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Abstract: 

Small domain estimation models, like the Fay-Herriot, often assume a normally distributed 
latent process centered on a linear mean function. The linearity assumption may be violated 
for domains that express idiosyncratic phenomena not captured by the predictors. Under a 
single component normal distribution prior for the random effects, direct sample estimates 
for those domains would be viewed as if they were outliers with respect to the model, when 
in fact they may reflect the underlying true population value. The model interpretation is 
also confounded by the variances of direct sample estimates because, while typically 
treated as fixed and known, they are estimates and thus contain noise. In this paper, we 
construct a joint model for the direct estimates and their variances where we replace the 
normal distribution for the latent process with a nonparametric mixtures of normal 
distributions with the goal to improve robustness in estimation quality for these 
idiosyncratic domains.  We devise a model-based screening tool that leverages the 
posterior predictive distribution under the model to nominate domains where the model 
may not accurately account for deviations from the linearity assumption.  Our screening 
tool nominates a few domains to allow for a focused investigation to determine whether a 
deviation from linearity is real.  The U.S. Bureau of Labor Statistics’ Current Employment 
Statistics (CES) survey publishes monthly employment estimates for domains defined by 
industry and geography.  Model estimation is performed for smaller domains to improve 
the reliability of the direct estimator.  We compare fit performances for our candidate 
models under data constructed to be similar to the CES and conduct a simulation study to 
assess the robustness of our candidate models in the presence of deviations from 
linearity.  We apply our model-based screening method and quantify its ability to improve 
the quality of published estimates. 
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1. Introduction

Large government surveys, such as the Current Employment Statistics (CES) survey 
considered in this paper, are designed to produce high quality sample-based estimates for 
a number of state and national levels. More detailed geographical and industrial domains 
often contain a small number of sample units (e.g., business establishments).  Direct 
sample-based estimates at these detailed levels are not reliable, and models are used to 

1 Any opinions expressed in this paper are those of the authors and do not constitute 
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improve the quality of the estimates. One of the most popular models is the classical Fay-
Herriot (FH) model (Fay and Herriot 1979). The FH model yields an estimator that can be 
conveniently presented in the form of a weighted average of the direct sample-based 
estimator and a so-called “synthetic” component. Both the synthetic component and the 
mixture weights depend on specific distributional assumptions. Direct sample-based 
estimates are used as the data input in the FH modeling. In the classical FH model, 
variances of the direct sample point estimates are assumed to be fixed and known. In 
reality, these variances are not known and sample-based variances can be plugged in as if 
they were true variances. However, such sample-based estimates of variances contain 
noise.  

The usual practice to address noise in sampling-based variances is to smooth the noise by 
using model-based estimates extracted from a generalized variance function (GVF). Such 
GVF-based variances are implemented in a separate model from that for the direct point 
estimates. Maiti et al. (2014) showed that co-modeling of direct point estimates and their 
variances in the same model may improve estimates of both quantities as it would exploit 
the relationship between the point estimates and their variances. Maiti et al. (2014) 
proposed a solution within the frequentist paradigm, and Sugasawa et al. (2017) considered 
a Bayesian approach.  

In this paper, we extend Sugasawa et al. (2017) to include nonparametric probabilistic 
clustering and apply it to estimates from the CES survey. Our clustering formulation 
relaxes the assumption of normality of the random effects in the models for both the direct 
point estimates and the variances as a means of addressing deviations in employment from 
linearity assumption among industry domains implied in Sugasawa et al. (2017). 
Employment may grow or decrease faster in some groups of domains included in the model 
due to idiosyncratic effects in a particular domain that is not shared among other domains. 
This phenomenon may be captured by imposing a mixture of normal distributions 
assumption on the random effects.  

The models considered may still fail to describe true population target in domains having 
large deviations from the linearity, even under a prior formulation on random effects that 
induces clustering of domains. So we devise a posterior predictive checking approach to 
uncover domains that are not well described (or generated) by a particular model. We 
identify such domains using a Bayesian multiple hypotheses testing approach. Each 
domain’s probability of not being generated by the target model is considered in 
conjunction with the overall false discovery rate (FDR) (Benjamini and Hochberg 1995), 
to identify a relatively small number of “suspected” domains whose estimates are posited 
as not having been generated by our joint model. The list of these domains may be sent to 
analysts for review. Analysts may conclude that the deviation is due to a few outlying units 
used in deriving the domain estimates, in which case the modeled estimates are accepted; 
otherwise, analysts may decide that a particular domain’s deviation from the linearity 
expresses real economic movement. In the case that the deviation from linearity is deemed 
real, the modeled estimate for that particular domain would be replaced by the direct 
estimate.  We show in the sequel that making such replacements of selected model values 
would be expected to notably improve estimation performance.  Our testing approach is 
also expected to be useful when applied to non-modeled domains. 

We compare the performances of alternative models under synthetic data generated from 
the Quarterly Census of Employment and Wages (QCEW), which is considered the gold 
standard (because it lacks sampling error) for evaluation of CES estimates.  Our simulation 
results confirm that co-modeling of the direct point estimates and their variances leads to 



improved estimates. We follow by conducting a simulation study to assess the robustness 
of our models for capturing deviations from linearity among some domains.   

