝑒௦௜௠൫𝜃෠൯ = ට𝑣௦௜௠൫𝜃෠൯, and ∑  ௦ refers to the sum over the simulated samples. 

 



 

4. Simulation Results 
 
This section reviews the results of our simulation analysis in terms of the three original 
objectives. All of the results are for the estimator of mean total expenditures 𝑅෠ = 𝑌෠/𝑋෠, 
where 𝑌෠ is the estimator of total expenditures and 𝑋෠ is the estimator of the population of 
interest. Since the estimator 𝑅෠  is a ratio of two estimators, we linearized 𝑅෠  when 
calculating the cs and wr variances. Linearizing was not used with BRR. The results of 
section 4.1 use both the SR and NSR PSUs and sections 4.2 and 4.3 only describe the 
variances of the NSR PSUs. All of the estimates are national, except in Section 4.1, where 
we provide national and Census Division estimates. We allocated the overall sample size 
of 12,246 to the first-stage strata in the same way for the 2010 and 2020 sample designs. 
With the sample sizes, we selected an equal probability simple random sample without 
replacement (srswor) sample of CUs. Within PSU variances and variance estimators 
reflected the srswor sample design. The simulation estimates used 20,000 simulated 
samples. 
 
The calculation of the 2020 estimates included an adjustment for the remote PSUs excluded 
from the sample design. We increased the sample weight of the non remote PSUs so that 
they accounted for the remote PSUs. The adjustment was weighted by the MOS and 
calculated within the combination of Census Division and the four selected states. 
 
4.1 Comparison of the Variance and Biases of the 2010 and 2020 Sample Designs  
Per our first objective, we compare the bias and variance of the 2010 and 2020 sample 
designs with respect to estimates of expenditures. Table 2 shows the resulting bias of the 
2010 and 2020 first-stage sample designs.  
 

Table 2: Bias of 2010 and 2020 Estimates of Mean Total Expenditures 

 
 
In Table 2, our estimate of mean total expenditures for 2010 is unbiased because no PSUs 
were excluded. Because the 2020 does excluded remote PSUs, the estimates of mean total 
expenditures, even with our adjustment for the remote PSUs, exhibit a small bias. In 
relative terms, the bias for national and Census Division-level estimates of expenditures 
are all small – less than 1 percent of the estimate.  

Sample 
Design 

Census 
Region Census Division 

Mean Total 
Expenditures 

(R) 
𝑏𝑖𝑎𝑠൫𝑅෠൯ 

Relative 
bias (%) 

2010 U.S.   0 0.00 
 U.S.  58,204 15 0.03 
 Northeast New England 67,260 0 0.00 
  Middle Atlantic 58,144 -38 -0.07 
 Midwest East North Central 58,966 56 0.09 

2020  West North Central 63,994 -33 -0.05 
  South Atlantic 50,608 -17 -0.03 
 South East South Central 48,410 -180 -0.37 
  West South Central 47,285 180 0.38 
 West Mountain 57,852 210 0.36 
  Pacific 59,157 20 0.03 



 

 
Table 3: Comparisons of 2010 and 2020 Standard Errors for Mean Total Expenditures 

 Census Census First-Stage Ratio  Both Stages Ratio 
Statistic Region Division 2010 2020 (2020/2010) 2010 2020 (2020/2010) 

 U.S.  614 632 1.05 736 740 1.04 
 Northeast New England 2,278 2,267 1.00 2,976 2,940 0.99 
  Middle Atlantic 2,099 1,971 0.94 2,426 2,298 0.95 
 Midwest East North Central 1,281 1,592 1.24 1,652 1,881 1.14 

𝑠𝑒௪௥ଵ൫𝑅෠൯  West North Central 1,625 1,881 1.16 2,061 2,200 1.07 
  South Atlantic 1,279 1,241 0.97 1.557 1,503 0.97 
 South East South Central 1,974 2,114 1.07 2,356 2,460 1.04 
  West South Central 1,132 1,711 1.51 1,566 1,985 1.27 
 West Mountain 2,770 3,550 1.28 3,184 3,815 1.20 
  Pacific 2,938 1,759 0.60 3,215 2,156 0.67 
 U.S.  616 630 1.02 735 754 1.03 
 Northeast New England 2,257 2,266 1.00 2,969 2,940 0.99 
  Middle Atlantic 2,116 1,963 0.93 2,436 2,314 0.95 
 Midwest East North Central 1,286 1,594 1.24 1,649 1,912 1.16 

