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Abstract: 

The work of this paper is prompted by the particular case of the Current Employment 

Statistics (CES) Survey conducted monthly by the U.S. Bureau of Labor Statistics. 

Besides estimates at the national level, the survey yields estimates of employment for 

numerous domains defined by intersection of industry and geography, providing 

important information about the current status of the local economy. Variances of the 

employment estimates are estimated from the sample. However, the sample based 

estimated variances can be unstable, especially in smaller domains. 

More stable variance estimates can be obtained using a model-based generalized variance 

function (GVF). The modeling is based on past years of the survey and, assuming a 

satisfactory model fit, the result can be applied to predict variances for the current period. 

However, some features of the design or population characteristics may change from one 

year to another, making it necessary to adjust the model parameters. We here give a 

method for evaluating the suitability to current data of a GVF model based on past years' 

data and suggest ways to calibrate the GVF to the current data. 
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1. Introduction 

1.1 Reasons for indirect variance estimation 

Sample based estimates of variances are usually unbiased or nearly so. However, there 

are reasons for avoiding estimating variances contemporaneously from the same data as 

is used for the point estimates: 

- such estimation may take considerable time, which makes it infeasible in a tight 

production timeline; 

- it may be desirable to have the measure of variability available and published ahead 

of the actual estimation; 

- even when the variance estimates can be easily produced in real time, variation in 

these estimates can be worrisome. It is often due to random noise and does not have 

good substantive explanation. 

Instability of the estimates is often related to the form of the distribution governing the 

data. Long tailed distributions are particularly prone to occasional extreme observations 

that can have undue effect on survey estimates. The variances could potentially be used  

in detecting outliers in the estimates. However, if the sample data contain extreme 

observations (as often happens in the establishment surveys), sample based variance 

estimates tend to be inflated. This creates a masking effect and renders such measures 

useless for detecting outliers in survey estimates. 
 

1 Any opinions expressed in this paper are those of the authors and do not constitute policy of the 

Bureau of Labor Statistics 



 

 

 

Conversely, if extreme observations happen to exist only in the non-sampled part of the 

population, the sample based estimate of variance understates the true variance. 

The result is that estimates of variance obtained from samples drawn from such outlier- 

prone populations may be seldom “correct”, even though they are unbiased when 

averaged over all possible samples. The implication is that, without some sort of 

smoothing, these variance estimates cannot be used to characterize the quality of the 

point estimates. For example, raw past year estimates cannot be applied to the same 

domains in the current year, even when the finite population characteristics and sample 

design remain unchanged. 

1.2 Issues in assessing quality of the indirect variance estimates 

Another kind of estimate of variance is the model-based generalized variance function 

(GVF). There is no underlying written-in-stone theory for developing a particular GVF. 

Generally, it is a modeling exercise, where a set of raw estimates of variances (or some 

function thereof) play the role of dependent variables. The independent variables are 

usually related to sampling design characteristics and may also include any available 

auxiliary information that is deemed appropriate. Domains considered for inclusion in the 

GVF modeling are grouped based on some perceived similarity; for example, domains 

included in the model may belong to the same industry; at times, determining the 

grouping itself may be a non-trivial task (Valliant 1992.) 

It is sometimes difficult to assess what can be considered a good model fit: as previously 

noted, the raw estimates involved in the modeling are very unstable and the instability 

can hardly be explained by the model. As a result, the usual goodness-of-fit statistics may 

not be informative. For example, the R-square in many real-life situations can be 

relatively low. Some may make the claim that one should not be concerned with 

explaining random noise. On the other hand, the unexplained variation may indeed have 

some underlying meaning that was not explained with the model at hand (see related 

discussion in Cho et al. 2002) 

Our proposed solution for assessing model fit comes from the confidence interval. Upon 

obtaining the confidence interval coverage properties of the resulting GVF, we could 

evaluate the result without using the traditional goodness-of-fit measures. The approach 

explored in this paper concerns the possibility of evaluating coverage in real time, 

without knowing the true population value, and using a particular pivotal quantity. 

