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ABSTRACT 
 

Chen and Zadrozny (1998) developed the linear extended Yule-Walker (XYW) 
method for determining the parameters of a vector autoregressive (VAR) model 
with available covariances of mixed-frequency observations on the variables 
of the model. If the parameters are determined uniquely for available 
population covariances, then, the VAR model is identified. The present paper 
extends the original XYW method to an extended XYW method for determining all 
ARMA parameters of a vector autoregressive moving-average (VARMA) model with 
available covariances of single- or mixed-frequency observations on the 
variables of the model. The paper proves that under conditions of 
stationarity, regularity, miniphaseness, controllability, observability, and 
diagonalizability on the parameters of the model, the parameters are 
determined uniquely with available population covariances of single- or 
mixed-frequency observations on the variables of the model, so that the VARMA 
model is identified with the single- or mixed-frequency covariances.* 

                         
*The paper represents the author's views and does not necessarily represent 
any official positions of the Bureau of Labor Statistics. The paper was 
presented at the following conferences and seminars: NBER-NSF Time Series, 
Washington, Sep. 2013; (EC)2 on "Mixed-Frequency Econometrics," Nicosia, Dec. 
2013; SNDE, New York City, Apr. 2014; CEF, Oslo, June 2014; JSM, Boston, Aug. 
2014; KOF, Zurich, Dec. 2014; CFE, Pisa, Dec. 2014; NBP on "Identification in 
Macroeconomics," Warsaw, Dec. 2014. Affiliated as Research Fellow with the 
Center for Financial Studies (CFS), Goethe University, Frankfurt, Germany, 
and with the Center for Economic Studies and Ifo Institute for Economic 
Research (CESifo), Munich, Germany. The paper has benefitted from comments by 
Manfred Deistler, Eric Ghysels, Roderick McCrorie, Tucker McElroy, and 
anonymous referees. Forthcoming in Journal of Econometrics issue on 
"Econometric Analysis of Mixed Frequency Data Sampling." 
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1. Introduction. 

 

There has always correctly been a "real-time" interest in using all 

available information in an econometric analysis. Until recently, econometric 

analysis of data indexed by discrete-time periods has focused almost 

exclusively on single-frequency data (SFD), in which all variables are 

indexed at the same time interval. However, in practice, different variables 

have been available at different time intervals, i.e., at mixed frequencies. 

As more variables are available at higher frequencies, data sets with greater 

mixtures of frequencies are available for econometric analysis. The desire to 

use the best available analysis has motivated research on econometric methods 

for mixed-frequency data (MFD). There is also the real-time matter of 

different variables being available at different lags, but this will not be 

considered here. For further discussion of these issues, see Ghysels (2012). 

Initially, only regression was used in econometric analysis with MFD, 

usually monthly-quartely data (Friedman, 1962; Miller and Chin, 1996). More 

recently, univariate and multivariate or vector autoregressive moving-average 

(ARMA and VARMA) models have been increasingly used in econometric analysis 

with SFD or MFD. In econometrics, VARMA models were first estimated with MFD 

using maximum likelihood (Zadrozny, 1988, 1990a,b), but maximum likelihood 

estimation (MLE) is effective only if good starting values are available for 

the parameters to be estimated so that iterations converge correctly and this 

is often difficult to do unless the model is "small" and has relatively few 

variables and, hence, few parameters to be estimated. In response, Chen and 

Zadrozny (1998) developed the linear extended Yule-Walker (XYW) method for 

determining the parameters of a VAR model, which uses available covariances 

of MFD and has the computational simplicity of least squares, and illustrated 

XYW's accuracy relative to MLE. The XYW method overcomes the computational 

problem of not being able to evaluate standard Yule-Walker equations because 

autocovariances at high-frequency lags of variables observed at low 

frequencies are unavailable. Although VAR models now dominate linear 

multivariate models used for modelling and analyzing economic time series, 

including an MA term in a model often allows it to fit data more accurately 

and parsimoniously (Box and Jenkins, 1976). 

XYW can be thought of not just as an AR-parameter estimation method, 

but more generally as a method that takes data covariances presumed to be 

generated by a VAR model as inputs and determines the AR parameters as 

outputs. If the covariance inputs are true population covariances and the 
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outputs are unique, then, the outputs are the true model parameters and the 

VAR model is identified; if the covariance inputs are consistent sample 

estimates and the outputs are unique, then, the outputs are consistent 

parameter estimates. Chen and Zadrozny (1998) introduced XYW as an estimation 

method with sample covariances but did not prove, under certain conditions, 

that XYW is feasible (computationally implementable) or that XYW determines 

unique AR parameter outputs for true-population or consistent-sample 

covariance inputs. Anderson et al. (2012) proved this for a general VAR model 

and a particular MFD case, but only for a "generic" set of parameters. 

The present paper makes two contributions. First, the paper extends the 

original XYW method to an extended XYW method that determines all ARMA 

parameters of a VARMA model with available covariances of its variables 

observed with SFD or MFD. Second, the paper proves that if the parameters of 

the model satisfy conditions I-VI of stationarity, regularity, miniphaseness, 

controllability, observability, and diagonalizability, then, the extended XYW 

method produces unique ARMA parameter values and the VARMA model is 

identified (not just "generically") with population covariances of its 

variables. Although the paper is not directly concerned with parameter 

estimation, the extended XYW method becomes a consistent method for 

estimating VARMA parameters simply by replacing population covariances with 

consistent sample covariances. However, experience with the XYW method (Chen 

and Zadrozny, 1998) suggests that such a consistent estimation method is 

unlikely to be accurate in small samples but that a generalized method of 

moments (GMM) extension of the method could be accurate in small samples. 

However, such an extension is beyond the scope of this paper and is left for 

the future. 

The extended XYW method solves one linear system to determine the AR 

parameters and solves two linear systems and does one matrix spectral 

factorization to determine the MA parameters. Spectral factorization is a 

linear operation except for an initial step of computing eigenvalues, which 

can be done reliably, accurately, and quickly using the QR algorithm (Golub 

and Van Loan, 1996; Zadrozny, 1998). The key to the proof in the paper is 

exploiting the block-Vandermonde structure of eigenvectors of a block-

companion-form state-transition matrix of a state-space representation of a 

VARMA model. 

Identification can be local or global. By definition, different sets of 

parameters of a model that generate identical covariances of variables of the 

model are observationally equivalent. If a point of a set of observationally 
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equivalent parameters is isolated in the set, then, the model is locally 

identified at that point; if the set of observationally equivalent parameters 

is a single point, then, the model is globally identified. The paper assumes 

that global identification problems have been resolved by other assumptions 

and proves that, if the model satisfies conditions I-VI, then, the model's 

parameters are locally (and globally) identified with population covariances 

of variables of the model observed with SFD or MFD. 

