)

invent

Destructors, Finalizers, and Synchronization

Hans-J. Boehm

Internet Systems and Storage L aboratory
HP Laboratories Palo Alto
HPL-2002-335

December 41, 2002+

E-mail: Hans_Boehm@hp.com

destructors, We compare two different facilities for running cleanup actions for
finalizers, objects that are about to reach the end of their life.

threads,

garbage Destructors, such as we find in C++, are invoked synchronously
collection when an object goes out of scope. They make it easier to implement

cleanup actions for objects of well-known lifetime, especialy in the
presence of exceptions.

Languages like Java, Modula-3, and C# provide a different kind of
"finalization" facility: Cleanup methods may be run when the
garbage collector discovers a heap object to be otherwise
inaccessible. Unlike C++ destructors, such methods run in a
Separate thread a some much less well-defined time.

We argue that these are fundamentally different, and potentially
complementary, language facilities. We also try to resolve some
common misunderstandings about finalization in the process. In
particular: 1. The asynchronous nature of finaizers is not just an
accident of implementation or a shortcoming of tracing collectors; it
IS necessary for correctness of client code, fundamentaly affects
how finalizers must be written, and how finaization facilities
should be presented to the user. 2. An object may legitimately be
finalized while one of its methods are still running. This should and
can be addressed by the language specification and client code.

* Internal Accession Date Only Approved for External Publication
To be presented at SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 15-17 January 2003,
New Orleans, LA

a Copyright ACM



Destructor s, Finaliz ers, and Sync hronization

Hans-J. Boehm
Hewlett-Packard Laboratories
1501 Page Mill Rd.

Palo Alto, CA 94304

Hans_Boehm@hp.com

ABSTRACT

We compare two different facilities for running cleanup ac-
tions for objects that are about to reach the end of their
life.

Destructors, such as we find in C++, are invoked syn-
chronously when an object goes out of scope. They make
it easier to implement cleanup actions for objects of well-
known lifetime, especially in the presence of exceptions.

Languages like Java[8], Modula-3[12], and C#[6] provide
a different kind of “finalization” facility: Cleanup methods
may be run when the garbage collector discovers a heap ob-
ject to be otherwise inaccessible. Unlike C++4 destructors,
such methods run in a separate thread at some much less
well-defined time.

We argue that these are fundamentally different, and po-
tentially complementary, language facilities. We also try to
resolve some common misunderstandings about finalization
in the process. In particular:

e The asynchronous nature of finalizers is not just an
accident of implementation or a shortcoming of tracing
collectors; it is necessary for correctness of client code,
fundamentally affects how finalizers must be written,
and how finalization facilities should be presented to
the user.

e An object may legitimately be finalized while one of
its methods are still running. This should and can
be addressed by the language specification amd client
code.

Categoriesand Subject Descriptors

D.3.3 [Programming Languages|: Language Con-
structs and Features—Dynamic storage management; D.4.2
[Operating Systems]: Storage Management Garbage
Collection; D.4.1 [Operating Systems|: Process Manage-
ment Threads

Permissionto malke digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationonthefirst page.To copy otherwiseto
republisho poston senersor to redistrituteto lists, requiresprior specific
permissiorand/orafee.

POPL03 Januaryl5-17,2003,New Orleanslouisiana,USA

Copyright 2003ACM 1-58113-628-5/03/0001.$5.00.

General Terms

Languages, design

Keywords

Deadlock, destructor, finalization, garbage collection, syn-
chronization, thread

1. INTRODUCTION

The following sections describe two mechanism for asso-
ciating cleanup code with objects: C++ destructors and
Java/Modula-3/C# finalizers.

C++ destructors are cleanup actions executed primarily
when a program variable goes out of scope. The prevailing
opinion is that C++ destructors are clearly useful. And
there is some agreement on how they should be used (cf.
“Resource Management” in [14]).

Many programming languages that provide automatic,
garbage-collected memory management also provide final-
izers to clean up heap objects sometime before collection.
Unlike destructors, finalizers are often viewed as “... un-
predictable, often dangerous, and generally unnecessary ...
can cause erratic behavior, poor performance, and portabil-
ity problems” ([1], taken slightly out of context, in section
entitled “Avoid finalizers”).

A common view is that the asynchronous nature of fi-
nalization is a consequence of the use of a tracing garbage
collector which detects garbage only at periodic intervals,
and that it might become more useful if traditional refer-
ence counting were used as much as possible, so that most
finalizers could be run synchronously at the precise program
point at which an object became inaccessible.! It has also
occasionally been claimed that if finalization must be used,
one should avoid locking in finalizers. We point out that
both claims are wrong, though the latter is somewhat moti-
vated by common language implementation bugs.

We argue that although finalization is rarely needed, it is
often critical when it is needed. In these cases, its absence
would render the garbage collector useless. Furthermore,
although finalization timing is certainly indeterminate, it
should not lead to unreliable programs.

Some of the observations underlying this paper have been
previously made by others. We attempt to point out such
prior work. But we are not aware of any published work
that thoroughly discusses the implications of those obser-
vations, either on the writing of correct client code, or on

'This has been repeatedly claimed in various C++ discus-
sion groups, and less frequently on gclist@iecc.com.



the underlying design of the finalization facility, and partic-
ularly on the futility of designing systems for synchronous
finalization.?

Although our observations should perhaps be obvious,
there is no shortage of empirical evidence that they are not.
Nearly every new Java implementation seems to initially
execute finalizers synchronously from the garbage-collecting
thread, even though this is prohibited by the language spec-
ification. The current C# specification[6] appears to allow
finalizers to be run synchronously®, in spite of the fact that,
as we argue below, this makes it largely impossible to write
deadlock-free finalizers. A number of common memory man-
agement implementations for C4++ (e.g. Boost shared_ptr?)
implement essentially synchronous finalization.

The issues are certainly no better understood among the
authors of client code than among language implementors.
A large fraction of the finalization uses that we have seen
involved unintended races due to insufficient synchronization
in the finalizer.

