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Abstract 
Each month, the Bureau of Labor Statistics publishes estimates of employment for industrial supersectors at the 
metropolitan statistical area (MSA) level. The survey-weighted ratio estimator that is used to produce estimates for 
large domains is generally less reliable for MSA level estimation due to the unavailability of adequate sample from a 
given MSA. We also note that the effect of a few establishments, which are influential in terms of unusual employment 
numbers or sampling weights or both, could be prominent for the small area estimation. In this paper, we develop an 
empirical hierarchical Bayes method based on a unit level model.  Our proposed method is found to be less variable 
and less sensitive to influential establishments when compared to the direct survey-weighted ratio estimator or 
estimators based on an area level model. Empirical evaluation of the estimators is performed using the population data 
from administrative file. 
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1. Introduction 
 
Complex surveys are usually designed to collect enough sample units from a population of interest and to make 
estimates of population quantities based on this sample with a satisfactory precision. However, at a progressively finer 
level of detail, where the sample is sparse, direct sample based estimates could be highly imprecise. The problem of 
estimation at such detailed levels is known as small area estimation (SAE) problem. A model is formulated to “borrow 
strength” from additional sources (e.g., from the neighboring areas or historical data), to improve on the quality of the 
estimates for small areas. A thorough account of existing SAE methods is given in Rao (2003).  
 
In this paper, we consider the situation when the population parameter of interest is given in a pre-specified form; the 
motivation for the form of the target does not necessarily come from a stochastic model. For example, in application 
considered in this paper, we are interested in estimation of the ratio of two population means: levels of employment in 
the current and previous months. A somewhat more complex set of examples give various forms of the price indexes, 
important economic indicators published from surveys conducted by national governments. The definition of the price 
indexes can be motivated using a range of requirements that do not assume any stochastic nature of the population 
measurements. 
 
To estimate such pre-defined targets using a small sample, one may first derive estimates based on the sample and then 
stabilize them by applying an area-level SAE method, e.g., the Fay-Herriot model (Fay and Herriot 1979). In models of 
this type, assumptions are made on the area-level direct sample based estimates. In many situations, however, it is 
preferable to formulate model at a unit level. If the unit-level auxiliary information is available, a model that 
incorporates such information can be especially beneficial. However, there are reasons to consider a unit-level model 
even in the absence of such auxiliary data. In our application, we observe that the direct sample-based estimates can be 
heavily affected by the influential observations, which are common in the establishment surveys (see Hidiroglou 1994; 
Lee 1995; Rivest 1999; Section 3 of this paper). 
 
One problem with the area-level model is that the sampling variance of the direct sample based estimate, considered to 
be known, does not always properly reflect the existence of influential observations in a particular realized sample. If 
this is the case, the adverse effect from such units carries over onto the resulting model estimate. On the other hand, the 
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effect from influential observations can be harnessed by fine-tuning the modeling assumptions on measurements at the 
unit level. 
 
When the form of the finite population target is pre-specified, a unit level model is naturally obtained by considering 
the effect of measurements from individual units on the estimator of the given form. In infinite population settings, 
Hampel (1974) introduced the notion of the influence function. The influence function measures the effect of small 
changes in the underlying distribution on the estimator. In other words, the approach allows assessment of the effect of 
individual observations on the estimated target quantity by linearizing the target quantity as the increments of the 
underlying distribution. The approach to robust estimation based on the influence functions finds its way to estimation 
for finite population. Our approach is similar to that of Zaslavsky et al (2001) who adapt the influence function 
approach to linearize the target population quantity and construct estimator that is robust to appearances of influential 
observations. 
 
To summarize, there are two related purposes for linearizing the estimator in the present paper. First, it provides a way 
to formulate a unit level small area model. Secondly, the form of the target finite population quantity, by means of its 
influence function, dictates which observations are to be considered as influential. Thus, the structure of the unit-level 
data is determined by the form of the target population parameter of interest, and the role of the model is to provide a 
useful and robust description of this structure. 
 
