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Abstract 
The distribution of first-digits obtained from many natural and economic datasets seem to 
follow a consistent distribution. The desire to find anomalies such as detecting fraud in 
financial and scientific datasets are common, and applications of “Benford’s Law” have 
been developed to find these anomalies. In our work with applying these methods to 
determine interviewer anomalies we found that interviewer’s assigned caseloads contained 
data where stratified subsets of first-digits follow consistent distributions that are like 
Benford’s, but not specifically Benford’s. To observe an interviewer objectively, we 
created a profile distribution by subsampling a mixture from available distributions to 
match individual interviewer’s profile distribution. Using the interviewer’s proportion of 
first-digits as a test statistic, we are able to determine bootstrapped p-values for first-digits 
in a way that allows us to flag interviewer results as suspicious and in need of closer 
scrutiny.   
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1. Introduction 
The Statistical Method Staff for Office of Employment and Unemployment Statistics 
(OEUS), we aim to increase the quality of data for the OEUS surveys and the statistics 
produced using the survey data. The Current Employment Statistics (CES) survey uses data 
from interviewers that call establishments to ask for the number of employees at the 
establishment. To improve the data in the CES survey and corresponding statistics, we aim 
to identify, eliminate, or reduce curbstoning by creating tools to aid in detecting dishonest 
reporting. Curbstoning refers to the deliberate fabrication of survey interview data by the 
interviewer (Koczela et al., 2015). 
 
This work utilizes first-digit analysis, which commonly follows Benford’s Law. Benford’s 
Law states that the distribution of leading digits of “real world” numbers will tend to follow 
a logarithmic distribution (Swanson, 2003). “First-digit analysis” refers to the analysis of 
expected proportions of leading digits, i.e. proportions of numbers 1 through 9. For 
example, 399 has a “3” as the leading digit. Auditors have used Benford’s Law for first-
digit analysis to help focus efforts when detecting accounting fraud since the late 1980’s 
(Durtschi, Hillison, & Pacini, 2004). Our first goal was to make sure our data is similar to 
the Benford’s distribution, and if not, modify the expected proportions. Modifying the 
proportions allows us to test individual interviewers’ values against the average proportions 
from all interviewers.  



First-Digit 1 2 3 4 5 6 7 8 9 
Proportion 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046 
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Benford’s Law is used to detect accounting fraud because the first-digit proportions of 
accounting data regularly follow Benford’s Distribution for first-digit proportions. When 
auditors compare their accounting data to the expected proportions from Benford’s 
Distribution and find that their data has an excess amount of a particular first-digit, they 
look in detail at the transactions beginning with the suspect digit. To determine if the given 
distribution is following Benford’s Distribution, auditors can check one digit at a time with 
a z-statistic, or use the Chi Square test on all frequencies to determine if the individual’s 
distributions of first-digits are statistically different from Benford’s Distribution. Another 
example besides accounting, is the use of Benford’s Distribution to detect potential 
underreporting in pollution emissions data, using the same methods (Dumas & Devine, 
2000). 
 
1.1 Modifications to Benford’s Distribution 
The first-digit proportions for Benford’s Distribution and CES employment values are 
similar, but definitely not the same distribution, as the top left graph in Figure 1 below 
shows. Normally this would require a commonly used modification to Benford’s 
Distribution, where we test interviewer first-digit proportions against the actual first-digit 
proportions using all available data, instead of Benford’s Distribution. If interviewers had 
comparable workloads this modification would not be a problem.  There are two main 
reasons this modification wasn’t applicable to the data: first, subsets of the data have 
different first-digit proportions, and, second, interviewers could have different number of 
cases in each subset. 
 
1.2 Strata Selection 
One important feature of this methodology is the stratification. The strata that were 
analyzed for differences in first-digit proportions were NAICS super sector, 
employment size, how late the data was collected, and number of employment 
values in a single case. The first thing to inspect is differences in the first-digit 
proportions for different subsets of the data. Since interviewers are given their 
workloads primarily at random, it can be assumed they will have different 
proportions from different subsets of the data. 
 
