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Abstract 

The Quarterly Census of Employment and Wages (QCEW) program of the Bureau of 

Labor Statistics (BLS) publishes tabulations of monthly employment, quarterly wages, 

and number of establishments by industry and geography. In accordance with BLS 

policy, data provided to the Bureau in confidence should be used only for statistical 

purposes. In particular, the publication of data collected from BLS surveys should not 

lead to the identification of cooperating respondents. The BLS has been concerned about 

the current cell suppression method used with the QCEW. To address such concerns, 

BLS has conducted research about the random noise method as an alternative method. 

This paper provides an assessment of the BLS research to date. The paper begins with a 

review of the current cell suppression method in Section 2, focusing on the major 

disadvantages of the current method. Section 3 reviews the random noise model, its 

current application to QCEW at BLS, and the results to date. Section 4 provides an 

assessment of the properties of the BLS noise model under certain distributional 

assumptions of the noise factors. Finally, Section 5 provides some concluding remarks. 
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1. Introduction

The Quarterly Census of Employment and Wages (QCEW) program of the Bureau of 

Labor Statistics (BLS) publishes tabulations of monthly employment levels, quarterly 

wages (total and average weekly), and number of establishments by industry and 

geography. In accordance with BLS policy, data provided to the Bureau in confidence 

should be used only for specified statistical purposes. In particular, the publication of data 

collected from BLS surveys should not lead to the identification of cooperating 

respondents. The BLS has been concerned for some time about the current cell 

suppression method used with the QCEW program. To address such concerns, BLS has 

conducted research about the random noise method as an alternative method for the 

QCEW. This report provides an assessment of the BLS research to date. The report 

begins with a review of the current cell suppression method in Section 2, focusing on the 

major disadvantages of the current method. Section 3 reviews the random noise model, 

its current application to QCEW at BLS, and the results to date. Section 4 provides an 

assessment of the BLS noise model under certain distributional assumptions of the noise 

factors, including an investigation of the effect of stacking two multiplicative noise 

factors. Finally, Section 5 provides some concluding remarks. 



2. The Cell Suppression Method

2.1 The Current Cell Suppression Method 
QCEW releases tabular data on a quarterly basis, where tabulation is done by industry 

and geography. Industry detail is at the 6-digit North American Industry Classification 

System (NAICS) level, which involves over 1,200 detailed industries. Meanwhile, higher 

levels of industry aggregation are also used for tabulations. Overall, there are a total of 

nearly 2,400 industries at various levels of aggregation. Geographic detail is at the 

county, Metropolitan Statistical Area (MSA), state, and national levels, for a total of 

nearly 4,000 areas. In addition to industry and geography, ownership and size of the 

establishment are also used in tabulations. In terms of data types, QCEW releases data on 

establishment count, total wages, taxable wages, contributions, and average weekly 

wages. Therefore, for a particular data release, a QCEW cell is defined by a particular 

data type for a particular combination of industry, area, ownership, and size. Overall, 

there are approximately 3.6 million non-empty QCEW cells for each data type. 

Current QCEW data release is based on the cell suppression method to reduce disclosure 

risk. The cell suppression method involves two phases: primary suppression and 

secondary suppression. The first phase assesses the sensitivity of the data in each cell, 

based on the number of establishments in the cell and the dominance of the larger 

establishments in the cell. This is done using a “p-percent” rule, which effectively tests 

whether there are only 1 or 2 dominant establishments for a particular sensitive variable 

(e.g., total wages) within a cell. Sensitive cells that present significant disclosure risks are 

suppressed.  

2.2 Disadvantages of the Cell Suppression Method 
The most obvious disadvantage of the cell suppression method is that it has resulted in a 

large amount of data being suppressed, compromising the quality and utility of the 

QCEW data products. In particular, this method suppresses much information that is not 

at risk for disclosure. Any cell that is used as a complementary suppression represents 

data that could have been published if there were other ways of protecting the sensitive 

cells. QCEW data are in great demand, not only for the current data products, but also in 

greater detail. For example, tabulations for sub-county areas will be very useful for policy 

studies involving legislative districts, cities, central business districts, and so on. 

However, data publication for more detailed geographic areas will be subjected to even 

higher suppression rates under the current cell suppression method.  

