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Abstract 
As part of a larger project, a research team at the Bureau of Labor Statistics (BLS) created 
an alternative sample design for the Occupational Employment Statistics (OES) survey. 
There are three sample allocations for the new sample design, each geared towards 
improving the estimator in different ways. There is an efficient allocation that aims to lower 
the sampling error of the OES estimates, and two minimum allocations that set a lower 
sample size threshold for area and industry domains. Each of the three sample allocations 
are stratified designs, however they use different strata definitions. This paper describes 
how we reconcile the three allocations using an optimization approach.  
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1. Background 
 
The Occupational Employment Statistics (OES) survey collects occupational employment 
and wage information from a sample of business establishments found in the 50 United 
States, the District of Columbia, Guam, Puerto Rico and the Virgin Islands. These data 
items are used to create point-in-time estimates of occupational employment levels and 
hourly and annual mean wage estimates for over 800 detailed Standard Occupational 
Classification (SOC) occupations. These estimates are calculated nationally, by state and 
territory, by detailed Metropolitan Statistical Areas (MSAs) and non-MSA areas called 
Balance of State (BOS) areas, and by North American Industry Classification System 
(NAICS) industries. The OES program publishes estimates annually.  

The current estimation methods for the OES program require a very large sample size 
in order to produce detailed area and industry occupational estimates. The sample is 
selected and collected based on a three year survey cycle, where approximately 400,000 
establishments are sampled annually. To the extent possible, the establishments selected in 
any given year are excluded from selection in the next two preceding years. The OES 
sample is selected using a probability proportional to size (PPS) sampling scheme, where 
an establishment’s employment is its measure of size. To provide adequate geographical, 
industrial, and occupational coverage, OES combines three years of sample to produce 
estimates. This is done by using a rolling three year cycle, where a current annual sample 
is rolled in to replace an older annual sample selected three years prior. Approximately 1.2 
million sampled establishments are used for any given set of estimates (BLS Handbook of 
Methods, 2017). 

A major drawback of using this type of sample design is that it prevents the OES from 
publishing time-series estimates. The reason being that establishments are sampled once 
every three years, causing even the most influential establishments to provide data only 
once in any three year period. In the intermediate years the data from these establishments 
are updated using certain assumptions. The yearly changes that occur within these 
establishments are very important for change estimates, and without capturing these 
changes every year, OES time series estimates will suffer from biases. A research team at 
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the Bureau of Labor Statistics (BLS) has worked on redesigning the OES survey’s sample 
design and estimation methods in order to produce valid time-series estimates.  

The focus of this paper will be on an offshoot project that arose while researching the 
new OES sample design. To improve the time-series estimation methods, we developed 
three separate stratified sample allocations. The first allocation is geared towards selecting 
an efficient sample, where strata with more employees and larger occupational 
heterogeneity are allocated more sample. The other two allocations focus on ensuring that 
a minimum amount of sample is selected in every NAICS industry and MSA-BOS area. 
This paper will explain how we tested several different ways of reconciling these 
allocations. In the remaining sections we will discuss the current allocation methods, our 
proposed allocation methods, an optimization approach to reconciling sample allocations, 
the results from testing our proposed methods, and a conclusion. 
 

2. Current Sample Allocation 
 
The current OES sample design is similar to the proposed sample design in that it uses an 
efficient allocation and a minimum allocation. Both allocations stratify by state, MSA-BOS 
area and four-digit NAICS industry (NAICS4). The efficient allocation uses the Power 
Neyman allocation: 
 

𝑛ℎ = 𝑛
√𝑋ℎ  𝑆ℎ

∑ (√𝑋ℎ  𝑆ℎ)𝑎𝑙𝑙 ℎ

                                                                                          (2.1) 

 
Where, 

𝑛ℎ   = the amount of sample allocated to stratum ℎ (State by MSA-BOS areas by 
NAICS4) 

𝑛     =   the national sample size   
𝑋ℎ   =   the number of employees in stratum ℎ  
𝑆ℎ   =   the measure of occupational employment variability within stratum ℎ 