Another twist related to the same idea is an adjustment of the GVF using the 

aforementioned pivot. In surveys repeated over time, the modeling involved in 

developing GVF usually is based on variances obtained from past years. While it is 

logical to expect certain continuity of the variances from one year to another, such GVF 

potentially would fail to account for true changes in the underlying population variability. 

For example, it is conceivable that the underlying population variance of the employment 

data vary during rapid economic growth or decline, or during periods of economic 

stability. Thus, we also explore evaluation of the applicability of GVF obtained from past 

years to current data and possible adjustments to it. 

The evaluation procedure is described in Section 2. Adjustments in the case of under- or 

over-coverage of the confidence intervals are considered in Section 3. Section 4 describes 

a simulation study based on repeated samples from the real population and includes the 

simulation results and discussion. 
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2. The evaluation procedure 

Suppose we are given variance estimates for a set of G independent domains. These may 

be, for example, GVF based variances with parameters estimated from past years of the 

same survey or some sort of smoothed variance estimates, or indeed variances estimated 

using any available direct or indirect method. The first task in the evaluation of variances 

is to compare the coverage properties of the corresponding confidence intervals. 

The plan is to form a pivotal quantity in each domain and evaluate its properties based on 

a set of domains. To form the pivot, we obtain replicate estimates from the sample similar 

to the way it is done in a replication based variance estimation procedure. The difference 

from the whole-scale replication exercise is that, since we use the assumption that the 

pivots in the G domains are independent, as little as a single replicate along with the 

original sample estimate will suffice here. 

To clarify the idea, let us consider the following simple setup. 

 
Let 

 
n 

y ,..., y be a sample of independent measurements with ŷ  
N 



y , the estimate 

1 n 
n
 j 

j 1 

of the population total. 

Suppose n is an even number. The set can be randomly divided into halves. Denote by 

1 and  2 the sets of units in half 1 and 2 for a given random subdivision  . 
 

Let y  
2N  y 

 
and y  

2N  y 
 
, so that ŷ  

1 
 y 

 

 y  . 
 1 

n
 j 

j 1 

 2 
n
 j 

j 2 
2 

1  2 

Next,  for  a  chosen  constant  K  (say,  K  0.5 ;  this  is  similar  to  Fay’s  factor  in the 

balanced repeated replication procedure), let us adjust the weights of units in half  1  by 

2  K ; adjust the weights of units in  2 by K . 

Let  ŷ    
1 

2  K  y 
 

 

 
 Ky  . The proposed approach is based on the readily seen 

 
2 
 1  2 

fact that quantity   ŷ   ŷ   1  K  has mean 0 and variance Var  ŷ . 
 

Suppose now we have g  1,..., G 
 

independent domains and measurements y 
g  

,
 

 g  N  
g  n 

 
 

 g   g   g   g 

ŷ 
n 

g   y j 
j 1 

for domain g and v  Var  ŷ  the true variance of ŷ . 

 

Let ŷ g 
be a replicate estimate for domain g . For example, this can be a replicate from 

the setup similar to balanced half sample replication (BHS). Again, let K denote the 

Fay’s factor that is often used with the BHS method (Judkins 1990; Rao and Shao 1999.) 

We focus on this setup because this is the way variances are estimated in the Current 
Employment Statistics (CES) survey that motivated the research. Alternatively, the setup 
may be similar to the one used in the bootstrap scheme as described in Rao et al. (1992). 

Consider a set of G independent observations 

z 
g  ŷ g   ŷ g 

    . (1) 
1 K 



 

 

 

~ N 0, v 

g 1 

G 

For a large enough sample in a domain, we usually assume normality of ŷ  g 
when 

constructing confidence intervals. Thus, the same normality assumption holds for z 
g  

:
 

z
 g  

ind 
 g  


. (2) 

 

Next, suppose a set of proposed estimates  g 


of variances vg is available from an 

earlier study. To evaluate g based on a group of domains g  1,..., G , we compute the 

percentage of times interval t , t  contains 
 

z 
g 

, (3) 
 

where t is a quantile of the normal distribution. The nominal coverage is 

t   t   1 2 , where  is the standard normal distribution function. 