The result is first proved for SFD and is, then, adapted to MFD. The 

adaptation is straightforward, because it requires only reducing derived 

equations and requires no additional derivations. In the paper, SFD means 

that all variables of a model are observed at the same discrete-time 

frequency at which the model operates and MFD means that some of the 

variables are observed at the same discrete-time frequency at which the model 

operates and others are observed at one or more lower frequencies. Although 

the paper considers only the above definition of SFD, SFD could also mean 

that all variables are observed at the same discrete-time frequency which is 

lower than the frequency at which the model operates. 

For the second definition of SFD or for MFD, in the limit as its 

operating frequency goes to infinity, a discrete-time model approaches a 

continuous-time model observed with discrete-time data (Zadrozny, 1988). Both 

discrete- and continuous-time models can be locally identified but not 

globally identified due to aliasing. Although aliasing has been considered 

mostly for continuous-time models observed with discrete-time data (Phillips, 

1973; Hansen and Sargent, 1983), aliasing can also occur in discrete-time 

models observed with discrete-time data. Aliasing occurs when state-

transition matrices of different but observationally equivalent models have 

different eigenvalues. 

One general resolution of aliasing is to choose the "least noisy" 

observationally-equivalent model in the sense of having the least spectral 

power at high frequencies. For example, in Anderson et al.'s (2012) model, ass 

is a parameter whose absolute value but not sign is identified, hence, is 

locally identified but not globally identified when disturbances are 

uncorrelated. Because ass is also an eigenvalue of a state-transition matrix 

of the model, the global unidentification is also an aliasing 

unidentification. Because positive ass contributes spectral power at the zero 

frequency and negative ass contributes spectral power at the Nyquist 

frequency, choosing ass to be positive results in the least noisy and globally 

identified model. Of course, an application's subject matter could offer a 
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more compelling reason for resolving unidentification, including aliasing. 

Henceforth in the paper, any global unidentification is assumed to have been 

resolved with additional assumptions, so that "identification" means both 

local and global identification. 

Priestley (1981, pp. 800-804) reviewed the literature on  

identification of a VARMA model with population covariances of its variables 

observed with (first-definition) SFD and attributed results principally to 

Hannan (1969, 1970, 1976, 1979) and secondarily to Akaike (1974). See also 

Hannan and Deistler (1986). Like here, Hannan assumed that the parameters of 

the model satisfy conditions I-IV of stationarity, regularity, miniphaseness, 

and controllability. Hannan didn't and didn't need to assume observability 

condition V, because, as explained in section 2, observability holds for any 

VARMA model observed with SFD. Hannan proved that, under these conditions, a 

VARMA model is identified with population covariances of its variables 

observed with SFD. Hannan's proof is different from the present one: whereas 

Hannan used mathematical analysis, we use only linear algebra. Hannan didn't 

state and use some version of diagonalizability condition VI, which appears 

to be necessary in the proof here. Using the same conditions I-IV and 

essentially the same argument as here, Akaike (1974) proved that the AR 

parameters of a VARMA model are identified by population covariances of its 

variables observed with SFD and asserted, but didn't prove, that the MA 

parameters of the model are identified by unique spectral factorization. The 

present paper contributes to this literature by being the first one to prove 

that, under conditions I-VI of stationarity, regularity, miniphaseness, 

controllability, observability, and diagonalizability, a VARMA model is 

identified (without the qualification "generically") by population 

covariances of its variables observed with MFD. Although the conditions are 

individually necessary for identification in different parts of the proof, 

the paper proves only that the conditions as a whole are sufficient for 

identification. The question of necessity of the conditions for 

identification is discussed further in concluding section 5. 

The paper continues as follows. Section 2 states the general VARMA 

model in original and state-space form and states conditions I-VI assumed for 

the model. Section 3 derives backward Yule-Walker equations (BYWE) for a 

model observed with SFD, proves that under conditions I-V the BYWE can be 

solved for unique values of the AR parameters of the model, and adapts the 

BYWE and their solution to MFD. Section 4 derives forward Yule-Walker 

equations (FYWE) for a model observed with SFD, proves that under conditions 
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I-VI the FYWE can be solved for unique values of the MA parameters of the 

model, and adapts the FYWE and their solution to MFD. The paper concludes in 

section 5 with discussion of common left AR and MA factors, necessity of the 

identifying conditions, numerical illustration of identification, and 

identifcation of structural parameters. 

 

2. Statement of VARMA model and assumptions on it. 

 

We write a general VARMA(r,q) model in VARMA(p,p-1) form as 

 

(2.1)     yt = A1yt-1 + ... + Apyt-p + B0εt + B1εt-1 + ... + + Bp-1εt-p+1 

 

and define its components as follows: yt denotes an n×1 vector of observed 

variables; r and q denote any assumed nonnegative integers, such that at 

least one of r or q is positive; p = max(r,q+1); Ai (i = 1, ..., p) denote n×n 

matrices of AR parameters, Ar ≠ 0nxn ( kjO ×  denotes the j×k zero matrix), and 

intermediate (i = 1, ..., r-1) and trailing (i = r+1, ..., p) Ai, 

respectively, may be and are zero; Bj (j = 0, ..., p-1) denote n×n matrices of 

MA parameters, Bq ≠ 0nxn, and intermediate (j = 1, ..., q-1) and trailing (j = 

q+1, ..., p-1) Bj, respectively, may be and are zero; εt denotes an n×1 vector 

of unobserved disturbances ∼ IID(0nx1,In), where In denotes the n×n identity 

matrix. All quantities in the paper are real valued except possibly 

eigenvalues, eigenvectors, latent roots, and latent vectors, which may be 

complex valued. 

 We assume that the model satisfies conditions I-III of stationarity, 

regularity, and miniphaseness: 

 

Condition I: VARMA model (2.1) is stationary, i.e., if λ is a real- or 

complex-valued scalar root of the AR characteristic equation |A(λ)| = |Inλr -

A1λr-1 - ... - Ar| = 0, then, |λ| < 1, where |×| denotes a determinant or an 

absolute value (modulus); 

 

Condition II: VARMA model (2.1) is regular, i.e., B0 is lower triangular and 

nonsingular; 

 



 6

Condition III: VARMA model (2.1) is miniphase, i.e., if λ is a real- or 

complex-valued scalar root of the MA characteristic equation |B(λ)| = |B0λq + 

B1λq-1 + ... + Bq| = 0, then, |λ| ≤ 1. 

 

 Miniphaseness extends invertibility to allow MA roots on the unit 

circle. An estimated VARMA model almost never has MA roots on the unit circle 

unless restrictions on it imply them. For example, suppose that n variables 

in ty
~  = TT

t2
T
t1 )y~,y~(  (superscript T denotes vector or matrix transposition) are 

generated by an unrestricted (except for conditions I-VI) VARMA model 

estimated using data in which the first n1 variables are observed directly as 

y1t = t1y
~  and the last n2 variables are observed temporally aggregated as y2t = 

t2y
~  + ... + mt,2y

~
− , for some m ≥ 1. Then, to be estimated with the partly 

aggregated data, the model must be extended to a VARMA(r,q+m) model with the 

same AR part and an MA part with characteristic equation B(λ)D(λ), where D(λ) 

= Inλm + D1λm-1 + ... + Dm and Di = 








×

××

2n1n2n

2n1n1n1n

I0

00
, for i = 1, ..., m. D(λ) adds mn 

MA roots, mn1 zero roots and mn2 roots on the unit circle. 

