

S2 Grupo de Innovación en

Procesos Organizativos

INNOVATION IN PROCESSES

MALWARE REPORT
Evolution of Trickbot

REPORT
06/2017

1. INTRODUCTION .. 3

2. INFECTION PROCESS ... 5

3. TECHNICAL CHARACTERISTICS ... 6

4. MODULE LOADING SYSTEM .. 13

5. NETWORK CONNECTIONS .. 21

6. ENCRYPTION MECHANISM ... 25

7. IPC MECHANISM (Inter-Process Communication) .. 29

8. RELATED FILES .. 32

9. DETECTION .. 33

10. DISINFECTION ... 35

11. ATTACKER INFORMATION .. 36

12. REFERENCES ... 38

13. AUTHORS ... 38

INDEX

1. INTRODUCTION

This document contains a review of the latest versions of a Trojan family known as

“Trickbot/TrickLoader”. It is a bank-type Trojan that steals credentials and bank details

from infected users. Although its main objective and behavior is focused on online

banking users, being a modular Trojan, it has capabilities that attackers could use for

other purposes, such as document exfiltration.

You can find a lot of documentation regarding the logic and origins of this malware; part

of this report is based on information from some of them in order to contrast it with the

logic of the latest versions and to be able to observe its evolution and new functionalities.

All sources for which information has been obtained can be found in the references

section.

It should be noted that the report starts with and relies mainly on the analyses carried

out by @hasherezade and by Xiaopeng Zhang (Fortinet). Based on these analyses, an

attempt was made to compare whether in the last versions some aspect had changed

and to deepen in the mechanisms not described until the moment.

In summary, Trickbot has the following capabilities:

 It loads the code into the system

 It creates a replica of itself in the %APPDATA%

 It applies persistence techniques

 It collects sensitive information

 It injects code into other applications to control the information they handle

 It exfiltrates the information you get to your Command and Control server

During the completion of this report the S2 Grupo Malware Laboratory worked with the

samples that match the following MD5 hashes:

1000005_Trickbot_Loader.exe a50c5c844578e563b402daf19289f71f

1000005_Trickbot_bot32.exe 28661ea73413822c3b5b7de1bef0b246

1000010_Trickbot_Loader.exe 218613f0f1d2780f08e754be9e6f8c64

1000010_Trickbot_bot32.exe 135e4fa98e2ba7086133690dbd631785

1000014_Trickbot_Loader.exe e054eaae756d31a4f6e30cc74b2e51dd

1000014_Trickbot_bot32.exe 719578c91b4985d1f955f6adb688314f

1000016_Trickbot_Loader.exe 132c4338cdc46a0a286abf574d68e2e0

1000016_Trickbot_bot32.exe e8e7b0a8f274cad7bdaedd5a91b5164d

As you can see in the previous image, four different versions of Trickbot . Each one of

them consists of its loader and its final payload for 32-bit systems; although there is also

the 64-bit version of all, it was not the subject of the analysis performed.

2. INFECTION PROCESS

The main route of infection of this malware occurs through a Word document with macros

that arrives attached in an email or through an exploited vulnerability by an ExploitKit.

The infection follows this order of execution:

 A Trickbot sample is downloaded from a compromised domain in the%
APPDATA% folder and executed

 It creates a scheduled task on the system that provides persistence

 It creates two files ("client_id" and "group_tag") in the same directory, one with a
unique ID of the infected host and one with the ID of the current infection
campaign or version of the configuration.

 It contacts with an external IP obtaining domain, among other things to test the
connectivity and send it to your command and control servers (C2 from now).

 It contacts one of its C2 servers to get malware updates, modules that perform
most of the malware logic and various configuration files.

 After all this, it begins to execute or inject in different processes its modules that
are responsible for collecting information of the system and browsing credentials
especially of online banking.