We adopt the hierarchical Bayesian paradigm for development of the models. The code is 
written in the Stan modeling language (Gelman et al. 2015) using a Variational Bayes 
algorithm (Kucukelbir et al. 2017) implemented in RStan V2.15.1 package, which is the R 
interface for the Stan modeling language (Gelman et al. 2015, Stan Development Team 
2017).   

The paper is organized as follows. The models considered in this paper are stated in Section 
2. In Section 3, after a brief introduction of estimation procedures and the form of the 
sample-based estimator used in CES, we discuss the results of application of the models to 
the synthetic data generated by adding noise to the true historical series. In Section 4, we 
conduct a robustness study of our candidate model formulations to assess their 
performances under deviations from linearity.  Section 5 introduces additional uses for our 
models with large-sized domains where modeling is not traditionally performed because 
the direct estimates are published; in particular, we introduce a model-based screening 
procedure to identify a set of domains whose direct sample-based estimates are not 
adequately described by the model.  We conclude with a summary discussion in Section 6. 

2. Description of the models 

We start with the classical Fay-Herriot (FH) model (Fay and Herriot 1979.) Let iy  be a 

survey estimate of target parameter i  for domain .i  For each domain, 1,...,i N , assume  

 | ~ ,
ind

i i i iy N v  ,        (1) 

 2 2| , , ~ ,
ind

T
i u i uNβ x β     .       (2) 

Sample estimated iy ’s are assumed to be normally distributed and unbiased for target 

parameter i , with variances iv  that are treated as known (equation (1)).  Equation (2) 

links true signal i  to a vector of covariates ix via the linear regression by assuming the 

normally distributed deviation of the true signal from “synthetic” part T
ix β   (to 

facilitate the ensuing description, we explicitly write the intercept term as .)  

As noted, sampling variances iv  in the FH model are considered fixed and known. In 

practice, estimates of true variances are used. We consider two possibilities for the 

treatment of iv : 1) using direct sample based estimates of true variances, which treats the 

variances as fixed and known in a Fay Herriot model that we refer to as FH;  2) using a 
smoothed estimator of variances that is plugged into the Fay-Herriot model. For this model 
(referred to as FH-V), the estimation of the variances is performed, separately, in a first 

step and then used as plug-in estimators for iv in the Fay-Herriot model. The first step of 

the variance estimation is based on the same set of covariates as used in the models 
described below. Note that this approach ignores any uncertainty in the estimation of the 



variances, and so, is not a fully Bayesian approach (though we estimate the variance portion 
of FH-V under a Bayesian construction). 

In the next two models, rather than fixing the variances at the estimated value, iv , we view 

direct sample-based estimates of variances as data and model them together with the vector 

of point estimates iy in a fully Bayesian model specification.   

Our first model that co-estimates the direct estimates and their variances is referred to as 
FHS and is a modification of an approach considered by Sugasawa et al. (2017). Assume 

the following hold for pair of direct survey estimates  ,i iy v  for each domain i : 

 2 2| , ~ ,
ind

i i i i iy N    ,        (3) 

 2 2| , , ~ ,
ind

T
i u i uNβ x β     .       (4) 

* *
2

2
| , ~ ,

2 2

ind
i i

i i
i

an an
v a G


 
 
 

,       (5) 

  2 | , ~ 2, exp .
ind

T
i ib IG b z γ γ        (6) 

Lines (3)-(4) are the usual FH assumptions on the point estimates iy  and lines (5)-(6) 

describe the variance model, where  parameter 2
i  is  the true sampling variance;  iz is a 

vector of covariates for the variance model for area i ; , ,a b γ  are the model parameters. 

Note that in equation (5), estimated variances depend on the sample size in , where for a 

set of domains with unequal number of respondents, we use the standardized response size,  

      * min 1 max min 0,1 .i i i i i
i ii

n n n n n      Our assumption is somewhat 

different from  Maiti et al. (2014) and Sugasawa et al. (2017) as we include an additional 
(unknown) parameter, a , to regulate the scale and shape of the distribution. In our 
application, we found that for moderate sample sizes, using the sample size alone would 
result in predicted variances that are overly similar to direct estimates of variances.   

The normality assumption used in  (2) and (4)  may not be realistic. For example, if a single 

or a handful of domains deviate significantly from T
i  x β , assumption (2) of the FH 

model would result in the under-shrinkage of the bulk of the observations. In the FHS 
model, violation of assumption (4) would result in overestimation of sampling variances in 
the domains where the signal deviates from the assumed linearity and, hence, in over-
shrinkage of estimates for these domains.  