The cell suppression method is also difficult to implement in practice, especially for a 

program like QCEW that releases a large amount of data on a regular basis. While 

determining primary suppression cells are relatively straightforward, the process of 

choosing complementary suppressions is very complicated and time consuming. 

Complementary suppressions must be performed separately for each data product, which 

means that the analysts must keep track of the suppression patterns among all tabulations. 

The current QCEW complementary suppression process adds two to three weeks to the 

data publication process.  

Finally, the cell suppression method may be of questionable adequacy by state-of-the-art 

standards. The techniques used by QCEW emulate the techniques that a user would do 



3. The Random Noise Method

In recent years, the random noise method has been gaining wider use in statistical 

agencies to protect respondent data from unintended disclosure. The QCEW program has 

been conducting research on the use of the random noise method as an alternative to the 

cell suppression method. 

3.1 The Original Noise Method 

The original random noise method was developed in the late 1990s by Tim Evans, Laura 

Zayatz, and John Slanta (Evans, Zayatz, and Slanta, 1998).  The so-called EZS noise 

method takes a micro approach to disclosure limitation: a multiplier, or noise factor, is 

applied at the unit level rather than at the cell level.  Under this method, a noise factor is 

applied to each unit prior to any tabulation, which guarantees that different tabulations, 

from the lowest to the highest level, are consistent.  Applying the EZS method to QCEW 

data, noise would be added to each establishment’s employment and wage data.  Each 

establishment would be assigned a different noise factor and each of its reported values is 

multiplied by this factor.  For example, noise factors of 1.1 or 0.9 would perturb the true 

value by 10% in either direction.  Multiplying, as opposed to adding, creates a 

perturbation proportional to the true value, which is one innovative aspect of the EZS 

approach.  The size of the perturbation depends on the magnitude of the original values 

(Cox and Dandekar, 2003; Strudler, Oh, and Scheuren, 1986).  Ten percent is used 

throughout the EZS literature.  

The motivation for the EZS method is that cells with a large number of establishments 

have a low risk of disclosure. If the number of establishments is large enough, the 

reported cell aggregate should be close to the actual value because the noise should 

roughly cancel out.  For sensitive cells, those with a small number of establishments or 

those dominated by a single establishment, the noise will not cancel out and hence the 

noisy aggregate will represent relatively larger perturbation. This will prevent users from 

being able to recover an individual respondent's true value from the published value (EZS 

1998). In theory, the effect of the added noise is only substantial in cells where 

confidentiality is at risk. 

Under the standard EZS method, the cell aggregate is unbiased since the expected value 

of the multiplicative noise factor is 1.  The variance of a cell aggregate may be studied by 

simulating several different factor assignments. Once the noise has been added, cells may 

be raked to the appropriate totals and tabulations can be carried out.  Even with raking, 

the simplicity of the EZS method is a significant advantage, especially compared to 

complementary cell suppression.  The cells have been protected and no suppressions are 

necessary. 

3.2 The QCEW  Noise Method 

manually for a small table. They take into account many dimensions and levels of 

aggregation and would be impossible to actually do manually. They are, however, 

potentially vulnerable to higher levels of mathematical attack. With sufficient computing 

power, a data attacker could feed all of the QCEW data into a program and solve for at 

least some of the sensitive cells. Therefore, even with extensive suppressions, the current 

method may not provide sufficient protection from sophisticated attacks. 



suppress the cell identifier), let’s define, ijE = Employment level of the jth establishment 

belonging to the ith company, ijTW =Total wage of the jth establishment belonging to the 

ith company, ij ij ijR TW E , Average wage of the jth establishment belonging to the ith 

company, 1,..., ij N , 
iN being the number of establishments belonging to the ith

company, 1,...,i C , C being the total number of companies in that particular cell. At the 

aggregate level (i.e., cell level), total employment is 
1 1

iNC

ij

i j

E E
 

 , total wage is 

1 1

iNC

ij

i j

TW TW
 

 , and hence, average wage is R TW E . For the QCEW program, BLS

publishes the employment statistics ( E ) on a monthly basis and the wage statistics on a 

quarterly basis. To publish the average wage on a quarterly basis, in the denominator of

R , BLS uses the average monthly employment level (i.e., average of the employment 

totals corresponding to three months of a quarter). 