To make this discussion more concrete, we will assume a
multi-threaded environment. As we will see below, finalizers
(like Unix signals or hardware interrupts) essentially intro-
duce their own thread of control. Thus various issues be-
come easier to express if threads are already present. None
of our issues disappear in a single-threaded environment,
but they must be addressed with different, and probably
less natural, techniques|7].

Although our approach to finalization will deviate slightly
from Java semantics in ways we discuss below, we will use
mostly Java terminology throughout this paper. In partic-
ular, a method or an object is synchronized if it acquires a
lock.

It is worth remembering throughout all of this that cleanup
actions, like memory management issues in general, really
become of interest only for at least medium-sized programs
manipulating relatively complex data structure. And they
become far more interesting for systems that try to rely on
modularity so that they do not have to rely on a single im-
plementor understanding the entire system. Unfortunately
none of these lend themselves to inclusion as examples in a
paper. Thus our examples will tend to be somewhat incom-
plete.

2. C++DESTRUCTORS

The C++ language allows objects to have an associated
destructor method.® When a stack allocated object goes
out of scope or is explicitly deallocated using delete, the
object’s destructor is automatically called. This mechanism
can be viewed as largely a syntactic convenience, but it does

2Some of this paper is an expansion of the
web  pages we previously made available at
http://www.hpl.hp.com/personal/Hans_Boehm/
gc/det_destr.html and  http://www.hpl.hp.com/
personal/Hans_Boehm /gc/finalization.html

3To our knowledge, C# implementations generally
do the right thing, and use a separate finalization
thread. One of them temporarily did not. See
http://bugzilla.ximian.com/show_bug.cgi?id=31333

“See http://www.boost.org/libs/smart_ptr/
shared_ptr.htm

5Note that the term “destructor” in the C# language defi-
nition corresponds to our usage of the term “finalizer”.

have several advantages over explicit calls to a “destroy”
method:

1. Class inheritance is handled correctly by also invoking
superclass destructors.

2. It can be guaranteed that any stack allocated object
will be destroyed exactly when the object goes out of
scope. There is no opportunity to forget to make the
call.

3. As a particularly important instance of the last point,
destructors significantly simplify cleanup of stack allo-
cated objects in the presence of exceptions.

Since it is easier to handle object cleanup this way in
C++, it is common to try to move any kind of resource ac-
quisition into a constructor, and the corresponding dealloca-
tion into the destructor. This approach is commonly referred
to as “resource acquisition is initialization” or RAII[14]. ©

As a particularly illustrative and common example, de-
structors are often used to release locks.”

Thus
{
L.lock();
£0O;
L.unlock();
}

would be replaced by

scoped_lock s1(L);
£0;

where the constructor for scoped_lock acquires the argu-
ment lock and saves its identity, so that the destructor can
release it. If £() raises an exception, the destructor is in-
voked during stack unwinding, so that L is still released.
Thus it is guaranteed that L will be released at block exit.®

Destructors are guaranteed to be executed at a well-
defined program point. This property makes them useful for
cleanup actions that have immediately visible side-effects,
such as releasing locks or closing windows.

Destructors are also executed when heap objects are ex-
plicitly deallocated, using delete. As we will argue below,
this works well if the programmer is aware of exactly which
objects are deallocated at what point. However, it becomes
highly problematic if some automatic or semi-automatic
mechanism is used to perform deallocations implicitly.

6 Although this is designed to apply to all objects, it seems to
be more useful for stack allocated objects than for statically
allocated ones. The author knows of more than one large
project that has abandoned use of this facility for statically
allocated variables due to the difficulty of ensuring that con-
structor invocations occur in a safe order. Its applicability
to heap objects is discussed below.

"See for example http://www.boost.org/libs/thread/
doc/mutex.html.

8In our opinion, this raises a stylistic issue, in that there
may be no way to see whether a lock is being released at the
end of a block without reading the entire block. Thus we
assert only that it’s common practice, and leave the reader
to judge whether it’s desirable.



3. FINALIZERS

Xerox PARC Cedar[13]°, Modula-3[10], and our garbage
collector for C/C++[2], among others, allow a finalization
function to be associated with an object. The finalization
function is executed sometime after an object can no longer
be accessed except by the finalization method for the object
itself.1% It is given access to the object itself. Finalizer
invocation may be arbitrarily delayed in unspecified ways.

Unlike destructors, finalizers are attached to heap allo-
cated objects, typically in contexts in which object deallo-
cation is implicit. They are not used with stack allocated
objects, or objects whose lifetime always ends at a syntacti-
cally determinable program point.!!

We will refer to objects with an associated nonempty final-
ization action as finalization-enabled. Finalization-enabled
objects which are not reachable from ordinary roots will be
referred to as finalization-ready.*>

Typically finalizers are implemented by keeping pointers
to all objects with nonempty finalizers in a separate set data
structure F. During initial tracing, the garbage collector
ignores this data structure. The garbage collector then also
traces (i.e. marks or copies) objects reachable by following
chains of one or more pointers from the objects in F. Any
objects that are in F' but were not traced during either phase
become eligible for finalization. Finally F' and the objects it
references directly are traced to ensure that objects needed
by finalizers are retained by the garbage collector.

The finalizer for an object p may assign p to, for exam-
ple, a static class member. In that case p may remain live
indefinitely after its finalizer has run. This is sometimes,
perhaps incorrectly, referred to as resurrection. It differs
from destructor behavior, but causes no real problems.'3

3.1 Alternatives

PARCPlace Smalltalk (see [9] for a discussion) provides
a slightly different finalization model. An object can be
referenced by a weak array. Such references are initially
ignored by the garbage collector when determining object
reachability, but cleared once an object is collected. When
this happens, the weak array object is notified that one of
its entries has disappeared.

This differs from what we have been discussing in two
ways:

e Finalization is combined with a “weak pointer” facil-
ity. (Weak pointers are pointers that do not prevent
a garbage collector from viewing an object as inacces-
sible.) The same combination is used in later versions

9Rovner|[13] describes an early version of Cedar finalization.
Later versions are closer to the Modula-3 version.

