
XDC 2022 Super. Good. Code.

Zink: The Talk

// TODO: finish this

XDC 2022 Super. Good. Code.

Zink: TL;DR
● Zink is a GL driver
● It does GLES too
● Also WGL
● It has feature support
● MesaMatrix is gray

now?

XDC 2022 Super. Good. Code.

Zink: The Early Years
● Started in 2018 by Erik Faye-Lund

– Merged 31 August 2018
● GL 4.6: 15 February 2021
● ES 3.2: 31 August 2021

– Exactly 3 years for all versions

XDC 2022 Super. Good. Code.

Zink: The Early Years Visualized

Dave Airlie: Mesa Reviews/Acks per year

XDC 2022 Super. Good. Code.

Zink: The Early Years Visualized

Dave Airlie: Mesa Reviews/Acks per year

XDC 2022 Super. Good. Code.

Zink: What Took So Long?
● 3 whole years?!
● More like 4

– My b

XDC 2022 Super. Good. Code.

Zink: War Stories (Things I Hate)

● Provoking Vertex
– Needed Vulkan extension

● gl_PointSize
– No client API in Vulkan, no default

XDC 2022 Super. Good. Code.

Zink: More Things I Hate

● Transform Feedback
– Terrible

● Non-seamless Cubemaps
– Perfect shader emulation is very hard

XDC 2022 Super. Good. Code.

Zink: Something I Really Hate

● 64bit shader emulation64bit shader emulation
– ComplexComplex
– Tests take longer than full CI runsTests take longer than full CI runs
– Makes everything confusing and hard to understandMakes everything confusing and hard to understand

XDC 2022 Super. Good. Code.

Zink: More Things I Hate

● Pixel Buffer Operations
– PIPE_TEXTURE_TRANSFER_COMPUTE ?
– pbobench ?

● Alpha/Luminance/Intensity format emulation
– No Vulkan equivalents

XDC 2022 Super. Good. Code.

Zink: Even More Things I Hate

● Gallium i/o lowering
– Vulkan needs derefs, not dwords

● Internet Blog Posts About Vulkan Descriptors
– Stop writing them

XDC 2022 Super. Good. Code.

Zink: Still The Topic Of This Talk
● This was the introduction
● Prepare to get technical

– Seriously
● You’re now breathing manually

– So am I

XDC 2022 Super. Good. Code.

Zink: Can I Run My Whole System On It Yet?

No.

XDC 2022 Super. Good. Code.

Zink: WSI
● Kopper is great, but...
● It took 1.5 years to land

– The Mesa DRI frontend really is that opaque
– Also Vulkan WSI is still broken on X11
– Also still have issues

● Ancillary invalidation (Sorry, anholt!)
● Auto-loading (Sorry, MrCooper!)
● Random corner case explosions (Sorry, everyone else!)

XDC 2022 Super. Good. Code.

Zink: WSI Solutions
● Collapse DRI frontend

– Classic drivers are gone
– This is not maintainable

● More Kopper testing
– I can’t find all the bugs myself

XDC 2022 Super. Good. Code.

Gallium: Tiler Optimizations
● Need more info when starting renderpass

– Layout
– loadOp
– storeOp
– Resolve attachments?

XDC 2022 Super. Good. Code.

Gallium: Tilers Seeing The Future?
● Introduce threaded-context readahead?

– Called on pipe_context::set_framebuffer_state
– Uses driver-provided callbacks to parse command stream

● pipe_context::bind_fs_state
● pipe_context::bind_dsa_state
● pipe_context::blit
● ???

XDC 2022 Super. Good. Code.

Gallium: Resolve Attachments?
● Should scanout resolve attachments be

provided in framebuffer state?
– https://gitlab.freedesktop.org/mesa/mesa/-/

merge_requests/18695

XDC 2022 Super. Good. Code.

Vulkan: Future Improvements For Tilers
● Working on something
● Not sure what it will end up being
● Hopefully solves these problems?

– Pros:
● Less CPU overhead from Gallium readahead
● Simpler code in Zink

– Cons:
● Will probably be a long time before this materializes
● More work for Ricardo

XDC 2022 Super. Good. Code.