 
The Power Neyman allocation provides larger sample sizes to strata that have more 
employees and more occupational heterogeneity. This aims to drive down the sampling 
variance of the OES estimates. The Power Neyman allocation is similar to the Neyman 
allocation, except the measure of size (employees) is raised to the power of ½. By using 
the Power Neyman allocation over the Neyman allocation, sample is shifted from the 
largest strata to the mid-sized and small strata, which allows for more precise estimates 
for the smaller domains at the expense of some precision in the largest domains. The 
minimum allocation uses the following rules: 
 

𝑚ℎ = {

𝑁ℎ 𝑖𝑓 𝑁ℎ ≤ 3             
3 𝑖𝑓 4 ≤ 𝑁ℎ ≤ 11
6 𝑖𝑓 𝑁ℎ  ≥ 12        

                                                                             (2.2) 

 
Where, 

𝑚ℎ   = the amount of sample allocated to stratum ℎ  
𝑁ℎ   =   the number of frame units in stratum ℎ  

  
The minimum allocation aims to help estimates meet the OES confidentially criteria in 
order to increase the total number of published OES estimates. 



To reconcile the two allocations, the final sample allocated to each stratum is set to the 
maximum of the Power Neyman and minimum allocations. After the initial reconciliation, 
the overall sample size is larger than the target sample size. An iterative process is used to 
systematically adjust the national sample size value (𝑛) used in formula 2.1 until the overall 
reconciled sample allocation is close enough to the target sample size. The current way of 
taking the maximum sample then iterating to reconcile the sample allocations will be 
referred to as the “simple approach” for the remainder of the paper. 
 

3. New Sample Allocation 
 
The new sample design uses an efficient allocation and two minimum allocations. Each of 
the three allocations uses a different stratification plan. The efficient allocation stratifies 
by State, aggregate area and NAICS4 industry. Aggregate areas are combinations of similar 
MSA-BOS areas based on how close the areas are geographically to each other within a 
given state. The largest MSA-BOS areas are not aggregated with any other areas. The 
proposed efficient allocation uses the Neyman allocation: 
 

𝑛𝑘 = 𝑛
𝑋𝑘  𝑆𝑘

∑ (𝑋𝑘  𝑆𝑘)𝑎𝑙𝑙 𝑘
                                                                                             (3.1) 

 
Where, 

𝑛𝑘   = the amount of sample allocated to stratum 𝑘 (State by Aggregate area by  
NAICS4) 

𝑛     =   the national sample size   
𝑋𝑘   =   the number of employees in stratum 𝑘  
𝑆𝑘   =   the measure of occupational employment variability within stratum 𝑘 

 
There are two separate minimum allocations: 1.) the industry minimum allocation and 2.) 
the area minimum allocation. The goals of these allocations are different.  

The industry minimum allocation aims to ensure we collect at least three observations 
for the most common occupations within each detailed 6-digit NAICS industry. The 
common occupations are the ones that make up the top 90th percentile of employment 
within the industry. We used previously collected OES micro data to determine which 
occupations are found in different size classes (i.e. groups of similarly sized 
establishments) within each industry. Since the OES is selected using a PPS sample, we 
could determine the expected number of sample units that would fall in each size class 
within each industry, given some sample size. By knowing the occupations found in each 
size class and the expected percentage of sample units that would fall in each size class, 
we could determine the likelihood of collecting each of the common occupations, given a 
sample of only one establishment. These likelihood measures would be greater than zero 
but less than or equal to one. The inverse of this likelihood measure is the expected sample 
size required to collect one observation of the common occupations. We multiplied this 
value by three to get the expected sample size needed to collect three observations for each 
common occupation. The final industry minimum allocation is the maximum value of these 
expected sample sizes within each 6-digit NAICS industry.  