𝑠𝑒௦௜௠൫𝑅෠൯  West North Central 1,625 1,878 1.16 2,054 2,329 1.13 
  South Atlantic 1,277 1,241 0.97 1,546 1,520 0.98 
 South East South Central 1,972 2,113 1.07 2,351 2,472 1.05 
  West South Central 1,134 1,707 1.51 1,558 2,023 1.30 
 West Mountain 2,767 3,617 1.31 3,180 4,012 1.26 
  Pacific 2,977 1,746 0.59 3,227 2,155 0.67 

 
 
Table 3 compares the variances of the 2010 and 2020 sample designs both nationally and 
by Census Division. We see that the national variance for 2020 sample design is slightly 
larger than the 2010 sample design. This is expected since the 2020 sample design had 
more high-level strata and therefore, less low-level strata than the 2010 sample design. 
Some of the Census Division variances increased and some decreased between 2010 to 
2020 due to the less even distribution of sample PSUs to the Census Divisions and selected 
states. 
 
4.2 How to Optimize the BRR Variance Estimator 
For the second objective, we consider how to optimize the 2010 and 2020 CE variance 
estimator with respect to bias and variance. We do this by examining the bias and variances 
of the cs and BRR variance estimators for different choices of Pgh and different methods 
for collapsing strata into pseudo strata. Table 4 summarizes the results in terms of the 
standard errors – comparing the simulated values 𝑠𝑒௦௜௠൫𝑅෠൯, the direct calculation of the 

standard errors 𝑠𝑒௪௥ଵ൫𝑅෠൯, and the expectation of the cs estimator 𝐸 ቀ𝑣ො௖௦൫𝑅෠൯ቁ. 

 
  



 

 
 

 
 
The values of 𝑠𝑒௪௥ଵ൫𝑅෠൯ and 𝑠𝑒௦௜௠൫𝑅෠൯ are in the row highlighted in yellow in Table 4 and 
are in close agreement. Either can be considered the target or known values, but we use 
𝑣௦௜௠൫𝑅෠൯ as the base of the bias ratios of the standard errors in the last four columns of 
Table 4.  
 
The variance estimation for the 2010 sample design uses the choices that are highlighted 
in the blue in Table 4. The choices include choosing Pgh = ½ and collapsing strata using 
the “Current 2010” method. We see that the variance estimator for the 2010 sample design 
produces a safe overestimate: the first-stage and two-stage variance estimates are 1.30 and 
1.20 times larger than the actual variances. The “Current 2010” method of collapsing strata 
was a mix of collapsing strata with respect to both expenditures and MOS with more weight 
given to expenditures. We did not apply the “Current 2010” method to the 2020 sample 
design because we were not able to develop a general rule based on what was done in 2010. 

 
Before this research, we would have produced replicate factors for the 2020 sample design 
by choosing Pgh proportional to the MOS and collapsing strata with respect to expenditures. 
These values are in the row highlighted in red in Table 4. We see that this combination 
provides an underestimate of the variance by a factor of 0.83 for the first stage only and 
0.81 for two stages. This large underestimate of the variance is generally unacceptable.  
 
To understand how BRR and cs can underestimate the variance, consider one of the pseudo 
strata that contributed a negative value to the 2020 estimate for the combination of Pgh 
proportional to the MOS and collapsing pseudo strata by expenditures in Table 4. Figure 1 

Table 4: 2010 and 2020 Standard Errors for National Estimates of Mean Total Expenditures 

Statistic 𝑃௚௛ 
 

Pseudo strata 
collapsing 

Standard Errors (SEs) Bias Ratio of Ses 
k First-Stage Only Two Stages First-Stage Only Two Stages 
 2010 2020 2010 2020 2010 2020 2010 2020 

𝑠𝑒௦௜௠൫𝑅෠൯    608 634 732 755     

𝑠𝑒௪௥ଵ൫𝑅෠൯    614 632 736 740     
   Current 2010 796  893  1.31    1.21   
 ½ 0 Expenditures 752 903 854 991 1.24 1.40 1.16 1.30 
   MOS 858 1,064 949 1,140 1.41 1.65 1.29 1.49 

