ER

ER

EROINZ008 SLO0022008 STLOD1Z0T IDW0B010

© © N o 0 b~ DR

T S S
w np PO

INDEX

INTRODUGCTION ...ttt sttt sttt et e e s bt e sat e sabesbeeebeesbeesas 3
INFECTION PROGCESS........o oottt sttt sttt sttt sttt st s 5
TECHNICAL CHARACTERISTICS ...ttt 6
MODULE LOADING SYSTEM ...ttt ettt sttt s s 13
NETWORK CONNECTIONSottt 21
ENCRYPTION MECHANISM ..ottt s 25
IPC MECHANISM (Inter-Process Communication) ccoccevveeveeveseeveeseseenieseeennn,s 29
RELATED FILES ..ottt ettt sttt sttt st s 32
DETECTION. ..ttt sttt sttt e b e bt s bt e s at e st e et e et e e s beesbeesaaesaneeas 33
DISINFECTION. ...ttt ettt sttt sttt sb e st st et be e sbe e sbeesaeesaneea 35
ATTACKER INFORMATION ...ttt sttt 36
REFERENGCES ...ttt sttt sttt st s 38
AUTHORS ...ttt ettt et bt et b e sbe et s b e e et e saeeneas 38

1. INTRODUCTION

This document contains a review of the latest versions of a Trojan family known as

“Trickbot/TrickLoader”. _ Itis a bank-type Trojan that steals credentials and bank details

from infected users. Although its main objective and behavior is focused on online
banking users, being a modular Trojan, it has capabilities that attackers could use for

other purposes, such as document exfiltration.

You can find a lot of documentation regarding the logic and origins of this malware; part
of this report is based on information from some of them in order to contrast it with the
logic of the latest versions and to be able to observe its evolution and new functionalities.
All sources for which information has been obtained can be found in the references

section.

It should be noted that the report starts with and relies mainly on the analyses carried

out by @hasherezade and by Xiaopeng Zhang (Fortinet). Based on these analyses, an

attempt was made to compare whether in the last versions some aspect had changed

and to deepen in the mechanisms not described until the moment.

In summary, Trickbot has the following capabilities:

It loads the code into the system

It creates a replica of itself in the %APPDATA%
It applies persistence techniques

It collects sensitive information

It injects code into other applications to control the information they handle

It exfiltrates the information you get to your Command and Control server

During the completion of this report the S2 Grupo Malware Laboratory worked with the

samples that match the following MD5 hashes:

1000005_Trickbot_Loader.exe a50¢c5c844578e563b402daf19289f71f
1000005_Trickbot_bot32.exe 28661ea73413822c3b5b7de1bef0b246
1000010_Trickbot_Loader.exe 218613f0f1d2780f08e754be9e6f8c64

1000010_Trickbot_bot32.exe 135e4fa98e2ba7086133690dbd631785
1000014_Trickbot_Loader.exe e054eaae756d31a4f6e30cc74b2e51dd
1000014_Trickbot_bot32.exe 719578c91b4985d1f955f6adb688314f
1000016_Trickbot_Loader.exe 132¢4338cdc46a0a286abf574d68e2e0
1000016_Trickbot_bot32.exe e8e7b0a8f274cad7bdaedd5a91b5164d

As you can see in the previous image, four different versions of Trickbot . Each one of
them consists of its loader and its final payload for 32-bit systems; although there is also

the 64-bit version of all, it was not the subject of the analysis performed.

2. INFECTION PROCESS

The main route of infection of this malware occurs through a Word document with macros

that arrives attached in an email or through an exploited vulnerability by an ExploitKit.

The infection follows this order of execution:

® A Trickbot sample is downloaded from a compromised domain in the%
APPDATA% folder and executed

It creates a scheduled task on the system that provides persistence

® |t creates two files (“client_id" and "group_tag") in the same directory, one with a
unique ID of the infected host and one with the ID of the current infection
campaign or version of the configuration.

® It contacts with an external IP obtaining domain, among other things to test the
connectivity and send it to your command and control servers (C2 from now).

® It contacts one of its C2 servers to get malware updates, modules that perform
most of the malware logic and various configuration files.

@ After all this, it begins to execute or inject in different processes its modules that
are responsible for collecting information of the system and browsing credentials
especially of online banking.

3. TECHNICAL CHARACTERISTICS

The main executable of Trickbot is usually packaged with its own “packer” , which
obfuscates the functionality of the executable and prevents generic signatures from
being generated from the content itself, seeing that for each version the packer causes
the code to vary completely. After unpacking one can see how the number of functions

of the executable increases greatly, as it now reflects the functionality of the malicious

program:
Packed Unpacked
Function name Segme z sub_301000 tex
] _vbaChist text [7] sub_3D1050 tex
; _ vhaExceptHandler text ? sub_3D10A0 tex
vbaFPException text 3l
% e e 2 et 7] sub_3D1000 tex
7] _adj fdiv_mis4 texdt Lf] sub_3D1C30 tex
7] DilFunctionCall text L£] sub_3D1E40 tex
|| ThunRTMain et £ | sub_3D1EAD tex
Z sub_40365C text 7 sub:BDlEDU tex
7 wensoamo o 7] sub_3D1F20 tex
7] sub_403930 1ot (7] sub_3D1FDO tex
(7] sub_4039C8 text |f| sub_3D2020 tex
7] sub_03A58 et (7] sub_3D2140 tex
7] sub_403810 text (7] sub_3D2140 tex
g “ 7 oo o
7] sub_407€30 ot [£] sub_302260 tex
(7] sub_40C770 tent || sub_3D2300 tex
£] sub_40C3E0 text (7] sub_302310 tex
% susjggggg :z z sub_3D23B0 tex
7] zjh:amcnsn ot Lf] sub_3D2470 tex
7] sub_40D760 et 7] sub_3D25C0 tex
7] sub_40D980 text Lf| sub_3D25F0 tex
[F] sub_3D2650 tex
7] sub_3D2690 tex
(7] wWinMain(x,x,,%) tey
[7] sub_3D2E90 tex
[7] sub_3D2F40 tex
7] sub_3D3090 tex
[7] sub_3D31E0 tex
7] sub_3D31E0 tex
[F] sub_3D3310 tex
[7] sub_3D3340 tex
7] sub_3D3580 tex
[7] sub_3D3720 tex
[7] sub_3D3740 tex
7] sub_3D3790 tex
7] sub_3D3B10 tex
[7] sub_3D3D70 tex
[F] sub_3D3E00 tex
[7] sub_3D4050 tex
(7] sub_3D4260 tex
[7] sub_3D43E0 tex
[£] sub_3D4400 tex
£ e 20A44N to

After the "unpack" the first stage of this malware is obtained, known as "Loader". This
executable is responsible for verifying the architecture of the system and depending on
whether it is a 32 or 64 bit computer, it loads the "bot" from its resources, corresponding
to that architecture. The "bot" is the executable that takes care of the last stage of

infection and contains all the basic malware logic.

In the first versions, the resources contained in the Loader were easily recognizable
because they had descriptive names, as they identified the two versions of the Bot and
a Loader to correctly load the 64-bit. In the latest versions they began to put non-

descriptive names so as to make it difficult to identify them:

V10 de Trickbot V14 de Trickbot V16 de Trickbot
4 || RCData .. || RCDat3| + L RC:
fey IDR_XG4BOT 1 0 e KA
-y IDR_XG64LOADER : 1033 iy BBB:O
b IDR_XBGBOT 1 0 Loty CCC 11033

These resources, consists on executable files (PE) encrypted with the AES CBC
algorithm, so after extracting them they still need to be decrypted or otherwise can be
extracted from memory after running the Loader and waiting for it to perform the

decryption itself and load them in RAM.

After loading the corresponding bot, it starts executing the main logic of this threat:

It first checks its location on the system, and if it is not found in% APPDATA% it copies
itself to this location, starts executing its replica in that folder and ends the current

process.

As a persistence technique, it uses scheduled system tasks rather than registry keys as
is often the case in other samples of malware. Previous versions of Trickbot , in all cases
created a single programmed task called "bot" and made sure that every minute was

launched to keep running on the system.

Nombre Estado Desencadenadores Hora préxima ejecucion Hora dltima gjecucion Resultado de dltima ejecucion
(5 Bot Listo A las0:00 todos los dias - Tras desencadenarse, repetir cada 00:01:00 durante 1 dia. 06/04/2017 13:18:00 06/04/2017 13:17:00 (0xFFFFFFFF)

In the latest versions, if it is executed with administrator permissions in addition to the
previously mentioned task, which it has called "Drives update”, it creates another one

that executes it when any user logs in, called "AplicationsCheckVersion"

Hora proxima ejecucion Hora dltima gjecucion

MNombre Estado Desencadenadores
(5 Appligtions... Listo Aliniciar la sesién un usuario - El desencadenador expira a las 01/01/2020 8:00:00. Munca
(2 Drivers update Listo A las 0:00 todos los dias - Tras desencadenarse, repetir cada 00:01:00 durante1 dia. 06/04/2017 13:15:00 MNunca

Its next action is to check if it has all the configuration files with which it usually works:

Modules 171172016 21:43 Carpeta de archivos
|| client_id 17/11/2016 21:54 Archivo 1 KB
|| config.conf 110472017 941 Archivo COMNF 1 KB
|| group_tag 1771172016 21:54 Archivo 1 KB
5] Trickbot 17/11/2016 21:18 Aplicacién 93 KB

If it does not find them, it generates them from information obtained in the system and
the resources of the bot, which consist of an encrypted configuration file (CONFIG) and

a key to verify the signature of the configuration and modules (KEY).

4 -+ || RCData
by CONFIG 2 0
fe 'y KEY 1 O

In this case there have been no changes in the names of these resources to date,

although it is likely that in future iterations we will see how they eliminate these names

as in the case of Loader resources.

In the first run of Trickbot on the computer generates a file called "client_id" that contains

a token or user 1D, which identifies the current host.