The area minimum allocation aims to increase the sample size for areas where there 
are large area effects on occupational employment levels. The two main predictors for 
occupational employment levels at an establishment are industry and establishment size. 
After controlling for these variables, area usually plays a small role in predicting 
occupational employment. However, there are some areas where there is a larger than 



normal area effect. We allocate the area minimum allocation to detailed MSA-BOS areas 
proportional to the area effect for each MSA-BOS. The overall sample size for the area 
minimum allocation is set to equal the overall sample size of the industry minimum 
allocation. 

 
4. New Approach to Reconciling Allocations 

 
Unlike the current sample design, the proposed design has three allocations that are each 
using a different stratification plan. Figure 4.1 shows a visual representation of the three 
different stratification plans.  
 
Figure 4.1: Visual Representation of the three different stratification plans for the 
proposed sample allocation 

 
 
The different shaped rectangles within the matrix in Figure 4.1 represent the stratification 
plan for the efficient allocation. The different widths of the rectangles represent the MSA-
BOS aggregation that occurs to create the aggregate areas, and the different heights of the 
rectangles represent the aggregation that occurs for 4-digit NAICS industries. The right-
most rectangles represent the industry minimum allocation strata, where each box 
represents a 6-digit NAICS industry. The bottom-most rectangles represent the area 
minimum allocation strata, where each box represents an MSA-BOS area. 

The first step for reconciliation is to summarize the efficient allocation to the State by 
MSA-BOS area by 6-digit NAICS detail level so that we can easily aggregate to the 
detailed MSA-BOS areas and 6-digit NAICS industries. We will refer to this as the 
“detailed strata” level. Since the OES selects a PPS sample it is straightforward to distribute 
the efficient allocation to the detailed strata level. We first calculate a sampling interval 
(SI) for each efficient allocation stratum by dividing the measure of size (employment 
level) by the number of sample units allocated. Then we find the measure of size for each 
detailed stratum within the efficient allocation stratum. The sample size for each detailed 
stratum is its measure of size divided by the sampling interval. Figure 4.2 shows an 
example of how to break-out the efficient sample allocation within a particular efficient 
allocation stratum:  
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Figure 4.2: An example of how to break-out the efficient sample allocation to the 
detail strata level  

 
NOTE: X = measure of size, n = sample allocated, and SI = sampling interval: X/n 
 

Once the efficient allocation is summarized at the detailed stratum level, it becomes 
easy to set up the reconciliation as an optimization problem. The goal of the reconciliation 
is to preserve the efficient allocation as much as possible while meeting the area and 
industry minimums. The minimums are met by increasing or decreasing the efficient 
allocation sample size in each detailed stratum by using adjustment factors. For our 
optimization problem we want to find the optimal set of adjustment factors in order to 
minimize an objective function that measures the distance between the efficient allocation 
and the reconciled allocation. The solution to the optimization problem is constrained by 
the following rules: 1.) the overall number of sample units allocated in the reconciled and 
efficient allocations must be equal, 2.) each adjustment factor cannot cause the reconciled 
allocation sample size to be less than or equal to 0 or greater than the number of frame 
units available to select, 3.) the reconciled allocation aggregated to MSA-BOS areas must 
be greater than or equal to the area minimum allocation values, and 4.) the reconciled 
allocation aggregated to 6-digit NAICS industries must be greater than or equal to the 
industry minimum allocation values. The notation for the optimization problem is as 
follows: 

 
𝑛𝑖𝑗
𝐸𝑓𝑓

=  efficient allocation sample size for cell 𝑖𝑗, defined by 6-digit NAICS 
industry 𝑖 and MSA-BOS area 𝑗 

𝛼𝑖𝑗 = adjustment factor for cell 𝑖𝑗 

𝑛𝑖𝑗
𝑂𝑝𝑡

= 𝑛𝑖𝑗
𝐸𝑓𝑓

× 𝛼𝑖𝑗 = Optimally reconciled allocation sample size for cell 𝑖𝑗  

𝑁𝑖𝑗 = frame units in cell 𝑖𝑗 

𝑀𝑖
𝑁𝐴𝐼𝐶𝑆 = minimum sample size for 6-digit NAICS industry 𝑖 

𝑀𝑗
𝑀𝑆𝐴 = minimum sample size for MSA-BOS area 𝑗 

Using this notation, the optimization problem can be summarized as minimizing objective 
function 𝑓(𝜶) constrained by: 