VARMA(p,p-1) form (2.1) has the following state-space representation 

comprising observation equation 

 

(2.2)     yt = Hxt,  H = [In, On×n, ..., On×n] = n×np, 

 

where xt denotes the np×1 state vector, and state equation 

 

(2.3)     xt = Fxt-1 + G tε , F = 





















××

×

×

nnnnp

n

nn

nnn1

00A

I

0

0IA









= np×np, G = 





















−1p

0

B

B




 = np×n. 

 

 For K = 1, 2, ..., define 

 

(2.4)     CK(F,G) = [G, ..., FK-1G] = np×nK. 

 

For K = np, Cnp(F,G) is called the controllability matrix. By the Cayley-

Hamilton theorem, which says that every square matrix satisfies its own 
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characteristic equation, CK(F,G) has maximum rank when K = np, so that CK(F,G) 

has full rank np for some K if and only if (iff) rank[Cnp(F,G)] = np. 

 A VARMA model is said to be controllable iff its controllability matrix 

has full rank, i.e., rank[Cnp(F,G)] = np. Hautus (1969) proved that 

rank[Cnp(F,G)] = np iff, for any real- or complex-valued scalar λ, 

 

(2.5)     rank[F - Inpλ, G] = np. 

 

Controllability is often more easily proved by checking condition (2.5) than 

by checking rank[Cnp(F,G)] = np directly. Kailath (1980, p. 135) called 

condition (2.5) the "PBH test," although Lancaster and Rodman (1995, p. 88) 

state that it was first proved by Hautus (1969). 

 The block-Vandermonde form (4.4) of the left (row) eigenvectors of the 

block-companion state-transition matrix F implies that condition (2.5) is 

equivalent to condition 

 

(2.6)     (λi)max(r-q-1,0)
T
iξ B(λi) ≠ 01xn, 

 

for i = 1, ..., np, where λi is an eigenvalue of F, ξi is a nonzero left 

latent (row) vector of A(λ) = Inλr - A1λr-1 - ... - Ar that satisfies 
T
iξ A(λi) = 

01xn, and B(λ) = B0λq + ... + Bq. The derivation of equation (6.2) in the 

appendix implies that conditions (2.5) and (2.6) are equivalent. Therefore, 

the conditions rank[Cnp(F,G)] = np, (2.5), and (2.6) are equivalent. 

 We assume that the model satisfies condition IV of controllability: 

 

Condition IV: VARMA model (2.1) is controllable. 

 

 If r ≤ q, then, n(q-r+1) zero eigenvalues of F are not AR roots that 

satisfy |A(λ)| = 0 but, in condition (2.6), (λi)max(r-q-1,0) = 1 for any zero or 

nonzero AR roots. If r ≥ q+1, then, all eigenvalues of F are AR roots and 

must be nonzero for controllability to hold. In both cases, when AR roots are 

nonzero, their being distinct from MA roots is sufficient, but unnecessary, 

for condition (2.6) to hold. Controllability holds in most applications 

because AR roots are distinct from MA roots. 

 We have called ξi "latent" according to the theory of matrix 

polynomials. In this theory, the AR characteristic polynomial A(λ) is called 

a lambda matrix. A root λi of the characteristic equation |A(λ)| = 0 is called 
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a latent root. Just as an eigenvalue of a square matrix has a matching 

nonzero left (row) eigenvector, a latent root λi of A(λ) has a matching 

nonzero left (row) latent vector ξi that satisfies 
T
iξ A(λi) = 01xn. Because F 

has the block-companion form (2.3), every latent root of A(λ) is also an 

eigenvalue λi of F and vice versa if r ≥ q+1; and, every left eigenvector zi 

of F has the block-Vandermonde form (4.4), where ξi is a left latent vector of 

A(λi). See Dennis et al. (1976). 

Analogous to controllability, for L = 1, 2, ..., we define 

 

(2.7)     OL(F,H) = [HT, ..., (FT)L-1HT]T = nL×np. 

 

For L = np, Onp(F,H) is called the observability matrix. By the Cayley-

Hamilton theorem, OL(F,H) has maximum rank when L = np, so that OL(F,H) has 

full rank np, for some L, iff rank[Onp(F,H)] = np. A VARMA model is said to be 

observable iff the observability matrix has full rank, hence, iff rank[FT - 

Inpλ, HT] = np. Because F is asymmetric, it generally has different left and 

right eigenvectors for each eigenvalue, so there is generally no direct 

analogue of condition (2.6) for observability, obtained by replacing F and G 

with FT and HT in equation (2.5). 

Controllability and observability come from dynamic system theory 

(Kwakernaak and Sivan, 1972; Anderson and Moore, 1979; Kailath, 1980). 

Controllability generally depends on all ARMA parameters, regardless how the 

model's variables are observed. Observability generally depends only on AR 

parameters and on how the model's variables are observed. For SFD, every 

VARMA model is observable, regardless of its AR parameter values, because 

OL(F,H) is unit lower triangular for L ≥ p. Thus, it is unnecessary to assume 

that VARMA model (2.1) is observable for SFD, but it is generally necessary 

to assume that the model is observable for MFD. 

 Different lower bounds have been stated for L. In each case, the lower 

bound is a necessary but not necessarily a sufficient condition for an 

observability condition to hold. However, because L has no upper limit in 

identification, we may henceforth more simply state that "L is sufficiently 

large". Of course, in estimation, L is limited by sample size. 

 We assume that the model satisfies condition V of observability when 

its variables are observed with MFD: 

 

Condition V: VARMA model (2.1) is observable for a sufficiently large L, for 

the MFD being considered. 
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Define the block-companion-form matrix 

 

(2.8)     B  = 





















××

×

×

nnnnq

nn

nnn1

00B

I

0

0IB









 = nq×nq, 

 

where, for i = 1, ..., q, iB  = 1
0iBB −− . We assume that the model satisfies 

condition VI of diagonalizability: 

 

Condition VI: B  is diagonalizable, i.e., has a linearly independent set of 

eigenvectors. 

 

Distinct MA roots, equivalently distinct eigenvalues of B , imply that B  has 

a full set of nq linearly independent eigenvectors. For this reason, 

diagonalizability should hold in most applications. 

 Conditions I-VI are conventional and can be expected to hold in 

practice for all but a singular (measure zero) set of parameters. 

 

3. Identification of AR parameters with backward Yule-Walker equations. 

 

Let Ck = 
T

kttyEy − , for k = 0, ±1, ±2, ..., denote the k-th population 

covariance matrix of yt and yt-k generated by VARMA model (2.1), where E 

denotes unconditional expectation. Ck exists because the model is stationary 

and is skew symmetric, i.e., Ck = 
T
kC− . 