USER-P(5403487 86D55D82 Ei'.T;i

Trickbot obtains it's configuration from a file in a disk with the name config.conf or from
the resources of its own binary. This configuration will be decrypted, and after decryption
it can be seen that it contains the version of the malware itself, a campaign code or
version of the configuration, the addresses of several of its main C2s, and the list of

modules that it must download and run automatically from any of its C2s.

<module name=
<module name="1inj
autorun=

It then checks the connectivity by making a request to an external domain that reports
the victim's IP esternal address, this domain comes from a list contained inside the

malware and which have been increasing during the different version updates.

Version 7

UNLLUUE Hy SNIP.diIYSTLlIELS 3

dd offset aMyexternalip_c ; DATA XREF: sub 1D6F6B+6ATE
; "myexternalip.com”

dd offset afApi_ipify org ; "api.ipify.org”

dd offset alcanhazip_com ; “icanhazip.com”

dd offset aBot_whatismyip ; “bot.whatismyipaddress.com”

dd offset alp_anysrc_net ; “ip.anysrc.net”

Version 14

dd offset aCheckip_amazon ; DATA XREF: sub 3D9SBO+4BTr
; ""checkip.amazonaws.com"

dd offset alpecho_net_8 ; "ipecho.net”

dd offset alpinfo_io_ B ; "ipinfo.io"

dd offset afApi_ipify or_B ; "api.ipify.org”

dd offset alcanhazip co_B ; "icanhazip.com”

dd offset aMyexternalip_B ; "myexternalip.com™

dd offset aWtfismyip co_ B ; "wifismyip.com™

dd offset alp_anysrc_ne_ B ; "ip.anysrc.net”

If it receives the response it expects from this request, it starts contacting the C2s it has
obtained from its configuration to start reporting information on the new victim, check for

updates, and receive new modules that expand its capabilities.

In normal configurations, after making certain requests with different commands that
report host information to one of the C2s in its configuration, it obtains the IP of a specific

server from which it can download new modules through port 447/tcp.

All downloads of configurations and modules are encrypted with the same algorithm
(AES CBC) and all the files are saved encrypted to the disk. After updating and
downloading the configurations and modules that it has in the configuration, it decrypts
and maps the first module in the memory of its own process, "systeminfo ", which is
responsible for collecting information such as OS version, CPU type, the amount of RAM,

the users of the system and the list of installed programs and services:

=systeminfo=
=genarals=
<ops=Microsoft Windows 7 Professional Service Pack 1 32 bits</os=>
=cpu=Intel(R) Core(TM) i13=/cpu=

=ram=3,41 GB=/ram=

=/general=

<users=

<yser=Administrador</user=>

<user=Invitado</user=>

=user=jhon=/user=

=/lUsSers=

<installed=

<program=7-Zip 16.04<=/program=

=program=AddressBook</program=

=program=~Adobe Flash Player 17 ActiveX</program=

<program=Adobe Flash Player 17 NPAPI<=/program:=
=program=Connection Manager=/program=
=program=01rectDrawEx=</programs=
<program=D¥M_Runtime=/program:=
=program=Fontcore=/program=
<program=IE40</programs=
<=program=IE4Data</program=
=program=IESBAKEX<=/program=
<program=IEData</program:=
<program=MobileOptionPack=/programs=
=program=MPlayerZ</program=

<service=.NET CLR Data<=/services=

<service=.NET CLR Networking=</services=
<service=.NET CLR Metworking 4.0.0.0<=/service=
<service=.NET Data Provider for Oracle=/service=
<service=.NET Data Provider for SglServer</service=
<service=.NET Memory Cache 4.0</service=
<service>.NETFramework=/services>

<service=1394 OHCI Compliant Host Controller=/services=
<service=Controlador Microsoft ACPI</service=
<service=ACPI Power Meter Driver</service=
<service=Adobe Acrobat Update Service=/service=
<service=adp94xx</service=
<service=adpahci</service=

Then it loads the injectDII32 module together with its configuration files:

injectDl32_configs 7/11/2016 21:43 Carpeta de archivos
|| injectDII32 30/03/2017 11:06 Archivo 512 KB
|| systeminfo32 30,/03/2017 11:06 Archivo 22 KB
L] dinj 30/03/2017 11:06 Archive 41 KB
| | dpost 30/03/2017 11:06 Archive 1KB
|| sinj 30/03/2017 11:06 Archive 23 KB

Once this module is loaded, in case the user visits one of the websites listed in the
configuration files (such as * cey-ebanking.com / CLKCCM / *) of this module, it captures

the relevant browsing data and sends them to their C2:

POST /pre7/ 2B2/60/ HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 7.8; Windows NT 6.1; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC
6.0; TrfaDath =2+ NFTA OC; .NET4.0E; Tablet PC 2.0)

Host
Connection: close
Content-Type: multipart/form-data; boundary=--------- JHFBLY JHBODCCZHU

Content-Length: 2384

rrrrrrrrrrr JHFBUY JHBODCCZHU
Content-Disposition: form-data; name="data"

POST /_vti bin/Lists.asmx HTTP/1.1

Host: www,

Connectlon. nesp-aulve

Content-Length: 698

Accept: application/vml +avt/xml, */*; gq=0.01

Origin: https://wew .com

X-Requested-With: Xmnttprequest

User-Agent: Mozilla/5.0 (Windows NT 6.1) AppleWebKit/S37.36 (KHTML, like Gecko) Chrome/45.0.2454.101 Safari/S37.36
Content-Type: text/xml:charset='UTF-8

Referer: https://ww. .com/pages/default.aspx

Accept-Encoding: gzip, we:vace

Accept-Language: es-ES,es;q=0.8

Cookle: TLTSID=6CEE02641ECD101EQOSAE3SBE9ECTET3; TLTUID=6CEE02641ECD101EOOSAE3SBEO8CT673; cnTPSet=Y; CMAVID=none; _ga=GAl.2.479686626.1491918949; _gat=1

<soap:Envelope xmlns:xsi='http://www.w3.0rg/2001/XM Schema-instance' xmlns:xsd='http://www.w3.0rg/2001/XM.Schema' xmlns:scap='http://schemas.xmlsoap.org/soap/
envelope/' ><soap:Body><GetListItems xmlns='http://schemas.microsoft.com/sharepoint/soap/'=<listName=PhotoGallery</listName=<viewName==</
viewName><query><Query><wWhere><Eq><FieldRef Name='BaseName'/><Value Type='Text'=04-11-2017.]pg</Value></Eq=</Where></Query></
query=<viewFlelds=<ViewFlelds=><FieldRef Name='Title'/><FieldRef Name='Customer x0020 name'/=<FieldRef Name='Photo_x0020 Location' /></v1ewFlelds></
v1ewF1e1ds><rqu1m1t>1</rqu1m1t><queryOptluns><Query0pt1uns»«/QueryOpt]uns»«/queryaptluns>=/cetL1stItems>=/suap Body></soap: Envelopes...~T3...7....

{85800 <soap:Envelope xmlns:xsi='http://www.w3.0rg/2001/XM Schema-1nstance' xmlns:xsd='http://www.w3.0rg/2001/XM.Schema' xmlns:soap='http://
schemas.xmlsoap.org/soap/envelope/' =<soap:Body=><GetlListItems xmlns='http://schemas.microsoft.com/sharepoint/soap/' =<listName=PhotoGallery</listName><viewName></
viewName><query><Query><wWhere=<Eq=<FieldRef Name='BaseName'/=<Value Type='Text'=04-11-2017.]pg</Value=</Eq=</Where></Query=</
query><viawFields><ViewFields><FieldRef Name='Title'/><FieldRef Name='Customer_x0020 name'/><FieldRef Name='Photo_x0020 Location'/></viewFields></
viewFields><rowLimit>1</rowlLimi t>=queryOptions><QueryOptions=></QueryOptions=</queryOptions=></GetListItems></soap:Body></soap: Envelope>

rrrrrrrrrrr JHFBUY JHBODCCZHU

Content-Disposition: form-data; name="keys"

rrrrrrrrrrr JHFBUY JHBODCCZHU
Content-Disposition: form-data; name="link"

https: / fwww. com/_vti_bin/Lists.asmx
rrrrrrrrrrr JHFBUY JHBUDCCZHU- -

As discussed in the DevCentral report, version 9 of trickbot , a new module was added
to the Trickbot toolset called "mailsearcher ". Then in the case of being in the
configuration will also be loaded into the victim system. The order in which the modules

are loaded will depend on the configuration file.

"mailsearcher " is responsible for searching all the files of each disk connected to the

system and comparing the extensions of the files with the following list:

dd offset aHovu ; "mout
dd offset ahlku ; 'mkutt
dd offset alipeg ; "mpeg"
dd offset aMpegh ; 'mpegh’
dd offset aklph s 'mpar
dd offset abp3 ; 'mp3*
dd offset allav ; "wau'
dd offset adgg s 'ogg”
dd offset aJdpeg ; "ipeg”
dd offset aJdpg ; "ipg”
dd offset aPng ; “png"”
dd offset aBmp ; "bmp*
dd offset aGif ; gif”
dd offset aTiff ; "tiff
dd offset alco ; "ico"
dd offset aklsx: ; DATA XREF:
s UHlsx™
dd @ ; DATA XREF:
dd offset aDocx ; ""docx"
align 18h
dd offset alip ; zip”

This module reports itself to a specific C2 that it obtains from its own configuration:

-
V]
o
0.
b 4
)
-
v
-
o0
ol

s w wiie v wSHRLILY> SN
43</handler>. .</ma

=
=
W
-
.

1
Lt g |
-

The URI of the request is different from the one used by the "core" of Trickbot , since in
this case it has the structure "[IP]/[group_id]/[client_id]/send/" and uses its own User-
Agent "KEFIR ! "Which makes it much more independent than the other modules found

to date.

What is seen in this section describes the actions performed by Trickbot after its first
execution. From this moment Trickbot enters a loop where from time to time it checks if
there is a new configuration and if there are new versions of the malware or of some of
the modules. In addition, within the same loop, it performs reports with the information it

collects.