In a typical small area estimation project, there are a few areas with relatively large sample sizes.  We would like our 
model-based estimates to be design-consistent, that is, we would like the model-based estimates to be close to the direct 
estimates for these relatively large areas since they are quite reliable.  This requirement of design-consistency offers 
some protection against possible model failure. The use of design-consistent estimators in SAE has been  discussed by 
several researchers, including Sarndal (1984), Kott (1989), Prasad and Rao (1999), You and Rao (2003), Arora and 
Lahiri (1997), Folsom, Shah and Vaish (1999), Pfeffermann and Sverchkov (2007). In this paper, we employ survey 
weights in estimation of the target quantity. We derive the form of the estimator by exploiting the relationship between 
the sample and population distributions using the general approach of Sverchkov and Pfeffermann (2004). Each unit’s 
measurement enters the estimator in combination with the unit’s survey weight; thus, the impact of a unit on the 
estimator is determined by the combination of these two factors (see also the discussion in Zaslavsky et al. 2001). For 
this reason, the unit-level model is assumed on the weighted measurements as a whole.  
 
Finally, flexibility in modeling assumptions and the ability to adjust the model parameters based on the data at hand 
give the “influential” points appropriate place in the assumed distribution. Our proposed mixture model is quite 
insensitive to extreme values and thus yields estimator that is robust to appearances of the influential observations. For 
the present paper, we assume a relatively simple model based on the mixture of two normal distributions. Modifications 
of this approach are, of course, possible.  
 
The paper is organized as follows. In Section 2 we describe the general idea of the use of the influence function in 
constructing an estimator for a small area problem. We apply this idea to the small area estimation in the Current 
Employment Statistics survey conducted by the U.S. Bureau of Labor Statistics. Section 3 contains a brief description 
of the survey and details of the application, including the formulation of the model and results of empirical evaluation. 
We conclude with a brief summary. 
 

2. Approach Using the Influence Function 
 

Suppose ( )1,..., aN=y y y  , a vector of population measurements, is a realization from the probability distribution  

(superpopulation distribution) in area a (in general, each  is a vector of measurements on unit j);  is the set of 

population units in a and  is the set of units sampled from a;  and  are the number of units in  and , 

respectively; , and is the number of areas. 
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Let 
aNF denote the empirical distribution function (edf) of the finite population in area a. Suppose we are interested in 

estimating the finite population quantity , a smooth function of the finite population means. We assume that 

 is sufficiently regular and can be linearized near  using  the following Taylor expansion: 
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where ( )aT F  is a superpopulation parameter and ( ),aF T jU y  is the influence function of the functional T; the 
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(Hampel et al, 1986). 
 
We drop the remainder term in (2.1) and redefine the population quantity that we target in our estimation to be 
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Given the population size in area a is large, this quantity is different from the ideal target, , by a small 

amount, 
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Of course, ( )aT F  in (2.2) is not known and has to be estimated from the data. If sample is large enough, one could 

simply use some design-consistent estimator to estimate ( )aT F .   On the other hand, the second term on the right 

hand side of  (2.2), namely, the values ( ),aF T jU y , can provide an insight into the sample influential observations. 

 
For small area estimation, the direct estimator is not reliable and it is common practice to make a suitable assumption 
about the proximity of the area levels to the aggregation of areas. Let F  denote the distribution function of the 

population measurements in , the aggregation of all areas. Suppose 
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In general, the closeness of  to  is implied by assumption that the remainder term in aF F (2.3) is small. Then, similar 
to (2.2), we can redefine the target population parameter by dropping  the remainder term: 

( ) ( ) ( )1 1
,

1
 

a

a

N

N a a F T
j

T F T F c N U− −

=

= + ∑ y�       (2.4) 