Some experienced interviewers may also be specialized to enroll for certain 
industries, although due to the quarterly sampling, all interviewers are working on 
collecting the recently sampled industries. With many strata, it is not plausible that 
each interviewer will always have the same proportion from each stratum assigned 
to their workload on a month-to-month basis. 
 
One explanation for Benford’s Distribution’s proportions is the difficulty in 
increasing from leading 1’s to leading 2’s and so on. For example to raise 
employment from 1 to 2 is a 100% increase, 2 to 3 is a 50% increase, and each digit 
is a smaller percentage increase afterwards, until reaching a new leading 1. While 
that is true for 1 through 9, it is also true for all orders of magnitude (e.g. 100 to 

Table 1: Expected Proportions under Benford’s Distribution 
 



200). Raising from 1 employee to 2 employees will not be as hard as changing the 
employment of an establishment from 10,000 employees to 20,000 employees. For 
this reason, we see each order of magnitude has a larger and larger proportion of 
establishments with a leading one. Based on how they impact Benford’s Law, we 
based our size classes on these orders of magnitude (Nigrini, 1999). 
 

 
Figure 1: First-Digit Proportions for Subsets 
This figure contains a set of first-digit proportions of employment values across sixty months.  To 
display the consistency of proportions across months, the top and bottom of the blue caps for a 
specific first-digit represents the maximum and minimum proportions respectively.  The black line 
with black dots are the expected Benford’s First-Digit Proportions.  The upper left graph uses all of 
the collected employment values across sixty months.  The upper right and lower are subset by 
Small (less than 10) and Large (greater than 99) Establishment employment values respectively.  
The lower right are the first-digit proportions across sixty months for Small Retail Establishments. 
 
While there are multiple super sectors that have different proportions, they aren’t 
as significant as the size class differences. Some super sectors have a larger 
difference than others though, as we can see in Figure 1 above, with the Super 
Sector for Retail Trade. Even though small establishments usually have fewer ones 



than other digits, Retail Trade has a noticeably smaller number of ones. If naively 
comparing interviewers with a large proportion of Retail Trade to all other collected 
employment values, the interviewers would appear as an outlier, just like an 
interviewer responsible for a large proportion of large establishments would. 
 
1.3 Profile Sample 
When planning surveys, samples can be stratified to ensure the sample has the same 
proportion of some characteristic (e.g., gender, age, establishment size, etc.) among the 
strata as they do in the population to provide greater precision. In our method, we’d like a 
sample similar to the interviewer’s assigned workload of establishments for a given month. 
Therefore, we used a stratified sample to mimic the interviewer’s workload.  
 
With our strata, NAICS Super Sector and size of establishment, we sample the same 
number of establishments in each strata that the interviewer collected. For our strata, we 
used orders of magnitude to include the full range of first-digits for each size (i.e. 1-9, 10-
99, 100-999, etc.). Using this method, we give the interviewer the best chance to be 
accurately represented, as we are not comparing him or her to interviewers with different 
types of workloads. We call this method of selecting a sample a ‘profile sample’, as it is a 
stratified sample, with sample sizes equal to the number of establishments collected by the 
individual interviewer. Each interviewer will thus have a different profile in composition 
and size from month to month. See Table 2 below for a simplified example. 
 

The individual interviewer’s profile sample of 134 establishments is selected from a 
random sample with replacement of the following: 

Medium establishments in NAICS Super Sector 1. Two from 364 
Small establishments in NAICS Super Sector 2. Forty-nine from 6273 
Medium establishments in NAICS Super Sector 2. Forty-six from 4969 
Small establishments in NAICS Super Sector 3. Twenty-three from 1783 
Large establishments in NAICS Super Sector 3. Fourteen from 202 
No establishments are sampled in the unrepresented strata from the individual 
interviewer profile. 

 

Table 2: Simplified example of a profile sample 
 
All Interviewers Super Sector 1 Super Sector 2 Super Sector 3 
Small nS1=243 nS2=6273 nS3=1783 
Medium nM1=364 nM2=4969 nM3=392 
Large nL1=110 nL2=2247 nL3=202 
    
Individual 

Interviewer 

Super Sector 1 Super Sector 2 Super Sector 3 

Small  uS2=49 uS3=23 
Medium uM1=2 uM2=46  
Large   uL3=14 
    
Interviewers 

Profile Sample 

Super Sector 1 Super Sector 2 Super Sector 3 

Small  u*S2=49 u*S3=23 
Medium u*M1=2 u*M2=46  
Large   u*L3=14 
    



This method of producing a stratified sample presents a significant difficulty. There is only 
one sample to compare to the interviewer, with no measures of central tendency or variation 
for the first-digit proportions obtained for a similarly assigned workload. This difficulty is 
solved by the introduction of the Bootstrap where we can obtain multiple profile samples 
and estimate the distributions of first-digit proportions. 
 