4. MODULE LOADING SYSTEM

During the analysis it has been observed that Trickbot uses events to control the
execution flows between the core and the modules. In addition, the core performs the
resolution of the Windows APIs of the modules. Let's see how this core communication

system works with the modules.

First it creates a svchost.exe child process suspended with the CreateProcessW

function:

Ll e 55

1ea edx, [ebpt+ProcessInformation]

push edx ;: 1pProcessInformation
1lea eax, [ebp+Startuplnfo]

push eax ; lpitartuplInfo

push] ; lpCurrentDirectory
push] ; 1pEnvironment

push 4 ; duCreationFlags
push 8 : bInheritHandles
push] ; 1pThreadattributes
push 8 ; 1pProcessAttributes
push ebx ; lpCommandLine

push a ; lpApplicationHame
call ds:CreateProcessi)

test eax, eax

jz short loc 3DBESS

n1000014_win32_Unpa.. 2832
Later with the CreateEventW function, it creates three events that will be used to manage
the waits and communications between the main executable (Trickbot) and the svchost

child process.

add esp, HCh

push esi ; lpHame

push esi : bInitialState
push esi s bManualReset

push esi ; 1pEventAttributes
mouv e5i, ds:CreateEuventy

call esi ; CreateEventW

push a8 ; lpHame

push 8 ; bInitialState
push a ; bManualReset

push] ; 1pEventaAttributes
mou [edi+6Ch], eax

call esi ; CreateEventW

push a ; 1lpHame

push 1 ; bInitialState
push 1 ; bHManualReset

push 8 ; 1lpEventAttributes
mouv [edi+78h], eax

call esi ; CreateEventd

mou ecx, [ebp+hThread]

Once it has the handlers of the three events, using VirtualAllocEx and
WriteProcessMemory it injects in the suspended svchost process 32 bytes of data like

the following:

06090000 (04 60 00 06/(08 00 66 06| [6C 60 00 06|[A% F8 10 77|oo.... ne.uw
00096610 (36 11 OF 77|10 14 OF 77| [DD 16 OF 77|18 7R OF 77| 6..w...w!..w.z.u

The first three groups of 4 Bytes (in red boxes) represent the identifiers of events that
have created trickbot previously and that will use for their communication, in this case

4, 8 and C respectively.

The following 5 groups of 4 Bytes (in purple boxes) represent the offsets in the memory

itself of the svchost process, from the following functions of the kernel32.dll library:

SignalObjectAndWait
WaitForSingleObject
CloseHandle
ExitProcess

ResetEvent

Using the same injection method, it loads its own function into another offset of the
svchost memory that will be used as the intermediary between Trickbot and the module

code.

FEELEE

EEEE e

1

Lae asmn:

ELEE

Bwrd atr [Fatsdm], o
joxlsn

i) [rsl
! feii e

G

1t
EEEREETH]

i

i

i
&

it

This feature is one of the most characteristic details of the Trickbot module
management.

It is in charge of keeping itself waiting for orders from the main process. These come as
offsets from functions within the memory of the svchost process itself and parameters
with which to call them. This information is obtained through scripts in its own memory
by Trickbot as detailed in the previous case.

Most of its logic consists of a loop that starts and ends in code zones with a blue
background; after the first instructions, in case of detecting a problem with the process,
it enters the area marked in red that closes the handlers of the events and the process
itself.

In case everything goes correctly, the zone in which it enters consists of a switch, marked
in green . Depending on the number of parameters needed by the function to call, enter

one of the blank zones.

In the case of the following screenshot, if the number of parameters (which it has loaded
in edx) coincides with 9, it enters a zone with nine calls to "push edx" with which it is
loading parameters in the stack extracted from consecutive offsets after eax. Finally, it
makes a call to ecx, where it has loaded the first offset of eax in the fourth instruction of

this zone and that corresponds to the position of a function.

(ol i =
loc_3DCC18:
cmp edx, 9
jnz short loc_3DCCS4
=

mnouv edx, [eax+28h

edx, [eax+2ih]
ecx, [eax

edx, [eax+26h
edx, [eax+1Ch
edx, [eax+18h

edx, [eax+14h

edx, [eax+10h

edx, [eax+8Ch]
eax, [eax+8

nov [esi+4uh], eax
nov ecx, 1
jmp short loc_3DCC54

In the next screenshot you can see an example of calling a function like this and the

status of the registers during the execution.

To manage the wait between the parent and child process, Trickbot uses the events it

created before the injections into the process.

Using these events, when it reaches the last zone of the loop (in the previous screenshot
marked with blue background) it contains two calls that correspond to a ResetEvent that

notifies Trickbot that it has reached the end of the loop:

debug 806 : 6008 06F 7
debug®06: 0068 00FA
debug 866 : 6868 06FD
debug 866 : 6608 66FE
debug 866 : 60680165
debug 806 : 60080167
debug 806 : 6008016A
debug 8686 :606808186C
debug 806 : 666801 6F
debugB06:0600806111
debugB086:00880113
debugB06:00080114
debugB06:00080115
debug 806 :00080117

deb.._nar.0nnnnaan

mov
nov
push
mov
call
nov
mov
mov
push
push
push
push
call

inp

[esi+48h], ecx

~ |EAX 60000000
EBX 7EFDEBO®

ecx,4£95i+u]
ecx <&

dword&;tr [esi+26h], 8

EDX 770F16DD

edx
eax, [esi+4]
ecx, [esi]
edx, [esi+BCh]
[§]

BFFFFFFFFh

eax

ecx

edx

loc_80007

ESI 006D08666
EDI 600606080
EBP B016FAFC
ESP B016FAFY
EIP 000801065
EFL 60800293

ECX 00000008

(1S
Y debugB16:7EFDEBGS

% ID del evento para notificar a Trickbot

Y kernel32.dll:kernel32 ResetEvent
Y debug®89 :unk_D00606

[N

Y Stack[OO006BEES] :0616FAFC

Y Stack[OOO0BEED] :0016FAFY

% debug086:00606801805

And a call after SignalObjectAndWait, to which it passes the IDs of two events. This

function leaves the process suspended waiting for Trickbot to do a ResetEvent of the

event in this case with ID 4, which means that it has loaded the new parameters into the

memory for the next iteration of the loop:

debugB06: 6088008F7
debug 006 : 6088 06FA
debugB06 : 6088 6OFD
debug 8066 : 6088 OBFE
debug 006 : 00880105
debugB066: 608801867
debugB66:0088016A
debugB06:0088016C
debugB066 : 6088 616F
debugB06:00086111
debugB066:608806113
debugB06:060880114
debug866:60086115
debug006:00080117 j
debugB066:06088011C ;

mov
mov
push
mov
call
mov

[esi+u48h], ecx

ecx, [esi+h]

ecx

dword ptr [esi+28h],
edx

eax, [esi+4]
ecx, [esi]
edx, [esi+
S}

N

EAX 00000008

||EBX 7EFDEBBO % debugB16:7EFDEOBO

ECX 00008084

|__ IDs de Eventos

EDX 7710F8A4 & kernel32.d11:kernel32 SignalObjectAndWait
ESI 900DB866O % debugBb?:unk_DOOOO

EDI 60608008
EBP B016FAFC
ESP B016FAES
EIP 800880115
EFL 808008262

& Stack[66B6BEES] :0616FAFC
Y Stack[0006BEES] :0616FAES
% debugB86:060080115

Before starting the execution of this process, it injects in the Entry Point of svchost, four

lines that redirect the flow of the main thread to the previous function, passing it as a

parameter, the 32 bytes of data injected at the beginning:

0 S B B e e i
100252104 | pop eax Offset de los datos inyectados
1008252105 | push offset

108252106A | push eax Offset de la funcion inyectada
180252108 | jmp near ptr

eI [H sesssosscsascos=acaasasaoeaaconoay
180252118 call loc_251D8A

180252115 xor ebx, ebx

100252117 mov [ebp+uar_4], ebx

180252114 mov eax, large fs:18h

1008252128 mov esi, [eax+4i]

180252123 mov [ebp+var_1C], ebx

100252126 mov edi, offset unk_255688

AAanrnann

After preparing all that, it calls ResumeThread and the process goes into execution.

During the first iterations of the loop, Trickbot maps one of the modules in the process

memory, section by section:

A ruwwuw

e

Private

o e

R T L Ry

pevE]

av e

4 0x10000000 532kB 532kB 532kB
0x10000000 Private: Commit 4kB R Modulo mapeado en 4kB 4kB
0x10001000 Pr!vate: Comrnft 72kB RX memoria por 72kB 72kB
0x10013000 Private: Commit 28kB R 3 28kB 28kB

secciones

0x1001a000 Private: Commit 416 kB RW 416 kB 416 kB
0x10082000 Private: Commit 12kB R 12kB 12kB
™ Bw
svchost.exe (2172) (0x10000000 - 0x10001000) folfe] | s
Cabecera MZ del modulo.. 2 kB
0000000 4d Sa 90 00 03 00 00 00 04 00 00 00 ££f ££ 00 & 5 k8
0000010 b& 00 00 00 00 00 00 00 40 00 00 00 00 00 00 ‘El 3k8

0000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 L=
0000030 00 00 00 00 00 00 00 00 00 00 00 00 £0 00 00 8ks
0000040 Oe 1£f ba Oe 00 b4 09 cd 21 b8 01 4c cd 21 54 8kB
0000050 69 73 20 70 72 6£f €7 72 61 éd 20 €3 61 ée 6e 6f is program canno 8kB
0000060 74 20 62 €5 20 72 75 6e 20 €9 6e 20 44 4£f 53 20 t be run in DOS D3 kB

0000070 éd 6f 64 65 2e 0d 0d Oa 24 00 00 00 00 00 00 00 mode....$.ceuenn

0000080 28 43 45 6f 6c 22 2b 3c 6c 22 2b 3c 6c 22 2b 3c (CEOl"+<1"+<1"+< | —
0000090 61 70 ca 3c 47 22 2b 3c 61 70 £4 3c 76 22 2b 3c ap.<G"+<ap.<v"+< | —
00000a0 61 70 cb 3c 19 22 2b 3c bl dd e0 3c 65 22 2b 3c ap.<."+<...<e"< r

In the next iteration, using the data that the parent process has passed to it, it loads all

the DLLs required by the newly loaded module with LoadLibrary and the functions of

these that it will need with GetProcAddress.