10Ty simplify matters, we ignore special “weak” references
that are ignored in making this determination. Such a fa-
cility is often combined with a finalization facility, and the
combination can be quite useful.

1 Ada’s use of the term “finalization” corresponds to our
“destruction”.

12We avoid the term finalizable since it has been used to mean
either of these. See for example [9] and [8].

BNonetheless it is often viewed as problematic. The only
reason we can identify is that at least in the original Java
specification, there was no way to reenable finalization to
be run again when the p becomes inaccessible (again). This
restriction appears to be fairly arbitrary and Java-specific.
It is not shared by, for example, Modula-3 or Xerox Cedar.

of the Cedar facility’® or in Java’s java.lang.ref.

e More interestingly, a different object is notified of the
unreachability of an object.

Effectively, the notification message can be viewed as a fi-
nalizer invocation, but with the difference that the finalizer
function does not have access to the unreachable object it-
self, and hence that object can be immediately reclaimed.

Others have also argued in favor of notifying another ob-
ject'®. The approach has its advantages in terms of pro-
gramming style, and may well make finalizers more compre-
hensible, since “object resurrection” can no longer occur.
A priori it has some advantages when it comes to ordering
issues. (See appendix A). However, it can be emulated in
our model, at least at this level of detail, by adding a possi-
bly empty “executor” object p’, a pointer from p to p’, and
registering a finalizer only for p’. Thus it doesn’t really af-
fect our discussion, and we do not consider this alternative
further here.

Java finalizers differ from Modula-3 finalizers in that ob-
jects may be finalized even if they are reachable from other
finalization-enabled objects. This affects the implementa-
tion only slightly. The impact on client code is discussed in
appendix A.

C# “destructors” are really finalizers in our terminology,
and behave essentially like Java finalizers.

3.2 Example usesof finalization

The addition of a finalizer-like mechanism is well moti-
vated in [5]. Here we look at a few additional examples to
motivate and clarify our discussion. The third one will be
used to discuss some of the synchronization issues which are
central to our discussion.

In general, finalizers should be used to reclaim resources,
other than garbage collected memory, when timing of the
resource reclamation is not critical. In the case of scarce
resources, explicit deallocation is usually preferable. But
as we see in the second example below, it is not always
practical.

3.2.1 Legacylibraries

Perhaps the most common use of finalization is to accom-
modate libraries written for malloc/free memory manage-
ment in a garbage collected environment. Typically such li-
braries provide an explicit deallocation function d that must
be invoked when an object [ managed by the library is no
longer needed. If the object [ is used by a garbage collected
object g, then it is common to invoke d from g¢’s finalizer.
This may unnecessarily delay reclamation of [, but this is
typically no more of a problem than the delayed dealloca-
tion of memory inherent in a tracing garbage collector.

3.2.2 Filesin ropes

Occasionally complex data structures contain embedded
non-memory resources. A good example of that is the “rope”
data structure described in [3].'°

“Early versions used “package refs”. Effectively the garbage
collector ignored a predetermined number of references to
finalization-enabled objects.[13]

15See for example, the discussion of “death notices” on
gclist@iecc.com.

6A  gimilar, but explicitly reference counted, data



Concat

/ AN

AN

Concat Substring

/ \ N thl /
Substring o

0|N—4 Y 'z

o~

file
len: flen

,Finalizer to
+ close file
A

Figure 1: Slightly edited file as a rope

Here a string is represented as a binary tree or DAG. Each
leaf is a string constant. Interior nodes represent the con-
catenation of the strings represented by the left and right
subtrees. This representation allows constant time concate-
nation of arbitrarily long strings. If some care is taken to
keep leaves small and trees balanced, it also allows efficient
substring operations on long strings. These make it pos-
sible, for example, to build an efficient text editor which
represents the entire file being edited as a single rope.

A common extension is to allow file descriptors instead of
explicitly stored strings as leaves, and to allow interior nodes
representing unevaluated substring expressions. These allow
an editor to operate on a large file represented as a rope,
without reading the entire file into memory. After a single
character insertion of the letter “z” after the Nth position
in a large file, the in-memory representation of the resulting
file might be as in figure 1.

In general it is difficult to predict when the file nodes in
such a data structure will be dropped. For example, in the
Cedar programming environment[13] ropes are used as the
standard string representation, and are thus themselves em-
bedded in many other data structures. Even in the editor
case, an embedded file descriptor will be dropped if all char-
acters in the original file are replaced. Thus if we wanted to
explicitly close a file, we would have to be able to determine
when a file node is no longer accessible from any accessible
ropes; effectively we would have to redo exactly the work
already performed by the collector.

Finalizers are well-suited to handling this problem. We
simply attach a finalizer to each leaf containing a file de-
scriptor. Sometime after that leaf becomes unreachable, the
finalizer closes the file. This may lead to files being kept open
longer than necessary; but for typical applications such as
the text editor example, very few files tend to be embedded
in ropes in this manner, so this is unlikely to be an issue. As
we will see below, we can potentially reclaim file descriptors
more promptly with some help from the client code and file
open routines.

structure is included in the SGI and GNU ver-
sions of the C++ standard template library. See
http://www.sgi.com/tech/stl/Rope.html.

3.2.3 Externalobjectdata

Assume that we have a class C, such that all instances of
C maintain at least some of their state (a C_impl instance)
in a permanently reachable array. This allows us to easily
share a single C_impl between multiple Cs containing the
same data. The global array allows us to easily search for
an existing C'_impl to reuse. We’ll see another reason to do
this in the next example.