 
Remark 1: Note that if ( )1

Na p aR O N −= , the weighted sum of the area levels  is close to T on the aggregation of 

areas, which is a desirable property: 

( ) ( ) ( )
1

1 .
a

m

a a N N p
a

p c T F T F o
=

− =∑        (2.5) 

 
Remark 2: In what follows, we consider a particular case when 1ac = . Even though this may lead to a larger 

discrepancy between the original and modified targets, on the other hand, since  in general depends on the area-level 
quantities, the necessity to estimate these quantities from small samples, in practice, may lead to a larger error. We can 
assess the approximation by considering the direct sample based estimate of the difference 

ac
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R T F T F= −� . For example, using  an area-level SAE model, we can derive an estimator of NaR  and 

then use it to adjust the estimate of . (This approach was not pursued in the present paper. Instead, after 

examining the scatter plot of the direct sample based estimates of  

( aNT F� )
NaR , we make an assumption that NaR  is small and 

can be neglected) 
 

Next, we discuss the estimation of .  First, let us re-write ( aNT F� ) (2.4) as: 
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are means of the influence function for observations that are included, (2.7),  and not included, (2.8), in the sample. 
Let us suppose for a moment that we know the value of ( )T F . Under the prediction approach to inferences in 

sampling from finite populations, the goal is to predict values in the non-sampled part of the population,  (also 
referred to as the sample-complement), using the sample measurements. In our formulation, the problem is to predict 
the value of 
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The distribution of the sample measurements may differ from the distribution of the population measurements. If this is 
the case, it is important to account for the difference in order to avoid the estimation bias. Sverchkov and Pfeffermann 
(2004) established the relationship between the distributions of values in the sample and sample-complement parts of 
the population. The formula that links the two distributions accounts for the probabilities of units to be included in the 
sample. One of the corollaries of a more general expression is the formula relating the expectations under the sample 
and sample-complement distributions using the sampling weights jw . The sampling weight jw  is defined as the 

inverse of  jπ , the inclusion probability.  We assume that jπ is a realization of a random variable, a function of 

variables used to design the survey. For a general pairs of a random vector variables ( ),j ju v , 
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where  are expectations under the sample and sample-complement distributions, respectively. In our case, 

to predict 
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Using (2.9), the population quantity can be expressed as 
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Since ( )T F  is defined on the aggregation of areas, it can be estimated from the sample with a satisfactory precision 

and plugged into the formula (2.10). This is the approach considered in the present paper. The estimator of ( )aNT F�  

takes the form 

( ) ( ) ( )
( )

1

ˆ1 |1ˆ ˆ ˆ 1
1|a

n S j j a
N N a j a

ja S j a

E w u j S
T F T F f u f

n E w j S=

⎡ ⎤− ∈⎣ ⎦= + + −
⎡ ⎤− ∈⎣ ⎦

∑� ,   (2.11)  

where ˆ ju  is an estimate of ( ),F T iU y  and depends on the choice of ( )ˆ
NT F . 

 
Some modeling methods can be used to find an estimator for the last term in (2.11). In addition, auxiliary information, 
if available, can also be used in the modeling. 
 
In the present paper, we consider two methods for treating the last term in (2.11). The first method uses the assumption 
of normality for . Alternatively, we assume that ( )ˆ 1w

j ju w= − ˆ ju ˆw
ju  are the realizations from the mixture of two 

normal distributions with different variances but means varying only by areas and not by parts of the mixture. The 
second approach, or its possible extension to the case of the mixture of more than two distributions with different 
variances, in a sense, is a robust approach to estimation and can be useful in dealing with a nonstandard distribution of  
ˆw

ju . 
 
Note that we have treated weights as random variables and combined  ˆ ju  and  into a single random variable jw ˆw

ju for 
our modeling purpose. By treating the survey weights as random variables we allow for the simultaneous treatment of 
the outlying survey weights, measurements, or of their combined effect. 
 