Finally it calls an initialization function of its own module, which writes the "Success"

string in one of the memory zones edited by Trickbot , in case everything is correct.

4 0x30000 Private 4kB RWX
0x30000 Private: Commit 4kB RWX
7 | svchost.exe (1136) (0x30000 - 0x31000)
00000000 E3 75 €3 €3 €5 73 73 00 00 00 00 00 08 00 07 0f SuccCeSS.cceceeses
00000010 00 00 43 02 38 ee 43 02 00 00 00 00 30 04 04 30 ..C.8.C..... 0..0
00000020 £8 03 00 00 €0 9d 43 02 a0 £4 18 00 00 00 43 02Covvuuen a

ARNANANANAAN &N

-l

AN " An

Arf A" AN

Aan An

AN

AA Mo AA T N

From this point, this last iteration is suspended with the call to SignalObjectAndWait,

waiting for Trickbot to require, for example, the reporting information of said module.

From the main process side, you can see how it contains a function to call the different

functions that export each of its modules. These functions are those that each module

exports, since the modules are DLL's and as such they export functions to be used by

the core. To date these functions have not been changed in any of the versions and

these are Start, Control, Freebuffer and Release.

R s J | 1

il e |ﬂu‘| =
0030B2BC nov eax, [ebpruar_38]| [003DBI82
003DB2BF add eax, 4 00308382 loc_308382:
0030B2C2 nov [ebpevar_38], eax| (00308382 nov edx, [ebpevar_50]
0030B2C5 nov eax, [eax] 00308385 nov edi, [edxreax=h]
0030B2C7 add ebx, & 00308388 push esi
003DB2CA test eax, eax 003DB389 call Sub_3DBA%O
0030B2CC jnz short loc_30B261 003DB3IBE nov edi, eax
- Pon | gerset ssewas
003DB3I9S push edi H Iv
00308396 call ds:lstrcnph
003DBIIC test eax, eax
003DBIYE jnz short loc_3DB3AB
-

= =
:::::: loc_3083A8: ;l “Control"

0030B3AB push offset aControl_@

003DB38BO push edi 3 1pstringt
00308381 call ds:lstrenph

003DB3B7 test eax, eax

00308389 jnz short loc_3DB3C6

J L

[
003DB3C6
0030B3C6 loc_3083C6: ; ["FreeBuffer]
003DB3C6 push offset aFreebuffe

0030B3CB push eai 3 1pStringt
003DB3CC call ds:lstrenph

003DB3D2 test eax, eax

003DB3DA {nz short loc_3DB3E1

— |

@
003DB3IET

OO3DB3E1 loc_30B3E1: ;| "Release”
003DBIET push offset aRelease_@

003DBIEG push edi 3 1pstringt
BO3DB3E7 call ds:lstrenph

0030B3ED test eax, eax
003DBIEF jnz short loc_3DB3FA

L
¥
i'ﬁu‘lﬁ Llﬂu‘:ﬁ | [=2
Bara| [0030B3A0 add ebx, [enpmar_ql 00308388 add ebx, [»pwar_l]l 00308306 add ebx, [ebpruar 8]

A §

003DB3IF1 add
003DB3IFA nov

ebx, [ebpruar 8]
[esis+90h], ebx

(00308343 nov [esis8hh], ebx | |003DB3BE nov [esi+88h], ebx 00308309 nov [esie8Ch]), ebx
|082308309 jnp short loc_3DB3FAf |0630B3CK jnp short loc_30B3ra| |063DB3DF jnp
1

short loc_3DB3FA

systeminfo32.dil

Ordinal Function RVA | Mame Ordinal | Mame RVA Mame
(nFunctions) Dword Word Dword szhnsi
00000001 00002190 0000 0000517F Control
00000002 00002230 0001 00005187 FreeBuffer
00000003 00002180 0002 00005192 Release

00000004 00002100 0003 00005194 Start

To make the transfer of information to the module, after passing through the area of the
function which it wants to call, it performs a WriteProcessMemory of the data in question
and calls ResetEvent for the module to start working.

Yy
s =
mov eax, [esi+78h]
mov ecx, [esi+48h]
Xor edx, edx
nov [ebp+uar_20], edx
mov [ebp+duSize], edx
lea edx, [ebp+duSize]
push edx 5 1pNumber0fBytesWritten
push 4Ch ; nSize
lea edx, [ebp+Buffer]
push edx ; lpBuffer
push eax ; lpBaseAddress
push ecx ; hProcess
mov [ebp+var_u4], 1
mov [ebp+uar_u48], ebx
call edi ; WritePrncessMiorg
test eax, eax
iz short loc_3DCSF8
‘_TI
mov edi, 4Ch
cmp [ebp+dwSize], edi
jnz short loc_3DCSF8
mnov eax, [esi+6Ch]
push eax ; hEvent
call GSW
call sub_. co
test eax, eax
jz short loc_3DC5F8
T T

5. NETWORK CONNECTIONS

For communications with its C2S, this malware uses HTTPS requests, which
complicates the identification of its traffic by means of tools like NIDS to use, since that

traffic is encrypted.

Usually these communications are done through port 443, although not always, since
from the first versions, it began to use port 447 of some specific C2 to download the

modules.

A differentiating element of its traffic is its User-Agent, since at first it identified it perfectly:

it used the chain TrickLoader in all its requests:

unicode 8, <TrickLoader>
dd offset aTrickloader

In intermediate versions of the same it became somewhat less obvious, but maintained

an unusual structure and easy to detect, becoming the "Xmaker" chain:

unicode 8, <Xmaker>,0
align 16h

In recent versions, as another of the changes clearly aimed at making this malware less

detectable, the authors have begun to use a much more generic User Agent:

unicode B8, {Mozilla/5.8 EWindEws HT 6.1; WOW64; ru:S1.8) Gecko/Z2@1881>
unicode 8, <81 Firefox/51.8>,8

The requests are formed in such a way that a great amount of the information that reports
to C2 goes in the URI, being the majority of these requests of type GET, excepting more

extensive shipments of information collected by its modules, that it sends by POST.

GET /pre7/
Connection: Keep-Alive

4BC93524F/5/spk/ HTTP/1.1

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:S51.0) Gecko/20100101 Firefox/51.0

Host: 203. |

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Mon, 03 Apr 2017 16:32:41 GMT
Content-Type: binary

Connection: keep-alive
Content-Length: 224

=T g 1 P [l

i0..5..al. ... Nage % gLl N L

..... m..\t..q.e.@...z....S!.0.0.7..!.2W...

V==l ool 5 = oo ooooon s o ekataet Ao e o < e ool oo

.0...GET /pre7/
20SP1/1015/)
Connection: Keep-Alive

q
34BC93524F/0/

............... y.b....'y...2h.K....0$48

JESEA20F35CS/qLT 1U1CBNUBKKZ tuw2gnPez/ HTTP/1.1

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:S1.0) Gecko/20100101 Firefox/S1.0

Host: 203. |

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Mon, 03 Apr 2017 16:32:41 GMT
Content-Type: text/plain
Connection: keep-alive
Content-Length: 371

/1/pre7/ o C16B4BC93524F/qLT 1U1CBNUBKKz tuw2gnPeZz/272/
o P e DG Tl e 1 e U6 & (sl s e Ce) e [x S bE =2
s = D e - OS~s > DNO X O > T oo s Y..hoh.7.."v>.D.d.0.S@.d...>N.]..1q.z.

...... 317X b He e R 00 e e e S e e

Connection: Keep-Alive

XNV kY 2w 3N =N Md s Be S QN { e Daaninnmn [ocoog $07.

B4BCO3524F/10/62/QEYZLSVQPLSANAVA/1/ HTTP/1.1

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:S51.0) Gecko/20100101 Firefox/51.0

Host: 203.7 "

Among the data that contains the URIs of the requests, you can find the identifier of the

current campaign and the user ID that it saves in the two files that it generates along with

the executable, in the first stages of its execution. You can also find a number that

identifies the order that it is sending to the C2 so that it can differentiate what it is

requesting or reporting to it, and later different extra data related to the command in

question.

From what we have analyzed and from information obtained from different external

analyses, we have created the following table with a summary of the functionality of each

order that we identified.

ID
/[group_id)/[client_id]/0/[version de windows]/[idioma del sistema]/[ip
0 U externa)/[sha256]/[key de sesién]/
Description Report with basic information about the client.
. URI /[group_id]/[client_id]/1/[key de sesion]/
Description Keep alive.
5 URI /[group_id/[client_id]/5/[modulo/configuracion]/

Description Download of a module or configuration of a module.

10

14

23

25

60

63

64

URI

Description
URI

Description
URI

Description
URI

Description
URI

Description
URI

Description
URI

Description

/[group_id)/[client_id]/10/62/[key de sesion]/1/

Start of module.

/lgroup_id)/[client_id]/14/[key de sesion]/[value]/0/

Report with information on errors, checks, and other information
/[group_id}/[client_id]/23/[config ver]/

Base configuration update

/lgroup_id)/[client_id]/25/[key de sesion]/

Bot update

/[group_id)/[client_id]/60/

Traffic report captured by the injectDIl module

/[group_id]/[client_id]/63/[module name]/[module command]/[result -
base64]/[root tag of output XML]/

Systeminfo o injectDIl Report

Everything points to a command related to the mailsearcher module. What we
have seen is that it performs POST requests with multipart content. It aims to
be an exfiltration command, but that is still being verified.