This looks something like:

class C_impl {
// Some stuff needed by C instances.
T data;
public C_impl(T d) {data = d;}

}

class C
{
// The following two arrays are protected
// by the lock on the impls array.
static C_impl impls[] = new C_impl[N];
// The number of Cs sharing the
// corresponding C_impl.
static int impl_use_count[] = new int[N];

int my_index; // impls index for my rep.

public C(T t) {
synchronized (impls) {
for (int i = 0; i < N; ++i) {
if (impl_use_count[i] > 0 &&
<impls[i] reusable>) {
my_index = 1i;
return;
}
}
my_index = first_available();
impls[my_index] = new C_impl(t);
impl_use_count [my_index] = 1;
}
}

protected void finalize() {
synchronized (impls) {
—-—impl_use_count [my_index];
if (impl_use_count [my_index] == 0) {
impls[my_index] = null;
}
¥
}

static int first_available() {
// Caller must hold impls lock.
for (int i = 0; i < N; ++i) {
if (impl_use_count[i] == 0) return i;
}
throw ...

3

The data structure is pictured in figure 2. Effectively C



impl_use_count  impl C_impls Cs

Figure 2: Data structure for example 3.2.3

objects contain only an index my_index into a global table
impls. The real instance data is referenced by the table
impls. When a C' is no longer otherwise reachable, its final-
izer is invoked. This updates impl_use_count and possibly
explicitly removes a C_impl from the table so that it can be
reclaimed.

If we had put the C_impl state directly into C' objects
instead, we would have needed an auxiliary table to find
candidates for reuse. This table would have prevented the
garbage collection of C' objects without a mechanism such
as weak pointers.

Note that the finalizer here must acquire the class lock
since it updates shared data structures.

3.2.4 Remaeal of tempoary files

Occasionally it is necessary to provide for reliable cleanup
of certain resources before process exit. Removal of tempo-
rary files is often an example of this.

As is discussed in appendix A, finalizers by themselves
cannot provide this facility since the finalization mechanism
doesn’t have the necessary ordering information.

Here we outline how to use finalizers to remove temporary
files as they are dropped during program execution, while
making it possible for an explicit routine to remove those
that are remaining at process exit.

Since finalizers cannot guarantee to remove all such files,
we will need an explicit routine cleaner to be called before
process exit. It will be the clients responsibility (as it must
be) to ensure that this is only called after the last use of a
temporary file, but before the removal of any other objects
needed by cleaner.

This cleaner routine will need access to the system re-
sources which are still allocated. One way to accomplish
this is analogous to our previous example. We keep an ex-
plicit, always reachable, table 1" of temporary files.

Clients are not given direct access to 1. These clients in-
stead access finalization-enabled temporary file objects con-
taining primarily an index of, or a reference to, the corre-
sponding file information in 7. The data structure is out-
lined in figure 3.}7 Finalizing a temporary file object causes
removal of the file, and the corresponding entry from 7.

"Note that references to the client-visible object are synchro-
nized, i.e. acquire the lock on the object. This is necessary

T: References from client

Object representing temporary file.
. (Finalizer removes table entry.)
., (Synchronized for reachability.)

Object containing
temporary file data.
(No finalizer.)

\ "tmp000013"
fd: 17

Table of temporary files needing cleanup.
(Needs mutual exclusion.)

Figure 3: Guaranteed cleanup of temporary files

Cleaner removes any entries left in 7' at process termina-
tion.

3.3 Locking of finalizers

Many finalizers should guard against concurrent access to
the underlying object by acquiring a lock. There are two
reasons for this:

1. There is usually not much of a point in writing a final-
izer that touches only the object being finalized, since
such object updates wouldn’t normally be observable.
Thus useful finalizers must touch global shared state
(e.g. static fields of Java classes). Generally this shared
state can be concurrently updated by client code out-
side finalizers. In a language such as Java, multiple
finalizers for the same class may also run concurrently
in separate threads (even if the original application is
single-threaded!), so that we must ensure mutual ex-
clusion between finalizers.

Sometimes, as in our ropes example above, the only
shared state that is touched is inside the operating
systems kernel or low level system libraries, so that the
necessary synchronization is hidden. In many other
cases, e.g. in our external object data examples, user-
visible locks are needed.

2. Object & may be finalized before z.foo() has finished
executing. This is possible since . foo() may no longer
need access to x past a certain point in the method,
and thus there is no reason for x to be treated as reach-
able by the garbage collector past that point. Consider
specifically:

class X {
Y mine;

public X() {
mine = new Y();

}
public foo() {
mine.bar();

}

for reasons discussed below. Accesses to 1" must also be
synchronized, since it must support concurrent access.




public void finalize() {
mine.baz();

}

where mine is a subobject not visible to the outside
world, and whose methods can thus not be called ex-
cept through the corresponding X object. Assume
that only one thread uses object = of class X, and
that the last action on z is to call x.foo(). When foo
calls mine.bar, x may no longer be reachable. It is
quite possible that, at this point, the register holding
x will have been reused, and the stack frame for foo
no longer exists due to tail call optimization. Thus
the finalize method may be invoked at this point, and
mine.bar() may run concurrently with mine.baz().
If both update the same data structure, this is nearly
certain to be unacceptable.

We can ensure that mine.bar() and mine.baz() run
sequentially by adding locking, e.g. by marking foo
and finalize as synchronized.'®

This is at odds with the occasional advice to avoid syn-
chronization in finalizers.

3.4 Reachability and Optimization

Most specifications for languages supporting finalization
are intentionally somewhat vague about finalizer execution
timing in both directions. They not only allow finalization
to be delayed, but also allow finalizers to be executed earlier
than might be expected, as the result of compiler optimiza-
tions. We first concentrate on the latter.

We saw in the preceding section why this might happen
with private subobjects. However, things can get even less
pleasant.

Consider an example resembling the external object data
example from section 3.2.3. In this case, assume that we
have objects of class D containing an index my_index to the
external array A. Each entry in A is used by at most one D
object. It contains either a null pointer, if it’s not currently
used by any object, or otherwise a reference to an object
containing a counter field. The finalizer for D resets the
array entry to null. Assume that D has a method foo that
simply counts the number of its invocations by incrementing
the corresponding counter:

void foo() {
++A[my_index] .counter;

}

Now consider what happens when an instance d of D is
accessible only by a single thread, and it is last accessed in
the loop

for (int i = 0; i < 1000000; ++i) {
d.foo();
}

Interestingly, as we discuss in the next section, it would
probably suffice to declare only foo as synchronized. That
would ensure that x remains live until the release of the
associated lock, and thus sufficiently delay finalization to
ensure that the methods are run sequentially. As discussed
briefly in [9], other methods for guaranteeing the liveness of
x may be thwarted by compiler optimizations.