Our capstone model is termed FHSC and is designed to allow for deviations from linearity 

assumption T
ix β   for some subsets of domains. Namely, we replace the normal 

distribution of assumption (4) with a finite mixture normal distributions. Specifically, we 
assume the existence of K  latent clusters having cluster specific intercepts k , for 

1,..., ,k K and common variance 2 :u  

 2 2

1
| , , , ~ ,

iid K T
i u k k i uk

Nπ μ β x β    


      (7) 

In addition, the inverse gamma assumption in (6) can be relaxed by specifying a mixture 

of the inverse gamma distributions with the cluster-specific shape parameter :kb  

  2

1
| , , ~ 2, exp .

ind K T
i k k ik

IG b z 
b γ π γ      (8) 

Table 1. FH, FHS, and FHSC models 
FH FHS FHSC 
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  2 | , ~ 2,
T
i

ind
z

i b IG be γγ   2

1
| , , ~ 2,

T
i

ind K z
i k kk

IG b e 
 γb γ π  

 1| ~ 0,N   
  1| ~ 0,N      1| ~ 0,N     

 1| ~ 0,N   
  1| ~ 0,N      1| ~ 0,

iid

k N     

  | ~ 0,p γ N   | ~ 0,p γ N  

   | ~ ,...,Dir K K  π  

 2, , ~ 1,1u G     

 2, , ~ 1,1 ,u G     

   3log ~ 0,1a t , 

   3log ~ 0,1b t ,  prior   

 2, , , . ~ 1,1 ,u kb G      

   3log ~ 0,1a t , 

 prior   

 

It is reasonable to suppose that point estimates and estimates of their variances are related, 
and we parameterize this assumption by assuming a common cluster structure for pairs, 

 ,k kb . That is, each mixture / cluster component in the joint distribution for ሺߠ௜, ௜ߪ
ଶሻ 

share the same ߨ௞. 



The form for the Dirichlet prior, with hyperparameters set to ,K  induces a Dirichlet 
process (DP) mixture formulation in the limit of the maximum number of allowable 
mixture components, K  (see Neal 2000). The larger is ,   the more of the K  possible 

mixture components (also referred to as clusters) will have 0,k   so a further gamma 

prior is imposed to allow the data to learn the number of mixture components. 

Table 1 contains a summary of the three models considered in this paper (formulated for a 
single covariate ix , for simplicity.) 

 
3. Model fit comparison  

We applied the models introduced in Section 2 to CES estimates of employment for 
the period from October 2008 through September 2009. The quality of the employment 
estimates can be assessed several months after their CES-based publication by comparing 
the estimates to the census data, maintained by BLS’ Quarterly Census of Employment 
and Wages (QCEW) program. The QCEW data become available with a lag of about 6 to 
9 months, while the CES estimates provide timely snapshot of the economy on a monthly 
basis. 

CES domains are defined by intersections of industry and geography: industries in the CES 
survey are defined by the North American Industry Classification System (NAICS); the 
geographic resolution considered in this paper is the State level. Since the direct CES 
survey estimates are used as input data in the proposed area-level models, we start by 
briefly describing relevant details pertaining to construction of the CES estimator. A more 
detailed description of the CES estimation procedures can be found in chapter 2 of Bureau 
of Labor Statistics (2004).     

For a given month, ,t  the target of the CES estimation is the change in employment from 
the previous to current month. Consider a set of (geography-by-industry) domains, 

1,...,i N . The population ratio, ,i tR , is the target employment change, defined as 

,
,

, 1

,i t
i t

i t

Y
R

Y 

          (9) 

where ,i tY  is the employment level in domain i  at month .t  

The estimated relative change in employment level ,
ˆ

i tR  can be described as an adjusted 

sample based estimator of the relative change  

 

 

,
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ˆ ,
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t

i
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j s
i t

j j t

j s

w y
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w y










         (10) 



where jty  is the employment of business j   at time t , jw  is the sampling weight of unit 

j , and  i
ts  is a set of units sampled in domain i  that provide non-zero employment inputs 

in both previous and current months as a “matched” set of respondents. The presence of 
matched sets of sampled units is typically high from one month to another but there are 

also unmatched units; thus, there is an adjustment to ,î tr , yielding estimator ,
ˆ

i tR  of ,i tR . 

The adjustment is described in some detail, for example, in Gershunskaya and Savitsky 

(2017) and is omitted here for brevity. In what follows, we assume ,
ˆ

i tR  to be an unbiased 

estimator of target, ,i tR . Monthly ratios ,
ˆ

i tR , along with their respective sampling 

variances ,i tv , constitute the domain-level data supplied for the modeling.  

Estimates of employment levels for month t  are obtained by multiplying estimated 

previous month level, , 1î tY  , by the estimate of the relative employment change: 

, , 1 ,
ˆ ˆ ˆ .i t i t i tY Y R          (11) 

The corresponding estimate of the over-the-month employment change is  

, , , 1
ˆ ˆ ˆ .i t i t i tY Y Y            (12) 

Every year, the estimation cycle starts at month 0 from a known QCEW-based employment 

level ,0iY  and after twelve months the CES estimated employment level ,12îY  is compared 

to the QCEW employment levels. Once a year, the CES estimated levels are revised to 
reflect newly available QCEW levels (in a procedure commonly known as the annual 
revision). 

Figure 1 presents a plot of the estimation cycle.  It shows monthly estimated levels for one 
of the CES domains. The lines on the plot correspond to alternative (model-based) 
estimates considered in the paper. The black line with solid circles is the target QCEW line. 
The goal is to be closer to the QCEW line at the 12th month of the cycle. Direct sample-
based estimates in small domains may be appreciably volatile. Model-based estimates 
usually present various degree of smoothness compared to the direct estimates, as 
exemplified in Figure 1. 