From the Trickbot code, you can see how in one of its functions it contains the switch

that is in charge of directing the execution flow that generates these requests depending

on the command. In the following image you can see this code for one of its older
versions (Version 1000005):

Analyzing the same function of one of the most recent versions (Version 1000010), we

can see how they have added an extra option after the last one, which corresponded to

the command with number 63, and which is accessed with a new command number

64

The functions that are executed from passing through this new area of code (command
number 64) are very similar to those of the command 63, so it is probably also a
command to perform reporting. The appearance of this new command (64) coincides in
time with the appearance of the new module "mailsearcher ", so everything indicates

that these are related.

After the execution of the sample corresponding to version 14 in a controlled
environment, we analyzed its traffic flow which shows a good part of the behavior of the

execution of this malware.

/5/spk/

Config spk cifrada

| J0/IWin_version)/[ID_ldioma_sistema]/[IP_Victima]/sha256/qLT1U1CBNUBkKztuW2gnPeZ/

[/1/(g_tag)/(u_id)/qLT1ULCBNUBKKztuW2gnPeZ/272/] + [config C2 447] + [1234567890)

/5/systeminfo32/

Modulo systeminfo cifrado

‘ !lOIEZ/QEYZLSVQPLSANAVAIl!‘

403 - Forbidden

‘ /63/systeminfofstart/(null)// |

403 - Forbidden

Q

‘ /10/62/EKSDSKNXADMCE/1/ ‘

Link para la descraga de la ultima
403 - Forbidden version de Trickbot

‘ /63/systeminfo/GetSysteminfo/c3VjY2Vzcw==/systeminfo/

/25/qYLCLKk4uktEiw6ne2mku/

XML con info recopilada del sistema por el modulo

vy
Descarga del modulo injectDIl y sus configs
/5.'injectD||32.'| ‘ [5/sinj/ | | 15/dinj/ ‘ | /5/dpost/ ‘ /14/NAT%20status/client%20is%20behind%20NAT/0/
Para cada peticidn recive el fichero correspondiente cifrada iy

403 - Forbidden - - [av)
110/62/0FKIBLB)VYOHR/1/ IE}ﬁnjeCtDIl[StarU(Success)U3VJY2VZCW==![H /14/user/SYSTEM/O/

The first part of the requests has been omitted to simplify commands.

6. ENCRYPTION MECHANISM

In the great work done by malwarebytes (@hasherezade) it is detailed that the

encryption algorithm used by Trickbot is AES CBC 256 bits . Also in the same entry on
this subject we are told that the first DWORD is about the size of the data. In addition,

@hasherezade offers resources after its research to decipher both the configurations as

the modules, which makes it easier to understand Trickbot and its evolution.

Based on this information and visualizing how the content is decrypted, it is easy to
perform the reverse process and build a script or modify the one made by hasherezade,
to provide us with the ability to encrypt configurations modified by us to more easily
manipulate Trickbot execution flows. The implementation of the encryption function

would be as simple as:

rypt{data):

Random.new() .read(8x30)
hash rounds(token[:0x20]1)[:0x20]
hash_rounds(token[8x18:8x38])[:8x18]

AES.new(key, AES.MODE CBC, iv)
pad(data)
token + aes.encrypt(data)
result

To perform this process we can start from a configuration that we get encrypted and with

the @hasherezade script we can decrypt it. Once decrypted, we can modify it, as in the

following example where we add the local IP address 11.11.11.1:443 (ip of the laboratory
environment) and load the module “mailsearcher ”. With this we expect it to use the IP
11.11.11.1:443 as command and control and load the module "mailsearcher " which

does not usually come by default.

After modifying it with a hexadecimal editor we would have the following:

00000000(00 02 00 00 8C 03 00 02 3C 6D 63 63 6F 6E 66 3E 0D 0A 3C 76 65 72 3E 31 30 30 30 30 31 35(..cuvvnnn <mcconf>..<ver>1000015
0000001e(3C 2F 76 65 72 3E 0D 0A 3C 67 74 61 67 3E 74 74 30 30 30 32 3c 2F 67 74 61 67 3E 0D 0A 3C|</ver>..<gtag>tt0002</gtag>..<
0000003c |73 65 72 76 73 3E 0D OA 3C 73 72 76 3E 31 39 30 2E 31 33 38 2E 32 34 39 2E 34 35 3A 34 34 |servs>..<srv> P.45:44

0000005a|33 3C 2F 73 72 76 3E 0D QA 3C 73 72 76 3E 32 30 30 2E 31 31 39 2E 32 33 36 2E 38 36 3A 34|3</srv>..<srv>] " $.86:4
00000078 (34 33 3C 2F 73 72 76 3E OD OA 3C 73 72 76 3E 33 36 2E 36 36 2E 31 30 37 2E 31 36 32 3A 34 43</srv>._<srv>. |162:4
0DD00096(34 33 3Cc 2F 73 72 76 3E OD OA 3C 73 72 76 3E 32 30 30 2E 31 31 36 2E 32 30 36 2E 35 38 3A|43</srv>..<srv> .58:
0000000b4 (34 34 33 3C 2F 73 72 76 3E 0D QA 3C 73 72 76 3E 33 36 2E 36 36 2E 32 30 39 2E 32 31 3A 34(443</srv>..<srv> Fl:!l
0D0000d2 (34 33 3C 2F 73 72 76 3E 0D 0A 3C 73 72 76 3E 32 30 33 2E 37 36 2E 31 30 35 2E 38 32 3A 34|43</srv>..<srv> -B2:4
000000£0(34 33 3C 2F 73 72 76 3E 0D 0A 3C 73 72 76 3E 32 30 30 2E 31 32 30 2E 32 31 34 2E 31 35 30|43</srv>..<srv> . 150
0000010e (3A 34 34 33 3C 2F 73 72 76 3E 0D OA 3C 73 72 76 3E 31 31 2E 31 31 2E 31 31 2E 31 3A 34 34|:443</srv>..<srv>11.11.11.1:44
0000012¢c (33 3C 2F 73 72 76 3E 0D OA 3C 73 72 76 3E 32 30 33 2E 39 32 2E 36 32 2E 34 36 3A 34 34 33|3</srv>..<srv>| 6:443
0000014a|3C 2F 73 72 76 3E 0D OA 3C 73 72 76 3E 38 34 2E 34 32 2E 31 35 39 2E 31 33 38 3A 34 34 33 </5[v>..<51v)48:443

00000168 (3C 2F 73 72 76 3E 0D OA 3C 2F 73 65 72 76 73 3E 0D 0A 3C 61 75 74 6F 72 75 6E 3E 0D 0A 3C|</srv>..</servs>..<autorun>..<
00000186 (6D 6F 64 75 6C 65 20 6E 61 6D 65 3D 22 73 79 73 74 65 6D 69 6E 66 6F 22 20 63 74 6C 3D 22 |module name="systeminfo" ctl="
0D0001a4 (47 65 74 53 79 73 74 65 6D 49 6E 66 6F 22 2F 3E 0D 0OA 3C 6D 6F 64 75 6C 65 20 6E 61 6D 65|GetSystemInfo"/>..<module name
0D000Llc2 (3D 22 69 6E 6A 65 63 74 44 6C 6C 22 2F 3E 0D DA 3C 6D 6F 64 75 6C 65 20 6E 61 6D 65 3D 22 |="injectDll"/>..<mndnle name="
000001e0[6D 61 69 6C 73 65 61 72 63 68 65 72 22 2F 3E 0D OA 3C 2F 61 75 74 6F 72 75 6E 3E 0D 0A 3C|mailsearcher"/>. sopausovund . . <
000001fe|2F 6D 63 63 6F 6E 66 3E 0D OA 1B 77 60 DB 6F 52 95 44 95 CA 1A 35 1E 4A 8B 02 1A 74 13 lE|/mcconf>...w .oR.D...5.J...t..
0000021c(6F 91 OF 4A D3 2A 07 C2 72 68 5D BA 83 3Aa 33 39 BD DE 72 04 88 F5 A2 99 27 BC A7 58 02 A3|o..J.*..rh]l..:39%.. R
0000023a (07 E9 6E EB A3 4C E6 4B C5 F5 1A BE 4A 9D E3 36 36 90 7D 2D D& 42 E3 12 BO D% A7 F2 13
00000258 (23 45 9F C8 67 10 DB OF EF B3 83 2D 60 67 8C 36 02 02 10 10 10 10 10 10 10 10 10 10 10
00000276 (10 10 10 10 13 59 3B 4E EA 51 A8 0B 18 BB OA 44 DB CD 02 2B 47 7B Bl S5A B5 02 E6 BA 40
00000294 (EQ0 D2 32 CO 3B 49 0A L

e

After the first 8 bytes is when the configuration data starts as such. In these first 8 bytes,
it will be where Trickbot will look for the size of the data that will come next. In the case
of example that corresponds to the value 02 00 (in the image it is upside down, 00 02),
this would be 0x200 bytes. If we select the dataset we will see that it has just the right
size of 0x200 bytes:

00000000 00 8C 03
0000001e
0000003c
0000005a
00000078
00000096
000000p4
000000d2
000000£0
0000010e
0000012¢c
0000014a
00000168
00000186
000001a4
000001c2
000001e0
000001fe |B&
0000021c
0000023a |07 E9 6E EB8 A3 4C E6 4B C5 F5 1A BE 4A 9D E3 36 36 90 7D 2D D8 42 E3
00000258 |23 45 9F C8 67 10 DB OF EF B3 83 2D 60 67 8C 36 02 02 10 10 10 10 10
00000276 |10 10 10 10 13 59 3B 4E EA 51 A8 0B 18 BB OA 44 DB CD 02 2B 47 7B Bl
00000294 |ED D2 32 CO 3B 49 0A

Signed 8 bit: [ﬂil Signed 32 bit: ‘Wl Hexadecimal: |W‘ ®
Unsigned 8 bit: |277| Unsigned 32 bit: \W| Decimal: |m\
signed 15bit: (7031 | Float32bit: [2,046266E22 | octal: (033167140333 |
Unsigned 16 bit: [7031 | Float 64 bit: |2,3076841884025E-176 | Binary: | 00011011 01110111 01100000 11011011 |
[) show little endian decoding ["] show unsigned as hexadecimal ASCIl Text: B
Offset: 0x208 / 0x29a Selection: Ox8 to 0x207 (0x200 bytes) INS

Therefore, after modifying the information we must set the first bytes to tell Trickbot the
exact size of the data. Then we encrypt with the function we have called aes_encrypt().