To obtain the backward Yule-Walker equations (BYWE) for SFD, 

postmultiply VARMA model (2.1) by "backward in time" T
kty − , for k = 0, ..., L ≥ 

2p-1, take unconditional expectations, and obtain 

 

(3.1)     



























−

T
L

T
p

T
1p

0

C

C

C

C





 = 



























−−

−

−

T
1L

T
pL

T
1p0

T
2p1

1p

CC

CC

CC

CC





























T
1

T
p

A

A

  + 



























Ψ

Ψ

×

×

−

−

=∑

nn

nn

T
1p0

1p

0i
T
ii

0

0

B

B





, 
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where Ψi = HFiG denotes the i-th coefficient matrix of the Wold infinite MA 

representation of the model. We want to solve BYWE (3.1) for unique values of 

the AR parameters, A1, ..., Ap. To do this, we skip the first p blocks (k = 0, 

..., p-1) with MA terms and consider only further blocks (k = p, ..., L) 

without MA terms, 

 

(3.2)     
















−−

−

T
1L

T
pL

T
1p0

Cc

CC























T
1

T
p

A

A

 = 
















T
L

T
p

C

C

 . 

 

Consider equation (3.2) as DX = E. The equation can be solved for 

unique AR parameter values in X iff, for sufficiently large L, D has full 

(column) rank. A proof of this result goes as follows. State-space 

representation (2.2)-(2.3) implies that, for k = 0, 1, ..., 

 

(3.3)     Ck = HFkVHT = n×n, 

 

where, because the model is stationary, V = Ext
T
tx  exists and satisfies V = 

∑∞

=0k
kTTk )F(GGF  or, equivalently, 

 

(3.4)    V =[Cnp(F,G), ... ][Cnp(F,G), ... ]T = np×np. 

 

V is symmetric positive semidefinite by its structure. Equation (3.4) and the 

Cayley-Hamilton theorem imply that V is positive definite iff the VARMA model 

is controllable, which has been assumed. 

 Because V is positive definite, it has the Cholesky factorization V = 

RRT, where R is np×np, lower triangular, nonsingular, and unique. Using F~ = 

R-1FR, H~ = HR, and equation (3.3), system matrix D of equation (3.2) can be 

expressed as 

 

(3.5)   D = 
















−−

−

T1LTTpLT

T1pTT

H)F(HVH)F(HV

H)F(HVHVH







 = 
















−−

−

T1LTTpLT

T1pTT

H~)F~(H~H~)F~(H~

H~)F~(H~H~H~






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         = 





















−pLT

T

)F~(H~

F~H~
H~


[ ]T1pTTTT H~)F~(H~F~H~ −  =  OL-p+1(

TF~ ,H~)Op(F
~,H~)T = n(L-p+1)×np. 

 

 D has full rank np, for sufficiently large L, iff OL-p+1(
TF~ ,H~) = 

CL-p+1(F,VHT)TR-T and Op(F
~,H~) = Op(F,H)R do. Because R is nonsingular, 

OL-p+1(
TF~ ,H~) has full rank np, for sufficiently large L, iff CL-p+1(F,VHT) does. 

Op(F
~,H~) has full rank np, because R is nonsingular and because Op(F,H) has 

full rank np for any VARMA model and SFD, because it is lower-unit 

triangular. The appendix proves that Cnp(F,VHT) has full rank np under 

conditions I-IV, so that CL-p+1(F,VHT) has full rank np, for sufficiently large 

L. Thus, for sufficiently large L, OL-p+1(
TF~ ,H~), Op(F

~,H~), and D have full rank 

np and equation (3.2) can be solved for unique AR parameter values as 

 

(3.6)     X = (DTD)-1DTE = np×n. 

 

By virtue of the structure of D and E and the Cayley-Hamilton theorem, 

solution (3.6) satisfies equation (3.2) exactly, because, once D achieves 

full rank for sufficiently large L, the columns of E are in the space spanned 

by the columns of D. 

The key step in the original XYW method for MFD is deleting Yule-Walker 

equations with missing high-frequency autocovariances of low-frequency 

variables. Anderson et al. (2012) pointed out that the deletions can be 

implemented by deleting from H rows mapping into unobserved variables (in 

their notation, deleting columns of G to obtain K). Describing such deletions 

for general MFD would be difficult and is not attempted here. However, this 

is practically unnecessary because most MFD cases can be handled as in the 

simplest MFD case in which some variables are observed at the high frequency 

every period and remaining variables are observed at the low frequency every 

other period. Both Chen and Zadrozny (1998) and Anderson et al. (2012) used 

this simplest case to analyze, respectively, XYW estimation and 

identification of bivariate VAR models. By studying generalizations of 

equation (13) in Chen and Zadrozny (1998), one can see that the two-part 

partition H = [ T
1H , T

2H ] covers most MFD cases, except unusual ones in which 

some intermediate AR and MA coefficient matrices are restricted to zero. 
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Similarly describing three or more observation frequencies doesn't change 

this structure and only complicates notation. 

Therefore, consider a VARMA model of n = n1 + n2 variables, whose first 

n1 variables are high-frequency variables observed in every period and whose 

last n2 variables are low-frequency variables observed every certain number of 

periods, so that H = [ T
1H , T

2H ]T , where H1 = [
T
1e , ..., T

1n
e ]T = n1×np, H2 = 

[ T
11n

e + , ..., T
ne ]T = n2×np, and, for i = 1, ..., n, ei = (0, ..., 0, 1, 0, ..., 

0)T denotes the np×1 vector with one in position i and zeros elsewhere. Then, 

the deletion of unusable Yule-Walker equations with missing high-frequency 

autocovariances of low-frequency variables can be implemented simply by 

replacing H everywhere with H1. Thus, in most circumstances, adapting solution 

equation (3.6) from SFD to MFD amounts to replacing D with D1 = 

OL-p+1(
TF~ , 1H

~ )Op(F
~, 1H

~ )T and replacing E with E1 = OL-p+1(
TF~ , 1H

~ ) T
1

pT H~)F~( , where 1H
~  = 

H1R, so that equation (3.6) becomes 

 

(3.7)     X = 1
T
1

1
1

T
1 ED)DD( −  = np×n. 

 

The adaptation works iff rank[D1] = np, which requires two things. 

First, the reduction of sample information from removing Yule-Walker 

equations must be compensated for by increasing L, although this by itself is 

generally insufficient to maintain rank[D1] = np, because for MFD 

observability generally also depends on the AR parameters, as illustrated in 

section 5.3. The other identifying conditions, I-IV and VI, are unaffected by 

the move from SFD to MFD. 

 This section has proved that the AR parameters of VARMA model (2.1) are 

identified with SFD or typical MFD under conditions I-V of stationarity, 

regularity, miniphaseness, controllability, and observability. 