 

Remark: In the case of sampling without replacement, when forming z 
g 


we need to 

account for the fact that the variance under evaluation accounts for a non-negligible 

sampling fraction. 

3. The adjustment procedure 

If the coverage of the confidence intervals described in the previous section deviates from 

the nominal level, we may think of some sort of adjustment to the set of proposed 

variances g . In this Section, we consider several alternatives. 

3.1 A simple adjustment 

Let us assume that Var zg    g , where factor  is not domain-specific (Model 1). 

An unbiased estimate of  can be found by solving equation 

1 G z 
g 2 

G 
 

  g    1 , (4) 

which gives us 

1  G    z 
g 2 

  ̂   g   . (5) 
g 1 

 

Note: The normality of z 
g 


is not required here. 
 

3.2 The model when the direct estimates of variances are available 

In this subsection, we assume that the direct estimates of variances, denoted 

 
v~g ,  are 

available. In addition, we assume the design variance V g of these estimates is known. 

As discussed in the introduction, such a favorable setup is not expected in real time. 

Nevertheless, we considered this ideal situation and the corresponding estimator in our 

simulation study of Section 4. 

  g 



 

 

 

~  ,

G 

~  

In situations where the current year’s direct estimates are not available, we would view 

the procedure as follows. The development in this subsection can be considered as an 

updating step for an “old” set of functions g based on the most recent available set of 

direct variance estimates (usually, the year immediately preceding the current one). The 

use of historical g ’s (rather than modeling “from the scratch”, i.e., from the updated 

set of the auxiliary variables) aims at ensuring continuity of the GVF. This step can be 

followed by the contemporaneous evaluation and adjustment based on the 

described in earlier subsections. 

Model 2: 

zg ’s, as 

v~ g  |   g  
ind

 

  
g  

ind 
2
 

  g   g  ,V  
g 

. 

, (6) 

(7) 

In reality, the variance V g is not known; for this research, we approximated it by using 

simulations based on repeated sampling from past years. 

The marginal expectation of  v~g    g  
is

 

 v~ g        v~ g 




 g      g  
E 

  g   
 E E 

  g  
|   

 E 

  

  . (8) 

      

 1  G    v~ g   


Hence,  E  G 


  
g     

and an unbiased estimate of  can be found as 



1   G  v~ 
g 





g 1 

  ̂    g  . (9) 
g 1 

 

Our goal is to find a set of optimal weights w g C 
 

that minimize the mean squared error 

of the following composite estimator (superscript C stands for “Composite”): 

v̂ g C   
 1 w g C  v̂ g   w g C 

v~  g  , 

 
 

(10) 

where component  v̂g   is the estimate of variance based on the adjustment factor given by 

(9): 

v̂g   ̂ g  . (11) 

The optimal weights are expressed in terms of the mean squared errors of the estimators 

involved in the composite form (10) (see Rao 2003, pp. 57-58). In our case, the weights 

are 
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G G 

G 
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w g C 

 E  v̂ g   v g  
2
 

E  v̂ g   v g  
2  

 V  
g 



. (12) 

To find an estimate of the mean squared error of  v̂g  , we have 

E  v̂g   vg  
2  

  g 2E ̂    g  
2 

. (13) 

Note that 

E ̂    
g  

2  

 E ̂    
2  

 E  g  
  

2  

 2E ̂      g  
   . 

 
(14) 

Let us consider each term of the above expression: 

 

(a) 

 
E ̂    

2  
 Var ̂    1 


Var v~g  




 1 

 V  

g 


. (15) 

G
2 

g 1   g 2 
 

G2 
g 1   g 2 

(b)   E  g    
2  

 Var  g     2 , (16) 

and thus  2 can be estimated as 

̂ 2  
 1 

G

 

g 1 

̂ g   ̂ 
2  

, (17) 

where ̂ g   v~g  g 
and ˆ is defined by (9). 

(c) The covariance term is zero: 

E ̂      
g  
    E ̂     E  g  

   |    0 

 

 
(18) 

Weights  ŵgC 
 

are obtained by using (15), (17), and (18) to estimate (14). 