Step1: Apply Noise to the Employment Variable 

To add noise to the employment variable, BLS assumes the model *

1 2 3ij ij i ij ijE E     , 

where 
1i is the random multiplicative noise at the company level (the same noise is used

for all the establishments belonging to the company), 2ij is the random multiplicative

noise at the establishment level, and 3ij is the random additive noise at the establishment

level. 

The original EZS method does not recommend any additive noise. An additive noise is 

considered for the QCEW employment level data because the values are reported as 

discrete whole numbers, and many of the employment values are small or even zero. 

Since no multiplicative noise factor can protect a value of zero, and only an extreme 

range of noise factors can protect values of one and two, BLS concluded that something 

other than or in addition to multiplicative noise was needed to protect the small values 

from disclosure. 

Another enhancement BLS made to the EZS method is to incorporate two multiplicative 

noise factors instead of one. One noise factor is at the company level and the other at the 

establishment level. The application of two noise factors serves two purposes. First, it 

helps to protect establishments within the same company. If only the company level noise 

factor were considered, different establishments in the same company would have the 

same base noise factor and one establishment could accurately estimate the true values 

for the other establishments in the same company, particularly for small cells. While one 

would generally expect that establishments in the same company might not need to 

protect their information from other establishments of that company, this might not 

always be the case.  This also has the advantage of protecting against outside attack.  If 

S

BLS has performed research on noise methodologies based on EZS, with some 

modifications. The EZS method by itself does not address the peculiarities in the QCEW 

data. Some enhancements were made to apply the idea behind the EZS method to the 

QCEW data. In this section, after introducing some notations, we describe the BLS noise 

model step by step with emphasis on the modifications of the EZS method. 

For a particular cell (cell is defined by industry and region, to avoid complication we 



total for the cell as * *

1 1

iNC

ij

i j

E E
 

 . 

Step2: Apply Noise to the Average Wage Variable 

To add noise to the average wage variable, BLS assumes the model *

1 2ij ij i ijR R e  , where 

1ie is the random multiplicative noise at the company level, and 2ij is the random

multiplicative noise at the establishment level. Again, the same noise factor is applied to 

all the establishments belonging to the company.  Note that the company level 

multiplicative noise factor (
1ie ) is different than what is considered for the employment 

variable (
1i ) but the same establishment level multiplicative noise ( 2ij ) is considered

for both variables. No additive noise is applied for the average wage variable. 

Step3: Apply Noise to the Total Wage Variable 

To add noise to the total wage variable, BLS proceeds as follows: 

   * * *

1 2 1 2 3

2

1 1 2 1 2 3

2

1 1 2 1 2 3

ij ij ij ij i ij ij i ij ij

ij ij i i ij ij i ij ij

ij i i ij ij i ij ij

TW R E R e E

R E e R e

TW e R e

   

   

   

    

 

 

After applying the above model, the fuzzy total wage for a particular cell is obtained as 

* *

1 1

iNC

ij

i j

TW TW
 

 . 

Step 4: Calculate Fuzzy Average Wage 

Once the fuzzy employment total and fuzzy wage total are obtained, BLS calculates the 

fuzzy average wage as *R = * *TW E .  

These four steps summarize the BLS base noise model for the QCEW data. The base 

model is further complicated by implementation details, which are still being explored by 

the NORC team. Not all data is being treated by the noise model. Wage and employment 

statistics of the Federal government, for example, aren’t protected because it is public 

information. Also, some rounding occurs in the employment data to yield integer 

employment values. Any effect caused by rounding has to be examined to ensure no 

unintended bias results. Another modification that BLS intends to incorporate into the 

base noise model is to retain noise factors for establishments (and companies) over time. 

A small percentage of establishments will take on new random noise factors on a rolling 

basis. But to preserve time series data, noise factors will remain attached to establishment 

for some number of quarterly releases. While this idea has not been implemented in BLS 

research to date, the desire is to allow real time series trends within aggregated cells to 

still be visible in the noise-treated data. 

an attacker were to obtain from other sources enough information about a single 

establishment that he could closely bracket the effective noise factor for that 

establishment, he would not be able to transfer that knowledge to tightly approximate the 

data for the other establishments of that company. Second, it helps to protect the 

company level data. If only the establishment level noise factor is used, the noise will 

tend to cancel out and the perturbations only at the establishment level will result in 

almost no perturbation at the company level, particularly for large companies consisting 

of many establishments. After applying this model, BLS obtains the fuzzy employment 



4. Assessment of the BLS Noise Model

4.1 Statistical Properties of the BLS Noise Model 

In this section, we investigate the bias and variance of the noise-treated totals 

under the BLS noise model, given certain distributional assumptions regarding the 

error terms. Although BLS did not consider exactly the same distributional 

assumptions for the error terms, they considered similar type of symmetric 

random noise terms for the QCEW data and hence the results will be similar. This 

is an effort to investigate the bias that BLS researchers noticed in their 

implementation of the noise model. 