 ∑ ∑ 𝑛𝑖𝑗
𝐸𝑓𝑓

𝑗𝑖 −∑ ∑ (𝑛𝑖𝑗
𝐸𝑓𝑓

× 𝛼𝑖𝑗)𝑗 = 0 𝑖                                                      (4.1)  

𝛼𝑖𝑗 ≤ 𝑁𝑖𝑗 𝑛𝑖𝑗
𝐸𝑓𝑓⁄                                                                                               (4.2) 

∑ (𝑛𝑖𝑗
𝐸𝑓𝑓

× 𝛼𝑖𝑗) −𝑗 𝑀𝑖
𝑁𝐴𝐼𝐶𝑆 ≥ 0      for 𝑖 = 1,2,… , 𝐼                            (4.3) 

∑ (𝑛𝑖𝑗
𝐸𝑓𝑓

× 𝛼𝑖𝑗) −𝑖 𝑀𝑗
𝑀𝑆𝐴 ≥ 0         for 𝑗 = 1,2,… , 𝐽                            (4.4) 
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Where, 
𝐼 = the total number of 6-digit NAICS industries 
𝐽 = the total number of MSA-BOS area 

 
5. Testing and Results 

 
There are many different objective functions that we could use for the optimization 
approach. We tested six different objective functions, each providing a different distance 
measure between the final reconciled allocation and the efficient allocation. We compared 
the optimally reconciled allocations to two other allocations: 1.) the efficient allocation 
with no minimum allocations and 2.) the efficient allocation reconciled with the minimum 
allocations using the simple approach. By comparing the allocations with minimums to the 
efficient allocation with no minimums, we are able to measure the effect of the minimum 
allocations. By comparing the optimally reconciled allocations to the simply reconciled 
allocation, we are able to see if there are any gains by using the optimization approach over 
the current method. 

To test the many different allocations, we made use of a simulated population that we 
created for the OES time-series project. The simulated population has occupational 
employment and wage data for all employees in every establishment in 18 states. The 18 
states were chosen so that there was a mix of small, medium and large states spread across 
the different regions of the United States. We made use of industry and employment 
information on the OES frame to create a model that imputed occupational employment 
and wage information for every unseen (i.e. non-sampled and/or non-responding) 
establishment in the 18 states of our population. For establishments that provided data to 
OES within the 18 states, we used their occupational data as-is. We created the simulated 
population for five different time periods: 2005 to 2009. For the research presented in this 
paper we only used the 2007, 2008, and 2009 simulated population.  

The simulated population gives us a measure of truth that we could use to evaluate the 
different allocations. For testing, we used a repeated sampling simulation study to measure 
how well each allocation does at estimating occupational employment. For each of the 
eight different allocations we selected 100 samples from the simulated population using 
Poisson sampling. We did this for 2007, 2008, and 2009 because the proposed estimation 
method uses a model that relies on three years’ worth of OES survey data.  

We first looked at how well the sampling procedures worked for each allocation. To 
do this, we used sampling weights to calculate weighted employment for each 
establishment found in our sample. We then aggregated this up overall and compared it to 
the overall population employment. Since we use Poisson sampling, the overall sample 
size, n, for each sample selected is a random variable that can range from 0 to N (the 
number of establishments in the population) (Hajek, 1958). The mean and variance of the 
sample size are: 

𝐸[𝑛̂] =∑𝜋𝑖

𝑁

𝑖=1

                                                                                                   (5.1) 

𝑉[𝑛̂] =∑𝜋𝑖(1 − 𝜋𝑖)

𝑁

𝑖=1

                                                                                    (5.2) 

 
Where, 

𝑛̂ = the sample size using Poisson sampling 
𝜋𝑖 = the selection probability of establishment 𝑖 in the population 

 



A result of having a random variable sample size is that the weighted sample employment 
is not guaranteed to equal the population employment. However, it should be close. In 
Table 5.1 we show the average difference between the 100 weighted samples and the 
population for 2008. 
 