The quality of CES estimates could be judged by their proximity to employment from 
QCEW (which is considered a gold standard due to the absence of sampling error). 
However, employment seasonal patterns in the QCEW are affected by the quarterly 
submission of administrative data provided by units (business establishments).  CES 
estimates are unaffected by this quarterly seasonal influence due to a monthly submission 
cycle.  So we may not compare monthly QCEW and CES estimates. To overcome this 
difficulty related to monthly comparisons of CES and QCEW and to facilitate focused 
comparisons to true population figures, we provide results from the synthetic data. We 
created synthetic data by adding Student’s t distributed noise to the QCEW series, thus 
preserving the existing structure of the target. Our synthetic response expresses the 
same seasonality as the QCEW series, facilitating month-by-month comparisons.  The 



relative fit performances of our candidate models are the same on both the real and 
synthetic data sets because we use the QCEW to compose the synthetic data. 

Figure 1: Domain #60 in Health Care and Social Assistance industry 
(average number of responding units in the domain is 16.6) 

 

In Table 2, we present mean absolute deviation (MAD) averaged over domains and months, 
as follows: 

121 1
, ,1 1

12 ,
N

i t i ti t
MAD N Y Y 

 
        

where , , , 1i t i t i tY Y Y      , , , , 1i t i t i tY Y Y    , and ,i tY  , , 1i tY 
  signify estimates based on the 

sample or on a model. 

Results in Table 2 suggest that all model-based estimates are more efficient than the direct 
sample estimates.  The models that jointly model the point estimates and the variances, 
FHS and FHSC, perform similarly to one another, but notably better than FH-V, which 
separately models the point estimates and the variances because the point estimates and 
variances are dependent. 

Sampling variances fitted using our two models can be compared to the true 
variances used to generate the synthetic data. Figure 2 presents an example of a 
scatter plot, for all domains in one month in Health Care and Social Assistance 
industry. Symbols (empty and filled circles and stars) correspond to domains and 



show estimated variances versus true variances; stars represent the direct estimates 
of variances;  empty circles show estimated variances from the FHS model; filled 
circles correspond to variance estimates from FHSC. The closer the symbols are to 
the 45-degree line, the more accurate (less biased) are the estimates of the variances. 
We observe that for the bulk of domains the FHSC model variance estimates lie 
along the 45-degree line. 

Table 2. Simulated data, over-the-months results 
Ind N Direct FH FH-V FHS FHSC 

1000 600 285 220 205 188 204 
2000 1692 795 503 507 444 448 
3100 2808 328 275 279 273 277 
3200 1680 275 213 185 187 192 
4100 1488 396 252 234 213 221 
4200 3432 613 350 315 278 276 
4300 2328 456 292 300 265 266 
5000 996 282 206 187 188 194 
5500 1788 391 267 232 221 216 
6054 1800 481 314 314 290 292 
6055 540 213 176 162 158 167 
6056 1380 923 689 642 601 616 
6561 708 751 564 528 512 519 
6562 2568 444 297 289 250 251 
7071 708 771 470 480 435 459 
7072 960 770 578 551 506 510 
8000 1320 639 377 355 331 340 

Overall 26796 511 344 328 302 306 

The sizes of the symbols are proportional to standardized distances between the direct point 

estimates and respective true values, i i i id y v  . We can see a couple of larger 

circles on the upper edge of the plot. These circles correspond to different estimators for 
the same domain. The sizes of the circles suggests that the domain has an outlying value 
of the direct point estimate. The location of the circles indicate that the variance is 
overestimated by both models for this outlying domain. This would have the effect of over-
shrinkage of the estimated value to the mean (the “synthetic part”) of the model. 

While we might accept over-shrinkage of an outlier, in practice we do not observe the true 
value.  This same over-shrinkage phenomenon would be also expected to occur in the case 
where the true (but unobserved) generating value for a domain deviates from the 
assumption of linearity.  The two joint models provide various degrees of smoothing based 
on the input data. Whenever the joint models encounter large residuals, i.e., deviations of 
the observed input data from the linearity assumptions stipulated by formula (4), they may 
enlarge the estimated variance, particularly for the FHS model that imposes a single 
component normal distribution as the prior for random effects. Therefore, it is important to 
study robustness of the models to deviations from the linearity assumption. We approach 
this in the next section by introducing a Monte Carlo simulation study where the true 
domain values are generated such that the global linearity assumption does not hold for 
some of the domains.   



Figure 2. Estimated vs true variances of the direct estimator 
(Health Care and Social Assistance industry, month #1) 

 
4. Model robustness study for deviations from linearity 

The purpose of the simulation exercise described in this section is to study how the 
proposed joint models behave in the case when there are domains with large deviations 
from the model’s linearity assumption. To this end, we generate data using several 
scenarios, as described below.   

For a set of 1,...,100i   domains, we generate estimation targets i  as  

i i ix u     ,        (13) 

where auxiliary data ~ (5,10),ix U  1   and random effects are  ~ 0,1iu N . 

We set 0   for the first 95  domains and 3   for the last 5 domains. Thus, the last 5 

domains induce a deviation from the (overall) linearity assumption of the models. 