 

4. Identification of MA parameters with forward Yule-Walker equations. 

 

 The effective disturbance covariance matrix of the model is T
00BB , 

parameterized in the elements of lower-triangular B0. Treating the disturbance 

covariance matrix as a part of the MA part of a model, even if the model is a 

pure VAR model with q = 0 and putting the first (k = 0) block in both 

backward equations (3.1) and forward equations (4.1) simplifies derivations. 

To obtain the forward Yule-Walker equations (FYWE) for SFD, 
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postmultiply VARMA model (2.1) by "forward in time" T
kty + , for k = 0, ..., L ≥ 

p-1, take unconditional expectations, and obtain 

 

(4.1)     T
kC  - ∑ = +

p

1i
T
kiiCA  = ∑ −

= +Ψ1p

0i
T
kiiB  = n×n, 

 

which, using Ψi = HFiG, can be written as 

 

(4.2)     [B0, ..., Bp-1]Cp(F,G)TOL+1(F,H)T = LΓ  = n×n(L+1), 

 

where LΓ  = [Γ0, ..., ΓL] and Γk = 
T
kC  - T

ki
p

1i iCA +=∑ . Because OL+1(F,H) has full 

column rank for L ≥ p-1 and SFD, equation (4.2) can be rewritten as 

 

(4.3)     iTT
1p

T
0

1p

0i i )F](B...,,B[B −
−

=∑  = LΓ OL+1(F,H)[OL+1(F,H)TOL+1(F,H)]-1 = n×np. 

 

The first np BYWE with MA terms in equation (3.1) could be used 

together with FYWE (4.3) to determine the MA parameters but are not. Not 

using the first np BYWE equations for identification makes no difference, 

because relevant full-rank conditions based on population covariances hold 

regardless whether the additional equations are used. However, using the 

additional equations for estimation when population covariances are replaced 

by sample covariances should result in more accurate estimates because more 

sample information would be used. 

 Assume temporarily that F is diagonalizable as FT = ZΛZ-1. Because F has 

the block-companion form (2.3), its left (row) eigenvectors have the block-

Vandermonde form 

 

(4.4)     zi = (
T
i

1p
i ξλ − , ..., T

iξ )T = np×1, 

 

where, for i = 1, ..., np, λi is an eigenvalue of F. Then, the np×np matrix Z 

of right (column) eigenvectors of FT has the block-Vandermonde form 

 

(4.5)     Z = 














 ΛΛ −−

p1

1p
pp

1p
11

ZZ

ZZ







 = np×np, 
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where, for   = 1, ..., p, Z  = [ 1n)1( +−ξ  , ..., nn)1( +−ξ  ] = n×n, Λ  = 

diag( 1n)1( +−λ  , ..., nn)1( +−λ  ) = n×n, Λ = diag(Λ1, ..., Λp) = np×np, and, for i = 

1, ..., np, iλ  is a latent root of A(λ) and iξ  is a matching nonzero left 

latent vector of A(λ). See Dennis et al. (1976) and Zadrozny (1998). 

 Let M denote the right side of equation (4.3). Use FT = ZΛZ-1, multiply 

out ZΛi and MZ at the level of detail of equation (4.5), and, for ℓ = 1, ..., 

p, write equation (4.3) as 

 

(4.6)     ∑ ∑−

=
−+−−

= Λ1p

0i
ji1p1p

0j
T
ji ZBB   = N  = n×n, 

 

where N  = kpp

1k kZM −
= Λ∑  , M = [M1, ..., Mp] = n×np, and Mk denotes the k-th n×n 

block of M. 

 Also assume temporarily that F is nonsingular, so that Λ is 

nonsingular. For   = 1, ..., p, postmultiply equation (4.6) by 1p+−Λ  , apply 

the vectorization rule vec(ABC) = [CT ⊗ A]vec(B), where vec(∙) denotes the 

left-to-right column vectorization of a matrix (Magnus and Neudecker, 1999, 

p. 30), and write the resulting equation as 

 

(4.7)     ∑ −

=
⊗ 1p

0j
T
jjn

T )BB(vec)IZ(   + ∑ ∑−

=

−−

= +
− ⊗Λ+⊗Λ1p

1i
T
j

i1p

0j jin
Ti

n
Ti )BB(vec]P)IZ()IZ[(   

 

          = ( ) ( ) NvecIn
1p ⊗Λ +− , 

 

for ℓ = 1, ..., p, where, for any n×n matrix X, P denotes the n2×n2 

permutation matrix defined by vec(XT) = Pvec(X). 

 Write equation (4.7) more concisely as Ax = β, where 

 

(4.8)     A = 
















⊗⊗Λ

⊗⊗Λ

−

−

n
T
pn

T
p

1p
p

n
T
1n

T
1

1p
1

IZIZ

IZIZ







 + 
















⊗⊗Λ

⊗⊗Λ

+−

+−

P)IZ(P)IZ(

P)IZ(P)IZ(

n
T
pn

T
p

1p
p

n
T
1n

T
1

1p
1







 = n2p×n2p, 

 

          x = ( T
1px − , ..., T

0x )T = n2p×1,  

 

          xi = vec(∑ −−

= +
i1p

0j
T
jji BB ) = n2×1 (i = p-1, ..., 1), 
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          x0 = vec ∑ −

=

1p

0j
T
jj )BB( /2, 

 

          β = ( T
1β , ..., T

pβ )T = n2p×1, 

 

          β  = ( ) ( ) NvecIn
1p ⊗Λ +−  = n2×1 (   = 1, ..., p), 

 

and P can postmultiply n
T IZ ⊗ , for   = 1, ..., p, in the last block column of 

the second part of A because ∑ −

=

1p

0j
T
jjBB  is symmetric. 

 To simplify Ax = β in order to verify that it can be solved for a 

unique value of x, first, write A as 

 

(4.9)      A = 
















Λ

Λ

−

−

T
p

T
p

1p
p

T
1

T
1

1p
1

ZZ

ZZ







⊗In + )PI(IQ

ZZ

ZZ

pn
T
p

1p
p

T
p

T
1

1p
1

T
1

⊗
















⊗
















Λ

Λ

+−

+−







, 

 

where Q denotes the np×np permutation matrix that permutes blocks of n 

columns of Λ-p+1ZT and P is the same permutation matrix as in equations (4.7)-

(4.8). Use equation (4.5), premultiply equation (4.9) by )IZ( n
1pT ⊗Λ −− , and 

obtain 

 

(4.10)     )IZ( n
1pT ⊗Λ −− A = )IF( n

1p ⊗−  + S, 

 

where S = ( )( )PIIQ pn ⊗⊗  is an n2p×n2p permutation matrix. Similarly, 

 

(4.11)     β = 
















β

β

p

1

  = 

( ) ( )

( ) ( )















⊗Λ

⊗Λ

+−

+−

pn
1p

p

1n
1p

1

NvecI

NvecI

  = 

( ) ( ) ( )

( ) ( ) ( )















⊗Λ⊗Λ

⊗Λ⊗Λ

∑

∑

=
−+−

=
−+−

k
p

1k n
T
p

kp
pn

1p
p

k
p

1k n
T
1

kp
1n

1p
1

MvecIZI

MvecIZI

  

 

             = ( )n1p I⊗Λ +−

















⊗⊗Λ

⊗⊗Λ

−

−

n
T
pn

T
p

1p
p

n
T
1n

T
1

1p
1

IZIZ

IZIZ























)M(vec

)M(vec

p

1

  = ( )nT1p IZ ⊗Λ +− vec(M). 