3.  Application to CES 
 



Current Employment Statistics (CES) is a large-scale establishment survey conducted by the U.S. Bureau of Labor 
Statistics. The survey produces monthly estimates of employment and other important indicators of the U.S. economy. 
The estimates are published every month at various levels of industrial and geographical detail. 
 
While estimation of the National and State level employment is of a central importance in CES, there is also a lot of 
interest in publication of estimates for the smaller domains defined at a finer industrial and geographical detail. At these 
levels, the sample is often sparse and a single influential observation, if left untreated, may affect the resulting 
estimates. 
 
To facilitate the discussion, we describe briefly relevant details of the CES sample selection and estimation methods.  
 
3.1 CES Frame and Sample Selection 
The CES sample is selected once a year from a frame based on the Quarterly Census of Employment and Wages 
(QCEW) data file. This is the administrative dataset that contains records of employment and wages for nearly every 
U.S. establishment covered by the States’ unemployment insurance (UI) laws. The QCEW data becomes available to 
the BLS on a lagged basis and serves not only for the sampling selection but also for the benchmarking purposes; the 
historical QCEW data is also a valuable source for researchers (see BLS Handbook of Methods, 2004, for more 
information about QCEW). 
 
The frame is divided into strata defined by State, industrial supersector based on the North American Industrial 
Classification System (NAICS) and on the total employment size of establishments within a UI account. A stratified 
simple random sample of UI accounts is selected using optimal allocation to minimize, for a given cost per State, a 
State level variance of the monthly employment change estimate. 
 
3.2 CES Estimator 
The relative growth of employment from the previous to the current month is estimated using a matched sample  of 
establishments, that is, establishments reporting positive employment in both adjacent months: 
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The numerator of the ratio is the survey weighted sum of the current month reported employment; similarly, the 
denominator is the survey weighted sum of the previous month employment. 
Once a year, an estimate is benchmarked to a census level figure (that becomes available on a lagged basis): 

; monthly estimates of the employment level at subsequent months are derived by application of estimate 

 of employment trend to the previous month estimate of the employment level: .  See the BLS Handbook 
of Methods (2004, Chapter 2) for further details. 
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3.3 Influential Observations in CES 
As is common for many establishment surveys, the CES sample often contains a small fraction of observations that 
may seriously affect the survey estimate. Establishments in the target population vary greatly by size. The population 
consists of a relatively small number of large companies, but most of the national employment is associated with small-
size enterprises. Businesses are disproportionately selected into the sample, and the resulting survey weights are very 
heterogeneous; hence, the survey weighted estimators may become very unstable for some small domains. 
 
Another aspect of a survey of businesses is the potential change in the establishment attributes that are used for sample 
selection. For example, the establishment employment level may change after the sample has been selected. As a result, 
a larger than expected at the time of sampling employment size becomes associated with a large survey weight creating 
a predisposition for the influential observation. 
 
A definition of influential observation must be tied to the form of the estimator. In a given month, CES estimates 
relative employment growth, the ratio of the two survey weighted sums. An influential report would have either 



relatively large survey weight or large change in the size of its employment, the combination of moderately large 
weight with employment change may also produce influential report. In any given month, there are generally a handful 
of observations that stand out from the rest of the sample. One reason is the form of the distribution of employment 
changes: a large number of the establishments do not add or reduce the number of employees; some have a very little 
change in their employment. However, there are always units that have a substantial change in employment and at 
times they also have a large survey weight. The histogram of establishments employment change cannot be described 
by a nice bell-shaped distribution: it has a spike around zero with very long tails (see Fig.1). The sample is prone to 
outliers in the sense that there is a high probability that a handful of observations from the tails of the distribution are 
present in the sample. 

a. b.    
 
Fig.1. a. Histogram of residuals overlayed by the density of the normal distribution with the same first two moments as 
the estimated moments of the residuals distribution. b. Normal QQ plot of residuals. 
 