The “observed point estimates” are 

i i iy e  ,        (14) 

where   ~ 0,i ie N v  and “true” variances are  

 2 ~ 1,i g gIG b   .       (15) 

Generating true variances 2
i are not observed directly (or available for subsequent 

modeling). We simulate observed estimates of variances as 



2

1
~ 3,3 .i

i

v G


 
 
 

       (16) 

We consider several scenarios by varying the values of parameters , gb    , thus reflecting 

various schemes for the noise in the data:  

1) Low average true variance 0.5b  ; 
2) Medium average true variance 1b  ; 
3) High average true variance 1.5b  . 

For each level of b , consider three levels of variability of the true variance. The value of 
1g   induces the highest degree variability (of the variances, ߪ௜

ଶ ),while 4g   and 

8g   induce gradually lower variability in the generated variances. The higher 

variability scenarios (inversely proportional to g ) are expected to generate a heavier tailed 

distribution for 2
i  that will induce outlying values of iy  for some domains. 

Table 3: Properties of the credible intervals, over 95 domains with 0   

, gb     FH FH-V FHS FHSC 

Coverage (0.95 nominal) 
[0.5, 8] 0.914 0.957 0.933 0.933 
[0.5, 4] 0.915 0.952 0.934 0.935 
[0.5, 1] 0.921 0.957 0.943 0.951 

[1, 8] 0.922 0.963 0.951 0.938 
[1, 4] 0.923 0.960 0.951 0.942 
[1, 1] 0.927 0.963 0.957 0.952 

[1.5, 8] 0.928 0.971 0.960 0.944 
[1.5, 4] 0.930 0.968 0.959 0.946 
[1.5, 1] 0.933 0.970 0.965 0.956 

Length 
[0.5, 8] 2.259 2.392 2.259 2.293 
[0.5, 4] 2.208 2.384 2.234 2.244 
[0.5, 1] 2.004 2.371 2.186 2.069 

[1, 8] 2.933 3.102 2.881 2.966 
[1, 4] 2.869 3.080 2.846 2.897 
[1, 1] 2.599 3.060 2.725 2.642 

[1.5, 8] 3.445 3.659 3.366 3.435 
[1.5, 4] 3.364 3.625 3.316 3.353 
[1.5, 1] 3.027 3.595 3.135 3.036 

After 100S   simulations, we compute MSE for each of the above scenario , gb    for 

domain i   as 
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1ˆ ˆ
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  
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Average MSE over all 100 domains is    
100
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1ˆ ˆ
100 i

i

MSE MSE 


  . We also compute 

average MSE separately over a set of domains with 0  , 
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Table 4: Properties of the credible intervals, over 5 domains with 3   

, gb     FH FH-V FHS FHSC 

Coverage (0.95 nominal) 
[0.5, 8] 0.678 0.658 0.330 0.706 
[0.5, 4] 0.702 0.654 0.342 0.694 
[0.5, 1] 0.756 0.614 0.332 0.680 

[1, 8] 0.676 0.654 0.482 0.706 
[1, 4] 0.690 0.642 0.474 0.710 
[1, 1] 0.734 0.632 0.468 0.692 

[1.5, 8] 0.708 0.706 0.566 0.718 
[1.5, 4] 0.726 0.704 0.566 0.702 
[1.5, 1] 0.728 0.694 0.556 0.698 

Length 
[0.5, 8] 2.241 2.390 2.564 2.443 
[0.5, 4] 2.231 2.388 2.575 2.448 
[0.5, 1] 2.006 2.371 2.551 2.377 

[1, 8] 2.927 3.118 3.094 3.071 
[1, 4] 2.880 3.072 3.081 3.040 
[1, 1] 2.608 3.062 2.977 2.819 

[1.5, 8] 3.428 3.650 3.515 3.508 
[1.5, 4] 3.378 3.611 3.489 3.467 
[1.5, 1] 3.038 3.603 3.342 3.194 

Coverage probabilities and interval lengths for 95% nominal credible intervals for the fitted 
values based on all the models are presented in Table 3 (for 0   domains) and Table 4 

(for 3   domains.) Coverages are derived for each domain over 100 simulations. The 

domain results are averaged over respective groups of domains:  
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of the posterior distribution of the fitted values for domain i . The average length of the 

intervals are obtained as 
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and S denotes the number of Monte Carlo simulation iterations. 



For  the 0   domains, coverages for joint models are close to nominal. The FH coverages 

are somewhat low, especially for lower variances scenarios of 0.5, gb     and 

1, gb    . The coverages for the FH-V model are slightly higher than the nominal; their 

average interval lengths are longer than in the other models.  

The model coverages for 3   domains are low under all of the models, with the lowest 
coverages for the FHS model. These results show that none of the models considered 
provide satisfactory estimates for the domains where there are significant deviations from 
the model linearity assumption. Therefore, it is important to develop a procedure that would 
identify domains that do not fit the model well. In the next Section, we propose such a 
procedure to create a list of “suspect” domains that are not well described by the model. 