 

Premultiply equation (4.11) by )IZ( n
1pT ⊗Λ −− , compare the result with equation 

(4.10), and obtain equation (4.7) as 
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(4.12)     [( 1pF −  ⊗ In) + S]x = vec(M). 

 

Because equation (4.12) is valid whether F is diagonalizable and 

nonsingular or not, having derived the equation, we no longer need these 

assumptions and, therefore, can and do withdraw them. Thus, in the end, these 

assumptions are unnecessary and serve only to reveal the derivation of 

equation (4.12) from equation (4.3). Figuring out how to do this without 

allowing F to be diagonalizable and nonsingular would be difficult. 

There are two cases to consider in solving equation (4.12) for x: p = 1 

and p ≥ 2. 

If p = max(r,q+1) = 1, then, r = 1, q = 0, equation (4.12) is 

unnecessary and equation (4.3) reduces to 

 

(4.13)     T
00BB  = LΓ OL+1(F,H)[OL+1(F,H)TOL+1(F,H)]-1. 

 

Because 0B  is nonsingular, T
00BB  is positive definite and B0 can be determined 

uniquely from T
00BB  by Cholesky factorization. 

If p ≥ 2, then, ( 1pF −  ⊗ In) + S must be nonsingular in order to solve 

equation (4.12) uniquely for x. Because all eigenvalues of F have moduli less 

than one (because the model is stationary) and all eigenvalues of S have 

moduli equal to one (because S is a permutation matrix that maps vectors on 

the unit hypersphere back to the unit hypersphere), theorem 5.1.1 of 

Lancaster and Rodman (1995, p. 98) implies that ( 1pF −  ⊗ In) + S has nonzero 

eigenvalues and is nonsingular. Thus, we can solve equation (4.12) for a 

unique value of x in terms of previously determined AR parameters, as 

 

(4.14)     x = [( 1pF −  ⊗ In) + S]-1vec{ LΓ OL+1(F,H)[OL+1(F,H)TOL+1(F,H)]-1}. 

 

 We now describe the final steps for determining the MA parameters from 

x. We already have the n×n MA characteristic polynomial 

 

(4.15)     B(λ) = B0λq + B1λq-1 + ... + Bq-1λ + Bq 

 

and now also define the n×n characteristic polynomial 
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(4.16)     X(λ) = Xqλq + ... + X1λ + 2X0 + 
T
1X λ-1 + ... + T

qX λ-q, 

 

where, for i = 0, ..., q, upper-case Xi are unique n×n unvectorizations of the 

n2×1 lower-case xi defined by equations (4.8) and λ is a complex-valued 

scalar. If p-1 ≥ q+1, then, Xi = 0nxn, for i = q+1, ..., p-1, equation (4.12) 

could be reduced by deleting the first p-q-1 columns of ( 1pF −  ⊗ In) + S and 

the first p-q-1 elements of x, and solving equation (4.12) in the manner of 

equations (3.6)-(3.7). 

Multiplying out B(λ-1)B(λ)T and comparing the resulting coefficients of λ 

with those of X(λ) verifies that the factorization 

 

(4.17)     X(λ) = B(λ-1)B(λ)T 

 

exists. The factorization exists because X(λ) has been derived based on 

covariances of variables which are assumed to be generated by VARMA model 

(2.1). If X(λ) is divided by π2  and λ is restriced to ω−ie , where i = 1−  

and π−2  < ω ≤ π2 , then, X(λ) becomes the spectral density of the MA part of 

VARMA model (2.1). 

 Zadrozny (1998) described an eigenvalue method of undetermined 

coefficients for solving a linear rational expectations model. The first step 

of doing this is computing the factorization C(λ) = K(λ)Φ(λ), such that Φ(λ) 

contains the smallest np roots of C(λ), usually the stationary roots inside 

the unit circle. Because B(λ)T in X(λ) = B(λ-1)B(λ)T corresponds to Φ(λ) in 

C(λ) = K(λ)Φ(λ), it can be also be computed using the eigenvalue method of 

undetermined coefficients. In fact, the method applies without modification 

to computing B(λ), because ensuring that B(λ) is miniphase is the same as 

ensuring that Φ(λ) contains the np smallest roots of C(λ). Here, skew 

symmetry of X(λ) implies that X(λ) has 2nq roots in nq reciprocal pairs. If a 

pair of roots is off the unit circle, then, the root inside the unit circle 

is chosen for the MA solution. If a pair of roots is on the unit circle, 

then, additional assumptions must be introduced to decide which root and 

associated latent vector (for repeated roots) should be chosen for the MA 

solution, akin to introducing additional assumptions for resolving global 

unidentification, as discussed in section 1. 

 Let TB U = UΩ denote the right (column) eigenvalue decomposition of TB , 

where Ω is an nq×nq diagonal matrix of eigenvalues and U is an nq×nq matrix 

of right eigenvectors. Because B  has the block-companion form of F in 
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equation (2.3), the columns of U have the block-Vandermonde form of the left 

(row) eigenvectors of F in equation (4.4). Then, following Zadrozny (1998, 

pp. 1358-1359), the upper n×nq  part of TB U = UΩ is 

 

(4.18)     [ T
1B , ..., T

qB ]U = [ q
11U Ω , ..., q

qqU Ω ],  U = 














 ΩΩ −−

q1

1q
qq

1q
11

UU

UU







, 

 

where, for i = 1, ..., q, Ui and Ωi are defined analogously to Zi and Λi in 

equation (4.5). 

 Equation (4.18) can be solved for iB , for i = 1, ..., q, because 

diagonalizability condition VI means that U is nonsingular. Because U and Ω 

are intermediate, not given, values, it might seem that the iB  could be 

nonunique. We now prove that the iB  are unique. First, Ω is unique because 

its nq diagonal elements are chosen from the 2nq eigenvalues of B  by a 

determinate rule, such as that the chosen eigenvalues have minimal moduli. 

Second, if the eigenvalues in Ω are distinct, then, U is unique (Wilkinson, 

1965, p. 5). Third, if some eigenvalues in Ω are repeated, then, right 

eigenvectors of TB  in U of repeated eigenvalues are nonunique. Let U~ denote 

another matrix of right eigenvectors of TB . For given U and U~, there is an 

nq×nq nonsingular matrix M such that U~ = UM, because U and U~ are nonsingular 

by diagonalizability. Because TB  = U~Ω 1U~−  = UMΩM-1U-1  = UΩU-1, because TB  has 

the same eigenvalues for any eigenvalue decomposition, it follows that iB , 

for i = 1, ..., q, that satisfy equation (4.18) are unique, whether or not 

eigenvalues in Ω are distinct. 