1.4 Bootstrap 
Bootstrap is a method of determining properties of a distribution that are unknown. This 
could be parameters such as the mean, variance, quartiles, percentiles of random variables, 
or the parameters themselves. The Bootstrap is comprised of many subsamples taken with 
replacement from the population.  (See Figure 2 below)  The parameter values of interest 
are estimated for each subsample, and with a large number of subsamples the distribution 
of those parameter values can be obtained and utilized for hypothesis testing (Efron and 
Tibshirani, 1993). 
 

 
Figure 2: Bootstrapped Subsamples 
 
Limitations of the Bootstrap are that if an individual interviewer has a small number of collected 
employment values in a given month, the Bootstrap can lead to unusual first-digit proportions. As 
values may not exist for each of the nine digits. Bootstrapping can only provide an estimate of the 
distribution for the population if the original sample size is large enough to represent the distribution 
and the number of replicate subsamples are large depending on the application or parameter you are 
estimating. Since we are estimating probabilities we need to have a sample of at least 2000 
(Schräpler, 2010). 
 
Bootstrap in practice is very simple. Create many profile samples with replacement and use the rank 
of the first-digit proportions to compute the estimate of the Bootstrap percentile. We have made 
10,000 profile samples for each interviewer that has at least 100 reported employment values. We 
observed that the stability of leading nines improves if observations are greater than 100, hence the 
arbitrary cut-off at 100. Even though we choose to exclude these interviewers from the application 
of the profile sample Bootstrap method, their obtained values are still used as shown for All 
Interviewers in Table 2 above. 
 
 
 



 
The percentiles can be used to determine the probability that an individual interviewer’s first-digit 
proportions came from the Bootstrapped distribution of first-digits subsampled from the population. 
By taking more Bootstrap profile samples, we obtain a smoother estimate for the population 
distribution of first-digit proportions. The confidence in determining if an individual user’s first-
digit values came from those subsampled from the population is thus improved. Theoretical 
exploration of the Bootstrap can be viewed in Appendix A. 
 

2. Comparing Distributions 
We’ve chosen our strata and created 10,000 Bootstrapped profile samples to describe the 
distribution of first-digits of similar workloads for each interviewer. Now we need a way 
to measure how extreme an interviewer’s proportions are, or test to see if the 
interviewer’s proportions are likely to have come from the same distribution. We used 
multiple methods to determine how similar the interviewer’s distribution is to the 
Bootstrap of profile samples. Two methods, Rmax and Rsum, utilize the distance from 
the median for each first-digit value. 
 
2.1 Method of Comparison 
The distance from the median methodology is analogous to the Bootstrapped p-value. The 
Bootstrapped p-value is determined by the percentage of Bootstrapped proportions higher 
or lower than that of the interviewer. With enough Bootstrapped profile samples, you have 
a good approximation of the distribution of first-digit proportions and can measure the 
percentage of Bootstrap values higher or lower to effectively create a Bootstrapped a p-
value. Literature recommends 2,000 replicate subsamples for a Bootstrapped p-value, but 
we generated 10,000 subsamples (Schräpler, 2010). 
 
In terms of hypothesis testing, our null hypothesis is that the interviewer’s first-digit 
proportions come from the distribution estimated by the profile sample Bootstrap method. 
The alternative hypothesis is that the interviewer’s values are not from the estimated 
distribution. The test statistic here is the interviewer’s first-digit proportions. The test 
measures the percentage of Bootstrapped samples that have higher or lower first-digit 
proportions than the interviewer’s. 
 