A compiler might inline foo, observe that d.my_index is
loop invariant, and thus simply keep it in a register. It may
then observe that d is now dead, and no longer needs to be
kept anywhere. If the compiler eliminates d in this manner,
and the collector then runs while the loop is executing, it will
discover that d is unreachable, and should thus be finalized.
The finalizer will set d.my_index to null, and cause the next
increment to fail.

The apparent conclusion from this is that we need to be
a bit more precise about what references can be eliminated
by the compiler, and how soon finalizers can be run. Un-
fortunately, we are not aware of any language specifications
that are sufficiently precise about this.

As an example, the Java Language Specification[8] spec-
ifies that “A reachable object is any object that can be ac-
cessed in any potential continuing computation from any
live thread. Optimizing transformations can be designed
that reduce the number of objects that are reachable to be
less than those which would naively be considered reach-
able.” We believe that in light of the above example, this is
not sufficiently precise.

A minimal solution to this problem for Java would be to
insist that an object is reachable at least until the lock on
the object has been released for the last time. This would
eliminate the problem in the above example once we make
foo synchronized. It could also be used to eliminate corre-
sponding problems in examples 3.2.3 and 3.2.4.

Some of the constructions in appendix A of this paper, as
well as, for example, “Finalizer Guardian” construction in
[1], require that certain other potentially unaccessed objects
need to be considered reachable. In particular, if there is a
reference from A to B, and A is reachable, we need to know
that B will not be finalized. We will continue to make this
assumption were necessary, since existing code relies on it
and, to our knowledge, all existing implementations satisfy
it. (It would be acceptable to restrict this assumption to
final and volatile references.)

The situation in C# appears to be very similar, and in
need of similar solutions. For some other languages, the
definition of “reachability” is even less precise.

3.5 Finalization must be asynchronous.

Java requires finalizers to run inside a thread holding no
user-visible locks. Those virtual machines that implement
this correctly appear to universally do so by running final-
izers in a separate thread or threads, once the collector has
determined, at its leisure, that an object is eligible for final-
ization.

To understand the reasoning behind this requirement, it
is useful to consider, instead of Java, the case in which locks
cannot be reacquired by a thread. (For example, pthread
locks[11] work this way by default.) If finalizers can be run
at any point in any thread, a finalizer requiring lock L may
coincidentally be run in a thread that already holds lock L.
The attempt to reacquire the lock results in deadlock.

If a finalizer needs to acquire a lock, there is very little the
programmer can do to avoid this scenario. Even if the pro-
gramming language, like Java, allows locks to be reacquired
by the same thread, the situation does not improve. Instead
of an obvious failure, we will allow two logically separate
operations, namely the client hread holding L and the final-
izer, to hold L at the same time. The example in appendix
B illustrates that this can result in intermittent incorrect



execution.

This issue was apparently known to the authors of [8].
Unfortunately, most major Java implementations appear to
have implemented this incorrectly in their initial versions."®

We argue that this observation is equally applicable to
environments that traditionally use reference-count based
garbage collection, and even if finalization is implemented
based on destructors.

For example, it has often been argued in the context of
automatic memory management for C++, that destructors
for heap objects should behave just like destructors for stack
objects, and that they must be run the instant the last refer-
ence to an object is dropped, e.g. in response to a reference
counter decrement. And this is exactly what is commonly
done by C++ reference count implementations (cf. [4]).
Python[16] uses a similar approach. In both cases destruc-
tors?® are used to implement finalizers.

But this encounters exactly the same problems that were
encountered by early Java implementations: Due to the
presence of reference counting, which is designed to free the
programmer from worry about deallocation timing, the tim-
ing of finalizer execution is no longer transparent. Finalizers
may run in response to a reference decrement at any assign-
ment or block exit, and hence appear to the programmer
to be asynchronous. Deadlocks involving a lock held by
the thread processing the reference count decrement and re-
quired by the finalizer are neither predictable nor avoidable.

It is impractical for a tracing garbage-collector to run fi-
nalizers at exactly the point in thread execution when an
object becomes finalization-ready. But even if it could do
so, this would in fact make it much harder, rather than eas-
ier, to write correct code.

Appendix B expands on the “external object data” exam-
ple from section 3.2.3 to give a concrete illustration of how
synchronous finalization in response to a reference count
decrement can fail unexpectedly. The example also illus-
trates that module abstraction boundaries effectively make
it impossible to avoid such disasters, even with “determin-
istic” reference-counting garbage collection.

The often repeated complaints that “finalizers are unpre-
dictable” (cf. [1]) is a necessary feature, not a deficiency.

3.5.1 Explicit Finalizer Invocation

Java provides a method System.runFinalization() which
explicitly forces finalizer invocation. Various finalizer im-
plementations and proposals (cf. Cedar [13], Guardians[5],
the Ellis-Detlefs safe C++ proposal[7] or java.lang.ref in
Java2) do not always run finalization procedures implicitly,
but may instead simply enqueue finalization-ready objects,
leaving it to the client to read the queue and invoke the

19Gee for example a typical complaint at http:
//www.geocrawler.com/archives/3/196,/1997/
9/0/1089518/ or the more detailed discussion at
http://www.cs.arizona.edu/sumatra/hallofshame/
monitor-finalizer.html The latter overlooks the require-
ment on java.ong.Object.finalize that “the thread that
invokes finalize will not be holding any user-visible
synchronization locks ...”, and thus confuses an implemen-
tation bug for a specification bug. The GNU Java compiler
corrected a similar implementation bug after we pointed
out the problem. We believe this was a common mistake in
this context, which has contributed to the bad reputation
of finalizers.

20__del__ methods in Python

appropriate procedures.

