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Abstract 
Often the probability of responding depends directly on the outcome value. This case can be treated by 
postulating a parametric model for the distribution of the outcomes before nonresponse and a model for the 
response mechanism. The two models define a parametric model for the joint distribution of the outcomes 
and response indicators, and therefore the parameters of these models can be estimated by maximization of 
the likelihood corresponding to this distribution. Modeling the distribution of the outcomes before 
nonresponse, however, can be problematic since no data is available from this distribution. We propose an 
alternative approach that allows estimation of the parameters of the response model by first estimating the 
outcomes distribution of the respondents, and then solving an estimating equation defined by the census 
likelihood of the response indicators. 
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1.  Introduction 
 
There is almost no survey without nonresponse, but in practice most methods that deal with this problem 
assume either explicitly or implicitly that the missing data are ‘missing at random’ (MAR, Rubin, 1976; 
Little, 1982). However, in many practical situations this assumption is not valid, since the probability of 
responding often depends directly on the outcome value. In this case, the use of methods that assume that 
the nonresponse is MAR can lead to large biases of population parameter estimators and large imputation 
bias.  
 
The case where the missing data are not MAR (NMAR) can be treated by postulating a parametric model 
for the distribution of the outcomes before non-response and a model for the response mechanism. These 
two models define a parametric model for the joint distribution of the outcomes and response indicators, 
and therefore the parameters of these models can be estimated by maximization of the likelihood based on 
the latter joint distribution. See, Greenlees et al. (1982), Rubin (1987), Little (1993), Beaumont (2000), 
Little and Rubin (2002) and Qin et al. (2002).   
 
Modeling the distribution of the outcomes before non-response can be problematic since it refers to the 
partly unobserved data. Qin et al. (2002) suggests using a non-parametric model for this distribution 
(empirical likelihood approach). We suggest an alternative approach that allows one to estimate the 
parameters of the response model by independent parametric or non-parametric estimation of the outcomes 
distribution after non-response (which can be done by use of classic statistical inferences since the latter 
refers to the observed data) and then by solving estimating equations obtained from the census likelihood 
function of the response indicators or the equations based on the method of moments (MoM). The 
derivation of these estimating equations utilizes the relationships between the population, the sample and 
the sample-complement distributions, as in Pfeffermann and Sverchkov (1999, 2003), Sverchkov and 
Pfeffermann (2004).  
 

2.  Notation 
 
Let iY  denote the value of an outcome variable Y  associated with unit i  belonging to a sample 

{1,..., }S n= , drawn from a finite population {1,..., }U N= . Let iX  denote the corresponding values of 
covariates 1( ,..., )i i KiX X X ′= . In what follows we assume that the population outcome values are 



independent realizations from distributions with unknown probability density functions (pdf), ( )i if Y X . 
We use the abbreviation pdf for the probability density function when iY  is continuous and the probability 
function when iY  is discrete. Let {1,..., }rR n=  define the sample of respondents (the sample with observed 
outcome values), and { 1,..., }c

rR n n= +  define the sample of nonrespondents. The response process is 
assumed to occur stochastically, independently between units. The observed sample of respondents can be 
viewed therefore as the result of a two-phase sampling process where in the first phase the sample S  is 
selected from U  with known inclusion probabilities Pr( )i i Sπ = ∈  and in the second phase the sample R  
is ‘self selected’ with unknown response probabilities (Särndal and Swensson, 1987).  
Denote by ( , ) Pr( | , , )i i i ip Y X i R Y X i S= ∈ ∈  and let iu  and iv  be any random vectors such that ( , )i iu v  and 
response indicators, iR  ( 1iR =  if i R∈  and 0 otherwise), are independent given ( , , )i iY X i S∈ . For 
example,  iu  and iv  are functions of ( , )i iY X , or the responses are completely defined by ( , )i iY X . In what 
follows we use the following relationships between population and the sample distribution (Pfeffermann 
and Sverchkov 1999, 2003 and Sverchkov and Pfeffermann 2004) which can be written in terms of 
response probabilities as, 
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Note that (2.1) implies 
1[ ( , ) | ] 1/ [ ( , ) | ]i i i iE p Y X i R E p Y X i S− ∈ = ∈ .                                                                                            (2.3) 

Remark 2.1 In the following sections we concentrate on estimation of the response probabilities ( , )i ip Y X . 
Note that if the response probabilities or their estimates are known then the sample respondents can be 
considered as a sample from the finite population with known or estimated selection probabilities 