3. TECHNICAL CHARACTERISTICS

The main executable of Trickbot is usually packaged with its own “ packer” , which

obfuscates the functionality of the executable and prevents generic signatures from

being generated from the content itself, seeing that for each version the packer causes

the code to vary completely. After unpacking one can see how the number of functions

of the executable increases greatly, as it now reflects the functionality of the malicious

program:

Packed Unpacked

After the "unpack" the first stage of this malware is obtained, known as "Loader". This

executable is responsible for verifying the architecture of the system and depending on

whether it is a 32 or 64 bit computer, it loads the "bot" from its resources, corresponding

to that architecture. The "bot" is the executable that takes care of the last stage of

infection and contains all the basic malware logic.

In the first versions, the resources contained in the Loader were easily recognizable

because they had descriptive names, as they identified the two versions of the Bot and

a Loader to correctly load the 64-bit. In the latest versions they began to put non-

descriptive names so as to make it difficult to identify them:

V10 de Trickbot V14 de Trickbot V16 de Trickbot

These resources, consists on executable files (PE) encrypted with the AES CBC

algorithm, so after extracting them they still need to be decrypted or otherwise can be

extracted from memory after running the Loader and waiting for it to perform the

decryption itself and load them in RAM.

After loading the corresponding bot, it starts executing the main logic of this threat:

It first checks its location on the system, and if it is not found in% APPDATA% it copies

itself to this location, starts executing its replica in that folder and ends the current

process.

As a persistence technique, it uses scheduled system tasks rather than registry keys as

is often the case in other samples of malware. Previous versions of Trickbot , in all cases

created a single programmed task called "bot" and made sure that every minute was

launched to keep running on the system.

In the latest versions, if it is executed with administrator permissions in addition to the

previously mentioned task, which it has called "Drives update", it creates another one

that executes it when any user logs in, called "AplicationsCheckVersion"

Its next action is to check if it has all the configuration files with which it usually works:

If it does not find them, it generates them from information obtained in the system and

the resources of the bot, which consist of an encrypted configuration file (CONFIG) and

a key to verify the signature of the configuration and modules (KEY).

In this case there have been no changes in the names of these resources to date,

although it is likely that in future iterations we will see how they eliminate these names

as in the case of Loader resources.

In the first run of Trickbot on the computer generates a file called "client_id" that contains

a token or user ID, which identifies the current host.

Trickbot obtains it’s configuration from a file in a disk with the name config.conf or from

the resources of its own binary. This configuration will be decrypted, and after decryption

it can be seen that it contains the version of the malware itself, a campaign code or

version of the configuration, the addresses of several of its main C2s, and the list of

modules that it must download and run automatically from any of its C2s.

It then checks the connectivity by making a request to an external domain that reports

the victim's IP esternal address, this domain comes from a list contained inside the

malware and which have been increasing during the different version updates.

Version 7

Version 14

If it receives the response it expects from this request, it starts contacting the C2s it has

obtained from its configuration to start reporting information on the new victim, check for

updates, and receive new modules that expand its capabilities.

In normal configurations, after making certain requests with different commands that

report host information to one of the C2s in its configuration, it obtains the IP of a specific

server from which it can download new modules through port 447/tcp.

All downloads of configurations and modules are encrypted with the same algorithm

(AES CBC) and all the files are saved encrypted to the disk. After updating and

downloading the configurations and modules that it has in the configuration, it decrypts

and maps the first module in the memory of its own process, "systeminfo ", which is

responsible for collecting information such as OS version, CPU type, the amount of RAM,

the users of the system and the list of installed programs and services:

Then it loads the injectDll32 module together with its configuration files:

Once this module is loaded, in case the user visits one of the websites listed in the

configuration files (such as * cey-ebanking.com / CLKCCM / *) of this module, it captures

the relevant browsing data and sends them to their C2:

As discussed in the DevCentral report, version 9 of trickbot , a new module was added

to the Trickbot toolset called "mailsearcher ". Then in the case of being in the

configuration will also be loaded into the victim system. The order in which the modules

are loaded will depend on the configuration file.