5. Improved handling of domains 

Although the CES survey uses models to produce estimates for small domains, the direct 
sample-based estimator is used for publication of moderately and larger sized domains. 
Before these estimates are published, they have to be reviewed. In this section, we propose 
a screening procedure that can be used to facilitate the analyst’s review of the direct 
estimates before they go to production.   
The proposed screening creates a list of domains that are not well described by the assumed 
model. For the larger, direct sample-based domains, analysts may find influential reports 
(that may need to be downweighted) or submission errors (that would be subsequently 
repaired) among establishments that would induce outliers in the sample estimates. So, 
even though models would not be used to provide estimators for large-sized domains, they 
may be used to check for outliers in an efficient way. 
Our screening procedure would also be expected to flag deviations from linearity among 
all domains – including those which are modeled – for analyst checking. To the extent that 
data submission errors and low quality data (due to small domain sizes) are ruled out, the 
nominated domain may be assumed to represent a deviation from linearity, in which case 
the direct estimator for that domain would replace the modeled estimate. 

We earlier demonstrated that our models may poorly fit domains expressing deviations 
from the linearity assumption due to over-smoothing. Ideally, we want to flag these 
domains as not generated from our model, in this case, and just use the direct estimator. 
Similarly, our models may be useful to flag outliers with respect to the model due to 
unreliable estimators or establishment input errors.  We would like to flag and correct these 
points. It is time prohibitive to have a survey analyst perform manual checking of all 
domains due to the tightly scheduled CES production environment. In what follows, we 
formulate a hypothesis test from the posterior predictive distribution under the model to 
assess whether the direct estimator for each domain was generated from our chosen model. 
We nominate a few domains out of many under this procedure that allows focused, efficient 
investigation by the survey analyst of whether any of the few identified domains are 
outliers. If the survey analyst concludes that there are input errors in the nominated or 
flagged domains, the errors will be corrected. If there are not input errors, the large 
difference between modeled estimators and the direct estimators for these domains are 
assumed to represent deviations from linearity. 

The usual strategy for introducing of a model in the CES production is to consider a set of 
candidate models 1,..., W   and thoroughly test them on a number of historical series 

over several years. Suppose researchers are satisfied with the results of such a multi-year 



study, and one of the models, w , is accepted for production. The question remains, what 

if the selected model w  works well in general but fails for some domains in some 

months? 

As we earlier noted, the analysis may suggest that model-based estimates for some of these 
domains are unreliable in the case of deviations from linearity; in such a case, the direct 
sample estimates would be used for publication. Alternatively, the direct estimates may be 
considered not trustworthy (for example, due to small sample size or extreme sample 
reports).  In the latter case, model estimates could be used even though they are seemingly 
inconsistent with the data. 

We now proceed to describe the method of creating the list of nominated suspect domains. 
The method is based on the Bayesian multiple hypotheses testing and posterior predictive 
checking.    

For a given model w  over the space of candidate models indexed by 1,...,w W , let 

, 1,...,l
iy l L  be replicate data draws from posterior predictive distribution 

 | ,l
i i wp y y   for domain i  (after marginalizing out the model parameters).  

For each domain i , consider hypothesis 0iH  that the domain response is generated from 

the model, which means that iy  follows  | ,l
i i wp y y  .   

Define     min | , , | ,l l
i i i i w i i i wp P y y y P y y y    , where P denotes the 

probability of the event that iy  is generated from model w .  In this sense, ip  denotes 

the probability of erroneously rejecting 0iH  that domain i  is generated from the model.   

Let set D  denote the set of “discoveries” (i.e., the domains that are deemed not generated 
from the model according to the definition of 0iH .) Then the expected number of “false 

discoveries” is  | ,i wF E p i D    and the estimated F  is computed from the 

average, 

1ˆ
i

D

F p
D

  .         (17) 

Next, we set threshold, q , a hyperparameter setting that denotes the maximum percent of 
allowable “falsely discovered domains” (Storey, 2003). The size of the list of “discoveries” 

will depend on q :  set D  will contain the maximum number of domains such that  F̂  

does not exceed q . 

The algorithm follows: 

1. Sort ip ’s in the ascending order,     1 ... Np p  and compute the cumulative 

mean.  
2. An example of the plot of the cumulative mean is presented in Figure 3. We may 

review the plot to think of what the reasonable q -value could be. Or we may just 

set the q -value once in advance. 



3. Suppose we choose 0.05q  . Then D  will consist of the first d domains with 

smallest ip ’s:    1 ... dp p  , such that 

 
1

1 d

i
i

p q
d 

 . 

In other words,  dp is the p -value that guarantees that the false discovery rate does not 

exceed 0.05.q   
 

Figure 3: Cumulative mean, by domain for model FHS (industry 6561, month #3) 

 

We applied this test to the data from the simulation study considered in Section 4 and 
created a list of “discoveries” to be sent for the review by analysts. Since this review is not 
available in our simulations, we make a favorable assumption that analysts make correct 
decisions of whether an estimate on the list is an outlier or a true (deviation from linearity) 
phenomenon. Namely, we assume that all “discoveries” from the set of the 95 domains 
generated with 0  were attributed to a “bad sample” cause and that the analyst’s 
decision was to use modeled estimates for these domains; all “discoveries” from the set of 
the domains generated with 3   were attributed to the failure of model’s linearity 
assumption and the direct sample estimates were used for such domains, instead of the 
model estimates.  

We first focus on comparing the relative effectiveness of our models to discover deviations 
form linearity on domains generated with 3  .  The resulting MSEs after the 
replacement, for different levels of thresholds, are given in Table 5. 