Bias and Variance of Fuzzy Employment Total *E  

Let’s assume mixture normal distribution for the multiplicative noise factors and normal 

distribution for the additive noise factor. That is, we assume 

     2 2

1 1 11 1 1 12 1~ , 1 ,i N N       

3.3 Preliminary Results 

Although BLS researchers have considered a few ingenious modifications to the original 

EZS method, they are somewhat disappointed by the preliminary results of their noise 

research. They observed three stumbling blocks in their work which prevented them from 

going further.  

The first is that the noise model shifts high-level aggregates from the true values more 

than desired. The expectation is that, at high levels, noise would more or less cancel out 

so that the noise-treated estimates would be close to the original values for large cells. 

BLS observed that the difference between the noise-treated and original total is larger 

than desired. However, such difference is to be expected under the random noise method 

without post-noise treatment adjustments.   

Another problem encountered during BLS research is negative aggregates caused by the 

additive noise factor. There are establishments with very low, even zero, reported 

employment. With an additive noise centered on zero, it is possible to see negative 

employment in the treated data, and hence aggregates, especially with low-level 

aggregates. This is a violation of the data constraints imposed on the QCEW data. In their 

current implementation, BLS allowed the negative values in their research at the micro 

level, so as not to cause bias due to rounding up all negative values. However, at the cell 

level BLS plans to truncate the negative aggregate value at 0. This procedure, however, 

may not preserve the additive property that exists between lower level aggregates (6-digit 

industry code by county) and higher level aggregates (6-digit industry code by state).  

A third problem with the current implementation is bias. BLS researchers observed a 

systematic positive bias in the fuzzy totals after applying the noise model. The noise 

model, while complicated for some models, appears symmetric. But graphs of a few 

aggregates at high levels clearly show more positively affected cells than negatively 

affected ones. NORC investigated the source of this bias both theoretically and 

empirically, and the results of our investigation are discussed in Section 4. 



     2 2

2 2 21 2 2 22 2~ , 1 ,ij N N       

 2

3 ~ ,ij N s  ,  

where  2,N   denotes normal distribution with mean  and variance 2 (standard

deviation  ), 
1 and 

2 are the mixing parameters. We also assume that the error terms 

are independent of each other. For the multiplicative noise factors, a sensible assumption 

is to consider the mean values of normal distributions to be closer to 1 and in opposite 

directions (e.g., 
11 1.1   and 

12 0.9  ) and the mixing parameter (
1 ) to be 0.5 in order 

to be able to perturb 50% of the data in one direction and 50% in the other direction. The 

variance parameters should be small (e.g., 
1 0.02  ) to avoid extreme perturbation of 

the original values. For the additive noise factors, it makes sense to add noise

symmetrically about 0 (i.e., 0  ) to avoid bias in either direction. Again the value of 

the dispersion parameter should be small. For example, the value of 2s  will add noise 

lying between -4 and +4 to the true employment values in 95% of the cases. 

Under the above distributional assumptions, we obtain the expectation of *E as 

       *

1 11 1 12 2 21 2 22

1 1

1 1

1 1
i

i

NC

ij

i j

NC

ij

i j

E E E

E E

        
 

 

       

 





The last step is true when 
1 2 0.5   , 

11 12 2   , 
21 22 2   , and 0  . All 

these are reasonable assumptions, as discussed above. So, we conclude that the fuzzy 

employment total is an unbiased estimator of the true employment total.  

The variance of the fuzzy employment total *E is given by

         * 2 2

1 2 1 2

1 1

iNC

i ij i ij ij

i j

Var E Var Var Var Var E s   
 

    
  , 

where     
22

1 1 1 1 11 121iVar          and     
22

2 2 2 2 21 221ijVar          . 