2.1.1 Determining a Score or P-value 
If the interviewer has a proportion of first-digit ones that is in the most extreme 5% of the 
Bootstrap values, the p-value would be less than or equal to 0.05 for that digit. Since we 
have 10,000 profile samples, the interviewer's proportion of ones would have to be higher 
than the top 250 or lower than the bottom 250 profile sample's proportions of ones to fail. 

Table 3:  First-digit Proportions, 𝑃̂, from Bootstrapped Subsamples 
 
B =  {𝑃̂(First-Digit = “1”), 𝑃̂(First-Digit = “2”), …, 𝑃̂(First-Digit = “9”)} 
1 {0.32, 0.16, 0.18, 0.05, 0.07, 0.05, 0.05, 0.06, 0.04 } 
2 {0.33, 0.24, 0.12, 0.11, 0.04, 0.06, 0.03, 0.03, 0.04 } 
3 {0.36, 0.23, 0.08, 0.10, 0.06, 0.06, 0.05, 0.06, 0.02 } 
4 {0.43, 0.15, 0.10, 0.09, 0.05, 0.06, 0.07, 0.02, 0.03 } 
 {…,…,…,…,…,…,…,…,…} 
9997 {0.28, 0.21, 0.14, 0.07, 0.08, 0.07, 0.06, 0.05, 0.03} 
9998 {0.27, 0.21, 0.10, 0.11, 0.09, 0.07, 0.06, 0.05, 0.03} 
9999 {0.26, 0.21, 0.12, 0.09, 0.10, 0.07, 0.05, 0.05, 0.05} 
10000 {0.31, 0.20, 0.11, 0.09, 0.07, 0.08, 0.06, 0.04, 0.04} 



In terms of our score, we are viewing it symmetrically with 0 as the median. A lower score 
would then show that the interviewer's proportions are closer to the estimated distribution. 
The Rmax and Rsum methods utilize the distance from the median of Bootstrapped 
replicates and the interviewer’s proportions for each digit instead of the p-value. Counting 
the number of replicate samples that are closer to the replicate median creates a score to 
show how likely the interviewer’s first-digit proportion came from the same distribution. 
We had to determine where to place the interviewer’s proportion when the data is discrete 
with many repeating values. The following example illustrates the method. 
 
Imagine we only make 20 profile samples for an interviewer, and the number of 
employment values that start with a 9 are as follows: 1 1 1 1 1 2 2 2 2 2 -- 3 3 4 4 4 5 5 5 5 
5. Here we can see that the median (--) value is actually between 2’s and 3s. We determine 
the distance from the median by counting how many profile samples have values between 
the median and the interviewer’s value, for each digit, 1 through 9. Table 4 below shows 
an interviewer’s number of leading 9’s compared to the profile samples and the resulting 
score. This method is conservative because we are choosing to say that the interviewer is 
closer to the median than all other profile samples with the same value, instead of saying 
the interviewer’s value is in the middle of all similar values. 
 

 
This example calculates 𝑠𝑐𝑜𝑟𝑒9, but we would need to repeat this for each possible 
leading digit, 1 through 9. With 10,000 profile samples, the highest score possible 
for each digit is 5,000, whereas the lowest score possible is 0. We have two tests 
that utilize the score from the distance from the median: Rmax and Rsum. Rmax is 
the maximum of the 9 scores, which is able to more easily detect spikes in 
proportions. Rsum is the sum of all 9 scores, which is better at detecting smaller 
differences at every digit. Their formulas can be viewed below.  
 

𝑅𝑠𝑢𝑚 = ∑𝑠𝑐𝑜𝑟𝑒𝑖

9

𝑖=1

, 𝑤ℎ𝑒𝑟𝑒 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑙𝑒𝑎𝑑𝑖𝑛𝑔 𝑑𝑖𝑔𝑖𝑡 

𝑅𝑚𝑎𝑥 = 𝑚𝑎𝑥 (𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑐𝑜𝑟𝑒𝑖), 𝑤ℎ𝑒𝑟𝑒 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑡ℎ  𝑙𝑒𝑎𝑑𝑖𝑛𝑔 𝑑𝑖𝑔𝑖𝑡 
  
When we looked for abnormal proportions, we found two common patterns. One 
looked like a mixture of Benford’s Distribution and the uniform distribution, 
whereas the other looked like a mixture of Benford’s Distribution and a normal 
distribution around the 5’s. When we saw the mixture with the uniform distribution, 
Rsum was able to detect that pattern more often, whereas Rmax was able to detect 