Table 5:  MSE for domains with 3   

    0.05q   0.10q   0.15q   

, gb     Y FHS FHSC FHS* FHSC* FHS* FHSC* FHS* FHSC* 

[0.5, 8] 0.511 3.719 1.331 1.449 1.070 0.849 0.911 0.646 0.771 

[0.5, 4] 0.556 3.851 1.419 1.603 1.135 0.842 0.948 0.681 0.807 

[0.5, 1] 0.361 3.892 1.589 1.636 1.096 0.618 0.741 0.441 0.526 

[1, 8] 1.023 3.350 1.952 2.442 1.891 1.741 1.742 1.374 1.506 

[1, 4] 1.112 3.469 2.032 2.615 1.940 1.893 1.771 1.442 1.558 

[1, 1] 0.721 3.375 1.901 2.467 1.678 1.367 1.350 0.920 1.006 

[1.5, 8] 1.534 3.392 2.478 3.052 2.525 2.479 2.407 2.002 2.098 

[1.5, 4] 1.668 3.484 2.538 3.228 2.572 2.675 2.464 2.157 2.243 

[1.5, 1] 1.082 3.316 2.303 2.815 2.168 2.023 1.854 1.388 1.437 

The first columns of Table 5 show MSEs of the “direct” estimates Y and the estimates 
based on the FHS and FHSC models. Columns labeled FHS* and FHSC* show MSE 
results after analysts correctly replace domains from group 3   nominated under each 
model by the direct sample estimates. The set of nominated or discovered domains for the 
FHS* and FHSC* columns were created using, respectively, the FHS- and FHSC-based 
screening procedures with the same respective threshold levels. We show results for 
threshold choices of 0.05, 0.10, and 0.15. As can be seen in Table 5, the correct replacement 
of discoveries with the direct estimates leads to visible reductions in MSE; however, the 
values of MSE are still higher than the respective MSEs for the “direct” estimates given in 
the column labeled Y. The reason is that not all the deviations from linearity were captured 
by the test under the chosen threshold levels, i.e., there remained domains with 3   that 
were not captured by the screening and thus their respective (overly shrunken) model-based 
estimates were not replaced by the direct estimates.  

Table 6 displays the fraction of “true discoveries”, defined as the number of correct 
discoveries divided by the total number of the 3   domains, i.e. of true deviations from 
linearity, at increasing threshold levels.  Table 6 shows that higher threshold levels increase 
the number of domains correctly discovered. This increase in discoveries, in turn, would 
reduce MSEs for those correctly replaced domains (Table 5); however, investigating the 
added discoveries would also increase the workload for analysts. Table 7 shows the fraction 
of “false discoveries”, defined as the number of discoveries among the domains where 
there is no deviation from linearity, e.g., 0  , divided by the total number of such 
domains.  By construction, the false discovery rate increases with an increasing threshold, 
which could result (after analyst investigation) in more domains to be mislabeled as 
“deviations from linearity assumptions”, when in fact their appearance on the list could be 
due to poor direct estimates (that induce outlyingness). In practice, tuning will be required 
to set the threshold, taking into consideration the workload and timeline restrictions.  

We note that the FHSC produces a lower discovery rate. This lower discovery rate is 
expected, since FHSC is a more flexible model than FHS in the sense of adapting to 
deviations from linearity. It is able to better model some of these domains by allocating 
them to a cluster, which reduces the shrinking of these domain estimates. The flexible 
estimation property of the FHSC model is also evidenced by the MSE results for the 3   
domains shown in Table 5, where MSE values are lower for the FHSC model compared to 



the FHS model; in particular, results for the 0.05q   threshold are better for FHSC*, as 
compared to FHS*, even though the discovery rate is lower for the FHSC model; similarly, 
results for the 0.10q   and 0.15q   threshold levels are close, even though FHSC has 

much lower discovery rate. Some of the 3   domains are less shrunken under FHSC 
(than FHS) and are, therefore, better predicted by the model and, hence, not “discovered”.  
That our testing procedure produces fewer discoveries under FHSC for modeled domains, 
but yet FHSC produces relatively lower errors is a feature of this model. 

Table 6:  Percent of “true discoveries”: for the 3   domains 

 0.05q   0.10q   0.15q   

, gb     FHS* FHSC* FHS* FHSC* FHS* FHSC* 

[0.5, 8] 37% 8% 66% 20% 81% 40% 
[0.5, 4] 35% 10% 68% 24% 82% 43% 
[0.5, 1] 32% 8% 69% 26% 84% 47% 

[1, 8] 18% 5% 48% 19% 66% 40% 
[1, 4] 17% 7% 48% 23% 70% 44% 
[1, 1] 15% 5% 49% 21% 72% 45% 

[1.5, 8] 11% 4% 37% 21% 59% 42% 
[1.5, 4] 11% 6% 37% 24% 61% 45% 
[1.5, 1] 9% 4% 37% 21% 65% 47% 

 
Table 7:  Percent of “false discoveries”: for the 0   domains 

 0.05q   0.10q   0.15q   

, gb     FHS* FHSC* FHS* FHSC* FHS* FHSC* 

[0.5, 8] 1% 0% 8% 0% 18% 2% 
[0.5, 4] 1% 0% 7% 1% 18% 3% 
[0.5, 1] 1% 0% 7% 1% 18% 3% 