Table 5.1: Weighted Sample vs. Population Employment Differences by Allocation Type 

 
NOTE: The overall population employment is 40,750,723. 
 
Ideally, an allocation would have an average relative difference close to zero and have 
about 50% of the samples with a negative difference. We found that the first two optimally 
reconciled allocations had large negative differences occurring in all 100 samples. The 
objective functions that we used for the first two optimally reconciled allocations adjusted 
the sample size for some detailed strata down to nearly zero, causing the establishments 
within these strata to have very small selection probabilities. This resulted in no sample 
being selected in many detailed strata, and therefore caused holes in the sample leaving 
large parts of the population unrepresented. It should be noted that in the unlikely event 
that an establishment with a very small selection probability is selected, it will have an 
extremely large sampling weight. Between the holes in the sample and the potential for 
very large sampling weights, the first two optimally reconciled allocations were dropped 
from consideration for the OES sample design. 

Next, we used the estimation methods proposed for the OES time-series project to 
produce 100 sets of occupational employment estimates for each allocation. We calculated 
these estimates for the four main OES estimation domains: 1.) National (i.e. all 18 states 
included in the simulation population), 2.) state, 3.) MSA-BOS area, and 4.) NAICS4 
industry. Since we know truth from the simulated population, we were able to calculate 

Allocation Description Objective Fuction Avg Diff
Avg Rel-

Diff

% 
Samples 
with Neg 

Diff
Efficient Allocation with 
no mins

None 4,862 0.01% 44%

Simple Reconcilation None 25,669 0.06% 42%

Optimal Reconcilation 1 -6,497,671 -15.94% 100%

Optimal Reconcilation 2 -5,700,449 -13.99% 100%

Optimal Reconcilation 3 6,702 0.02% 45%

Optimal Reconcilation 4 -6,573 -0.02% 55%

Optimal Reconcilation 5 27,152 0.07% 43%

Optimal Reconcilation 6 -20,297 -0.05% 56%

∑ ∑ 𝑛𝑖𝑗
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𝛼𝑖𝑗𝑗𝑖

∑ ∑ 𝑛𝑖𝑗
𝐸𝑓𝑓

1−𝛼𝑖𝑗
 

𝑗𝑖

∑ ∑ 𝑛𝑖𝑗
𝐸𝑓𝑓
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relative root mean squared error (RRMSE) statistics to measure the bias and variance of 
the employment estimates. 
 
Graph 5.1: National and State RRMSE box plots by Allocation 

 
Graph 5.2: Area and Industry RRMSE box plots by Allocation 

 
Graphs 5.1 and 5.2 show that the RRMSE measures are very similar across the allocations 
within each estimation domain. The tables do show a very slight effect when adding 
minimums into the OES allocation. For national estimates, there is a small cost imposed 
when adding minimums, since the efficient allocation with minimums seems to be 
performing the best. For state and area estimates, there appears to be a small gain when 
adding minimums, since the efficient allocation appears to be performing the worst. For 
the industry estimates, there is no discernible effect of adding minimums.  

For the national estimates, there are small improvements when using the optimal 
reconciliation approach for optimal allocations 3, 4 and 5 versus the simple approach. For 
the three sub-national domains, there does not seem to be gains from using the optimal 
reconciliation approach.  

In addition to comparing the different estimates’ RRMSE distributions for each 
allocation, we also looked at which allocation had the best RRMSE measure for the 



individual estimates. In table 5.2 below, we show the percentage of times each allocation 
had the smallest, or tied with the smallest, RRMSE measure. These percentages are broken 
out by the size of the estimate. Small estimates are occupational employment estimates in 
the bottom 25th percentile, medium estimates are estimates between the 25th and 75th 
percentiles, and large estimates are estimates above the 75th percentile. 
 