"mailsearcher " is responsible for searching all the files of each disk connected to the

system and comparing the extensions of the files with the following list:

This module reports itself to a specific C2 that it obtains from its own configuration:

The URI of the request is different from the one used by the "core" of Trickbot , since in

this case it has the structure "[IP]/[group_id]/[client_id]/send/" and uses its own User-

Agent "KEFIR ! "Which makes it much more independent than the other modules found

to date.

What is seen in this section describes the actions performed by Trickbot after its first

execution. From this moment Trickbot enters a loop where from time to time it checks if

there is a new configuration and if there are new versions of the malware or of some of

the modules. In addition, within the same loop, it performs reports with the information it

collects.

4. MODULE LOADING SYSTEM

During the analysis it has been observed that Trickbot uses events to control the

execution flows between the core and the modules. In addition, the core performs the

resolution of the Windows APIs of the modules. Let's see how this core communication

system works with the modules.

First it creates a svchost.exe child process suspended with the CreateProcessW

function:

Later with the CreateEventW function, it creates three events that will be used to manage

the waits and communications between the main executable (Trickbot) and the svchost

child process.

Once it has the handlers of the three events, using VirtualAllocEx and

WriteProcessMemory it injects in the suspended svchost process 32 bytes of data like

the following:

The first three groups of 4 Bytes (in red boxes) represent the identifiers of events that

have created trickbot previously and that will use for their communication, in this case

4, 8 and C respectively.

The following 5 groups of 4 Bytes (in purple boxes) represent the offsets in the memory

itself of the svchost process, from the following functions of the kernel32.dll library:

 SignalObjectAndWait

 WaitForSingleObject

 CloseHandle

 ExitProcess

 ResetEvent

Using the same injection method, it loads its own function into another offset of the

svchost memory that will be used as the intermediary between Trickbot and the module

code.

This feature is one of the most characteristic details of the Trickbot module

management.

It is in charge of keeping itself waiting for orders from the main process. These come as

offsets from functions within the memory of the svchost process itself and parameters

with which to call them. This information is obtained through scripts in its own memory

by Trickbot as detailed in the previous case.

Most of its logic consists of a loop that starts and ends in code zones with a blue

background; after the first instructions, in case of detecting a problem with the process,

it enters the area marked in red that closes the handlers of the events and the process

itself.

In case everything goes correctly, the zone in which it enters consists of a switch, marked

in green . Depending on the number of parameters needed by the function to call, enter

one of the blank zones.

In the case of the following screenshot, if the number of parameters (which it has loaded

in edx) coincides with 9, it enters a zone with nine calls to "push edx" with which it is

loading parameters in the stack extracted from consecutive offsets after eax. Finally, it

makes a call to ecx, where it has loaded the first offset of eax in the fourth instruction of

this zone and that corresponds to the position of a function.

In the next screenshot you can see an example of calling a function like this and the

status of the registers during the execution.

To manage the wait between the parent and child process, Trickbot uses the events it

created before the injections into the process.

Using these events, when it reaches the last zone of the loop (in the previous screenshot

marked with blue background) it contains two calls that correspond to a ResetEvent that

notifies Trickbot that it has reached the end of the loop:

And a call after SignalObjectAndWait, to which it passes the IDs of two events. This

function leaves the process suspended waiting for Trickbot to do a ResetEvent of the

event in this case with ID 4, which means that it has loaded the new parameters into the

memory for the next iteration of the loop:

Before starting the execution of this process, it injects in the Entry Point of svchost, four

lines that redirect the flow of the main thread to the previous function, passing it as a

parameter, the 32 bytes of data injected at the beginning:

After preparing all that, it calls ResumeThread and the process goes into execution.