ට𝐸 ቀ𝑣ො௖௦൫𝑅෠൯ቁ 
  Current 2010 793  890  1.30  1.21   n/a 

MOS ½ Expenditures 745 537 848 618 1.23 0.83 1.15 0.81 
  MOS 848 949 940 1,024 1.39 1.47 1.28 1.34 

   Current 2010 707  827  1.16  1.12    
 min bias2 ½ Expenditures 644 666 781 765 1.06 1.03 1.06 1.00 
   MOS 741 873 865 963 1.22 1.35 1.18 1.26 
   Current 2010 792  889  1.30  1.21  
 ½ 0 Expenditures 754 924 856 1,012 1.24 1.46 1.17 1.34 
   MOS 860 1,103 951 1,178 1.41 1.74 1.30 1.56 

ට𝐸௦௜௠ ቀ𝑣ො஻ோோ൫𝑅෠൯ቁ 
  Current 2010 793  890  1.30  1.22  

MOS ½ Expenditures 744 546 847 626 1.22 0.86 1.16 1.28 
  MOS 849 1,076 940 1,147 1.40 1.70 1.28 1.52 

   Current 2010 714  834  1.17  1.14  
 min bias2 ½ Expenditures 654 684 792 779 1.08 1.08 1.08 1.03 
   MOS 737 892 858 979 1.21 1.41 1.17 1.30 



 

plots 𝑏𝑖𝑎𝑠(𝑣ො௖௦(𝑌෠)) and the two terms of the 𝑏𝑖𝑎𝑠(𝑣ො௖௦(𝑌෠)) on the vertical axis and varying 
value of Pg1 from 0 to 1 on the horizontal axis. 
 
 

 
Figure 1. Bias of the Collapsed Strata Variance Estimator – One Pseudo Strata 

 
 
When we focus on the bias at it is minimum in Figure 1, we see that the negative value of 
the second term of the bias has the impact of making the overall bias negative where the 
first term of the bias is minimum. When we choose Pgh proportional to MOS, we are trying 
to approximate the Pgh that minimizes first term of the bias (when Ygh is proportional to 
MOSgh), but this is where the bias is negative and therefore contributes to the underestimate 
of the variance.  
 
We note that producing an underestimate is less likely if the sample design has equal sized 
strata and we choose Pgh proportional to MOS. In that case, Pgh is equal to ½ or close to it 
which makes the second term of the bias equal to zero or close to zero. The opposite case 
of very unequal strata can exacerbate the underestimate. This happens because the second 
term of the 𝑏𝑖𝑎𝑠(𝑣ො௖௦(𝑌෠))  goes to ቀ𝑣൫𝑌෠௚ଵ

 ൯ − 3𝑣൫𝑌෠௚ଶ
 ൯ቁ  as 𝑃௚ଵ

ଶ → 0  or it goes to 

ቀ−3𝑣൫𝑌෠௚ଵ
 ൯ +  𝑣൫𝑌෠௚ଶ

 ൯ቁ as 𝑃௚ଵ
ଶ → 1. 

 
The best choices for the 2020 replicate factors are collapsing strata with respect to 

expenditures and choosing Pgh to minimize ൫𝑏𝑖𝑎𝑠(𝑣ො௖௦(𝑌෠)) ൯
ଶ
. With these choices for 2020, 

there is no bias with the two-stage variance and the first-stage variance is only 1.03 times 
larger than the actual variance. In Table 4, the results for this choice are in the row that is 
highlighted in green.  
 
Next, we examine the variances of the cs and BRR estimators for different choices of Pgh 
and choices for collapsing strata into pseudo strata. Table 5 summarizes the results of 



 

calculating the standard errors directly in terms of 𝑣 ቀ𝑣ො௖௦൫𝑅෠൯ቁ and calculating the variances 

via simulation. 
 