The mathematical details are not presented here, but are available upon request. From the 

above expression, we observe that the greater the difference between the two mean 

parameters of the mixture normal distribution, the greater the variance of *E . We have 

noted earlier that as long as the sum of the two mean parameters is 2 (with mixing 

parameter being 0.5), *E is an unbiased estimator of E . To reduce the variance, we have 

to be careful about the choice of the mean parameters. For example, the choice of 

11 1.1  and 
12 0.9  is preferable to 

11 1.2  and 
12 0.8  if variance reduction is an 

issue (although both the choices lead to unbiased estimator, since
11 12 2   ).  

Another interesting point is worth mentioning. The expression  1   in the variance

terms above is maximum when 0.5  , and ironically that’s the value we recommend as 

mixing parameter in order to get an unbiased estimator (fuzzy totals). We think that’s a 

reasonable choice as our main focus is to find an unbiased estimator in order to reflect the 

true picture of the employment and wages. Also from the disclosure control perspective, 

it may sometimes be necessary to add variability to the fuzzy totals. So our choice of 

mixing parameter, corresponding to the mixture normal distribution, serves both the 

purposes. Even with the choice of 0.5  , variance reduction is possible (if that’s a 

criteria) by choosing the normal distribution means accordingly, as discussed above.  



Bias of Fuzzy Total Wages *TW

Under the same mixture normal distributional assumption for the multiplicative noise 

factors and normal distribution for the additive noise factor, the expectation of *TW is 

given by 

     

   

 

* * 2

1 1 2 1 2 3

1 1 1 1

2 3

1 1

2

1

1

i i

i

N NC C

ij ij i i ij ij i ij ij

i j i j

NC

ij ij ij

i j

ij

E TW E TW E TW e R e

TW Var R E

TW Var

   

 



   

 

  

   
 

  
 

 



The last two steps follow from the assumption of the mixing parameter being 0.5, the 

sum of the two normal means being 2, the mean of the additive normal noise being 0, and 

the independence of the noise factors. Therefore, *TW is not an unbiased estimator of 

TW . The positive bias arises because the same establishment level multiplicative noise 

factor ( 2ij ) is used for both employment ( E ) and average wage ( R ) variables.

The bias is zero only when  2ijVar   is zero, but that’s not realistic. In other words, the 

current BLS procedure would always incur a positive bias while estimating the total 

wages. The bias would disappear only if the establishment level multiplicative noise 

factors for the two variables are independent.  

Bias of Fuzzy Average Wage *R

The noise-treated average wage *R is a nonlinear estimator, being the ratio of two

estimators *TW  and *E . So to calculate the expectation of *R , we need to apply Taylor

series linearization technique. After some simplification, we find (details are available 

upon request), 

   *

2 1ijE R R Var   
 

. 

This approximation follows from the fact that *E is an unbiased estimator of E but *TW

is not an unbiased estimator of TW , with the amount of bias being  2ijTW Var  
 

. 

Therefore, the current BLS procedure would always incur a positive bias in estimating 

average wage as well. 

4.2 A Simulation Study 

To bolster the theoretical results discussed above, we performed a simulation study to 

evaluate the performance of the BLS noise model based on a small dataset containing 

variables similar to that of the QCEW data. Our dataset contains 75 establishments 

distributed over 25 companies with company size varying from 1 to 15. We divided the 

75 establishments into 15 cells with cell size ranging from 2 to 15. We then generated the 

employment level variable ( E ) using a gamma distribution with shape and scale 

parameters chosen to allow for a large variability. Specifically, we chose shape=0.5 and 

scale=75, which essentially generates values from a gamma distribution with mean 37.5 

and variance 2812.5. The total wage ( TW ) variable is also generated from a gamma 

distribution with mean and variance depending on E  values. In general, the greater the 

value of E , the greater the value of TW . Among the 15 cells, 9 are identified as 

sensitive cells. Out of the 9 sensitive cells, 6 are sensitive because these have only 2 

establishments per cell. The remaining 3 are sensitive based on the p-percent rule with 

respect to the total wage variable. We consider the 10% rule, which means that if the 



   

 

* *

* ,

Bias T E T T

Ratio E T T

 



where *T is any fuzzy total and T  is the corresponding true value. In our situation *T can 

be * * *, ,E TW R . The expectation is taken over the simulated draws. 