4. Simulation using repeated samples from real population 

In this Section, we describe the simulation experiment that we carried out in order to 

assess the usefulness of the proposed approach. We focus on the monthly estimation of 

employment from the Current Employment Statistics (CES) survey of the U.S. Bureau of 

Labor Statistics (BLS). 

For the simulation, we use the population of businesses as reflected in the Quarterly 

Census of Employment and Wages (QCEW) dataset. The QCEW dataset closely matches 

the target population of the CES survey, and also provides the sampling frame and 

benchmark values for the CES. The QCEW contains administrative data for all 

businesses covered by the Unemployment Insurance program. It is released quarterly, 

several months after the publication of the corresponding CES estimates (which are 

designed to give more timely information). Although there are some differences between 

the available historical QCEW employment data and the population that was actually 

targeted by CES, these differences are considered minor and disregarded for the purposes 

of this simulation study. 



 

 

 

Ŷ  g 

m 

We start with a brief overview of the CES sampling design and estimation. Next, we 

describe the simulation setup and present results followed by discussion. 

4.1 CES sampling design and variance estimation 

A stratified sample of unemployment insurance (UI) accounts is selected from the QCEW 

based frame. Strata are defined by the 50 States and DC, industrial supersectors (high 

level industrial aggregations based on North American Industry Classification System, 

NAICS), and employment size classes of UI accounts. The size class is determined based 

on the over-the-year maximum of the monthly total employment for each UI account. 

Sample allocation is determined to minimize, for a given cost, the variance of the over- 

the-month employment change at the State level. Within strata, Metropolitan Statistical 

Areas (MSA) define an additional, “implicit” level of stratification; units are selected 

systematically to ensure that the MSA sample sizes are proportional to the number of 

population units in MSAs. The sample is selected annually using the first quarter QCEW- 

based frame and is updated with the sample of new businesses (“births”) when the third 

quarter of QCEW becomes available. 

Establishments under a UI account may belong to different industries. The sampling 

procedure is based on the dominant industrial supersector ascribed to the UI account, 

while estimation is done using the establishment-based industry definition. 

In this paper, we consider variances at month m in domain g for the estimate of the 

relative over-the-month change in employment level. These variances can be sufficiently 

approximated by the variance of the ratio of two survey weighted sums: 

ˆ g  Ŷ  g 

Rm1,m   
   m     , 

m1 

(19) 

m  jS  
g   

 

j j,m m1 

 jS  
g   

 

j j,m1 

 

j ,m j ,m1 
where Ŷ  g    w y and 

m 
Ŷ  g    w y ; 

m 
y and y are 

employment levels reported by a unit j at months m and m 1 and wj is its sampling 

weight; 

months. 

 g  
m 

is a subset of units in the domain that report positive employment in both 

CES uses a replication-based Repeatedly Grouped Balanced Half Samples (RGBHS) 

method for variance estimation. The method is an extension of the Balanced Half 

Samples (BHS) methodology for the case where there are more than two sampled clusters 

per stratum (Rao and Shao 1996). In addition, instead of using a half of the sample for 

each replicate estimate, CES employs Fay’s method (Judkins 1990), thus using the whole 

sample with perturbed weights (the perturbation factor being 0.5). 

4.2 The simulation setup 

From the sampling frame constructed based on the third quarter of 2009 QCEW data, we 

selected 1,000 samples using the same sampling design used in CES. From each sample, 

we obtained estimates ˆ g  
m1,m at the State supersector level for 12 months from October 

2010 through September 2011. 

For each of these estimates, we computed estimates of their variances, 

 
v~g . During the 

actual production of estimates, the variances are computed using replication. For this 

simulation exercise, however, we employed a Taylor linearization formula. This provides 

S 
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m1,m 

u 
h 

 

0 

T 


T 

Ym1 

h1  h  h 


results close to the replication outcome at a far cheaper computational cost, which is 

helpful for large-scale simulations. 