3.4 Small Area Estimation in CES 
The goal is to estimate the employment trend a

tR  at a given month t  in areas a=1,…,m,  where areas are defined by 
intersection of industry and geography at MSA level within a given State. 
 
For area a, the target finite population quantity at month t is given by 
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where  is a set of area a population establishments having non-zero employment in both previous (t-1) and current 
(t) months. 
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As for  appeared in the formula (ˆ

NT F (2.11), we propose to apply the following survey weighted estimator: 
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using sample units from all areas, . This is the same form of the estimator that is normally used for large 

areas in the CES. The estimates of means are given by 
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The number of population units having non-zero employment in two consecutive months is not known and is estimated 

by ,  The sampling fraction is estimated by ˆ
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In this application, formula (2.11) reduces to: 
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As displayed on Fig.1, the distribution of ˆw
jtu  is nearly symmetric; it does not appear to be normal and has a spike near 

0 and long tails. A large number of establishments do not have changes in their employment level in a given two 
consecutive months; others change only by a few employees. This can explain the observed spike. However, there are 
also establishments that change by quite a large number of employees. The change can be magnified by application of 
the sampling weights. This economic phenomenon explains the long tails of the distribution. 
 
From the above discussion, it is clear that the methods that assume normality or some other standard distribution may 
result in inefficient estimates. We attend to the problem by assuming the underlying distribution is a mixture of normal 
distributions and estimating unknown parameters of the distribution using the Bayesian normal mixture model.  The 
MCMC utilizing Gibbs sampler provides a tool for this estimation. At present, we display results of the estimation 
under the assumption of the mixture of two normal distributions. We also considered the mixture of three and four 
distributions. The results turned out to be very similar to the two distributions version. On the other hand, the 
computational burden and monitoring for the convergence proved the approach with greater than two mixture parts to 
be infeasible in the situation of creating estimates for numerous domains in a short time period. Nevertheless, we 
formulate the model used in the estimation for the general case of an arbitrary number of mixtures. 
 
Denote a

tx   an area-level auxiliary information (at present, we use historical QCEW data: 12=a a
t tx R − ). We tested the 

following unit- and area-level models: 
 
Model 1 (Mixture of Normal): 



( ) ( )( )
( )

2 2
1

ˆ | , , , ~ , , where 
1

a

a
ind a t t a Sw a a a a

jt t jt t k t k t
a

w R R f U
u j S C k N

f
μ σ μ σ μ

− − −
∈ = =

−
 

( )2~ ,
ind

a a
t tR N xβ τ  

( )1~ 1, ,...,jt KC Multi π π  

( )~ ,...,
where 1,..., ; 1,...,

k Dirichlet p p
a m j

π
= = n

 

 is the number of components of the normal mixture;  
 is probability to belong to  component of the mixture, 1,..., ;
 is class indicator for observation ,  which can take the values 1,...,

th
k

jt

K
k k K

C i K
π =

2

;

 is common mean of the mixture distribution for observations from area ;

 is variance parameter of the  component of the mixture, common for all areas and
 is prior probability to belong to 

a
t

th
k

a

k
p

μ

σ
component k

 

 
Model 2 (Normal): 
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Model 3 (Fay-Herriot): 
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In models 1 and 2, for the assumed-to-be-known values of aw , tR , af , we “plug in” their direct sample based 

estimates, so that  
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, and  

 and ˆ
tR âf  are given by (3.3) and (3.4), respectively. The method of estimation can be labelled “the empirical 

hierarchical Bayes”. 
 
We used the QCEW historical data to test the approach. We created estimates for September 2006 using the sample 
drawn from 2005 sampling frame, mimicking the production timeline. Relative growth rates (3.1) were estimated for 
four States (Alabama, California, Florida, and Pennsylvania). Small areas are defined as metropolitan statistical areas 
(MSA) at industrial supersector level. In the modeling, each industry was considered separately. The number of areas, 
m, varied by industries in the four States, ranging from m=12 to m=27. The number of units in the matched sample 
ranged from 2 to 969 across areas. The resulting estimates were compared to the corresponding true population 
quantities derived from QCEW.  