Table 4:  Scoring Example 
 
Number of interviewer’s 
First-Digit 9’s 

Sequence of Scoring Score 

0 0, {1 1 1 1 1 2 2 2 2 2 --} 10 
1 1, {2 2 2 2 2 -- } 5 
2 2, {--} 0 
3 3, {--} 0 
4 4, {-- 3 3 } 2 
5 5, {-- 3 3 4 4 4 } 5 
6 6, {-- 3 3 4 4 4 5 5 5 5 5} 10 



a mixture with a normal distribution around 5. If the interviewer was primarily 
making up fraudulent data with either a uniform or normal distribution of first-digit 
proportions, we would be able to detect that behavior. 
 
With these tests, we are able to find patterns that don’t match the expected 
proportions from the Bootstrap of profile samples. We didn’t make these into one 
unified test because each one tests for something different. The key thing to look 
for is situations in which any of them are in the extreme values. If an interviewer 
was to fail a test, they would need to be analyzed for why they are different than 
their simulated profile sample (Rmax and Rsum). 
 
In typical Benford’s Distribution analysis, there is a traditional methodology to rely 
on the Chi-square test to determine if the observed first-digit frequencies match the 
expected Benford’s Distribution frequencies. The issue with this test is that you will 
generally not have a significant result with small sample sizes. There are many 
interviewers in our data that do not have large enough samples to be detected by a 
Chi-square test. In short, the Chi-Square test is not sensitive enough to be a 
meaningful discriminator for what we are trying to accomplish. 
 
2.1.2 Multiple Testing 
In using the Rmax test a situation of multiple testing presents itself. Under a two-
tailed test with an alpha of 0.05, a score higher than 4,750 = [5000 – (0.05*5000)] 
would be needed to reject the null hypothesis.  This method is actually performing 
9 tests at the same time.  So to be conservative we used the Bonferroni correction 
for testing all 9 digits at once.  In that case a score higher than 4972 = [5000 – 
((0.05/9)*5000)] would flag an interviewer for further review. 
 
The benefit of this type of scoring is that managers have a short list of interviewers 
to review for potential fraudulent behavior.  Being flagged in and of itself is not 
proof of poor behavior, but a tool to reduce which interviewers to check up on. 
Prior to the creation of this method interviewers were chosen at random for quality 
control check-ups. 
 
2.2 Graphical Analysis 
We wanted to visually investigate interviewers flagged from the Rmax and Rsum 
tests. To aid in our investigation and visualization we created an R Shiny 
application around the individual interviewer plot in Figure 3 below. R Shiny is a 
package from RStudio that builds web applications with a few lines of code, and 
no JavaScript knowledge is required. The R Shiny application allowed us to quickly 
create a web application in R and use it on our local machine to dynamically look 
at detailed information on each interviewer across multiple months.  
 
For the Individual Interviewer Plot in Figure 3 below the green line represents the 
Benford’s Proportion of First-Digits and the Blue Line Represents the Interviewer’s 
First-Digit Proportions.  The violin plot shows the first-digits distribution for all 
profile samples bootstrapped for the interviewer.  The purple lines help show the 
density of how the proportion moves from one first-digit to the next.   



 
A violin plot is a variation on a box plot. It is a combination of a box plot and a 
kernel density plot (a smoothed histogram). Kernel density estimation is a 
nonparametric method for estimating the probability density function of a random 
variable. In general, kernel density plots can be an effective way to view the 
distribution of a continuous variable. The violin plot effectively superimposes a 
density curve instead of the more common box and whisker plot (Kabacoff, 2015). 
 

 
Figure 3: Individual Interviewer Plot 
 
In Figure 3 we can see a situation where the interviewer is not like their expected 
profile, because the blue line is outside of the Bootstrapped First-Digit distribution 
of fives.  In this case for verification, a manager can listen to recorded calls of the 
interviewer for any employment value that has a resulting starting value of five.  In 
our profile example from Table 2, this reduces the quality control workload from 
listening to 134 collected employment call recordings to only listening to 20.  
 