Let  u  y  R̂
 g  

y , (20) 
j,m j ,m m1,m j ,m1 

The Taylor linearization based variance estimate of  R̂
 g  

is 

~ g   
1 

 

 

H  
 

n  N 2  1 nh
 

 
 

 
2 



m 

 ̂  g  
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1      h 

 h 



N n n 
1 
ul ,m uh,m  , (21) 

where h  1,..., H are strata; nh and Nh are respectively the numbers of sample and 

population UI accounts in stratum  h ;  ul ,m   u j ,m I jg

jl    

is the cluster l total for 

domain g ; I jg is the indicator that establishment j belongs to domain g ; uh,m is the 

stratum average of ul ,m : 
1 

h,m  

h 

n 

ul ,m  . 
l 1 

For this simulation, the set of domains is defined as a set of States inside a given 

supersector. Since we have 13 supersectors, there are 13 different sets of domains in a 

given month. For each set, consider the following linear model: 

 g 




 g   r 
g  




 g 

log v   0    1   log T0   2 log 

  g   

, (22) 
 

where 
 

 g 





1  

12 

 

 
~ g 

 T0 

v  vm 

12 m1 

, (23) 

r 
g 

is the over-the-year average number of reporting UI accounts in the domain; T g is 

the domain true population level at the benchmark month of a given year. (Alternatively, 

we could have taken the month specific variances in place of the over-the-year averages. 

The current version works sufficiently well and is also convenient for demonstration of 

how the proposed adjustment works when a particular month deviates from the average.) 

We fit the above model using a robust linear regression function available in R software 

and obtain estimates of parameters for each repeated sample. The set of GVF functions is 

defined as 

 g 

 
ˆ ˆ 

 g   ̂  r 
g  




̂ 2 


 exp 0  1 logT0  2 log 
  g   

 
2 
 , (24) 



where ̂ 2  is the model MSE. 

  0  

We select 1000 samples from the third quarter of the 2010 frame, which is the frame used 

in the following year. The GVF set for this year is defined as 

 

 g 




 exp 

̂    ̂  log T g   ̂ 
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
 * 

 
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s1 g 1 m,s m m,s m,s  

where subscript “*” in 
 g 

* and T g signifies that the information is specific to the new 

year; the model parameters, however, are estimated using the “old” year sample. 

Next, we obtain direct variance estimates using this “new” year sample. Using repeated 

samples, we obtain the empirical variances of the estimates of variances and use them as 

V  
g 

of (6) in Model 2. Thus we obtain the set of composite estimates 

v̂ g C   
 1 w g   ̂     g   w g v~  g  , 

 

(26) 

 

where w
 g 


̂ 2  g 2 

m    * . 
V  

g   ̂ 2  g 2 

m m * 

For each month m , we form 

 

 g  
m 

variables based on the “new” year and compute 

adjustment for GVF  g using ̂m of (5), as described in Section 3.1. Using zg  , we 

also compute coverages, as described in Section 2, for each of the alternative variance 

estimators. 

We evaluate the results for nine months of the “new” year. The results are summarized in 

the next subsection. 

4.3 Simulation results 

Below is the notation summary of the variance estimators considered in the 

simulation: 
 

ˆ g  
m 

v~ g 

 g  
m12 

 g  
m12 

v  
g 

 g 

̂   g 



Estimator 

Direct 

Empirical, m-12 

Direct, m-12 

Direct, last year average 

Unadjusted GVF 

Adjusted GVF 
m   * 

v̂ g C 
Composite 

 
 

 
 

Tables 1-3 show properties of several estimators of variances, based on the 

simulation results for a single month in the “current” year (January of 2012.) 

Let 

value 

 g  
m,s  

 g  
m 

denote a point estimator, based on simulation run  s , of the true population  

for domain g at month m . The true coverage of Table 1 is calculated as 

10001 


1000 

G1 


G 

I  ŷ g    y  g   1.96 Ê
 g   ,   where Ê g  is the variance 

r 

z 

E 

v 

y 

ŷ 



 

 

 

s1 g 1 m,s m,s 

g 1 m s1 m,s 

estimate based on simulation run s . Similarly, the z-estimated coverage is calculated 

as 1000
1 

1000 
G

1 
G

 I  z g   1.96 Ê  g  . 