 During the first iterations of the loop, Trickbot maps one of the modules in the process

memory, section by section:

In the next iteration, using the data that the parent process has passed to it, it loads all

the DLLs required by the newly loaded module with LoadLibrary and the functions of

these that it will need with GetProcAddress.

Finally it calls an initialization function of its own module, which writes the "Success"

string in one of the memory zones edited by Trickbot , in case everything is correct.

From this point, this last iteration is suspended with the call to SignalObjectAndWait,

waiting for Trickbot to require, for example, the reporting information of said module.

From the main process side, you can see how it contains a function to call the different

functions that export each of its modules. These functions are those that each module

exports, since the modules are DLL's and as such they export functions to be used by

the core. To date these functions have not been changed in any of the versions and

these are Start, Control, Freebuffer and Release.

To make the transfer of information to the module, after passing through the area of the

function which it wants to call, it performs a WriteProcessMemory of the data in question

and calls ResetEvent for the module to start working.

5. NETWORK CONNECTIONS

For communications with its C2S, this malware uses HTTPS requests, which

complicates the identification of its traffic by means of tools like NIDS to use, since that

traffic is encrypted.

Usually these communications are done through port 443, although not always, since

from the first versions, it began to use port 447 of some specific C2 to download the

modules.

A differentiating element of its traffic is its User-Agent, since at first it identified it perfectly:

it used the chain TrickLoader in all its requests:

In intermediate versions of the same it became somewhat less obvious, but maintained

an unusual structure and easy to detect, becoming the "Xmaker" chain:

In recent versions, as another of the changes clearly aimed at making this malware less

detectable, the authors have begun to use a much more generic User Agent:

The requests are formed in such a way that a great amount of the information that reports

to C2 goes in the URI, being the majority of these requests of type GET, excepting more

extensive shipments of information collected by its modules, that it sends by POST.

Among the data that contains the URIs of the requests, you can find the identifier of the

current campaign and the user ID that it saves in the two files that it generates along with

the executable, in the first stages of its execution. You can also find a number that

identifies the order that it is sending to the C2 so that it can differentiate what it is

requesting or reporting to it, and later different extra data related to the command in

question.

From what we have analyzed and from information obtained from different external

analyses, we have created the following table with a summary of the functionality of each

order that we identified.

ID

0 URI

/[group_id]/[client_id]/0/[version de windows]/[idioma del sistema]/[ip
externa]/[sha256]/[key de sesión]/

Description Report with basic information about the client.

1

URI /[group_id]/[client_id]/1/[key de sesión]/

Description Keep alive.

5

URI /[group_id]/[client_id]/5/[modulo/configuración]/

Description Download of a module or configuration of a module.

10

URI /[group_id]/[client_id]/10/62/[key de sesión]/1/

Description Start of module.

14

URI /[group_id]/[client_id]/14/[key de sesión]/[value]/0/

Description Report with information on errors, checks, and other information

23

URI /[group_id]/[client_id]/23/[config ver]/

Description Base configuration update

25

URI /[group_id]/[client_id]/25/[key de sesión]/

Description Bot update

60 URI /[group_id]/[client_id]/60/

Description Traffic report captured by the injectDll module

63 URI

/[group_id]/[client_id]/63/[module name]/[module command]/[result -
base64]/[root tag of output XML]/

Description Systeminfo o injectDll Report

64

URI -

Description
Everything points to a command related to the mailsearcher module. What we
have seen is that it performs POST requests with multipart content. It aims to
be an exfiltration command, but that is still being verified.

From the Trickbot code, you can see how in one of its functions it contains the switch

that is in charge of directing the execution flow that generates these requests depending

on the command. In the following image you can see this code for one of its older

versions (Version 1000005):

Analyzing the same function of one of the most recent versions (Version 1000010), we

can see how they have added an extra option after the last one, which corresponded to

the command with number 63, and which is accessed with a new command number

64:

The functions that are executed from passing through this new area of code (command

number 64) are very similar to those of the command 63, so it is probably also a

command to perform reporting. The appearance of this new command (64) coincides in

time with the appearance of the new module "mailsearcher ", so everything indicates

that these are related.