With this we will have a new configuration that will not yet be fully functional.

The reason it does not work is because Trickbot, after the encrypted data, places the
hash signature of the data . Therefore if we modify the content of the configuration we
have to calculate the signature of the data since it verifies it after reading the
configuration. To calculate the hash signature of the data that it has just read it uses the
KEY that comes in the binary resources. We will see below how it loads the resources

key:

[T stack view o#
00187920

0018F92 0B3E2280 .rdata:aKey

0018F928 00080008

0018F92C 00000080

0018F930 0018FO64 Stack[0008073C] :0018FO6H

[0018F934 O018FOES Stack[0000073C] :0018FOES

[0018F938 OO18FEF4 Stack[0000073C] :0B18FEFY

ol %

Then it will execute the function LoadResource () and we will see in EAX the value where
the KEY will be:

-text: 883D push Eeax ; hResInfo »||Enx BB3ESBEE W
.text:B03DE7DE push esi ; hHodule mL

-Eext:003D87DC call ds:LoadResource ; kernelbase_ LoadResource() L [E1EE3 LU0
.text:@03DB7E2 EAX: B8xB03e5068 (“h...ECS30.... .. HaST e eeemennns Joze. .. L.To...|AY....A.Xyp...B8"™) ECX 75021333 &
.text:002D87E2 test eax, eax EDX BB3EBARH
.text:003D87E4 jz short loc_3D87FD ESI G0000000 -
-text:B803D87EG push eax ; hResbata EDI BBBBOOER
.text:B03DBFEY arg_00: Bx0083e5860 (“h...ECS308.... .. - Jos.o HLL.T....|AW..._A.XYyp.") EBP BO18F938 &
-text:B03DBFE7 call ds:LockResource ; kernelbase_LockResource()

.text:B03D87ED EAX: BxB02e5068 (“h...ECS30.... .. HaSTeemenennns Jose o L.To...|AY....A.Xyp...8") ESP 8018F92C 4
.text:603DETED 5_arg_06: 0x003e5060 ("h._..ECS36.... .. |- Jog.o o L.To. AWM. oA RYT) EIF BB3DETE2 %
.text:003D87ED mov esi, eax EFL 68880244

This is what the key in the resources looks like (you will see that the presented binary
does not have the typical CONFIG resource of version 14 of Trickbot, this is to force it to
read the configuration of the config.conf file. This is not necessary but we have done it

so that you can change the configuration in a simpler way):

s] 'KEY" - [lang:0] % @ @ P =

Off=zet 01 2 3 4 &5 & 7 8 9 4 B C D EF Azcii

nooooooo | &8 00 00 OO0 45 43 53 33 30 00 00 00 F3 20 86 DB h. . .EC330...a.10
ooooonlo | 20 4D FO 73 37 BS FB 18 EO CO AF 80 BE F3 FB F1 MBE=7pat T AT |»aal
ooooonz2o0 | 44 CO 3B Ce 00 1F 23 EF 1C 4C 06 54 A3 8F A6 19 JA:E. #1 I-Tg |+
ooooons3n | 7C 41 57 EB OB BC 7F 41 A1 58 79 70 0D C3 Al 38 |AUEs%1A4iXyp . RiB
noooondn | 1C S5E E2 YA D1 29 FB Be 55 41 DS 8E C7 C7 3E 1E “ézN)ﬁﬁUA%lCC)
noooonso | F3 B4 67 63 D3 50 F5 SB SF D1 CO 56 BB 38 87 DB & gcOPS[_RAV, 810
ooooooe0 | BS 44 DY E1 38 79 3E 63 2B 03 ZE 8 pDx&Byrott E

And we shall see that this is the key that imports the function BCryptimportKeyPair()
when it does the push eax. The value of EAX is equal to 0x004B90ES, which as we

can see in the hexadecimal view corresponds to the key that was in the resources:

Brekpoints x| IDA View-A, Hex View-2 @ | 3 General registers o0& x

DA view-s O 5 x |[EAX 0B4B9OES & debugp22:B04RIGES oF 0
* [Text:083DAFSC push esi . DVORD - ||EBX 884B6818 % debugp22:BB4B6E1E ?E:

text:003DAFED push edx : “DuwoRD [ECX 0818F8AQ & Stack[000000081 :6818F8A0 L
e e a0 e | [EDx 0B4B6858 & debugo22:0EEBARSE e
~text: 6 2 EST 80808080 © 2F 1
::s:gggggtigé ;E:“ eervilehise bl o e EDI 063935C8 b debug021:003995C8 AF 0
_text:003DAFEE push offset aEccpublichlob : "ECCPUBLICRLOB" EBP 0018F8AL4 4 Stack[00000BBO]:G018FBAL o
text:gg3DLFEB push esi ; _DuORD ESP BB18F868 4 Stack[09BBBRRA] : B018F86S
-text:0083D4F6C push edx : _DWORD EIP BO3D4F6D w sub 3D4EDB+9D
text:083DLFED arg BO: BxBE314a3E 1 v e o =
~text:003D4FED “6u: 6260000000
- text:083DLF6D 8x083e1d9e. (3] stack view 0 & x

BX0018FBaN
(]

B6E18F86C 00000008
BB18FR7H BB3E1DYC .rdata:aEccpublicblob

00004F5C 003D4FSC: sub 3D4EDO+EC 0618F874 0018F8A0 Stack[GOGGOBE0]:B618FBAD

4

<[m,] Y BB18F878 BO4BYBES debugB22:0B4BIBES
BA18FR7C
E Hex View-2 O & x ||ge18F880 86000000

A018F884 0B4B6188 debugb2? :AGABG1RE
—||BB18FB88 BB4B6958 debugh22:B64BE95H
[O018F88C 0AAAAAAA
G818FE00 00000030
B618F804 08B4B6818 debugb22 :BEL4BGB16
0018F898 00000000
BB18FBOC BB4B68S8 debugB22 :BBABAESH
A018FBA0 BOAAAAAAA

10uBgoES [43 53 33 30 00 00 60 F3 20 86 DB 20 4D FO 73 ECS30...%-
JOLBIDFE 37 B5 FB 18 BO CO AF 80 BB F3 FB F1 4 €O 3B C6 7
1B4BS108 88 1F 23 EF 1C 4C 86 54 A3 8F A6 19 7C 41 57 EB ..
JG4B9118 OB BC 7F 41 A1 58 79 78 0D €3 A1 38 1C 5E E2 7a .+.Alxyp.
10489128 D1 29 FB B6 55 41 D5 8E 7 C7 3E 1E F3 B4 67 63 9)'AUAIARA>.%|gc
16489138 D3 58 F5 5B 5F D1 CO 56 B8 38 87 DB B5 44 D7 E1 EP§[_P+U@sciADIn
J04B91k8 38 79 3E 63 2B 03 2E C8 AB AB AB AB AB AB AB AB Sy>ce..+iuigipy
104B5158 00 668 BA B0 00 BO 00 88 E6 3C 17 7E 2A 1D 08 18 ..

104B9168 00 B8 BO B0 78 51 45 82 68 SF 4B 00 88 5D 4B 88

1<

“IpREn i ATK.

UNKNOWN 0018FE68: Stack[00000BBO' (Synchronized with ESP)[2

After importing the key, it uses the BcryptVerifySignature() function to do the signature

verification.

B83D4FAD arg_Be: 0x8e2f74e8 (C....RUUUBJT1..H1.....d... A/ ..o e e e a8 LT)
aazbuFAD arg_B4: Bx00000000 (H/A™)

B83D4FAD arg_08: Bx@8314a88 ("A..].p\...uk]0...Wa..R..... bUsSA..*N(]..m.... 8. w............ ")
B83D4FAD arg_Bc: Bx80000638 (“H/AT)
8a3DL4FAD arg_18: 0x8 LI s I el Lol x __xhl _-30 ¢ :
BO3D4FAD call dword_3E47EC ; bcr tUerifySignature()

X.o..om..L_K..."")

The other key that Trickbot uses is, as we have mentioned to decrypt the configuration
and the modules, and we will see how it is imported by the function of the API
CryptimportKey():

-text:083D53F7 push edi ~||EAX B818F898 & Stack[BBREB5A4] :BB18FE9S
-text:883D53F8 lea ecx, [ebx+8] e memene
.text:003D53FB mov dword ptr [ebp+pbData], 2B8h [[rerressosbes
.text:083D5402 mou [ebp+uar 3C], 6616h Stack[888085A4] : 0818FE5C
_text:003D5409 mou [ebp+var_38], 26h debug22:08526440
-text:083D5418 lea edi, [ebp+var 34] debug@22: 852BFF B
-text:883D5413 rep movsd
-text:883D5415 lea eax, [ebp+phKey] .
.text:083D5418 push eax ; phKey SR [CLTI LA BCLk AR
_text:003D5419 mou edi, 1 ESP BB18F338 Stack[BOBBA5A4] : BB18FB38
.text:083D541E push edi ; duFlags EIP 08305427 \o decrypt+67
.text:003D541F push ebx ; hPubKey EFL 60006202
.text:8083D5428 push 2ch ; duDatalen
.text:083D5422 lea ecx, [ebp+pbData] . @smmﬁ—
.text:883D5425 push ecx ; pbpata
_text:003D5LZ6 push edx : hProu gg}:i:z
.text:0803D5427 call ds:CryptImportKey ; sub_751D904C() BO18F36 80800620
-text:0083D542D EAX: 0:00000001 ("N/Ap™)
.text:883D542D test eax, eax LD Lol

= - BO18F86 593394FA
-text:883D542F jz short loc_3D54AC B018F87 53960790
-text:883D5431 mov ecx, [ebp+phKey] BO18F87 20980378
-text:883D5434 mov esi, ds:CryptSetKeyParam B018F87 J125p77C
-text:003D5430 push ebx ; duwFlags soiera7d com778sE
-text:003D543B lea eax, [ebp+uar_1h4] soigFasl 8pepsp2d
.text:003D543E push eax ; pbData B018F38 3DIBAGD B
_Fext:AAINSLIF nnsh i = duParam

At this point we have two options: or modify the program execution flow so that the
verification process will always tell us that the signature is correct or to replicate the
process of signing the hash of the data that Trickbot performs. For simplicity we have
chosen to modify the execution flow of the binary so that it does not need to be properly

signed.