In Table 1, we observe that although the past year empirical variances provide close to 

nominal average coverage, the corresponding direct variance estimates give low 

coverage. Undercoverage is also observed for the confidence intervals which are based  

on the averaged (across 12 months) direct variance estimates, as well as for the GVF 

before the adjustment. The confidence intervals based on the adjusted GVF and the 

composite estimator provide satisfactory average coverage. 

Table 1. Coverage properties of confidence intervals, for 95% nominal. 

(“T” denotes true coverage over the repeated samples; “Z” denotes z-estimated coverage 

averaged over repeated samples.) 
 

Industry  10 20 31 32 41 42 43 50 55 60 65 70 80 

Direct T 90 95 94 93 94 94 93 91 94 94 95 95 95 

 Z 87 94 93 91 95 94 91 90 95 92 93 92 95 

Empirical, T 94 96 96 94 95 95 95 95 94 95 95 95 95 

m-12 Z 89 95 94 90 95 94 92 94 95 94 93 93 94 

Direct, m-12 T 83 93 92 89 89 93 89 83 89 91 92 94 92 

 Z 79 92 91 86 89 92 86 83 89 90 89 91 91 

Direct, last T 84 90 90 87 85 86 89 84 85 85 89 94 91 

year average 
Z 80 89 87 84 85 83 86 83 85 82 87 91 90 

Unadjusted T 88 91 91 88 86 87 91 89 87 85 89 94 91 

GVF 
Z 85 90 88 87 86 84 89 87 88 83 87 92 91 

Adjusted GVF T 94 95 95 93 93 95 95 93 93 94 95 96 94 

Composite T 93 95 95 94 95 95 95 93 94 94 95 95 95 

 

Table 2 shows the mean of respective variances relative to the mean of the direct variance 

estimates, computed as G1 
G , where E  g    10001 

1000 
Ê g  is the 

empirical mean for variance estimator ˆ g  
m and 

 g  
m 

is the empirical mean of the direct 

variance estimator (which coincides with the empirical variance, since the direct variance 

estimator is unbiased.) 

In most industries, the last year averaged direct variance estimates were somewhat lower 

than the current year variances. As expected, this property of the mean variance estimates 

translates into the lower mean of the unadjusted GVF. The lower mean may explain the 

cases of undercoverage shown in Table 1. The means of the adjusted GVF and the 

composite estimator are close to the current year's variance. 

On the other hand, in almost all industries, true (empirical) variances for the same month 

of the past year are slightly higher than the current year variances. The same is true for 

the past year direct variance estimates. Thus, undercoverage of the past year direct 

E g  v 
g 

m m 

E v 



 

 

 


1000 

s 1 E  E ˆ  g  g 

m,s m 
2 

999 
g 1 m m m 

variances cannot be explained by the lower mean. Discussion of the reasons for 

undercoverage in this case is given in Section 4.4 below. 

 

 
Table 2. Mean of respective estimates of variances relative to the mean of the direct 

estimates, averaged across States 

 

 

 

 
m-12 

 

 

year average 

GVF 

 

 

 

 

G1 
G sd  Ê  g   sd v~g   , where  sd  Ê  g    . 

The GVF-based and composite estimators are substantially less variable than the direct 

estimator. 

 
 

Table 3. Variability of respective estimates of variances relative to the variability of the 

direct estimates, averaged across States 

 

 

 

 
m-12 

 

 

year average 

GVF 

GVF 

Industry 10 20 31 32 41 42 43 50 55 60 65 70 80 

Direct 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Empirical, 
1.1

 
1.1 1.1 1.0 1.2 1.1 1.1 1.2 1.1 1.1 1.1 1.1 1.0 

Direct, m-12 1.0 1.1 1.1 0.9 1.2 1.1 1.1 1.0 1.1 1.1 1.1 1.1 1.0 

Direct, last 
0.8

 
0.9 0.9 0.7 0.7 0.8 0.9 0.9 0.7 0.8 0.8 1.0 1.0 

Unadjusted 
0.8

 
0.8 0.8 0.7 0.6 0.8 0.8 0.6 0.7 0.7 0.8 1.0 0.9 

Adjusted GVF 1.0 1.0 1.0 0.9 0.9 1.1 1.0 0.7 0.9 1.0 1.0 1.1 1.0 

Composite 0.9 1.0 1.0 0.9 1.0 1.0 1.0 0.9 0.9 1.0 1.0 1.0 1.0 

 
 

