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1. Introduction

The analysis of sample survey data often requires adjustments for missing values in variables of
interest. Standard adjustments based on item imputation or propensity weighting factors rely on
the availability of auxiliary variables for both responding and non-responding units. However,
the application of these can be challenging when the auxiliary variables are themselves subject
to incomplete-data issues. This paper will demonstrate how low rank matrix approximation can
be applied to impute missing auxiliary variables. The performance depends on the rank of the
auxiliary variable matrix and the extent to missingness rates. We will evaluate the method in terms
of bias and mean squared error.

2. Low Rank Matrix Approximation

In survey data, auxiliary variables are sometimes called predictor variables or explanatory vari-
ables. We consider auxiliary variabléSin a matrix form and are interested in the imputation of
auxiliary variables. Hence, observations are in rows, and variables are in columns. We noted that
predictor variables are typically chosen because they are correlated to a dependent variable. The
higher correlation ensures the better prediction or explanation that auxiliary variables can provide
about the dependent variable. This results in high correlations among the auxiliary variables them-
selves. For example, when a dependent variable is a price of specific commodity, the 1-month and
3-month previous prices can be correlated against each other. This may lead X (auxiliary variable
matrix) to be low rank.

The rank of matrixX is the number of independent columns (or rows). A matrix X is full rank
if

rank of X = min (n, p)

wheren is the number of rows anglis the number of columnsX is low or deficient rank if it is not
a full rank. In practice, statistical software such as MatLab estimate a rank of matrix by counting
non-zero singular values after considerable numerical adjustment. We consider cases where the
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rank of X is significantly low and show a way to impute missing observation¥ oEet auxiliary
variable matrixX be ann x p matrix with missing entries dt, j) €

Q={(,4): X(i,7)is missing.

Our goal is to find a low rank matrix which has the smallest sum of singular ¥dluge, nuclear
norm) while its non-missing entries are the same as non-missing entrdes of

3. Rank Estimation

Let a matrix X be any realh x p matrix with no missing entries. We can then decomp#se
uniquely as a product of orthogonal matrié¢ésaandV’, and a diagonal matris’:

X=USV'

whereU € O(n), V € O(p) andS isn x p diagonal matrix. The diagonal elementsSére called
the singular values and they satisfy > o9 > --- > 0, > 0.

X can be afull rank matrix even when variables are dependent amongtbachin such cases,
some of the singular values &f may be close to zero. When variables are highly dependent among
each other, we may examine the magnitude of singular values instead dfiag@smominal rank.
Suppose the rank (X) is the number of singular values greater tharlf some of the singular
values ofX are close to zero, the rank(X) is much smaller than the nominal rank &f but a
better choice for practical applications.

We now show how to estimate the rankXfwhen X has missing observations. Note that the
singular values ofX’ X are the square of the singular valuesdf That means{’X and X have
the same number of non-zero singular values, and to estimate the raffkkois to estimate the
rank of X.

LetQ = X'X, i.e.,

n
Qij = Y XXy
k=1
for1 <i,j < p. LetT';; be the set of indices of rows for which tlx¢h andj-th columns have no
missing values:
I';j = {k : neither ofX}; and X} is missing.

EstimateQ;; by
n

Qij = 7= Z X5i Xk
T3l S
i
where||T';;| is the size of;;. We then obtain singular values @%;. Estimates of singular values
of X are positive square root of the singular value§)pf.
We simulated a rank-3 auxiliary variable matrix where a number of obsergas®@00 and a
number of variables is 10. Figure 1 shows the cumulative sum of singulees/ahere there is no



missing observation: on the horizontal axis are singular values from tpeskatio the smallest; on
the vertical axis is the cumulative sum of singular values. Since the firge@grvalue of singular
values is 56.25, the cumulative sum is 56.25; the second (largest) valungofes values is 6.21,
hence the cumulative sum increases by 6.21. Since it is a rank-3 matriesthaf singular values
are( after the third, and there is no increase in the cumulative sum.

The red circles in Figure 2 displa¥’X rank estimation after removint)% of observations
of X at random. We observed that the first three singular values were welkiwlth true values
and had a slight increment for the rest of values. Figure 3 shows tiierpance ofX’X rank
approximation as we increase a missing ratdi@ of observations. The black diamonds display
X'X rank estimation after having)% of observations o removed at random. We observed that
values fromX’ X rank estimation were farther away from true values as the missing ratesesrea
Table 1 shows the values of singular values with various missing rates.