7.1PC MECHANISM (Inter-Process
ommunication)

One of the interesting aspects of this malware is how it retrieves the information from the
modules. It uses ReadProcessMemory over the child processes it has created. Below
we will see the example where Trickbot (the core) reads what the systeminfo module
returns. If we stop in one of the ReadProcessMemory that we have identified, we see

that it passes the handle of the remote process (3D0) as a parameter:

View-A, Breakpoints, Pseudocode-A, General registers, Stack view, Hex view-1 [{ 7] Structures @ | E Enums

IDA View-A B | Breakpaints [l | Pseudocode-A I} | 3Bt General registers o#& x
textggggggig loc_3DB8F3: - ; CODE XREF: leer_memoria_1+288Tj ~||EAx 8BB0B3DE oF 8
.text: moy eax, [ebp+Buffer = & DF B
text:B03DBRFE mou ecx, [ebx] | |||[EBX 8091689C % debugB67:680916890 1F1
.text:BOIDBEFE lea edx, [ebprarg 0] ECX 002866F0 TFa
-text:B803DBBFB push edx ; lpNumber0fBytesRead EDX 8B18F28C W Stack[B806009D0]:6018F280 SF B
.text:0803DBBFC push eax ; nSize ESI 00034398 4 debug0i17:00034398 2FB
-EEXFSSggggEg addh E:x, 4 prE EDI 75AECFCC % kernel32.d11:kernel32_ReadProcessHemory |AF 8
-text: pus ebx ; lpBuffer k PF1
text:B803DBYE1 mou [ebpruar 18], eax EBP B018F284 & Stack[0000B90@] :0018F284 oF o
~text:@03DEIEL mou Saxt [esTeiBl] ESP 0018F244 & Stack[B0B009DO]:0018F244
.text:B03DBY67 push ecx ; lpBaseAddress EIP 683DB918 % leer memoria_1+238
.text:603DB268 push eax ; hProcess EFL 60008286
SLeCoAIED Bine [ebprarg £]. 8 -
.text:B03DB910 call edi i Leenos el resultado getsysteninfo del P | 5 srackview o8 x
.text:803DB212 test eax, eax

g

-text:063DBI14 jz short loc 3DB91E X =
-text:003DES16 mou eax, [ebp+var_ 18] T BO2866F 0 [
_text:083DBY19 cnp [ebpearg 6], eax 0018F24C B891689C debugB67:8891689C =
.text:BO3DBYIC jz short loc 3DB927 0018F250 B008622D

.text:BO3DBIIE 0018F254 BO18F28C Stack[B00BAYDE]:B018F28C

_text:B803DBY1E loc_3DBY1E: ; CODE XREF: leer_memoria_1+234Tj 0818F258 7SAEDSCD Kerneld2.dll:kerneld2 lstrcmpiy
.text:BO3DEYIE mov [ebpsuar 4], @ 0018F25C 80034398 debugB17: 68834398

00008910 003DB310: leer_memoria 14230 (Synchronized with Hex View-1) ~ |[UONKHOWN 0018F244: Stack[000003D0]:0018F24¢ (Synchronized with ESP) ~

In the following image we will see better how the 3D0 handler corresponds to the child

process svchost.exe:

[m=] Propiedades: 1000014 _win32_Unpacked_custom_noverify_config_conf_4.exe (3640)

| General | Statistics | Performance | Threads I Token | Modules | Memary | En'u'irunment| Handles | Comment

Hide unnamed handles
Type Mame HandIET
Thread 1000014_win32_Unpacked_custom_... 0x434
Thread 1000014 win32_Unpacked custom_... Ox<4ic
Thread 1000014 _win32_Unpacked_custom_... 0x404
Thread 1000014 _win32_Unpacked_custom_... 0x3f8

| Process sychost.exe (2544) 0x3d0
File C:\Users\john\AppData\RoamingiMi... 0x37c
Key HKCU\Software\Policies\Microsoft\s... 0x344
Key HKLM\SOFTWARE Policdes\Microsoftl,.. 0x308
Key HKLM\SOFTWARE \Microsoft\Enterpri... 0x2d4
Key HKCU Ox2d0
Key HKCU'\Software\Microsoft\SystemCe. ., 0x2c8
Key HELM\SOFTWARE \Microsoft\Enterpri... 0x2c4
Key HKCU Ox2ci)
Key HKLM\SOFTWARE \Microsoft\System... OxzZbc
Key HKCUSoftware\Microsoft\SystemCe.,.. 0xZh8
Key HKCU\Software \Microsoft\SystemCe... 0xZb4
Key HKLM\SOFTWARE \Microsoft\System... OxZb0
Key HKLM\SOFTWARE\Microsoft\Enterpri... OxZac
Key HEKLM\SOFTWARE \Microsoft\System,., 0x2a8
Key HKCU\Software\Microsoft\SystemCe... OxZad
Key HKLM\SOFTWARE \Microsoft\System... OxZal
Key HKLM\SOFTWARE \Microsoft\Enterpri... 0x29¢
Key HKCU 0x293
[LN RALEm T A AP T RS e e e L e o M. A

We can see the PID of the parent and child process here:

1= prugin_nustexe Lase 13,56 M punn-peyunn
N
4[] 1000014_win32_Unpacked_custom_noverify_config_conf_4.exe 3640 373ME john-pc\jehn

27 suchost.exe 2544 L5MB _john-pcijohn Proceso host para los servicios de Windows

The memory address it wants to read (IpBaseaddress) is 0x2866f0, as we can see in
the ECX register of the ReadProcessMemory() image. As we have already said it wants
to read it from the remote process svchost (handler 3D0) and at that moment what

contains that memory address is:

[m=] Propiedades: svchost.exe (2544)

| General I Statistics | Performance I Threads I Token | Maodules | Memary | Environment | Handles | Comment

Hide free regions

(s

Base Address

> 0% 140000

> 0% 150000

> 0% 160000

> 0% 130000

> 0x1b0000

> O 1d0000

> 0x220000

4 0x230000
0x230000
0x292000

> 0x330000

> 0x3e0000

> 0x410000

> 0x430000

> 0x 440000

> 0x5d0000

> 0x 760000

> O 1b80000

> 0% 1c70000

> 0x1d70000

> 0x1ee0000

> 0x2220000

> 0% 10000000

Type

Private
Private
Private
Private
Private

Size Protect...

4kE RW
4kB RWX
255kB RW
4kE RWX
4kB RWX

Use

Stack (thread 1396)

Total Ws

4kB
4kB
16kB
4kB
4kB

Private WS Shar

4kB
4kB
16 kB
4kB
4kB

7 | svchost.exe (2544) (0x230000 - 0x292000)

0005660
00056700
00056710
00056720
00056730
00056740
00056750
00056760
00056770
00056780
00056730
00056720
0005&7E0
000567c0
00056740
000567e0
000567L0
00056800
00056810
000565820

3c
&5
72
20
a3
20
3e
4d
40
Oa
ad
3c
a4
a3
72
0d
3c
af
&5
3e

73
ae
&6f
48
72
62
49
29
20
3c
3e
75
&d
72
6f
Oa
2f
a8
72
0d

79
&5
73
&f
76
69
&e
20
32
72
0d
73
&9
e
75
3c
75
e
73
Oa

73
72
&f
&d
69
T4
T4
69
2e
&8l
Oz
&5
e
0d
70
75
73
Jc
3e
3c

74
61
66
€5
63
73
65
35
32
&d
3c
72
1]
Oa
55
73
€5
2£
od
70

a5
ac
T4
20
a5
3c
ac
2d
30
3e
2
73
73
3c
73
a5
T2
75
Oa
72

ad
3e
20
50
20
2f
28
35
47
37
a7
3e
T4
75
65
72
3e
73
3c
&f

4]
0d
57
72
50
af
52
32
48
36
[
od
72
73
72
3e
od
83
69
a7

66
3c
e
6d
63
3e
20
30
Jc
20
65
3c
&4
72
3c
(15
3c
e
73
61

6
6
G4
]

o0d
3e
77
ad
31
3c
72
43
70
3c
ac

Oz
69
&5

73
6L
75

73
29
30
Ta
37
&e
Oa
8l
a5
24
439
Oa
T2
&e
72

0d
43
55
22
4d
72

Oa
af
20
83
42
a6l

6L 72
Je 48
2f 75
76 69

3c
(34
73
T4

0d
74
ad

Oz
a6l

3c
ac
41

Oa
44
73
20

63
65
50
73
2f

72
2z

65
al

2£
o
64

Jc
69
20
20

70

a
g

55
Je
72
0d
3e
75
65
72
64
3e
75
65
64

a7
63
37
53

75
54
20
od
61
Oa

73
47
3e
(34
fa
73
64
72

<systeminfo>..<g
eneral>. .<o3xMic
rogoft Windows 7
Home Premium 35
ervice Pack 1 &4
bits< /o3>, .<cpu
>Intel {(R) Core(T
M) i5-52000 CEU
@ 2.20GHz</cpu>.
LAram>Te7 MB</ra
mr. .</general>..
<USEra¥..<U3er>L
dministrador</us
err..<userxHomes
rouplsers</user>
. «fuserrInvitado
</ugerr..<userx]
chn</user>..</us
ersr..<installed
. AprogramzAddr

We can see in 0x2866f0 (230000 + 566f0) that the information is collected by the module

and that the core is accessing it. In this case, this information will be sent to C2 using the

63 command. We have seen an example of how the Trickbot core and the "systeminfo"

module have exchanged the information.