Table 5: Comparisons of 2010 and 2020 Standard Errors for Mean Total Expenditures ൫𝑅෠൯ 

 
 

For Table 5, we were able to calculate the expectations 𝜇௚௛
(௔)

= 𝐸ቀ൫𝑌෠௚௛ − 𝑌௚௛൯
௔

ቁ directly 

with “First-Stage Only” because it is a straightforward calculation: 
 

𝐸ቀ൫𝑌෠௚௛ − 𝑌௚௛൯
௔

ቁ = ෍ 𝑝௚௛௜ ቆ
𝑌௚௛௜

𝑝௚௛௜
− 𝑌௚௛ቇ

௔

௜∈௎೒೓

 

 
However, for “Two Stages,” this expectation becomes much more complicated with a > 2. 
Our solution for Table 5 was to simulate the expectations over the two stages of the sample 

design. Then the simulated expectations 𝐸௦௜௠ቀ൫𝑌෠௚௛ − 𝑌௚௛൯
௔

ቁ were used as 𝜇௚௛
(௔)  in our 

calculation of 𝑠𝑒 ቀ𝑣ො௖௦൫𝑅෠൯ቁ. This is different than 𝑠𝑒௦௜௠ ቀ𝑣ො௖௦൫𝑅෠൯ቁ which is the variance of 

𝑣ො௖௦൫𝑅෠൯ via simulation.  
 

Comparing the estimates 𝑠𝑒௦௜௠ ቀ𝑣ො஻ோோ൫𝑅෠൯ቁ and 𝑠𝑒 ቀ𝑣ො௖௦൫𝑅෠൯ቁ of Table 5, we conclude that 

that the expression for 𝑣 ቀ𝑣ො௖௦൫𝑅෠൯ቁ is reasonable when applied to both one or two stages 

since 𝑠𝑒 ቀ𝑣ො௖௦൫𝑅෠൯ቁ agrees with the simulated values 𝑠𝑒௦௜௠ ቀ𝑣ො஻ோோ൫𝑅෠൯ቁ. Per the comparisons 

of the sample designs, the combination of choosing Pgh to minimize the bias2 and collapsing 
strata with respect to expenditures produced the smallest variance for 2010. With 2020, the 
smallest variance was produced by the combination of choosing Pgh proportional to the 
MOS and collapsing strata with respect to expenditures. However, this combination 
underestimated the variance in section 4.2. The second-best combination for 2020 is 
choosing Pgh to minimize the bias2 and collapsing strata with respect to expenditures– the 
best combination in section 4.2 for 2020 with respect to bias. 

Sample 
Design 

𝑃௚௛ k 
Pseudo Strata 

Collapsing 

First-Stage Only Two Stages 

𝑠𝑒௦௜௠ ቀ𝑣ො஻ோோ൫𝑅෠൯ቁ 𝑠𝑒 ቀ𝑣ො௖௦൫𝑅෠൯ቁ 𝑠𝑒௦௜௠ ቀ𝑣ො஻ோோ൫𝑅෠൯ቁ 𝑠𝑒 ቀ𝑣ො௖௦൫𝑅෠൯ቁ 

   Current 2010 174,129 162,715 225,753 210,051 
 ½ 0 Expenditures 173,219 169,229 216,834 211,429 
   MOS 182,275 175,952 231,301 224,473 
   Current 2010 167,204 162,517 214,257 209,339 

2010 MOS ½ Expenditures 176,463 172,724 218,703 213,959 
   MOS 179,393 174,323 227,749 222,338 
   Current 2010 155,843 149,620 203,944 196,410 
 min bias2 ½ Expenditures 146,274 138,422 196,113 184,708 
   MOS 160,179 156,811 211,767 208,211 
 ½ 0 Expenditures 225,900 242,083 278,707 292,337 
   MOS 343,106 341,131 413,266 410,887 

2020 MOS ½ Expenditures 88,937 93,430 118,775 122,584 
   MOS 370,191 346,847 441,825 411,640 
 min bias2 ½ Expenditures 168,883 183,033 208,772 220,943 
   MOS 284,597 278,731 358,950 353,891 



 

 
4.3 Estimating the Variance of the CE Variance 
With our third objective, we consider variance estimators of the CE two-stage variance. 
We compare the simulation variance of 𝑣ො஻ோோ൫𝑅෠൯, which we consider the known variance, 

with the estimators of the variances 𝑣ො ቀ𝑣ො൫𝑅෠௜௡ௗ,௡ୀସ൯ቁ  and 𝑣ො ቀ𝑣ො൫𝑅෠௠௨௟௧,௡ୀସ൯ቁ . The 

simulation variance of 𝑣ො௖௦൫𝑅෠൯  and the ind and mult variances 𝑣 ቀ𝑣ො൫𝑅෠௜௡ௗ,௡ୀସ൯ቁ  and 

𝑣 ቀ𝑣ො൫𝑅෠௠௨௟௧,௡ୀସ൯ቁ are also included in Table 6 for reference.  