After the execution of the sample corresponding to version 14 in a controlled

environment, we analyzed its traffic flow which shows a good part of the behavior of the

execution of this malware.

The first part of the requests has been omitted to simplify commands.

6. ENCRYPTION MECHANISM

In the great work done by malwarebytes (@hasherezade) it is detailed that the

encryption algorithm used by Trickbot is AES CBC 256 bits . Also in the same entry on

this subject we are told that the first DWORD is about the size of the data. In addition,

@hasherezade offers resources after its research to decipher both the configurations as

the modules, which makes it easier to understand Trickbot and its evolution.

Based on this information and visualizing how the content is decrypted, it is easy to

perform the reverse process and build a script or modify the one made by hasherezade,

to provide us with the ability to encrypt configurations modified by us to more easily

manipulate Trickbot execution flows. The implementation of the encryption function

would be as simple as:

To perform this process we can start from a configuration that we get encrypted and with

the @hasherezade script we can decrypt it. Once decrypted, we can modify it, as in the

following example where we add the local IP address 11.11.11.1:443 (ip of the laboratory

environment) and load the module “mailsearcher ”. With this we expect it to use the IP

11.11.11.1:443 as command and control and load the module "mailsearcher " which

does not usually come by default.

After modifying it with a hexadecimal editor we would have the following:

After the first 8 bytes is when the configuration data starts as such. In these first 8 bytes,

it will be where Trickbot will look for the size of the data that will come next. In the case

of example that corresponds to the value 02 00 (in the image it is upside down, 00 02),

this would be 0x200 bytes. If we select the dataset we will see that it has just the right

size of 0x200 bytes:

Therefore, after modifying the information we must set the first bytes to tell Trickbot the

exact size of the data. Then we encrypt with the function we have called aes_encrypt().

With this we will have a new configuration that will not yet be fully functional.

The reason it does not work is because Trickbot, after the encrypted data, places the

hash signature of the data . Therefore if we modify the content of the configuration we

have to calculate the signature of the data since it verifies it after reading the

configuration. To calculate the hash signature of the data that it has just read it uses the

KEY that comes in the binary resources. We will see below how it loads the resources

key:

Then it will execute the function LoadResource () and we will see in EAX the value where

the KEY will be:

This is what the key in the resources looks like (you will see that the presented binary

does not have the typical CONFIG resource of version 14 of Trickbot, this is to force it to

read the configuration of the config.conf file. This is not necessary but we have done it

so that you can change the configuration in a simpler way):

And we shall see that this is the key that imports the function BCryptImportKeyPair()

when it does the push eax. The value of EAX is equal to 0x004B90E8, which as we

can see in the hexadecimal view corresponds to the key that was in the resources:

After importing the key, it uses the BcryptVerifySignature() function to do the signature

verification.

The other key that Trickbot uses is, as we have mentioned to decrypt the configuration

and the modules, and we will see how it is imported by the function of the API

CryptImportKey():

At this point we have two options: or modify the program execution flow so that the

verification process will always tell us that the signature is correct or to replicate the

process of signing the hash of the data that Trickbot performs. For simplicity we have

chosen to modify the execution flow of the binary so that it does not need to be properly

signed.

7. IPC MECHANISM (Inter-Process
Communication)

One of the interesting aspects of this malware is how it retrieves the information from the

modules. It uses ReadProcessMemory over the child processes it has created. Below

we will see the example where Trickbot (the core) reads what the systeminfo module

returns. If we stop in one of the ReadProcessMemory that we have identified, we see

that it passes the handle of the remote process (3D0) as a parameter:

In the following image we will see better how the 3D0 handler corresponds to the child

process svchost.exe:

We can see the PID of the parent and child process here:

The memory address it wants to read (lpBaseaddress) is 0x2866f0 , as we can see in

the ECX register of the ReadProcessMemory() image. As we have already said it wants

to read it from the remote process svchost (handler 3D0) and at that moment what

contains that memory address is:

We can see in 0x2866f0 (230000 + 566f0) that the information is collected by the module

and that the core is accessing it. In this case, this information will be sent to C2 using the

63 command. We have seen an example of how the Trickbot core and the "systeminfo"

module have exchanged the information.