Gallium: Slow Vertex State Changes
● pipe_context::set_vertex_buffers

– Has stride
● pipe_context::bind_vertex_elements_state

– Needs stride
● Overhead created in u_vbuf and Zink
● Hurt recent CPU benchmarks vs ANGLE

– Zink too heavy on CPU :(

XDC 2022 Super. Good. Code.

Gallium: Fast Vertex State Changes
● ???
● pipe_context::set_vertex_buffers_no_stride ?

XDC 2022 Super. Good. Code.

Zink: Benchmarking

XDC 2022 Super. Good. Code.

Zink: Benchmarking

XDC 2022 Super. Good. Code.

Zink: What’s Left?
● #1 priority: eliminate shader compile stutters:

– VK_KHR_dynamic_rendering
– VK_EXT_graphics_pipeline_library
– VK_EXT_non_seamless_cube_map
– VK_EXT_all_the_dynamic_states

 =
 P R E C O M P I L A T I O N

XDC 2022 Super. Good. Code.

Zink: No More Stuttering
...Sometimes

● Only with drivers also supporting:
– extendedDynamicState2PatchControlPoints
– graphicsPipelineLibraryFastLinking
– All the vertex attribute formats

● Also probably VK_EXT_vertex_input_dynamic_state
– GPL is ~20x slower

XDC 2022 Super. Good. Code.

● Vulkan is a great API to work with

...as long as the driver works as expected
● VKCTS only goes so far

– Leave Ricardo alone!
● GLCTS+piglit for extra coverage

XDC 2022 Super. Good. Code.

Vulkan: What Happens To Driver Bugs?
● Report issue
● ???
● Some drivers more responsive than others
● How can this be improved?

XDC 2022 Super. Good. Code.

Vulkan: What Happens To Slow Drivers?

● You thought I couldn’t plug it here
● https://github.com/zmike/vkoverhead/

XDC 2022 Super. Good. Code.

Vkoverhead: Enlarge Your Perf!
● Found slow VRAM read in Turnip push descriptors
● Found 50x performance loss in RADV sampled image

descriptors
● At least one major hardware manufacturer uses it internally
● Don’t wait!
● Try vkoverhead today!
● 300% perf gains or your money back!

XDC 2022 Super. Good. Code.

Zink: The Future
● TOO MANY PIPE CAPS!

– Seriously
– Do you know how many there are?
– Over 100
– Over 200
– Over 250

● What do they even do?

XDC 2022 Super. Good. Code.

Zink: Platform Testing
● Zink runs on lots of drivers
● How to effectively test on CI?

– Is it feasible having jobs for every driver?
● How about worthwhile?

– CTS, piglit, traces, ???

XDC 2022 Super. Good. Code.

Zink: Platform Distribution
● Zink runs on Windows

– Apparently
– It even performs better than native GL

● Supposedly
● Check reddit for details

● Mesa ships no “official” Windows release
– Should this change?

XDC 2022 Super. Good. Code.

Zink Needs Your Help
● I am only one person

– There are 24 hours in a day
● 6 hours sleep
● 3 hours gym (primary workout; legs/chest/shoulders)
● 8 hours work (email/cts results/bisecting/telecons)
● 3 hours gym (secondary workout; cardio/arms/core)
● 4 hours work (maybe actually write code/probably more cts runs)
● 1 hour meaningful contributions to community discussions

XDC 2022 Super. Good. Code.

Zink Needs Your Help
● Big ticket with starter tasks

– https://gitlab.freedesktop.org/mesa/mesa/-/issues/5377
● Also plenty of other work to do on specific

platforms
● Send memes too

– As long as they aren’t better than mine

XDC 2022 Super. Good. Code.

Zink: State Of Lavapipe
● All required features supported
● GL4.6 CTS passing with old version

– Still subgroup issues
● ES3.2 mostly passing

– Guardband clipping broken

XDC 2022 Super. Good. Code.

Zink: State Of ANV
● Most features supported

– Missing VK_EXT_vertex_input_dynamic_state
– extendedDynamicState2PatchControlPoints

● May add zink workaround for this?
– No precompile yet (soon?)
– Sparse binding support?