 It remains to determine unique values of Bi, for i = 0, ..., q. 

Factorization (4.17) can be restated as X(λ) = TT
00

1 )(BBB)(B λλ− , where )(B λ  = Inλq + 

1B λq-1 + ... + 1qB − λ + qB . Suppose that λ0 is not a root of )(B λ , so that 

| )(B 0λ | ≠ 0. Then, T
00BB  can be determined as 

 

(4.19)     T
00BB  = T

00
11

0 )(B)(X)(B −−− λλλ , 

 

where superscript -T denotes inversion and transposition. Because B0 is 

nonsingular, a unique value of B0 can be determined from positive definite 
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T
00BB  by Cholesky factorization, whereupon unique values of Bi = - iB B0, for i = 

1, ..., q, are determined. 

 Therefore, unique values of Bi, for i = 0, ..., q, are determined for 

given x from equation (4.13) or from equations (4.14)-(4.19). 

We adapt the above solution for the MA parameters from SFD to MFD in 

essentially the same way as we adapted the solution for the AR parameters 

from SFD to MFD at the end of section 3. Consider the same partition H = [ T
1H , 

T
2H ] as in section 3. Similarly, replace H with H1 in OL+1(F,H)T on the left 

side of equation (4.2), correspondingly reduce columns of LΓ  on the right 

side of the equation, and proceed as in the SFD case, from equations (4.13)-

(4.14) to equation (4.19). The adaptation to MFD works iff rank[OL+1(F,H1)] = 

np, which, as in the AR case, generally also requires increasing L and 

imposing additional restrictions on the AR parameters. 

 This section has proved that the MA parameters of VARMA model (2.1) are 

identified with SFD or MFD under conditions I-VI of stationarity, regularity, 

miniphaseness, controllability, observability, and diagonalizability, 

conditional on the AR parameters having been identified. 

 

5. Concluding discussion. 

 

 The paper concludes with discussions of common left AR and MA factors, 

necessity of the identifying conditions, numerical illustration of 

identification, and extension to identifcation of structural parameters. 

 

5.1. Common left AR and MA factors. 

 

All parameters of VARMA model (2.1) have been proved to be identified 

when the model satisfies conditions I-VI and its variables are observed with 

either single-frequency data (SFD) according to the first definition in 

section 1 or with mixed-frequency data (MFD). Because the AR parameters were 

proved to be identified independently of the MA parameters, all ARMA 

parameters were proved to be identified. Has redundancy between the AR and MA 

parameters been precluded in the sense that the AR and MA characteristic 

equations have no common left factors? Hannan (1969) emphasized the absence 

of this condition as a condition for identifying AR and MA parameters. 

However, because controllability condition (2.6) precludes common AR and MA 
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pairs of latent roots and left latent vectors, it precludes common left AR 

and MA factors. 

 

5.2. Necessity of the identifying conditions. 

 

The paper proved that identifying conditions I-VI are sufficient to 

identify the parameters of a VARMA model, but did not prove that the 

conditions are as a whole necessary for identification. Each condition is 

necessary or appears to be necessary in some part of the proof. Stationarity 

(I) is necessary for otherwise the identification problem is not well posed. 

Regularity (II) appears to be necessary for identifying the MA parameters, 

although Zadrozny (1998) defined an analogue of B  that doesn't require 

regularity, which suggests that it may be unnecessary. Miniphaseness (III) is 

necessary for otherwise some MA parameters with roots on the unit circle are 

ruled out and cannot be identified. Controllability (IV) appears to be 

necessary for separately identifying the AR and MA parameters. Observability 

(V) appears to be necessary for identifying the AR parameters.  

Diagonalizability (VI) appears to be necessary for identifying the MA 

parameters. The present proof follows a particular method for determining the 

parameters from data covariances. However, a general proof of whether 

conditions I-VI as a whole are necessary for identifying the parameters must 

be independent of any particular method for determining them. 

 

5.3. Numerical illustration of identification. 

 

 Sections 3-4 proved that parameters of VARMA model (2.1) are identified 

for SFD if CL(F,VHT) and Op(F,H) have full rank and are identified for MFD if 

CL(F,V
T
1H ) and Op(F,H1) have full rank, in both cases for sufficiently large L. 

As an illustration of identification for MFD, consider the estimated 

bivariate ARMA(1,1) model of monthly employment and quarterly GNP in Zadrozny 

(1990a,b). The model has estimated coefficient matrices 1Â  = 







353.203.

417.799.
, 0B̂  

= 







34.1634.

00.037.2
, 1B̂  = 








−
−−

613.72.1

697.615.
, the model is stationary (I), miniphase 

(III), controllable (IV), and diagonalizable (VI), because AR roots of .942 

and .209 and MA roots of .289 ± .643 1−  are less than one in modulus and are 

distinct, and the model is regular (II) because 0B̂  is nonsingular. For L = p 
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= 2 and H1 = (1,0,0,0), CL(F,V
T
1H )T = 








++++ 00vvavavvava

vvvv

41212211213121121111

41312111  

and Op(F,H1) = 







01aa

0001

1211

, where aij and vij denote (i,j) elements of A1 and 

V. CL(F,V
T
1H ) has full rank 2 for the parameter values and the structure of 

Op(F,H1) implies that it has full rank 2 for all values of a11 and a12, so that 

the model is identified for the MFD. 

 Observability is the only identifying condition that depends on how 

variables of a model are observed. Section 3 proved that observability holds 

for SFD and all parameter values. For MFD, observability may or may not 

depend on the parameters. In the above model, observability holds for the MFD 

and all parameter values. However, if we drop the MA part and the bottom half 

of the state vector in order to maintain controllability, then, CL(F,V
T
1H )T = 









++ 2122112121121111

2111

vavavava

vv
 and Op(F,H1) = 









1211 aa

01
 continue to have full rank 2 

for the parameter values, but now Op(F,H1) has full rank 2 iff a12 ≠ 0. 

 Adding parameters usually complicates estimation and identification, 

but independence of observability from a12 simplifies identification and could 

result in AR parameters being estimated more accurately. This would be 

unusual because MA parameters are usually the more difficult parameters to 

estimate accurately and their presence often reduces precision of estimation 

of AR parameters. The condition for CL(F,V
T
1H ) to have full rank is difficult 

to interpret, but observability condition a12 ≠ 0 means simply that quarterly 

GNP, the low-frequency variable, feeds back at monthly intervals on monthly 

employment, the high-frequency variable. 

 

5.4. Identification of structural parameters. 

 

 If a VARMA model has no underlying structure, then, its parameters are 

equivalently structural and reduced-form. Consider now structural VARMA 

models with underlying structural parameters in vector θ  that are mapped to 

reduced-form parameters in vector ϕ  by some differentiable function f(θ ). 