8. RELATED FILES

The analyzed samples of Trickbot to date have always been installed in the user’s

%APPDATA% folder who executes it first. In this folder it copies itself and creates 2 files:

 client_id: It contains an infected user ID generated from system data.

 group_tag: A campaign code which is in the internal configuration that can be

found encrypted in the resources of the executable, once unpacked, along with

the decryption key.

Apart from these files, if it has connectivity, it will download an updated configuration that

will be saved as encrypted "config.conf" in the same folder, and will create a "Modules"

folder.

In the folder called Modules it will download the modules that contain its encrypted

configuration files, and folders with the configuration files of some of the modules. The

folders with the configurations of each module will have names following the pattern:

"<module name>_config".

When it obtains administration permissions, it copies itself to the folder:

C:\Windows\System32\config\systemprofile\AppData\Roaming

After executing this action, it removes the executable from the Roaming folder of the

initial user, leaving the modules and configurations intact.

9. DETECTION

First, manually, you can find the files mentioned in section 8 in the folder: %APPDATA%,

the only case that can vary is the main executable that can be found with different names

depending on their origin, since the others to date have not changed at any time.

Depending on the scenario, you can also find one or two tasks called "bot" or "Drivers

update", and "AplicationsCheckVersion", which will execute an application in the%

APPDATA% directory every minute and when you log in respectively.

During its execution, it is easier to detect it among processes running on 32-bit

computers, because it keeps the executable name replicated in % appdata%. On the

other hand, 64-bit computers use the Microsoft svchost.exe process to hide when run by

a normal system user. In the case of being invoked by the persistence task with SYSTEM

permissions, it behaves the same as in 32-bit systems.

For automatic detection, there are no NIDS rules that can detect it through your traffic so

far, since the fact that it is encrypted by SSL complicates it to a greater extent.

Yara rules have been developed to detect it in memory, since the executable comes

packaged with different types of systems for each campaign and version, preventing a

common rule.

The rules for detection in memory are as follows:

rule MALW_trickbot_bankBot : Trojan
{
 meta:
 author = "Marc Salinas @Bondey_m"
 description = "Detects Trickbot Banking
Trojan"

strings:
 $str_trick_01 = "moduleconfig"
 $str_trick_02 = "Start"
 $str_trick_03 = "Control"
 $str_trick_04 = "FreeBuffer"
 $str_trick_05 = "Release"

condition:
 all of ($str_trick_*)
}

rule MALW_systeminfo_trickbot_module :
Trojan
{
meta:
 author = "Marc Salinas @Bondey_m"
 description = "Detects systeminfo
module from Trickbot Trojan"

strings:

 $str_systeminf_01 = "<program>"
 $str_systeminf_02 = "<service>"
 $str_systeminf_03 = "</systeminfo>"
 $str_systeminf_04 =
"GetSystemInfo.pdb"
 $str_systeminf_05 = "</autostart>"
 $str_systeminf_06 = "</moduleconfig>"

condition:
 all of ($str_ systeminf_*)
}

rule MALW_dllinject_trickbot_module : Trojan
{
meta:
 author = "Marc Salinas @Bondey_m"
 description = " Detects dllinject module
from Trickbot Trojan"

strings:
 $str_dllinj_01 = "user_pref("
 $str_dllinj_02 = "<ignore_mask>"
 $str_dllinj_03 = "<require_header>"
 $str_dllinj_04 = "</dinj>"