 

In model 3, we used true design-based variances 2
aσ  of the direct sample estimator  . For research purposes, when 

working with the historical data, we can derive the true variances using all population units. The variances 

ˆ a
tR

2
aσ  are 

assumed to be known in Fay-Herriot model. Of course, we do not have the true values of these variances in real time 
and would have used the smoothed values of the direct sample estimates of 2

aσ . 
 
The empirical mean squared error (MSE) was calculated for each industry for the following methods: 
(1) Model 1 (unit-level, the mixture of two normal distributions);  
(2) Model 2 (unit-level, the normality assumption);  
(3) Model 3 (area-level, Fay-Herriot model);  

(4) the direct sample based estimates of the modified target, ˆ a
tR� ;  

(5) the direct sample based estimates for the original form of the population target, . ˆ a
tR

( ) 2

( ) ( )
1

1 ˆ100
m

a a
k t k t t

a

MSE R R
m =

⎡ ⎤= −⎣ ⎦∑ , 

where a
tR  is the “true” value obtained from QCEW at month t in area a and industry i (index i is suppressed, for 

convenience);  ( )
ˆ a

k tR  is the estimate of a
tR  obtained using method ,  1,...,5k k = . 

 
Below are the resulting tables for four states, by industry and overall (column ‘n’ contains the total number of sample 
units in a given industry): 
 
Alabama 

Industry n Mixture Normal FH 
Direct 

(Linear) Direct 
Construction 421 1.62 7.94 3.82 21.22 45.49 
Manufacturing Durable Goods 237 0.72 1.13 0.83 1.57 1.18 
Manufacturing Nondurable Goods 109 0.37 1.22 0.79 2.07 1.32 
Wholesale Trade 231 1.55 1.45 2.83 11.39 12.74 
Retail Trade 462 0.64 1.37 1.17 1.42 1.42 
Transportation, Warehousing, 
Utilities 125 2.46 3.48 2.23 4.08 3.54 
Information 70 2.00 1.05 1.36 7.80 5.19 
Finance, Insurance, Real Estate and 
Rental and Leasing  238 1.51 4.85 4.13 4.12 4.86 
Professional and Business Services 659 0.74 2.82 3.47 2.18 2.52 
Education and Health Services 379 0.38 1.28 1.46 1.88 1.98 
Leisure and Hospitality 420 0.88 4.09 1.93 12.21 18.60 
Other Services 181 25.06 37.45 21.57 86.53 90.80 
Overall  3.16 5.68 3.80 13.04 15.80 

 
California 

Industry n Mixture Normal FH 
Direct 

(Linear) Direct 
Construction 2253 2.45 2.98 3.32 11.33 15.91 
Manufacturing Durable Goods 906 2.28 2.65 3.24 6.10 9.53 
Manufacturing Nondurable Goods 801 22.57 28.04 23.74 43.91 59.92 
Wholesale Trade 1410 0.94 4.68 4.85 22.63 13.24 
Retail Trade 1819 0.15 0.89 1.30 2.54 4.24 



Transportation, Warehousing, 
Utilities 643 6.63 8.80 19.24 35.84 68.27 
Information 410 0.97 1.66 2.93 1.85 7.01 
Finance, Insurance, Real Estate and 
Rental and Leasing  1372 0.97 1.20 4.75 19.23 9.70 
Professional and Business Services 3772 1.44 2.59 2.64 8.73 4.91 
Education and Health Services 2147 0.53 1.68 3.46 4.97 5.83 
Leisure and Hospitality 2466 1.77 2.30 2.34 4.91 5.10 
Other Services 969 2.98 3.59 4.08 27.85 30.56 
Overall  3.64 5.09 6.32 15.82 19.52 