8. RELATED FILES

The analyzed samples of Trickbot to date have always been installed in the user’s

%APPDATA% folder who executes it first. In this folder it copies itself and creates 2 files:

® client_id: It contains an infected user ID generated from system data.
® group_tag: A campaign code which is in the internal configuration that can be
found encrypted in the resources of the executable, once unpacked, along with

the decryption key.

& 1000014 _Trickbot 13/03,/2017 12:18 Aplicacidn 286 KB
|| client_id 06,/04,/2017 13:00 Archivo 1KE
|| group_tag 06,/04,2017 13:01 Archivo 1 KB

Apart from these files, if it has connectivity, it will download an updated configuration that
will be saved as encrypted "config.conf" in the same folder, and will create a "Modules"

folder.

In the folder called Modules it will download the modules that contain its encrypted
configuration files, and folders with the configuration files of some of the modules. The
folders with the configurations of each module will have names following the pattern:

"<module name>_config".

J injectDlI32_configs 06,/04,2017 13:05 Carpeta de archivos
|| injectDII32 30/03/2017 11:06 Archivo 512 KB
|| systeminfo32 30/03/2017 11:06 Archivo 22 KB

When it obtains administration permissions, it copies itself to the folder:

C:\Windows\System32\config\systemprofile\AppData\Roaming

After executing this action, it removes the executable from the Roaming folder of the

initial user, leaving the modules and configurations intact.

9. DETECTION

First, manually, you can find the files mentioned in section 8 in the folder: % APPDATA%,
the only case that can vary is the main executable that can be found with different names

depending on their origin, since the others to date have not changed at any time.

Depending on the scenario, you can also find one or two tasks called "bot" or "Drivers
update”, and "AplicationsCheckVersion", which will execute an application in the%

APPDATA% directory every minute and when you log in respectively.

During its execution, it is easier to detect it among processes running on 32-bit
computers, because it keeps the executable name replicated in % appdata%. On the
other hand, 64-bit computers use the Microsoft svchost.exe process to hide when run by
a normal system user. In the case of being invoked by the persistence task with SYSTEM

permissions, it behaves the same as in 32-bit systems.

For automatic detection, there are no NIDS rules that can detect it through your traffic so

far, since the fact that it is encrypted by SSL complicates it to a greater extent.

Yara rules have been developed to detect it in memory, since the executable comes
packaged with different types of systems for each campaign and version, preventing a

common rule.

The rules for detection in memory are as follows:

rule MALW _trickbot_bankBot : Trojan

{

meta

author = "Marc Salinas @Bondey_m"

description = "Detects Trickbot Banking

Trojan"

strings:
$str_trick_01 = "moduleconfig"
$str_trick_02 =" Start"
$str_trick_03 ="Control"
$str_trick_04 ="FreeBuffer"
$str_trick_05 = "Release”

condition:

all of ($str_trick_*)

rule
Trojan
{

meta:

MALW_systeminfo_trickbot_module

author = "Marc Salinas @Bondey _m"

description

module from Trickbot Trojan"

strings:

$str_systeminf_01 ="
$str_systeminf_02 ="
$str_systeminf_03 ="
$str_systeminf_04

"GetSysteminfo.pdb”

$str_systeminf_05="

"Detects

systeminfo

<program>"
<service>"
</systeminfo>"

</autostart>"

} $str_systeminf_06 = "</modul econfig>"
condition:
all of ($str_ systeminf_*)
}
rule MALW_dllinject_trickbot_module : Trojan rule MALW_mailsercher_trickbot_module
{ Trojan
meta: {
author = "Marc Salinas @Bondey _m" meta:

description = " Detects dllinject module

from Trickbot Trojan"

user_pref("
<ignore_mask>"
<require_header>"
</dinj>"

strings:
$str_dllinj_01="
$str_dllinj_02="
$str_dllinj_03="
$str_dllinj_04="
condition:
all of ($str_dllinj_*)
}

author = "Marc Salinas @Bondey_m"

description

module from Trickbot Trojan"

Detects mailsearcher

strings:
$str_mails 01 = "mailsearcher"
$str_mails 02 = "handler"
$str_mails 03 = "conf"
$str_mails 04 ="ctl"
$str_mails 05 =" SetConf"
$str_mails 06 = "file"
$str_mails_07 = "needinfo"
$str_mails_08 = "mailconf"

condition:

}

al of ($str_mails *)

10. DISINFECTION

Taking into account the detection process, in case of finding traces of this threat in the
system and that none of our system protection measures are able to detect or disinfect

it, the ideal steps for disinfection would be to:

* Eliminate the task that is executed every minute, so that it does not restart the
execution of the malware.

» Complete the Trickbot process with the task manager or with an application
such as ProcessExplorer.

* Browse to the% APPDATA% folder where it is installed, to delete the main
Trickbot executable and then the three files ("user_id", "group_tag" and
"config.conf") and the Modules folder.

* Browse to the SYSTEM user's APPDATA folder
(C:\Windows\System32\config\systemprofile\AppData\Roaming) to delete the
same files from the SYSTEM user.

With this, we would have completely eliminated this threat from the system, although it
would be advisable to review that the task of persistence has not been restored in case
that just in the period of time between eliminating it and closing the process, it would
have been in the early stages of execution its and would have replaced it, although it

would not be dangerous as it could not find the executable in the system.

On the other hand, in cases where the infection has been through an ExploitKit, it is likely
that in addition to Trickbot , our system is infected with other types of malware, since
they usually do not install a single sample, so performing analyses with different tools

would be recommended, reaching formatting in sensitive cases.

11. ATTACKER INFORMATION

For the Trickbot infrastructure, as @hasherezade mentioned in its post in the blog of

Malwarebytes , the IPs of its C2 correspond to devices such as Routers or IP Cameras

(all tested with ARM processors) distributed by many different countries and in all the
cases that we analyzed belonging to ISP of each of the countries that we will see below.
The distribution of C2 countries (based on the configurations collected) is shown in the

following chart where you can see how the United States and China stand out:

REPARTO DE C2 POR PAISES

1% Polonia

1% Pakistan 1% Somalia

1% Méjico 4% Zambia
1% Libano ! 7% Estados Unidos
1% Indonesia \ /

1% Francia N\
1% Estonia AN
5% China

1% Colombia .
1% Emiratos Arabes N\ /
2% Lituania »

2% Lesoto 4% Brasil

2% Camboya

N\ 4% India

2% Alemania

2% Republica Checa

4% Malasia

4% Rumania
\\ 4% Ucrania

2% Chile

2% Bangladés

2% Argentina

3% Noruega
3% Canada

Lista de paises ordenada de mayor a menor nimero de C2 encontrados.

Most affected systems have an access web interface such as the following:

MikroTik
IKIOn i
Router0S v6.34.2
You necd t a rowter, Administrative aceess anly. IF this davice s oL in your possession, plaase contact your lovs HIRVIST
fors ator
WebFig Login:
Login: [sdmin] (e
passnord
lense Felp
5 mikranic
Authentication Required x|
A usarname and passward are beng requestad by hoo:(f2e. e ske savs:
0 ‘mmnm —
wserpare: [1
Pasmrd:
= s

And in case of access by https to the URL formed by one of the Trickbot commands,
the certificate that it shows us, is still the same as in the first versions analyzed in the

post mentioned above:

General 1Qet-a||es|

No se pudo verificar este certificado porque el emisor es desconocido.

Emitido para
MNombre comun (CN) frvgutfdf

Organizacion (0) tgar6tds

Unidad organizativa (OU) rst

Mdmero de serie 00:C5:63:15:A8:0D:6A:B6:E5
Emitido por

MNormbre comdn (CN) rvgvtfdf

Organizacion (0) tgdrétds

Unidad erganizativa (OU) rst

Periodo de validez
Comienza el 08/06/16
Caduca el 08/06/17

Huellas digitales
Huella digital SHA-256 34:04:69:57:08:B1:C8:F9:7D:B4: D4:E3:3C:57:F8: 4F:
23:B0:DFIEQ:BE: 75:14:77:0B:43:2A:5B: AB:66:25: 2D

Huella digital SHAL 92:75:D5:27:40:C0:B0:1CIE9:52:32:3D,0F/53:68:D7:8A:74 FF.BF

12. REFERENCES

https://blog.fortinet.com/2016/12/06/deep-analysis- of-the-online-banking-botnet-
trickbot

http://www.threatgeek.com/2016/10/trickbot-the-dyre ~ -connection.html
https://www.infosecurity-magazine.com/blogs/rig-ek- dropping-trickbot-trojan/
https://devcentral.f5.com/articles/is-xmaker-the-ne w-trickloader-24372
https://blog.malwarebytes.com/threat-analysis/2016/ 10/trick-bot-dyrezas-successor/
https://fraudwatchinternational.com/malware/trickbo t-malware-works/

https://msdn.microsoft.com/en-
us/library/windows/desktop/ms682425%28v=vs.85%29.as px

https://msdn.microsoft.com/en-
us/library/windows/desktop/aa366890%28v=vs.85%29.as px

https://msdn.microsoft.com/es-
es/library/windows/desktop/ms681674%28v=vs.85%29.as px

https://msdn.microsoft.com/es-
es/library/windows/desktop/ms682437%28v=vs.85%29.as px

13. AUTHORS

 Marc Salinas
» José Miguel Holguin

150, 22 plar Llull, 321 (Edifici Ginc) ~ Ramirc 2tu 7, Carrera 11 :
, 2800 08019 46022 o " of.- \ 06600
| T(+34)%02882992 T(+34)902882992 T(:34)902882992 T.(+52) 55 2128 0681

info@s2grupo.es
WWW.S2grupo.es
www.securityartwork.es

W