Usually, an estimation method produces an estimate θ̂  of θ  that minimizes a 

twice-differentiable composite function g(f(θ )) (in reduced-form estimation, 

ϕ  ≡ θ ). Proposed structural and reduced-form methods for estimating VARMA 

models with MFD are maximum likelihood (Zadrozny, 1988, 1990a,b), extended 
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Yule-Walker (Chen and Zadrozny, 1998), Bayesian (Eraker et al., 2015), MIDAS 

(Ghysels et al., 2007), and stacking (Ghysels, 2012). After putting more 

details into g(∙), in theory θ  is identified if the smallest nonnegative 

eigenvalue of T
0J 0K 0J  is positive, where J0 and K0 are Jacobian and Hessian 

matrices of f(θ ) and g(ϕ ) evaluated at true values 0θ  and 0ϕ  = f( 0θ ); and, 

in practice, θ̂  is estimated accurately or is "strongly identified" if the 

smallest nonnegative eigenvalue of TĴ K̂ Ĵ  is sufficiently positive, where Ĵ  

and K̂  are evaluated at estimated values θ̂  and ϕ̂  = f( θ̂ ). Dynamic stochastic 

general equilibrium (DSGE) models (Smets and Wouters, 2003) are now commonly 

used structural models in macroeconomic analysis. Recent research on 

identification of structural VARMA models has been motivated by this use. For 

example, Komunjer and Ng (2011) and Kociecki and Kolasa (2013) studied some, 

but not all, necessary conditions for identification of DSGE models with 

VARMA reduced forms. The present paper contributes to this literature by 

effectively proving that true or estimated K is positive definite if, 

respectively, true or estimated ARMA parameters satisfy conditions I-VI. 

 

6. Appendix. 

 

 The appendix proves that, under conditions I-IV of stationarity, 

regularity, miniphaseness, and controllability, Cnp(F,VHT) has full rank np, 

which contributes to the proof in the text below equation (3.5) that matrix D 

in equations (3.5) and (3.6) has full rank np. 

For i = 1, ..., np, consider 

 

(6.1)     T
iz Cnp(F,G) = (

1p
i

−λ T
iξ , ..., T

iξ )T 
































































−

−

−− 1p

0
1np

1p

0

1p

0

B

B

F,,

B

B

F,

B

B

  

 

          = T
iξ [∑ −

=
−−λ1p

0j
j1p

ijB , ∑ −

=
−λ1p

0j
jp

ijB , ..., ∑ −

=
−−+λ1p

0j
j2pnp

ijB ], 

 

where zi is a left eigenvector of F and iλ  is its matching eigenvalue. 

 There are two cases: r ≥ q+1 and r ≤ q. If r ≥ q+1, then, p = 

max(r,q+1) = r and, because Bj = 0nxn for j ≥ q+1, 
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(6.2)     T
iz Cnp(F,G) = ( iλ )max(r-q-1,0)[ T

iξ B( iλ ), T
iξ B( iλ ) iλ  , ..., T

iξ B( iλ ) 1np
i

−λ ], 

 

where B( iλ ) = ∑ =
−λq

0j
jq

ijB . If r ≤ q, then, p = q+1 and equation (6.2) continues 

to hold with the understanding that ( iλ )max(r-q-1,0) = 1 for any zero or nonzero 

iλ . Then, equations (3.4) and (6.2) imply that 

 

(6.3)   T
iz VHT = ( iλ )max(r-q-1,0)[ T

iξ B( iλ ), ..., T
iξ B( iλ ) 1np

i
−λ , ... ]





















−




1npTT

T

)F(G

G

HT 

 

     = ( iλ )max(r-q-1,0) T
iξ B( iλ )GT∑∞

=
λ

0j
jT

i )F( HT = ( iλ )max(r-q-1,0) T
iξ B( iλ )GT[Inp- iλ FT]-1HT, 

 

where stationarity implies that ∑∞

=
λ

0j
jT

i )F(  exists and equals [Inp-
T

iFλ ]-1, so 

that the last equality in equation (6.3) holds. Thus, because controllability 

implies that ( iλ )max(r-q-1,0) T
iξ B( iλ ) ≠ 01xn, it follows that 

T
iz VHT ≠ 01xn if, but 

not necessarily only if, M~  = H[Inp - iλ F]-1G is nonsingular. 

 To prove that M~  is nonsingular, consider observation equation (2.2), 

state equation (2.3) modified hypothetically as xt = λiFxt-1 + Gεt, where F and 

G are unchanged from equation (2.3); for i = 1, ..., np, iλ  continues to 

denote an eigenvalue of F; and, the state vector is partitioned into n×1 

subvectors as xt = ( T
t,1x , ..., T

t,px )T. The modified state equation may be 

written out as 

 

(6.4)     x1,t  = λiA1x1,t-1   + λix2,t-1 + B0εt, 

                               

          xp-1,t = λiAp-1x1,t-1 + λixp,t-1 + Bp-2εt, 

 

          xp,t  = λiApx1,t-1  + Bp-1εt. 

 

Replace xp,t-1 on the right side of the next-to-last equation in (6.4) 

for xp-1,t with the right side of the last equation in (6.4) for xp,t lagged one 

period; then, replace xp-1,t-1 on the right side of the next-to-next-to-last 

equation for xp-2,t with the right side of the just obtained equation for xp-1,t 
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lagged one period; continue like this; after using observation equation (2.2) 

to replace x1,t with yt, obtain 

 

(6.5)     yt = λiA1yt-1 + ... + 
p
iλ Apyt-p + B0εt + λiB1εt-1 + ... + 

1p
i

−λ Bp-1εt-p+1. 

 

Consider equation (6.5) at the steady-state output y  for any constant 

input ε . There are two cases: iλ  = 0 and iλ  ≠ 0. If iλ  = 0, then, the steady 

state of equation (6.5) is y  = εN~ , where N~  = 0B , so that regularity 

condition II implies that N~  is nonsingular. If iλ  ≠ 0, then, because Aj = 0nxn 

for j ≥ r+1 and Bk = 0nxn for k ≥ q+1, the steady state of equation (6.5) is 

A( 1
i
−λ ) y  = rq

i
−λ B( 1

i
−λ ) ε , where A( 1

i
−λ ) = In

r
i
−λ  - A1

1r
i

+−λ  - ... - Ar and B(
1
i
−λ ) = 

B0
q
i
−λ  + B1

1q
i

+−λ  + ... + Bq. Because stationarity condition I implies that A(
1
i
−λ ) 

is nonsingular, y  = N~ ε , where N~  = rq
i

−λ A( 1
i
−λ )-1B( 1

i
−λ ). Miniphase condition III 

implies that B( 1
i
−λ ) is nonsingular, so that N~  is nonsingular. Because state-

space representation (2.2) and (6.4) implies that y  = M~ ε , where M~  = N~ , it 

follows that M~  is nonsingular. Therefore, for any iλ , M~  is nonsingular and 

Cnp(F,VHT) has full rank np, as was to be shown. 
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