[1, 8] 1% 0% 5% 1% 14% 4% 
[1, 4] 1% 0% 5% 1% 14% 5% 
[1, 1] 1% 0% 5% 2% 13% 5% 

[1.5, 8] 0% 0% 4% 1% 13% 6% 
[1.5, 4] 0% 0% 4% 2% 13% 7% 
[1.5, 1] 1% 0% 4% 2% 13% 7% 

We, next, assess the effectiveness of our test procedure when it is applied to non-modeled 
domains as a screening tool of sample-based, direct estimates before they are released for 
publication. Here, the goal is to detect the domains where direct estimates are impacted by 
poor sample or extreme sample measurements. For this purpose, we use the same 
simulation and test results as in Tables 5-7 but change the focus of the evaluation to 
compare the original “direct” estimates with the “corrected” estimates following analysts’ 
review of the list. In the actual production, we expect analysts to identify extreme 
measurements and errors and update domain sample-based estimates after making 
appropriate corrections. In this simulation study, we do not have the analysts review stage; 
in place of the review, we use the following assumptions and approximations: assume 
analysts correctly identify the flagged domains in the 0   group as being affected by 



sample outliers;  for those flagged domains in the 0  group, we use respective model-
based estimates to replace the original “direct” estimates as proxy of what the estimates 
will look like after analysts’ treatment of outliers. We compute the MSE of the original 
direct-based estimates and the revised estimates after replacements. The results are 
reported in Table 8. 

Table 8:  MSE for domains with 0   

  0.05q   0.10q   0.15q   

, gb     Y Y_FHS* Y_FHSC* Y_FHS* Y_FHSC* Y_FHS* Y_FHSC* 

[0.5, 8] 0.508 0.500 0.506 0.461 0.501 0.419 0.484 

[0.5, 4] 0.513 0.502 0.510 0.463 0.495 0.420 0.472 

[0.5, 1] 0.482 0.449 0.467 0.404 0.429 0.369 0.391 

[1, 8] 1.016 0.984 1.013 0.864 0.976 0.724 0.896 

[1, 4] 1.025 0.981 1.014 0.848 0.956 0.710 0.863 

[1, 1] 0.963 0.873 0.910 0.711 0.800 0.585 0.690 

[1.5, 8] 1.524 1.487 1.513 1.276 1.421 1.038 1.251 

[1.5, 4] 1.538 1.472 1.511 1.241 1.369 1.016 1.193 

[1.5, 1] 1.445 1.301 1.339 1.023 1.121 0.808 0.923 

Column Y shows MSE for the original “direct” estimates. Columns Y_FHS* and 
Y_FHSC* show MSEs after the original estimates for the domains on the list where 
replaced by the respective model-based estimates, used as approximation of estimates 
smoothed over the presumed outliers. We observe that the increasing of the threshold levels 
results in more flagged domains; the replacement of respective original estimates by more 
smooth model-based values results in improved estimation. We also observe that FHS-
based procedure gives slightly better results, compared with the FHSC-based counterpart. 
Since FHS does not cluster extreme values – be they deviations from linearity or extreme 
sample measurements – this model will tend to produce more discoveries.   This greater 
sensitivity of FHS relative to FHSC could also lead to false discoveries.  The discoveries 
may also include a more equal mix deviations from linearity and extreme sample 
measurements than under FHSC (which may better estimate some domains expressing 
deviations from linearity).  The more equal mix produces a greater reliance on the analyst 
to correctly differentiate the two phenomena. 

6. Summary 

In this paper, we applied joint modeling of the point estimates and their variances to the 
synthetic CES data and obtained more efficient results than in the case of the plugged in 
“fixed and known” variances. We extended the models of Maiti et al. (2014) and Sugasawa 
et al. (2017) by allowing the data to estimate a clustering structure on random effects and 
variances to account for deviations from linearity and outlyingness. For the bulk of 
domains, the co-clustering model provides better estimates of direct survey variances. Our 
simulations show that co-clustering model is more robust to deviations from linearity 
assumptions in terms of coverage.  In the presence of large deviations from linearity, we 
observed that although the resulting estimates from the co-clustering model are better than 
without clusters, they are still not “good enough”: in the presence of large deviations from 
the linearity assumption, model-based estimates may be worse than direct survey estimates.  



It is a good practice to perform careful model checks before choosing a model. However, 
thorough model evaluation can be an unrealistic task in a tightly scheduled production 
environment. The checking task is so important, however, that estimates are thoroughly 
tested based on a number of historical series before a model is accepted for implementation 
in production. Therefore, we devised an automated, fast computing testing procedure based 
on the Bayesian FDR to nominate a small subset of domains for analysts review on a timely 
basis.  Our procedure evaluates the probability that the direct estimate for a domain was 
generated from our candidate model.  This procedure could become a useful tool for 
analysts to mark unusual estimates before they are published. 

Lastly, there is indication that model fitted variances for direct survey estimates provide a 
more stable alternative to the raw sample-based estimates of variances. This is a potentially 
useful by-product from the joint modeling of direct estimates of point estimates and 
variances.  
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