3. Conclusion 
At this point, we have many ways to view interviewers for unusual outcomes. The primary 
test we would recommend using is Rmax. This test identifies the large increases or 
decreases of a particular digit which are expected in fraudulent accounting data. If an 
individual fails the Rmax test, we recommend viewing their individual plot. While the 
Rmax is the main test, analyzing the users who have the worst scores on either test should 
be viewed using the plot for further review.  
 
When an interviewer’s proportions appear suspicious, a manager can switch all cases 
between two interviewers to determine if the suspicious behavior continues. The manager 



could listen to a recording of the interview if one exists. Or, the manager could perform 
call backs on the suspect values from the interviewer. 
 
While we’re trying to prevent curbstoning, it is important to note that this isn’t the only 
reason an interviewer may have extreme proportions. It is possible that an interviewer 
could have misunderstood part of the interviewing process and just needs to be trained 
again on the correct method.  
 
Remember that first-digit analysis only provides a list of unusual interviewer outcomes and 
groups of establishments with potentially fraudulent data. Since first-digit analysis only 
gives us unusual collector outcomes we wanted to limit false positives. The method 
provided here is conservative by reducing the number of false positives at every step of our 
research.  We were conservative in our approach to give the all benefits to the interviewer 
before being flagged for further review.  This was accomplished by the following: 

 Compared interviewer to profile samples of similar workloads. 
 Bootstrap with more than the standard 2,000 samples. 
 Used Bonferonni correction for the Rmax test instead of less conservative tests. 
 Did not account for negative correlation between first-digit proportions. 
 Distance from the median ranked conservatively. 
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Appendix A: Foundations of the Bootstrap in the profile sample context. 
 
The underlying true distribution F, a common distribution function, produced a sample of 
employment values at hand. F is broken into I strata 𝑋1, 𝑋2, … , 𝑋𝑖 , … , 𝑋𝐼 .  Each strata is 
comprised of values that were productively collected in the sample, Y, and values that 
were not collected in the sample, Z. The number of elements in individual strata, i, differ 
and are denoted, ni.   

𝐹 =

[
 
 
 
 
 
 
 𝑋1 [[𝑌1

1, 𝑌2
1, … , 𝑌𝑛1

1 ], [𝑍1]]

𝑋2 [[𝑌1
2, 𝑌2

2, … , 𝑌𝑛2
2 ], [𝑍2]]

…

𝑋𝑖 [[𝑌1
𝑖, 𝑌2

𝑖, … , 𝑌𝑛𝑖
𝑖 ], [𝑍𝑖]]

…

𝑋𝐼 [[𝑌1
𝐼 , 𝑌2

1, … , 𝑌𝑛𝐼
1 ], [𝑍𝐼]] ]

 
 
 
 
 
 
 

 

The sample space for each strata are naturally reduced by the uncollected or unknown 
values, 𝑍𝑖. CES collects values from the underlying true distribution F, creating, Fn, 
representing the subset of F for which we have collected values. For stratum i, 
𝑌1

𝑖, 𝑌2
𝑖, … , 𝑌𝑛𝑖

𝑖  represents the employment values obtained from all of the interviewers. The 
idea here is that each stratum has its own underlying distribution and Fn is a mixture of 
those distributions. 

𝐹𝑛 =

[
 
 
 
 
 
 
𝑋1[𝑌1

1, 𝑌2
1, … , 𝑌𝑛1

1 ]

𝑋2[𝑌1
2, 𝑌2

2, … , 𝑌𝑛2
2 ]

…
𝑋𝑖[𝑌1

𝑖, 𝑌2
𝑖, … , 𝑌𝑛𝑖

𝑖 ]
…

𝑋𝐼[𝑌1
𝐼 , 𝑌2

𝐼 , … , 𝑌𝑛𝑖
𝐼 ] ]

 
 
 
 
 
 

 

Since cases are assigned randomly within strata, an interviewer will have a subset of 
employment values from some of the strata, J, where 𝐽 ⊆ 𝐼. An interviewer’s randomly 
assigned case load is generally not large enough to have all strata represented and diverse 
enough to not comprise a majority of any stratum. The underlying interviewer’s 
distribution, Fm, is the interviewer’s subset of Fn. Thus, Fm is a mixture of distributions 
for the strata represented. 