First we plot the bias and ratio for the employment totals. We arrange the cells by the size 

of the number of establishments in it. In other words, in the plot the first cell (in x-axis) is 

the smallest (of size 2) and the last cell (15
th
) is the largest (of size 15). From the bias plot 

we can see that the values are close to the zero line for all the cells and randomly 

distributed on the both sides of the zero line. Similar conclusion can be drawn from the 

ratio plot, and this time it is along the 1-line, as it should be. The plots support our 

theoretical finding that fuzzy employment total is an unbiased estimator of the true total. 

Table1. Fuzzy Employment Totals Along with 95% Confidence Intervals for 15 

Cells 
Cell No.Estb Sensitive True Total Fuzzy Total1 LCL* UCL Bias Ratio 
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combined total wage of a cell, after excluding the first and the second largest 

establishments (in terms of the employment size) is less than 10% of the largest 

establishments’ total wage, it should be treated as sensitive. Once the data is created, we 

consider it to be fixed and apply the noise model (step1-4) 10,000 times to generate 

simulated fuzzy values 10,000 times. As discussed earlier, we assumed a mixture normal 

distribution for the multiplicative noise factors and normal distribution for the additive 

noise factor.  

Simulation Results 

To evaluate the BLS noise model (along with our distributional assumptions regarding 
the noise factors), we define the following two summary statistics: 



Cell 2 2 Yes 205 205 141 279 -0.22 0.9990 

Cell 3 2 Yes 198 199 141 263 0.52 1.0026 

Cell 5 2 Yes 5 5 0 11 0.06 1.0130 

Cell 8 2 Yes 16 16 8 25 0.07 1.0042 

Cell 11 2 Yes 15 15 7 24 -0.02 0.9985 

Cell 14 2 Yes 59 59 39 81 0.15 1.0026 

Cell 9 3 Yes 91 91 62 123 -0.11 0.9988 

Cell 7 4 No 177 178 125 236 0.73 1.0041 

Cell 15 4 Yes 112 112 77 151 0.25 1.0023 

Cell 1 5 No 23 23 12 34 0.01 1.0004 

Cell 13 5 No 97 97 67 130 0.22 1.0022 

Cell 4 6 Yes 249 249 189 316 -0.33 0.9987 

Cell 12 9 No 435 436 326 555 0.55 1.0013 

Cell 10 12 No 445 444 338 562 -0.6 0.9987 

Cell 6 15 No 431 430 324 547 -0.82 0.9981 

1
 Fuzzy Totals are the mean of the 10,000 simulated fuzzy totals. 

*Lower Confidence Limit. LCL and UCL are the 2.5% and 97.5% quantile.

Next, we plot the bias and ratio for the total wage variable. We see that almost all the bias 

values are plotted above the zero line and almost all the ratio values are above the 1-line. 

This is consistent with our theoretical result that suggests an upward bias in the estimates 

of total wage.

Table2. Fuzzy Total Wages Along with 95% Confidence Intervals for 15 Cells 

Cell No.Estb Sensitive True Total Fuzzy Total1 LCL* UCL Bias Ratio 
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Cell 2 2 Yes 13499693 13607172 7508626 22334648 107479 1.0080 

Cell 3 2 Yes 115968 117412 68510 184531 1444 1.0125 

Cell 5 2 Yes 197 202 0 444 5 1.0240 

Cell 8 2 Yes 24 18 0 54 -6 0.7388 

Cell 11 2 Yes 1361 1355 625 2342 -6 0.9954 

Cell 14 2 Yes 8934 9047 4895 14861 113 1.0127 

Cell 9 3 Yes 79567 80192 45364 128398 625 1.0079 

Cell 7 4 No 164767 167233 95466 265013 2466 1.0150 

Cell 15 4 Yes 5210 5280 3003 8358 70 1.0135 

Cell 1 5 No 2563 2575 1165 4321 12 1.0045 

Cell 13 5 No 14222 14428 7566 23810 206 1.0145 

Cell 4 6 Yes 2223472 2235665 1255797 3651851 12193 1.0055 

Cell 12 9 No 314404 319240 192914 490878 4836 1.0154 

Cell 10 12 No 974343 982138 645270 1421167 7794 1.0080 

Cell 6 15 No 611458 615997 350349 990195 4538 1.0074 

1
 Fuzzy Totals are the mean of the 10,000 simulated fuzzy totals. 

*Lower Confidence Limit. LCL and UCL are the 2.5% and 97.5% quantiles.