 
The BRR and cs results of Table 6 reflect the variance estimation for the 2010 sample 
design: choosing Pgh = ½ and collapsing strata with the “Current 2010” method. To apply 
the ind and mult variances and estimators of the variance, we collapsed the “Current 2010” 
pseudo strata into a pseudo stratum of four original stratum with respect to expenditures. 
We did not include the 2020 sample design because the adjustment for the remote PSUs 
complicated it. Table 6 summarizes the results of the simulation.  
 
Table 6: 2010 Standard Errors for Variance Estimator of Mean Total Expenditures 

Statistic One Stage Two Stages 

𝑠𝑒௦௜௠ ቀ𝑣ො஻ோோ൫𝑅෠൯ቁ 174,129 225,753 

𝑠𝑒௦௜௠ ቀ𝑣ො௖௦൫𝑅෠൯ቁ 168,163 215,886 

𝑠𝑒 ቀ𝑣ො൫𝑅෠௜௡ௗ,௡ୀସ൯ቁ 185,708  

𝑠𝑒 ቀ𝑣ො൫𝑅෠௠௨௟௧,௡ୀସ൯ቁ 185,708  

ට𝐸௦௜௠ ൬𝑣ො ቀ𝑣ො൫𝑅෠௜௡ௗ,௡ୀସ൯ቁ൰ 203,168 235,874 

ට𝐸௦௜௠ ൬𝑣ො ቀ𝑣ො൫𝑅෠௠௨௟௧,௡ୀସ൯ቁ൰ 203,168 235,874 

 
 

When we applied 𝑣ො ቀ𝑣ො൫𝑅෠௜௡ௗ,ୀସ൯ቁ  and 𝑣ො ቀ𝑣ො൫𝑅෠௠௨௟௧,௡ୀସ൯ቁ  to a two-stage sample design 

within the simulation, we replaced the PSU totals 𝑌௜ with the simulation values of 𝑌෠௜.  
 

Table 6 suggests that the variance estimators 𝑣ො ቀ𝑣ො൫𝑅෠௜௡ௗ,௡ୀସ൯ቁ  and 𝑣ො ቀ𝑣ො൫𝑅෠௠௨௟௧,௡ୀସ൯ቁ 

provide a safe overestimate of the variance of the BRR and cs variance estimators.  
 
 

5. Conclusions 
 
Per our first objective, the 2010 and 2020 sample designs are not much different with 
respect to both bias and variance. Although the 2020 will not be unbiased, the bias is small 
and the exclusion of remote PSUs should provide considerable cost savings.  
 
For our second objective, setting up BRR for variance estimation requires two important 
choices: how to choose Pgh and how to collapse strata into pseudo strata. However, there 

is no simple answer. In our example, choosing Pgh that minimizes ൫𝑏𝑖𝑎𝑠(𝑣ො௖௦(𝑌෠)) ൯
ଶ
is the 

best choice in terms of bias and either the best or second best with respect to variance. 



 

However, calculating Pgh that minimizes the ൫𝑏𝑖𝑎𝑠(𝑣ො௖௦(𝑌෠)) ൯
ଶ
 requires good information 

about the strata totals 𝑌௚௛ and strata variances 𝑣൫𝑌෠௚௛൯ and this may be difficult to obtain in 
practice. 
 
We also learned that having or not having equal-size strata in the sample design can have 
an important impact on variance estimation. When the strata do not have equal size and we 
choose Pgh as proportional to the MOS, it can result in an unacceptable underestimate of 
the variance with BRR.  
 
The good news is that we have expressions for the bias and variance of BRR that can be 
used to evaluate our choices. Additionally, we showed how the prior survey data can be 
used to produce a plausible universe which we can use to calculate the bias and variance 
of different variance estimators.  
 
With our last objective, we have offered expressions for the variance and variance 
estimator of the wr variance estimator. A small example using our simulation showed that 
applying the one stage estimator of the variance of the wr variance to a two-stage sample 
design can produce reasonable estimates. 
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