𝐹𝑚 =

[
 
 
 
 
 
 
𝑋1[𝑌1

1, 𝑌2
1, … , 𝑌𝑚1

1 ]

𝑋2[𝑌1
2, 𝑌2

2, … , 𝑌𝑚2
2 ]

…

𝑋𝑗 [𝑌1
𝑗
, 𝑌2

𝑗
, … , 𝑌𝑚𝑗

𝑗
]

…

𝑋𝐽 [𝑌1
𝐽, 𝑌2

𝐽, … , 𝑌𝑚𝐽

𝐽
]]
 
 
 
 
 
 

 

The standard nonparametric Bootstrap with replacement is used to make statements about 
the sampling distribution for an individual interviewer based on a known distribution. 
The Bootstrap is denoted as F*. F* for the interviewer is known because it is generated 
using a modified sampling protocol based on an interviewer’s collected caseload. For 
example, in stratum i, the interviewer has mi elements. For each element of F*, stratum i 
would also have mi elements selected with replacement from the ni elements in Fn. The 
sampling protocol is to select multiple profile samples with replacement using the same 
mixture each time (StasK, 2012). 
 



𝐹∗ =

[
 
 
 
 
 
 
 
 
 
 
[

𝑋1[𝑠𝑎𝑚𝑝𝑙𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑖𝑒𝑤𝑒𝑟′𝑠 𝑠𝑖𝑧𝑒 𝑚1]

𝑋2[𝑠𝑎𝑚𝑝𝑙𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑖𝑒𝑤𝑒𝑟′𝑠 𝑠𝑖𝑧𝑒 𝑚2]
…

𝑋𝐼[𝑠𝑎𝑚𝑝𝑙𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑖𝑒𝑤𝑒𝑟′𝑠 𝑠𝑖𝑧𝑒 𝑚𝐼]

] ,

   

[

𝑋1[𝑠𝑎𝑚𝑝𝑙𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑖𝑒𝑤𝑒𝑟′𝑠 𝑠𝑖𝑧𝑒 𝑚1]

𝑋2[𝑠𝑎𝑚𝑝𝑙𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑖𝑒𝑤𝑒𝑟′𝑠 𝑠𝑖𝑧𝑒 𝑚2]
…

𝑋𝐼[𝑠𝑎𝑚𝑝𝑙𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑖𝑒𝑤𝑒𝑟′𝑠 𝑠𝑖𝑧𝑒 𝑚𝐼]

] ,

     
…
   ]

 
 
 
 
 
 
 
 
 
 

 

Below is a simplified example for an interviewer who collected values for strata 1 and 2. 
In this example, the first two strata had 7 values collected from all interviewers, and the 
third stratum had 11. The interviewer of interest collected m1=2 employment values in the 
first stratum, and m2=3 values in the second stratum. No values were collected for the 
third stratum, m3 = 0. The Bootstrap of Fm is denoted as F* and has B profile samples of 
each strata using the same sample sizes as the original interviewer’s values. In this 
example, B=3 and we collect  
 

𝐹𝑛 = [

𝑋1[381, 159, 364, 135, 44, 351, 227]

𝑋2[74, 117, 85, 6, 237, 270, 119]

𝑋3[95, 289, 282, 35, 393, 353, 218, 95, 255, 63, 128]
] 

𝐹𝑚 = [
𝑋1[44, 364]

𝑋2[270, 117, 85]
] 

𝐹∗ = [[
𝑋1[159, 227]

𝑋2[237, 270, 74]
] , [

𝑋1[351, 135]

𝑋2[74, 270, 270]
] , [

𝑋1[44, 44]

𝑋2[6, 119, 85]
]]  

 
The statistic T(Fm) is the vector of first-digit proportions for the individual interviewer as 
shown below.  
𝑇(𝐹𝑚) = 𝜃𝑚̂ = {𝜗1