These allow finalizers to be used safely in single-threaded
environments, by requiring the client to explicitly invoke fi-
nalizers when it is safe to do so, i.e. outside code sections
that should be executed atomically. This appears to be the
safest way to handle finalization in single-threaded code, al-
though it has some clear disadvantages in certain contexts:
Potentially large amounts of code, especially long-running
routines, must be explicitly sprinkled with finalizer invoca-
tions. But such code must not be called in contexts in which
finalizer invocations are unsafe.

Another potential use for an explicit call to run finalizers
is to reclaim certain system resources which are particu-
larly scarce. For example, it is common to force a garbage
collection and invoke finalizers when a file open call would
otherwise fail due to lack of file descriptors. However, this is
complicated by several issues, which often seem to be over-
looked:

1. Running one finalizer may cause other objects to be
eligible for finalization. For example, a buffered file
may need to be finalized (and flushed) before the un-
derlying raw file can be finalized (and the descriptor
reclaimed). In the case of Modula-3 style ordered final-
ization, the finalizers would implicitly be run in con-
secutive collection cycles. As we explain in appendix
A, this behavior can, and often must be, emulated in
Java.

2. The resource allocation call, e.g. the file open call,
may be made from client code that holds locks. These
locks may be needed by finalizers.

The first issue is easily addressed with careful interface
design. Rather than attempting to run all finalizers with

System.gc();
System.runFinalization();

we should use

do {
System.gc();
System.runFinalization() ;
} while (<resource unavailable>
&& <System.runFinalization() did something>)

The second issue is more difficult to resolve.

Assume that System.runFinalization() is called from a
thread holding lock L and no other locks. It is possible to,
at least logically, run each finalizer in its own thread. This
will cause exactly those finalizers that do not need L to run
to completion. That’s perhaps the best we can do, but it
certainly leaves open the possibility that some blocked fi-
nalizers would have caused other, possibly more interesting,
objects to be dropped.

A second possibility would be to insist that
runFinalization() not be called from contexts that
might hold locks shared by finalizers. That would require
similar restrictions on file open or other resource allocation
routines, which might call runFinalization() internally.
This appears to us to be a viable alternative.



The current Java API specification[15] is unfortunately
unclear on the intended usage model, or even whether
it is acceptable to run finalizers in the thread invoking
runFinalization().

We conclude that it is probably useful to explicitly invoke
finalizers to reclaim needed resources in this manner. We are
aware of several Java implementations that implicitly try to
to do so. But it is not clear to us that any of these systems
do so completely safely, or through the right interfaces.

4. CONCLUSIONS

‘We have pointed out that C++ destructors and Java final-
izers are completely different facilities. C++ destructors are
used to provide guaranteed cleanup actions at well-defined
program points, especially in the presence of exceptions. In
our view®' they are more closely related to Java synchro-
nized and try { ... } finally { ...} blocks or, in the
case of locks, synchronized blocks, than they are to Java
finalize methods.

In contrast, finalization in languages like Java is necessary
in order to manage resources other than garbage-collected
memory based on garbage-collector-discovered reachability.
Without this facility, it would often be necessary to basically
redo the garbage collectors work in order to manage these
resources. Although it has clearly introduced a significant
amount of confusion, a properly designed facility can be used
safely, and does not add significant complexity beyond that
inherent in multi-threaded programming.

Although we believe that finalization is an essential facil-
ity in many large systems, we do not believe that it should
be used frequently. Based on the limited statistics we have
seen, one use per 10,000 lines or more of well-written code is
probably typical. But eliminating use of finalization would
touch nearly every module in such systems. Even the small
amount of complexity inherent in finalization can normally
be isolated to a few modules of a large system. This is again
different from normal C++ destructor usage, which tends
to be far more pervasive, while each individual use tends to
be far less essential.

The issues for application programmers center on the fact
that finalization effectively introduces an additional thread
of control, and thus concurrency issues must be considered,
even for otherwise single-threaded applications. Arguably
no fundamentally new issues are introduced, but the im-
portance of understanding concurrency issues is elevated.
Synchronization is essential for finalizers.

Language implementors must also respect the fact that fi-
nalizers naturally constitute a separate asynchronous thread
of control.?2 This applies to any finalizers on heap objects,
whenever these become inaccessible at a point that is not
completely apparent to the programmer. In particular, fi-
nalizers should never be run implicitly as part of a client
thread which may be holding other locks. As was known to
(some of) the Java community, this applies if the objects are
managed by an automatic tracing garbage collector. But
it also applies to semi-automatic (e.g. manually reference

21 A similar point is made in e.g. [1]

22Tt must be asynchronous in the sense that the finalizer can-
not always run at the specific point at which a thread dis-
covers the object to be inaccessible. This does not by itself
preclude cooperative multi-threading, with potentially de-
terministic execution.

counted) memory management schemes, since in these sys-
tems the programmer has also chosen to abstract away the
details about when objects become inaccessible. It is oth-
erwise impractical to ensure that finalizers cannot be run
inside a client holding locks.

More specifically, language designs supporting finalizers
should ensure the following:

e In a multi-threaded environment, it must be guaran-
teed that finalizers will run in a thread in which no
locks are held. Typically this means that either finaliz-
ers are run in their own thread(s), or that finalization-
ready objects are enqueued and then run explicitly
from programmer-initiated threads. Thus finalizers
must be allowed to, and encouraged to, acquire locks.

e In purely single-threaded environments the program-
mer must be given explicit control over when to run
finalizers. Typically this will be accomplished by ex-
plicitly enqueueing finalization-ready objects, as in [5].

e The language specification must provide the program-
mer with a way to ensure that objects remain reachable
long enough to prevent premature finalization. The
last run-time representation of a pointer to an object
may disappear long before the last logical access to one
of its fields. There seem to be clean ways to provide
the necessary guarantees, but it does not appear to us
that any language specification currently does so.

e Library calls to explicitly invoke the garbage collector
and finalizers are apparently quite useful in manag-
ing relatively scarce non-memory resources. However
primitives such as Java’s System.runFinalization
must be clearly specified with respect to synchroniza-
tion behavior, and they must accommodate the fact
that there may be dependencies among finalizers. Cur-
rent language specifications generally appear to fail on
both counts.