ˆ ( , )i i i ip Y Xπ π=% . Then population model parameters (or finite population parameters) can be estimated as 
if there were no non-response with these new inclusion probabilities, see Särndal and Swensson (1987).  
One can use these probabilities for imputation also using the relationship between the sample and sample-
complement distributions derived in Sverchkov and Pfeffermann (2004),  
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3. Estimation of the Response Probabilities when Non-Response is NMAR based on 

Estimating Equations obtained from the Likelihood function of the Response 
Indicators (EEL) 

 
In this section we suggest a new approach that enables us to estimate the probabilities 
Pr( | , , )i ii R Y X i S∈ ∈  based only on knowledge of the respondents’ pdf, [ | , ]i if Y X i R∈ . Let 

( , ; )i ip Y X γ =  Pr( | , , ; )i ii R Y X i S γ∈ ∈  and suppose that ( , ; )i ip Y X γ  is differentiable with respect to 
(vector) parameter γ .  
 
In this and in the first part of the next section we consider the following scenario (Scenario A): The 
covariates are observed for all non-respondents, i.e. Observed Data={ , , , }i kY i R X k S∈ ∈ .  
 
Under this scenario, if the missing data were later observed, γ  could be estimated by solving the likelihood 
equations,  
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Similarly to the Missing Information Principle (Cipillini et al, 1955, Orchard and Woodbury 1972), since 
the outcome values are missing for cj R∈ , we propose to solve instead,  
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The third equation follows from (2.2) where we assume for simplicity that ( , ; )j jp Y X γ  and ( , )kX k S∈  
are independent given jX .  Note that the second sum in (3.2a) and (3.2b) predicts the unobserved second 
sum in (3.1). Note also that if  ( , ; )j jp Y X γ  is a function of jX  and γ  only (missing data are MAR) then 
(3.2b) reduces to a common system of log-likelihood equations, 
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Estimating functions (3.2b)  suggest the following two-step estimation procedure: 
Step 1. Fit the model ( | ) [ | , ]r i i i if Y X f Y X i R= ∈ . Note that this pdf refers to the respondents’ sample and 
therefore can be identified and estimated from the observed data using classic statistical inferences.  
Step 2. Approximate (3.2b) by replacing ( | )r i if Y X  by its estimate, ˆ ( | )r i if Y X , and solve (3.2b) for γ .  
 
Note that instead of estimation of rf  in (3.2b) one can estimate respective expectations in (3.2a) non-
parametrically, and after substituting the estimates in (3.2a) solve them for γ . For example, for discrete 
X -s and an arbitrary function g , [ ( , , ) | , ]j j jE g Y X X x j Rγ = ∈   can be estimated by the respective mean, 
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( ( , , ) | , )j j jE g Y X X x j Rγ = ∈ , for example the Nadaraya-Watson estimator, 
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, where  h  and K  are a scale-factor and a kernel.  Estimating the 

respective conditional expectations in the second sum of (3.2a) by ( , )m x γ  one obtains the following 
estimating equations,  
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which defines an estimator of γ .  
 



Estimating equations (3.3) do not require any knowledge of the model for the respondents. On the other 
hand one can expect that the estimates obtained by solving (3.3) will be less stable than the estimates 
obtained from (3.2b) by the above two step estimation procedure when the model for the respondents can 
be fitted well.  
 
4. Estimation of the Response Probabilities when Non-Response is NMAR based on 

Estimating Equations obtained by the Method of Moments (MoM) 
 
The response probabilities can also be estimated by solving estimating equations obtained by application of 
MoM and the relationship (2.1).  
 
Under scenario A, by (2.1), for any function G  (for example 1( ) ( ,..., )K

i i iG X X X ′= , so that  
[ ( ) | ]iE G X i S∈  is a vector of the first K moments of X over the sample distribution), 
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and  1[ ( , , ) | 1] / ( )i i i rE p Y X R n E nγ− = = .                                                                                                 (4.2) 
Eq. 4.2 follows from (2.3) and ( , , ) ( )i i r
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Let dim( ) 1Kγ = + . If for some G , dim( )G K= , the system of estimating functions (4.1) – (4.2) has an 
unique solution then it defines the parameter γ . Therefore one can apply MoM to (4.1) – (4.2). For 
example, if iY  is finite and discrete then all expectations in (4.1) – (4.2) can be approximated by the 
respective means,    
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and γ  can be estimated by solving estimating equations (4.3) – (4.4). If iY  is continuous then one can 
estimate the respective expectations given iY  in (4.1) by an appropriate non-parametric estimator, for 
example by the Nadaraya-Watson estimator as in (3.3). 
 