 
Florida 

Industry n Mixture Normal FH 
Direct 

(Linear) Direct 
Construction 769 0.58 4.34 2.97 8.23 7.90 
Manufacturing Durable Goods 161 1.19 1.60 2.89 7.42 8.14 
Manufacturing Nondurable Goods 86 4.93 2.99 4.52 138.79 15.30 
Wholesale Trade 435 0.85 5.17 14.20 44.60 24.82 
Retail Trade 652 0.08 0.30 0.34 0.36 0.51 
Transportation, Warehousing, 
Utilities 188 1.63 2.12 4.23 14.50 18.22 
Information 112 2.10 4.46 103.42 43.46 112.59 
Finance, Insurance, Real Estate and 
Rental and Leasing  542 0.61 0.62 1.82 4.37 6.00 
Professional and Business Services 1353 0.49 0.75 1.39 1.29 5.08 
Education and Health Services 723 0.38 0.48 1.09 3.18 3.38 
Leisure and Hospitality 689 1.80 2.73 3.53 17.17 13.33 
Other Services 327 1.14 8.17 12.07 130.62 67.39 
Overall  1.32 2.81 12.71 34.50 23.55 

 
Pennsylvania 

Industry n Mixture Normal FH 
Direct 

(Linear) Direct 
Construction 657 3.80 2.00 4.69 19.97 24.49 
Manufacturing Durable Goods 354 0.69 1.45 1.13 7.35 4.82 
Manufacturing Nondurable Goods 215 1.80 1.63 1.10 21.15 5.33 
Wholesale Trade 405 0.65 1.17 1.27 11.17 5.84 
Retail Trade 691 0.71 0.40 0.83 1.76 2.99 
Transportation, Warehousing, 
Utilities 282 20.41 4.18 2.21 25.30 27.51 
Information 140 1.62 1.35 1.72 3.24 3.44 
Finance, Insurance, Real Estate and 
Rental and Leasing  357 1.08 1.30 8.66 6.16 17.22 
Professional and Business Services 1190 0.95 1.40 1.15 5.68 6.72 
Education and Health Services 939 0.76 0.37 0.31 1.60 1.63 
Leisure and Hospitality 951 7.13 2.88 2.23 11.79 10.85 
Other Services 413 2.64 7.73 4.22 35.67 31.98 
Overall  3.52 2.16 2.46 12.57 11.90 

 
 



The values of the empirical mean squared errors of the direct sample based estimators for the original and modified 
targets are of a similar magnitude. All SAE methods considered help to reduce MSE of the direct estimators. Area-level 
Fay-Herriot estimator works satisfactory except for cases where it is affected by the outlying values (e.g., Florida, 
Information). Overall, either unit level model has lower MSE than the area level, and in three of the four states 
considered here, the performance of the mixture model is better. A smaller error in Normal and FH models (compared 
to the mixture model) for Transportation, Warehousing, Utilities industry of Pennsylvania can be explained by the fact 
that the historical values of the trend ( 12=a a

t tx R − ) seem to predict well the current trend, yet this predictor receives 
smaller weight in the mixture model. The model parameters can be adjusted to better account for the degree of 
reliability of the historical trends. 
 

Summary 
In this paper we proposed a unit level small area model for the case when the finite population quantity of interest has a 
nonlinear form. The proposed empirical hierarchical Bayesian method that uses a mixture of normal distributions to 
model the unit level observations has a potential for a useful tool in dealing with influential observations and non-
standard distributions. However, more work is required to overcome practical difficulties associated with the efficient 
computations in the production environment. One example of the trade-off between efficiency of the procedure and 
practical considerations is the choice of the number of mixture groups. Larger number of mixture groups may be 
crucial for the processing time, yet have very little effect on the resulting estimates. Variance of the proposed estimator 
can be estimated using, for example, the parametric bootstrap method. Work will continue in this direction. 
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