𝑚̂, 𝜗2
𝑚̂, … , 𝜗9

𝑚̂} 

= [
∑ 𝐼(𝑓𝑖𝑟𝑠𝑡 𝑑𝑖𝑔𝑖𝑡𝑚 = 1)𝑚

𝑚
,

∑ 𝐼(𝑓𝑖𝑟𝑠𝑡 𝑑𝑖𝑔𝑖𝑡𝑚 = 2)𝑚

𝑚
,… ,

∑ 𝐼(𝑓𝑖𝑟𝑠𝑡 𝑑𝑖𝑔𝑖𝑡𝑚 = 9)𝑚

𝑚
, ] 

𝑤ℎ𝑒𝑟𝑒 𝐼(∙)𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 {
𝐼(𝑇𝑅𝑈𝐸) = 1
𝐼(𝐹𝐴𝐿𝑆𝐸) = 0

 

 
To make statements about the sampling distribution, T(Fn) based on a known distribution 
T(F*), a distribution for the first-digit proportions is determined by drawing B profile 
samples using the sampling protocol.   

𝑇(𝐹∗) =

𝜗1
∗,1̂ 𝜗2

∗,1̂ …

𝜗1
∗,2̂ 𝜗2

∗,2̂ …

⋮ ⋮ ⋱

  
𝜗9

∗,1̂

𝜗9
∗,2̂

⋮

𝜗1
∗,𝑏̂ 𝜗2

∗,𝑏̂ …

⋮ ⋮ ⋱

𝜗1
∗,𝐵̂ 𝜗2

∗,𝐵̂ …

  
𝜗9

∗,𝑏̂

⋮

𝜗9
∗,𝐵̂

 

 



T(F*) is represented above as a matrix with B rows and 9 columns. By construction, the 
rows sum to 1 and the columns can be used to estimate probability density functions for 
each of the 9 first-digit proportions. For example, in the first column 𝜗1

∗̂ =

{𝜗1
∗,1̂, 𝜗1

∗,2̂, 𝜗1
∗,3̂, … , 𝜗1

∗,𝑏̂ , … , 𝜗1
∗,𝐵̂} is used to estimate the probability density function of 

first-digit proportions of ones. Thus, 𝑝𝑑𝑓( 𝜃 ∗̂) is a collection of estimated probability 
density functions.  
 
The interviewer’s actual first-digit proportions, 𝜃𝑚̂ = {𝜗1

𝑚̂, 𝜗2
𝑚̂, … , 𝜗9

𝑚̂}, are then tested 
against the Bootstrapped probability density functions using 𝑝𝑑𝑓( 𝜃 ∗̂) =

 {𝑝𝑑𝑓(𝜗1
∗̂), 𝑝𝑑𝑓( 𝜗2

∗̂), … , 𝑝𝑑𝑓( 𝜗9
∗̂)}. From a large sample, B > 1,000, first-digit vectors 

can be used in a variety of test statistics such as the mean, variance, and percentile for 
each of the nine parameters in the first-digit vectors. The interest here is in determining 
the percentile for 𝑝𝑑𝑓(𝜃 ∗̂) to be utilized as a Bootstrapped percentile. 
 
The Bootstrapped parameters, the first-digit proportions from each profile sample, can be 
used to determine an approximation of the probability for the individual interviewer 
obtaining a value from our generated first-digit distribution being more extreme than that 
actually observed (Ross, 1997). 
If 𝜗𝑗

𝑚̂ < 𝑚𝑒𝑑𝑖𝑎𝑛(𝜗𝑗
∗̂), then Bootstrapped p-value =  

𝑃𝑟𝑜𝑏(𝜗𝑗
𝑚̂ < 𝜗𝑗

∗̂) =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝜗𝑗

∗,𝑏̂< 𝜗𝑗
𝑚̂

𝐵
. 

 
If 𝜗𝑗

𝑚̂ ≥ 𝑚𝑒𝑑𝑖𝑎𝑛(𝜗𝑗
∗̂), then Bootstrapped p-value =  

 

𝑃𝑟𝑜𝑏(𝜗𝑗
𝑚̂ ≥ 𝜗𝑗

∗̂) = 1 − ( 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝜗𝑗

∗,𝑏̂< 𝜗𝑗
𝑚̂

𝐵
). 

For j = {1, 2, 3, … , 9} and b = {1, 2, 3, … , B}.  
 
*Details for how we handled the individual values in relation to the median or equivalent 
Bootstrapped proportions are in the main paper. 
 