Table 5.2: Percent of Times each Allocation has the smallest RRMSE measure – by 
Estimate Size 

 
NOTE: Summing the percentages across the columns do not result in 100 percent, because there 
can be more than one allocation that has the smallest RRMSE measure for a given estimate. 
 
Table 5.2 shows that the efficient allocation with no minimums performs the best for 
national estimates for all three different sized estimates. For state and area estimates it 
appears that adding minimums helps the small and medium estimates, while the large 
estimates are still best under the efficient allocation. For the industry estimates, the efficient 
allocation and optimal allocation 6 perform about the same for the small and medium 
estimates. The large industry estimates are best under the efficient allocation. 
 

6. Conclusion 
 
There were several key findings from this research project. First, the performance of the 
optimization approach is dependent on the objective function used. We found unexpected 
negative consequences when using the seemingly reasonable objective functions in optimal 
allocations 1 and 2. These objective functions caused many of the detailed strata sample 
sizes to be adjusted down to almost zero, resulting in holes in the samples and the potential 
for extremely large sampling weights. If using an optimization approach for reconciling 
allocations, it is important to understand the effects the objective function will ultimately 
have on the final sample allocation.  

 Next, including minimum allocations appears to have very little effect on the 
performance of the estimates. This was a surprising result since we create the minimums 
to help the performance of the OES estimator. However, there is a silver lining in that these 
results show that we could impose minimums to the sub-nation estimation domains without 
a significant loss in the precision of the OES estimates. If the goal of adding minimums is 
to help with confidentiality rules or to ensure that every estimate has at least some survey 
data contributing to it (for modelled estimates), then this would be a positive result. In 

Estimation 
Domain

Estimate 
Size

Number of 
Estimates

Efficient 
Alloc, no 

Mins
Simple 
Alloc

Optimal 
Alloc 3

Optimal 
Alloc 4

Optimal 
Alloc 5

Optimal 
Alloc 6

Small 205 29.8% 13.2% 9.8% 13.2% 20.0% 15.1%
Medium 408 37.7% 11.3% 8.1% 9.8% 17.9% 15.2%
Large 204 44.1% 14.2% 6.9% 11.3% 13.7% 9.8%
Small 3,569 22.0% 17.8% 13.4% 12.2% 21.3% 28.7%
Medium 7,199 27.1% 13.9% 9.0% 8.6% 18.1% 23.4%
Large 3,605 42.9% 13.6% 7.9% 9.2% 14.4% 12.0%
Small 9,869 34.4% 28.1% 23.3% 23.4% 31.6% 33.8%
Medium 49,337 25.2% 17.2% 11.7% 11.7% 21.6% 26.4%
Large 25,214 31.4% 13.5% 7.9% 8.4% 17.9% 21.2%
Small 20,531 16.0% 18.6% 14.2% 13.0% 20.1% 27.0%
Medium 82,415 16.7% 19.1% 12.5% 10.8% 17.5% 25.3%
Large 43,303 27.8% 20.1% 10.2% 9.2% 15.8% 17.2%

MSA-BOS Area

NAICS4 Industry

State

National



future research we would like to test the robustness of this finding by testing different 
minimum allocations.  

Lastly, we found that there were not significant improvements to the precision of the 
estimates when using the optimization approach versus the simple approach. This was also 
surprising since the simple approach appears to make less nuanced adjustments than the 
optimization approach. It seems that in our particular application the ability to adjust the 
allocation of each cell separately is not very important. There is some evidence in table 5.2 
that the optimal allocations 5 and 6 outperform the simple allocation across each estimation 
domain, but only by a small amount. When looking at the overall distributions of the 
RRMSE measures in graphs 5.1 and 5.2, there appears to be no clear advantage of the 
optimization approach over the simple approach. Considering the potential of choosing an 
objective function which could have negative consequences and the added complexities of 
the optimization approach, the simple approach appears to be the better way of reconciling 
the minimum allocations with the efficient allocation for our particular application. 
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