condition:
 all of ($str_ dllinj_*)
}

rule MALW_mailsercher_trickbot_module :
Trojan
{
meta:
 author = "Marc Salinas @Bondey_m"
 description = " Detects mailsearcher
module from Trickbot Trojan"

strings:
 $str_mails_01 = "mailsearcher"
 $str_mails_02 = "handler"
 $str_mails_03 = "conf"
 $str_mails_04 = "ctl"
 $str_mails_05 = "SetConf"
 $str_mails_06 = "file"
 $str_mails_07 = "needinfo"
 $str_mails_08 = "mailconf"

condition:
 all of ($str_mails_*)
}

10. DISINFECTION

Taking into account the detection process, in case of finding traces of this threat in the

system and that none of our system protection measures are able to detect or disinfect

it, the ideal steps for disinfection would be to:

• Eliminate the task that is executed every minute, so that it does not restart the

execution of the malware.

• Complete the Trickbot process with the task manager or with an application

such as ProcessExplorer.

• Browse to the% APPDATA% folder where it is installed, to delete the main

Trickbot executable and then the three files ("user_id", "group_tag" and

"config.conf") and the Modules folder.

• Browse to the SYSTEM user's APPDATA folder

(C:\Windows\System32\config\systemprofile\AppData\Roaming) to delete the

same files from the SYSTEM user.

With this, we would have completely eliminated this threat from the system, although it

would be advisable to review that the task of persistence has not been restored in case

that just in the period of time between eliminating it and closing the process, it would

have been in the early stages of execution its and would have replaced it, although it

would not be dangerous as it could not find the executable in the system.

On the other hand, in cases where the infection has been through an ExploitKit, it is likely

that in addition to Trickbot , our system is infected with other types of malware, since

they usually do not install a single sample, so performing analyses with different tools

would be recommended, reaching formatting in sensitive cases.

11. ATTACKER INFORMATION

For the Trickbot infrastructure, as @hasherezade mentioned in its post in the blog of

Malwarebytes , the IPs of its C2 correspond to devices such as Routers or IP Cameras

(all tested with ARM processors) distributed by many different countries and in all the

cases that we analyzed belonging to ISP of each of the countries that we will see below.

The distribution of C2 countries (based on the configurations collected) is shown in the

following chart where you can see how the United States and China stand out:

Most affected systems have an access web interface such as the following:

And in case of access by https to the URL formed by one of the Trickbot commands,

the certificate that it shows us, is still the same as in the first versions analyzed in the

post mentioned above:

12. REFERENCES

https://blog.fortinet.com/2016/12/06/deep-analysis- of-the-online-banking-botnet-
trickbot

http://www.threatgeek.com/2016/10/trickbot-the-dyre -connection.html

https://www.infosecurity-magazine.com/blogs/rig-ek- dropping-trickbot-trojan/

https://devcentral.f5.com/articles/is-xmaker-the-ne w-trickloader-24372

https://blog.malwarebytes.com/threat-analysis/2016/ 10/trick-bot-dyrezas-successor/

https://fraudwatchinternational.com/malware/trickbo t-malware-works/

https://msdn.microsoft.com/en-
us/library/windows/desktop/ms682425%28v=vs.85%29.as px

https://msdn.microsoft.com/en-
us/library/windows/desktop/aa366890%28v=vs.85%29.as px

https://msdn.microsoft.com/es-
es/library/windows/desktop/ms681674%28v=vs.85%29.as px

https://msdn.microsoft.com/es-
es/library/windows/desktop/ms682437%28v=vs.85%29.as px

13. AUTHORS

• Marc Salinas
• José Miguel Holguín

Ramiro de Maeztu 7, bajo
46022 Valencia
T. (+34) 963 110 300
F. (+34) 963 106 086

Orense, 85. Ed. Lexington
28020 Madrid
T. (+34) 915 678 488
F. (+34) 915 714 244

www.s2grupo.es