On the plot for the average wage variable, we notice a similar upward bias although it’s 

not as dramatic as it is for total wages. 

Table3. Fuzzy Average Wage Along with 95% Confidence Intervals for 15 Cells 

CellID No.Estb Sensitive True Fuzzy LCL UCL Bias Ratio 
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Cell 2 2 Yes 65852.2 65763.1 51011.4 82479.4 -89.06 0.9986 

Cell 3 2 Yes 585.7 593.5 372.4 910.8 7.76 1.0132 

Cell 5 2 Yes 39.4 37.5 0 51.9 -1.91 0.9516 

Cell 8 2 Yes 1.5 1 0 2.8 -0.5 0.6746 

Cell 11 2 Yes 90.8 91.3 62.8 129.8 0.58 1.0063 

Cell 14 2 Yes 151.4 151.6 114.1 194.6 0.17 1.0011 

Cell 9 3 Yes 874.4 877.2 678 1097.3 2.83 1.0032 

Cell 7 4 No 930.9 937.9 691.9 1225.4 7 1.0075 

Cell 15 4 Yes 46.5 46.8 36.4 58.3 0.33 1.0070 

Cell 1 5 No 111.4 112.7 68.1 170.9 1.26 1.0113 

Cell 13 5 No 146.6 148.3 98.4 211.5 1.71 1.0117 

Cell 4 6 Yes 8929.6 8862 5960.6 12381.2 -67.6 0.9924 

Cell 12 9 No 722.8 735.3 461 1116.6 12.56 1.0174 

Cell 10 12 No 2189.5 2199.7 1740 2737.8 10.14 1.0046 

Cell 6 15 No 1418.7 1421.9 1001.8 1923.6 3.17 1.0022 

An Alternative to Remove Bias in Total Wage and Average Wage Estimates  

To remove the upward bias in the noise-treated total wages and average wages, we could 

use two different multiplicative noise factors at the establishment level for employment (

E ) and average wage ( R ). After applying two independent multiplicative noise factors 

for two variables in our simulation, we obtained the following results. 

These plots show that the fuzzy totals are unbiased when the establishment level noise 

factors are different for employment level and average wage variable.   
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5. Concluding Remarks

We agree that the original EZS noise model cannot be used directly to protect the QCEW 

data without significant modifications. We commend BLS for its creative application of 

the EZS model to the QCEW data. Instead of a single multiplicative noise factor, BLS 

applied three noise factors: a company level multiplicative noise factor, an establishment 

level multiplicative noise factor, and an additive noise factor at the establishment level. 

These factors are designed to protect company level data, establishments within the same 

company, and establishments with very small number of employees. To avoid disclosure 

because of the mathematical relationship between the variables, BLS applied different 

noise factors for these variables. To preserve the validity of time series analysis, BLS 

proposed to use the same factor over time. In addition, BLS has considered further 

enhancements, such as considering alternative distributions for the noise factors, 

alternating the direction of the noise factors, and using raking procedures to control for 

over-adjustment in cell aggregates.  

The inclusion of an additive noise factor is a major modification researched by BLS. The 

purpose of this noise factor is to protect small establishments that cannot be fully 

protected by a multiplicative noise. The application of two multiplicative noise factors is 

another major modification proposed by BLS. The purpose of these factors is to protect 

company level data as well as establishments within the same company. Because the 

QCEW is so comprehensive and collected at such regular intervals, it is important to 

consider how the base noise factors will affect the month-to-month and quarter-to-quarter 

relationships. Toward this goal, BLS proposed to use the same factors over time while 

updating the noise factor for 5% of the establishments. However, if the establishment 

base noise factor does not change from month-to-month or quarter-to-quarter, it might be 

possible for a user to correctly calculate the ratio between month-to-month or quarter-to-
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quarter values for a given establishment. It is important to avoid disclosing this 

information and it can be protected by adjusting the base noise factor each month, 

although not by too much.  

In conclusion, we are very encouraged by the BLS research to date which we believe is 

fruitful and on the right track. As we have seen, the positive bias can be removed by 

using independent noise factors. Moving forward, we will work together to develop a 

nondisclosure model based on the random noise method. We will also be working on a 

raking model to deal with the issue of under perturbation and over perturbation. Most 

importantly, we will carry out extensive research to develop a nondisclosure model for 

cells with one or two employers.   