Table 1: X’ X Rank Estimation With Various Missing Rates

TRUE 10% 30% 50%
56.25 56.07 56.35 56.21
6.21 630 6.81 7.15
412 424 438 6.14
000 324 429 531
0.00 206 335 384
0.00 140 3.00 3.38
0.00 138 234 268
000 115 160 2.59
0.00 0.67 1.20 141
0.00 033 118 0.63

4. Imputation Using Singular Value Decomposition

Recall the singular value decomposition of any reat p matrix X without any missing entries.
ThenX can be decomposed as a product of orthogonal matrices and a diatptnat

X =UsvV'

and the diagonal elements satisfy> oo > --- > 0, > 0.
Now, let.S, be then x p diagonal matrix with the first singular values, .. ., o, and the rest
of the diagonal set to zero. Then the rankpproximationX; = U S, V"’ satisfies

X = Xil < [ X = A

for any rankk matrix A. It means the difference betweéf), and X is the smallest, and;, is the
best approximation ok among all rankk matrices.



For a matrixX with missing entries, imputation of can be done by an iterative procedure
which shrinks the singular values of an initially imputed matrix. Kebe ann x p rank+ matrix
with a number of random entries are missing. Edbe X where missing values of are replaced
by initially imputed values. For example, one often imputes a missing value initially with the
mean or median of non-missing entries of the column in which a missing entry #(is;) =
mean(X (:, 7)) for (i,j) € QandZ (i, j) = X (i,7) for (i,7) ¢ 2.

We modify Z to a matrix of low rank by shrinking its singular values (more specifically a
nuclear norm). We then update missing values with values from modifielach iteration step
reduces the singular values &f while keeping the non-missing entries &f unchanged. The
procedure is run iteratively until it meets the given criteria:

1. Find the singular value decomposition (SVD)&fZ = USV’

2. Shrink the singular values d&f by setting singular values

P e fori<r
! 0 fori > r.

3. Replacez; ; with (UTV"); ; for (i, j) € Q.
4. Repeatat 1.

The MatLab code is given below:

%1 is an indicator matrix: 1 for missing; O otherw se
I =isnan(X);
Z =X

%fill each mssing value of Z initially

%wth the nean of non-nissing elenments of its colum
for j=1l.p

Z(1(:yj) . j)=nanmean(X(:,j));

end

% m ssing values of Z are updated iteratively
% by newl y conput ed val ues of Wusing SVD

% repeat k times

for i=1:k

[US V] = svd(2);

S = max(0, S-S(r+l1,r+1));

W = bktS+xV

Z(1) = WI);

end



We compared the approximation with the nearest neighbor and column meantiorpatathods.
The nearest imputation method computes distances among observationsamsimgsging values
across variables, and then choose the nearest observation to imputegymésegs. The column
mean method fills a missing value with its column mean of non-missing entries

Figure 4 plots predicted values against trug values when missing rate is 10% at random. If
an imputation method were perfect, its predicted values would fajl enz line. We observed that
the predicted values of the low rank approximation followed the line more closefpared to the
other two imputation methods. Figure 5 shows boxplots of differences betpreelictedy and
truey values when missing rate is 10% at random. All three methods centefeouatalues of
the low rank approximation were less variable and stayed clo$eRigure 6 shows that predicted
values from all three methods became more variable when we increase msifigpm 10% to
30%.

We also compared relative errors of the methods. Relative Error is estimated

n

Z(yi —?)z’)Q/ ZyiQ :

%

Table 2 shows the relative errors of the methods. As the missing rate iesy#as relative errors of
all methods increase. The values of relative error of low rank apprdikimevere smaller compare
with the other two methods throughout varying missing rates.

Table 2: Relative Errors

| 10% 30% 50%
Low Rank Approx | 0.010 0.039 0.075
Nearest Neighbor | 0.018 0.056 0.099
Column Mean 0.046 0.113 0.165

5. Discussion

We considered cases where the ranko significantly low and showed how the low rank matrix
approximation could be applied to impute missing auxiliary variables. We alsideved how to
estimate the rank ok when X had missing values.

If X is assumed to be of low rank, the missing values can be imputed so that eanaorm
(the sum of singular values) is minimized. Since the norm is a convex funttiefmmputation can
be converted to a constrained convex optimization problem. Imputation caonieeby solving a
constrained convex optimization problem which finds a matrix with a minimum norihe Waving
the same entries of non-missing valuesxofThe matrix can be found by any suitable optimization
algorithm, for example, CVX package of MatLab.
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Figure 1. Cumulative Sum of Singular Values (n = 500; p = 10; rank = 3)
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Figure 2: Cumulative Sum of Singular Values of Simulated X with Missing 10% (n = 500;p =

10; rank = 3)
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Figure 3: Cum Sum of Singular Valueswith Missing 10%, 30%
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Figure4: Predicted (Y) n=500; p = 10; rank = 3, missing rate = 10%
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Figure5: Boxplot of Difference between True(Y) and Predicted (Y) when missingrateis 10%
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Figure 6: Predicted Y with missing rate = 10% and 30%