Consider another scenario (Scenario B): Let iZ  be a vector which is independent of the response 
indicators, iR , given ( , , )i iY X i S∈ . The covariates and the values of iZ  are observed only for the 
respondents and the finite population total i

k U

Z Z
∈

= ∑   is known, i.e. Observed Data 

={ , , , , , }i i i iY X Z i R Zπ ∈ .  In practice iZ  could be a sub-vector of the covariates, iX , or some other 
variable believed to be dependent on the response only through iY  and iX .  
 
Under scenario B  (assuming dim dim 1iZγ = + ) one can replace (4.1) by (4.5),   
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and estimate [ ]iE Z  by /Z N . 
 



Remark 4.1 Note that (4.1) – (4.2) does not necessarily have a unique solution. For example, if iX  takes 
only two values, say 0 and 1, then (4.1) – (4.2) can not be uniquely solved if dim( ) 2γ >  for any function 
G.    
Remark 4.2 In practical situations dimγ  can be less than dim 1iZ + . In this case, if it is preferred to use 
all auxiliary information, then γ  can be estimated (for example) by solving ˆ arg min ( ) ( )
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5. Empirical illustration 

 
In order to illustrate the performance of the estimators described in the previous sections we designed a 
small Monte Carlo study. For simplicity assume that the finite population and the sample coincide, U S= .  
The study consists of the following four steps. 
Step A: Generate independently 1000M =   finite populations ( ) ( ){ , ; 1,...,1000}m m

i iY X i = , where 
( ) ~ Uniform(0,1)m
iX ,  ( ) ( ) 1
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i i iP Y X Xθ θ −= = + + , 0 0.1θ = − , 1 1θ = − , and 
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i i i iP Y X P Y X= = − = . For each finite population calculate the mean of the outcome 

variable, 
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Step B: For each generated population generate independently response indicators from the logistic model, 
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We repeat the study for different values of 0 1 2( , , )γ γ γ γ= , see Figures 1 - 4. 
Step C:  For each sample of respondents, ( ) ( ) ( ){ , ; ( : 1)}m m m
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using three estimators:  
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response is MAR and response model is logistic). These estimates were derived using Proc Logistic of 
SAS. 
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optimization functions were used for solving (4.3) – (4.4).   
 
(3) ( ) ( ) ( ) ( ) ( ) ( )
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Recall that solving (3.2b) requires estimating ( | )r i if Y X . We used 

1
0 1( 1 | , 1) (exp{ } 1)i i i iP Y X R a a X −= = = + +  as the working model for ( | )r i if Y X  and estimated the 

parameters 0 1( , )a a  by Proc Logistic SAS. Note that the true model for ( | )r i if Y X  is not necessarily linear 
logistic (unless 1 0γ = ), although the later can be a good approximation. Proc IML SAS optimization 
functions were used for solving (3.2b).  



Step D: For each sample calculate three Hajek-type estimates of the population mean of the outcome 
variable, ( )mY : 
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For each of these three estimators calculate Empirical Bias and Empirical Root Mean Square Error over 

1,000 simulations, 
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We repeat the study for different values of the parameter γ . The results are summarized in Figures 1 – 4.  
 
 

 
     

  



 

 
 
Conclusions 

1) “MAR” estimates of the population proportions of positive outcomes, ( )mY , are significantly 
biased except for the case of 2 0γ =  which corresponds to “missing data are MAR”. 

2) Although both suggested estimators, the “MoM” estimator and the “EEL” estimator are also 
significantly biased for 2 0γ ≠  their bias and RMSE are much smaller than those from the “MAR” 
estimator.  

3) In the case  2 0γ = , RMSE is larger for the “MoM” estimator than for the two other estimators. 
Note that Method of Moment type estimators are usually less effective than estimators based on 
MLE principle.      

4) In our limited study the “EEL” estimator performs not significantly worse in the sense of bias and 
RMSE than the “MAR” estimator even when “missing data are MAR”, 2 0γ = . Note also that in 
this case the estimates ( )

2ˆ
m EECLγ  differ insignificantly from zero (the results are not shown in the 

paper). Therefore testing the hypothesis ( )
0 2ˆ: 0m EECLH γ =  is equivalent to testing whether the 

response is MAR or NMAR (if the model for response mechanism is specified correctly). Methods 
for testing 0H , in particular estimating the variance of ( )

2ˆ
m EECLγ , is a topic for future research.    

 



Another important topic for future research is connected with “identifiabilty”  of the parameter γ : for 
example, even if the solution of (3.1) is unique it does not necessarily imply the unique solution for (3.2b). 
See also Remark 4.1.    
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