Table 3 shows relative variability of the variance estimators, as 

 

Industry 10 20 31 32 41 42 43 50 55 60 65 70 80 

Direct 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Empirical, 
0.0

 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Direct, m-12 1.3 2.5 2.4 1.3 1.8 1.4 4.4 3.7 2.3 3.5 2.0 4.1 1.7 

Direct, last 
0.6

 
1.9 0.8 0.6 0.4 0.7 1.0 1.3 0.8 1.1 0.6 2.4 1.9 

Unadjusted 
0.4

 
0.1 0.1 0.2 0.0 0.1 0.2 0.2 0.1 0.1 0.1 0.2 0.1 

Adjusted 
0.8

 
0.6 0.6 0.6 0.2 0.6 0.6 0.4 0.4 0.4 0.7 1.0 0.5 

Composite 0.9 0.6 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.7 0.8 0.8 0.6 

 



 

 

 

As noted above, Tables 1-3 display the average coverage across all domains in each 

industry for a particular month. Table 4 displays the distribution of coverage across 

domains and months. It shows the number of cases where the observed coverage is below 

90% (for 95% nominal). For the true (empirical) variances, there are only a few low- 

coverage cases. However, for the variances that are based exclusively on the past data,  

we observe a large percentage of such cases. This effect is observed even with the true 

(empirical) variance of the same month of the past year. Estimators using current year 

information, such as the direct variance estimator and the composite estimator have 

significantly fewer low coverage cases. 

Table 4. Number of domains with CI coverage lower than 90% (95% nominal) 
 

Industry Direct Empirical, Adjusted Composite Empirical Out of 

  m-12 GVF    

10 148 76 112 86 3 396 

20 7 39 35 15 1 396 

31 29 50 74 30 0 432 

32 54 84 70 46 0 432 

41 20 36 63 22 0 459 

42 8 42 40 13 0 459 

43 32 65 71 32 1 459 

50 118 86 86 84 3 459 

55 11 61 89 21 0 459 

60 17 43 47 21 0 459 

65 21 60 52 20 0 459 

70 21 38 20 14 0 459 

80 8 34 39 10 0 450 

 

An alternative visualization the distribution of coverage is shown in Figure 1. The plot 

shows the distribution of coverage across domains in industry 42 (Retail Trade.) A point 

on the plot corresponds to a States at a given month (out of the 9 months considered in 

the simulation.) The direct variance estimator coverage (black dots) is distributed around 

the 95% line and is mostly above the 90% reference line. Similarly, the composite 

estimator coverage (blue squares) is distributed around the 95 % line, with only 13 cases 

found below the 90% line. The adjusted GVF (red triangles), however, has 40 cases 

below the 90% coverage. Similarly, a high percentage of undercoverage, 42 cases below 

90%, is observed when the true (empirical) variance from the same month of the past 

year (green diamonds) is applied to the current year. 



 

 

 

j 1 j 

j 1 j 

 

 

 
 

 
 

Figure 1. Confidence interval coverage in Industry 42 (Retail Trade) 

4.4 Discussion 

As noted in Section 4.3, confidence intervals that are based on the past year direct 

variance estimator provide low average coverage, even when they are slightly longer on 

average (Tables 1 and 2.) We conjecture that this effect is due to the properties of the 

employment data distribution. The distribution of the monthly employment change is a 

long-tailed distribution, prone to the appearance of extreme observations. The direct 

variance estimates depend on the realized sample. Since extreme observations occur 

randomly and generally may appear in one domain in the past but in a different domain in 

the current year (i.e., a different realized set of extreme observations across domains and 

years), the past year direct variance estimates are not suitable for the current year. 

To demonstrate the phenomenon, we set up the following simple simulation. 

Observations are generated from a contaminated normal distribution 

y
 g  

iid 
2

 

j ~ 0.03N (0,1)  0.97N (0,10 ), 

for a set of G  50 domains; g  1,...,G ; j  1,..., n. 