● GL4.6 CTS passing
● ES3.2 passing
● Variable perf 🤔

XDC 2022 Super. Good. Code.

Zink: State Of RADV
● All features supported

– Missing some sparse texture features
– No precompile yet (soon?)

● GL4.6 CTS passing
– Except one GTF test with uniform buffers

● Which will surely be fixed
– Right?

● It’s not like I’ve been pinging about it for a while or anything
● Or like there’s a ticket open

● ES3.2 has 2 remaining fails
– MR open to fix them

● ...since 2 months ago

● Perf is good.
– I mean really good

XDC 2022 Super. Good. Code.

Zink: State Of AMD(PRO)
● Missing (lots) of features

– Some dynamic state2 (but enabling it somehow breaks hundreds of tests?)
– VK_EXT_vertex_input_dynamic_state (No, GPL vertex input is NOT the same performance)
– No dynamic state3 support?
– GPL fast-linking could be faster 🤔

● GL4.6/ES3.2 CTS not passing
– O O F
– Tried shouting into the void

● Did not hear back
– Tried leaving a message

● Oddly difficult

● Perf is fine
– Better than native in some cases on Windows

● Supposedly?
● Check reddit for details

XDC 2022 Super. Good. Code.

Zink: State Of Turnip
● All features supported

– Precompile: S U P P O R T E D
– Sparse binding support?

● GL4.6/ES3.2 CTS nearly passing
– Failing fewer than 5 tests
– Great work since a couple months ago when it was in the hundreds

● Perf is pretty good
– Heroic work by anholt

XDC 2022 Super. Good. Code.

Zink: State Of NVIDIA
● All features supported

– Precompile: S U P P O R T E D
● GL4.6 CTS not passing

– Still failing a number of tests
● They have a spreadsheet of all the failures

– Surely they will be fixed?

● ES3.2 has lots of failures
– Haven’t reported yet
– Some failures also cause hangs

● Perf is good.
– Really good.
– Unless you hit one of the weird NVIDIA WSI bugs and your app won’t start (looking at you glretrace)

XDC 2022 Super. Good. Code.

Zink: State of NVK
● All features supported
● Passes GL4.6/ES3.2 CTS

– First try
● 5000% faster than nouveau
● 200% faster than NVIDIA proprietary in Tomb Raider
● 71% faster in DOOM2016
● Written in ASM
● First driver to use NIR 2.0
● jekstrand blocked me on IRC when I asked if he’d gotten any hangs yet

XDC 2022 Super. Good. Code.

Zink: State Of $DRIVER
● Your driver here in the next presentation!

– This could be you!
– Look at all this space!
– And I’m talking!

● But I could be talking about how great you are!
– Unless you’re not great

● In which case it’s great that you’re not here!
● But you should work on that!

● Find a hobby!
● Read a book!
● Hit the gym!
● Challenge yourself!

● So much presentation time and slide space to fill!

XDC 2022 Super. Good. Code.

Zink: Testimonials + Contact
● <mareko> zink+anything is always an interesting combination
● <anholt> well, perhaps zink exploding this nice shader out to being 64k instructions is

part of zink perf issues /o\
● <alyssa> zmike: sorry zink has to go
● <jekstrand> Zink is weird.
● <kusma> ??? :)
● <anholt> "Type mismatch for SPIR-V SSA value 369636 bytes into the SPIR-V binary"

what if I don't want to look 370kb into a spirv binary, huh? have you considered that
● <dj-death> is is possible to run zink without all the winsys integration?

● <karolherbst> the more I think about using vulkan the more I am convinced in using zink tbh
● <airlied> okay zink and virgl no longer xplode
● <ManMower> like a zink developer vs the unending deluge of CI
● <rg3igalia> but it's true that zink is a very nice use case and I'm glad we have it to dig up bugs

and flesh out some test concepts
● <jekstrand> Well, it's definitely a zink bug.
● <hakzsam> this is zink only, makes no sense
● <karolherbst> if a god exists, I am sure that one tries to convince me to just go straight with

zink, and I don't listen
● <ajax> how am i still hitting that stupid wait_for_event deadlock

● #zink on OFTC network
● https://gitlab.freedesktop.org/mesa/mesa
● https://www.supergoodcode.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