As far as finalization is concerned, there is no qualitative
reason to prefer a reference-counting collector over a tracing
collector. A reference counting collector may have a quan-
titative advantage in that it may defer their execution for
a shorter period of time. But their execution must still be
deferred, at least in some cases.

5. ACKNOWLEDGEMENTS

The observations about the necessity for synchronization
in finalizers grew out of discussions, notably with Barry
Hayes, many years ago. The problem, though not the solu-
tion, is partially outlined in [9].

Some of the conclusions here grew out of discussions on
the gcj (GNU Java compiler) mailing list. Notably Andrew
Haley?® pointed out the danger in calling runFinalization
from a thread holding locks, e.g. while trying to allocate a
file descriptor. (Several bug reports on Sun’s web site appar-
ently made similar observations somewhat earlier, though
not known to the author at the time.)

Guy Steele contributed to several discussions on finalizer
ordering in Java, which are partially reflected here. The
anonymous reviewers provided many useful suggestions.

#See http://gcc.gnu.org/ml/java/2001-12/
msg00390.html.




6. REFERENCES

[1] J. J. Bloch. Effective Java Programming Language
Guide. Addison-Wesley, 2001.

[2] H.-J. Boehm. A garbage collector for C and C++.
http://www.hpl.hp.com/personal/Hans_Boehm /gc/.

[3] H.-J. Boehm, R. Atkinson, and M. Plass. Ropes: An
alternative to strings. Software Practice and
Ezperience, 25(12):1315-1330, December 1995.

[4] G. Colvin, B. Dawes, P. Dimov, and D. Adler. Boost
smart pointer library.
http://www.boost.org/libs/smart_ptr/.

[5] R. K. Dybvig, C. Bruggeman, and D. Eby. Guardians
in a generation-based garbage collector. In SIGPLAN
93 Conference on Programming Language Design and
Implementation, pages 207216, June 1993.

[6] ECMA. Standard ECMA-334: C# Language
Specification. ECMA, December 2001.

[7] J. R. Ellis and D. L. Detlefs. Safe, efficient garbage
collection for C++. Technical Report CSL-93-4, Xerox
Palo Alto Research Center, September 1993.

[8] J. Gosling, B. Joy, and G. Steele. The Java Language
Specification, Second Edition. Addison-Wesley, 2000.

[9] B. Hayes. Finalization in the collector interface. In
International Workshop on Memory Management
(IWMM 92, LNCS 637), pages 277-298, 1992.

[10] J. Horning, B. Kalsow, P. McJones, and G. Nelson.
Some useful modula-3 interfaces. Technical Report
113, Digital Systems Research Center, December 1993.

[11] IEEE and The Open Group. IEEE Standard
1003.1-2001. 1IEEE, 2001.

[12] G. Nelson, editor. Systems Programming with
Modula-3. Prentice-Hall, 1991.

[13] P. Rovner. On adding garbage collection and runtime
types to a strongly-typed, statically-checked,
concurrent language. Technical Report CSL-84-7,
Xerox Palo Alto Research Center, July 1985.

[14] B. Stroustrup. The Design and Evolution of C++.
Addison-Wesley, 1994.

[15] Sun Microsystems. Java 2 platform, standard edition,
v 1.4.0 api specification.
http://java.sun.com/j2se/1.4/docs/api/, 2002.

[16] G. van Rossum. Python reference manual.
http://www.python.org/doc/current/ref/ref.html.

A. APPENDIX: FINALIZER ORDERING

Java finalizers and C# “destructors” differ from the Modu-
la-3/Cedar approach in two important ways:

1. Objects may be finalized even if they are reachable from
other finalization-enabled objects. Thus Java objects
with nonempty finalize methods must explicitly take
care to keep objects they need accessible through some
other path.

2. In C#, a reachable object, e.g. an object direct refer-
enced from a static member of a class may be finalized
at program termination. Java had a facility to do the
same, though that has since been deprecated.

Before we discuss these, we can observe that finalizers gen-
erally fall into two categories: Those that simply deallocate
operating system resources, and those that touch other user
data structures. A useful finalizer must generally do one of

D A:
Permanently
reachable
table Added link for ordering.
Added By As constructor.
g Deleted by As finalizer.

Figure 4: Enforcing finalizer dependence of A on B

these: Only touching the object itself is useless, since it is
no longer reachable, and thus can’t be seen by the rest of
the program.

The above changes don’t affect the simple deallocation of
system resources. For other kinds of finalizers, both changes
add complications, in that a finalizer can no longer assume
that the objects it needs have not yet been finalized.

We believe that change (2) above is a defect that
has been remedied in Java with the deprecation of
System.runFinalizersOnFExit, and should be repaired in
C+#. For a well-designed operating system it is typically not
a significant improvement for finalizers that only return re-
sources to the operating system, e.g. by closing file descrip-
tors. Operating systems generally reclaim those on process
exit anyway to avoid resource leaks when programs crash.
But in this environment we do not know how to write reli-
able finalizers that do much more than this: There can no
longer be a guarantee that any other objects, even if they
are clearly reachable through ordinary roots, have not been
finalized before a given finalizer runs.?*

Even if a finalizer simply wants to generate output to the
standard error stream it is hard to see how it can guarantee
that it will not have been previously closed. Since the exis-
tence of a finalizer for a particular class is generally viewed
as a private implementation detail for that class, every final-
izer would have to be prepared for every object it touches to
have already been invalidated. It is hard to see how it would
be practical to write finalizers under this kind of assumption.
The situation is aggravated in that any errors along these
lines are likely to result in intermittent symptoms.

We believe that change (2) was motivated by a desire to
guarantee that finalizers run eventually to enable them to be
used for tasks such as removing temporary files. We showed
in our last example in section 3.2.4 that this can be done
correctly without this change.