For each domain, we compute the mean, y  
g    n1 

n y 
g  , and the direct sample 

variance of the mean,  v̂  y g    n1 n 1
1 


n      yg   y g  

2  

. We then randomly re- 

assign the variances to the domains. We repeat this procedure 1,000 times and compute 

the percent of the confidence interval coverage for each version of the variances. The 

result is given in Table 5. The confidence intervals based on the direct and true variances 



 

 

 

g 1 

have approximately nominal coverage. However, the confidence intervals based on the 

reshuffled variances (standing for the “past year variance” situation) give low coverage. 
 

Table 5. Average CI coverage in the case of the contaminated normal distribution 

Ave coverage (95% nominal) 

n Direct True Reshuffled 

30 96 94 83 

50 96 94 85 

100 96 95 89 

Next, we attempt to explain the case of the observed undercoverage in a large number of 

domains as exhibited in Table 4. Our simulations of Section 4 use a fixed population for 

each year. This means that the number of extreme observations falling in each domain is 

also fixed for a particular year. However, in subsequent years the extreme observations 

may be randomly redistributed across the domains. It is generally not possible to predict 

the pattern of “reassignment” of extreme observations to domains in a new year. If the 

estimates of variances are based solely on the past data, domains where the percentage of 

extreme observations is higher in the current year are at risk of having a low coverage. 

Note that even the true (empirical) variance from the past year has this same property. 

To illustrate this, we use the same simulation set up as describe above, in conjunction 

with Table 5. The GVF in this case is simply the average of the direct variance estimates, 

  G1
G

 vˆg . Although we repeat the simulations 1,000 times, we keep the number 

of extreme observations fixed in each of the G domains. The result is presented in Table 

6. For the direct variance estimator, there are no domains where the coverage is below 

90%. However, the true variance and the GVF, have a substantial number of domains 

having the low coverage. On average, on the other hand, all the estimators provide the 

nominal coverage. 

Table 6. Average CI coverage and percentage of domains with low coverage, 

in the case of the contaminated normal distribution 
 

Ave coverage (95% nominal) Percent of groups with coverage < 90% 

N Direct True GVF Direct True GVF 

30 96 94 94 0 21 24 

50 96 94 94 0 18 18 

100 96 95 95 0 17 17 

Summary 

We proposed a method of evaluation and adjustment of a previously designed 

GVF using the pivotal quantity obtained from the current sample data. The GVF 

based variances tend to be more stable than the direct variance estimates, and they 

also have the advantage of being available before the actual estimation. However, 

the GVF estimates may be biased. The bias can be evaluated using the proposed 

pivotal quantity method. Under certain assumptions, it is also possible to adjust 

the variance estimates to reduce the bias. 

If the data distribution is prone to extreme observations, direct variance estimates 

are correlated with the point estimates. In such a case, even if the true variance is 



 

 

 

the same in the past and current years, the confidence intervals based on the past 

year direct variance estimates are not applicable for the current year, as they 

would result in low coverage. 

If extreme observations appear randomly across domains, true variances from the 

past year work on average, over all domains; however, simulations based on 

repeated samples from the fixed finite population for a given year would produce 

a number of domains with the low confidence interval coverage. The same 

phenomenon is also observed with the GVF estimates. This effect creates 

difficulties evaluating the estimates: the simulation results neither produce a 

definitive reassurance of the quality of the variance estimator nor indicate a 

problem. 

The estimates based on the composite estimator represent a compromise between 

the unbiased direct and stable GVF-based estimates. The downside of the 

composite estimator is that it is not available before the actual estimation process. 

It also assumes knowledge of the variance of the direct variance estimates. 

Consider the case where direct variance estimates are available for the year of 

interest. As noted before, in the long-tailed distribution these variance estimates 

are correlated with the point estimates. A manifestation of this is wider  

confidence intervals when extreme observations are present in the sample. On  

one hand, the wider intervals have a greater chance of covering the true value. On 

the other hand, they mask outliers in the point estimates; in this sense, the direct 

variance estimates hardly provide a satisfactory measure of quality of the point 

estimates, even though they are unbiased. 
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