Change (1) is more interesting, especially since it has per-
sisted in Java. It requires that if the finalizer for object A
depends on another object B, which may also have a final-
izer, object A will generally need to explicitly ensure that
object B remains accessible, where in the Modula-3 case the
collector implicitly handled the ordering.

This is possible by simply having A’s constructor add B to
a reachable data structure D, and then having A’s finalizer
remove the reference®® as is shown in figure 4.

4 As is is pointed out in the Java API documentation [15], the
real reason for deprecating this call in Java was apparently
only mildly related to this. If other threads are still running
(as is likely in the presence of daemon threads), there is
also no way to guarantee that finalizers won’t be called on
objects that are still being actively used.

%5 This relies on our earlier assumption about reachability.



= = *
—

Figure 5: Elimination of finalization cycle

Change (1) does have the advantage that long lists or
cycles of finalization-ready objects can automatically be fi-
nalized in a single cycle. But the same effect can usually be
achieved with Modula-3 style finalizers by breaking objects
into pieces, one of which contains only those fields accessed
by the finalizer. Consider again the case in which A’s fi-
nalizer needs access to B. Now assume also that B holds a
reference to A, which is not needed by B’s finalizer. This
can be transformed as in figure 5.2 Here fields needed by
finalizers have been indicated by shading, and “*” indicates
that an object is finalization-enabled.?” In the transformed
version, A’ is not reachable from a finalization-enabled ob-
ject, and can thus be finalized first. On the other hand,
B’ is reachable from A’ and must therefore wait for B"’s
finalization.

In general, for Modula-3 style finalization, the program-
mer should keep finalization-enabled objects small, and avoid
references in finalization-enabled objects that are not fol-
lowed by finalizers. If this rule is followed, we believe that
neither cycles nor long chains of objects are a serious issue.
(Any remaining cycles between finalization-ready objects are
easily detectable by the runtime.)

B. APPENDIX: SYNCHRONOUS FINAL-
IZATION FAILS

We illustrate how synchronous finalization, such as one
might obtain with a C++ reference counting collector that
naively uses C++ destruction to implement finalization, can
unexpectedly deadlock. A “runnable” version of this ex-
ample in C++, using Boost shared ptr as the “garbage
collector” and Boost synchronization can be found at http:
//www.hpl.hp.com/personal/Hans_Boehm /popl03

The current Java Language Specification[8] does not guar-
antee this to be correct. Since the reference from D to B
is never actually followed from a non-finalizer thread, there
is no guarantee that the collector must consider it when de-
termining reachability.

26 As in the previous construction, we are assuming that ob-
ject reachability is defined so that A’ is not finalized while
A is accessible.

27"We have also assumed that, as in Modula-3, a finalization-
enabled object may be finalized even if it points to itself.
This is not the default for our collector, though perhaps it
should be. Otherwise, and in some more complex cases, it
might be necessary to expose B’ and to make A’ reference
B’ directly to make it apparent to the GC that there is no
real reference cycle.

/c+-+example.

Consider adding the following to the “external object data
example from section 3.2.3. The call c.update(x) updates
the information stored in the impls array for ¢, based on
some information associated with x. If ¢’s representation is
not shared, the update is performed in place. Otherwise, it
is first copied:

»

public synchronized void update(C other) {
synchronized (impls) {

int count = impl_use_count[my_index];
T new_val =

combine (impls [my_index] .data,

X.messy_fn(other));
if (count > 1) {
// Clone my C_impl.
int new_index = first_available();

impl_use_count [new_index] = 1;
impls[new_index] = new C_impl(new_val);
impl_use_count [my_index] = count - 1;
my_index = new_index;
} else {
impls [my_index] .data = new_val;

}
}
}

Assume that

1. X.messy_fn computes some property of its class C' ar-
gument, which is expensive to compute. This property
never changes for a given C instance.

2. X was written by someone else whom we haven’t heard
from in five years.

3. Unknown to us, X maintains a small cache of C' values
it was recently passed, together with the corresponding
return values. When the cache becomes too large, an
old value may be dropped by being overwritten.

Recall that so far we assume that locks cannot be reac-
quired by a thread. Now consider the scenario in which

1. We call update.

2. It acquires the lock, reads a count of 2, and then calls
X.messy_fn.

3. X.messy_fn’s cache does not yet contain other. It thus
computes the result and replaces a previous cache entry
c.

4. ¢ happened to share a C_impl with the entry being
updated.

5. ¢ becomes eligible for finalization.

With a simple reference counting garbage collector (e.g
implemented like Boost shared_ptr [4]) the Scenario con-
tinues:

1. Finalizers are invoked immediately when a zero refer-
ence count is detected, from the thread that caused the
reference count to be decremented.

2. ¢’s finalizer will be invoked from the thread that called
update.

3. This thread still holds the lock for class impl. Dead-
lock!



If instead we assume Java lock semantics, we may end up
with data structure corruption instead of deadlock. Instead
of the above, the scenario continues:

1. ¢’s finalizer will be invoked from the thread that called
update.

2. The finalizer reacquires the lock, ignoring the fact that
we were already in the middle of updating the under-
lying data structure.

3. The finalizer decrements the count (but not update’s
local copy).

4. Update installs a count of 1 into the old entry, when it
should have been zero.

Clearly, with full insight into the entire system, we could
easily program around this problem (though it may be harder
for more realistic examples). But the code, as written,
should run correctly. The programmer correctly used locks
to ensure mutual exclusion, and correctly counted on the
garbage collector to take care of memory deallocation and
finalization behind the scenes. In order to fix the problem,
we need to understand that the collector will potentially in-
voke a finalizer for a C' object as part of an invocation of
messy_fn. But the whole purpose of the collector was to
make it unnecessary to reason about deallocation timing in
this way.

The only way to preserve the programmer’s abstraction
is to decouple the finalizer invocation from the thread that
happened to drop the last object reference, i.e. to run the
finalizer asynchronously, effectively in its own thread. Thus
even if we use a simple reference counting collector, which
detects inaccessibility immediately, we should still enqueue
the finalization call and carry it out later in a different
thread.



