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Zink: TL;DR
● Zink is a GL driver
● It does GLES too
● Also WGL
● It has feature support
● MesaMatrix is gray 

now?
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Zink: The Early Years
● Started in 2018 by Erik Faye-Lund

– Merged 31 August 2018
● GL 4.6: 15 February 2021
● ES 3.2: 31 August 2021

– Exactly 3 years for all versions
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Zink: The Early Years Visualized

Dave Airlie: Mesa Reviews/Acks per year
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Zink: The Early Years Visualized

Dave Airlie: Mesa Reviews/Acks per year
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Zink: What Took So Long?
● 3 whole years?!
● More like 4

– My b
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Zink: War Stories (Things I Hate)

● Provoking Vertex
– Needed Vulkan extension

● gl_PointSize
– No client API in Vulkan, no default
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Zink: More Things I Hate

● Transform Feedback
– Terrible

● Non-seamless Cubemaps
– Perfect shader emulation is very hard
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Zink: Something I Really Hate

● 64bit shader emulation64bit shader emulation
– ComplexComplex
– Tests take longer than full CI runsTests take longer than full CI runs
– Makes everything confusing and hard to understandMakes everything confusing and hard to understand
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Zink: More Things I Hate

● Pixel Buffer Operations
– PIPE_TEXTURE_TRANSFER_COMPUTE ?
– pbobench ?

● Alpha/Luminance/Intensity format emulation
– No Vulkan equivalents



XDC 2022 Super. Good. Code.

Zink: Even More Things I Hate

● Gallium i/o lowering
– Vulkan needs derefs, not dwords

● Internet Blog Posts About Vulkan Descriptors
– Stop writing them
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Zink: Still The Topic Of This Talk
● This was the introduction
● Prepare to get technical

– Seriously
● You’re now breathing manually

– So am I
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Zink: Can I Run My Whole System On It Yet?

No.
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Zink: WSI
● Kopper is great, but...
● It took 1.5 years to land

– The Mesa DRI frontend really is that opaque
– Also Vulkan WSI is still broken on X11
– Also still have issues

● Ancillary invalidation (Sorry, anholt!)
● Auto-loading (Sorry, MrCooper!)
● Random corner case explosions (Sorry, everyone else!)
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Zink: WSI Solutions
● Collapse DRI frontend

– Classic drivers are gone
– This is not maintainable

● More Kopper testing
– I can’t find all the bugs myself
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Gallium: Tiler Optimizations
● Need more info when starting renderpass

– Layout
– loadOp
– storeOp
– Resolve attachments?
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Gallium: Tilers Seeing The Future?
● Introduce threaded-context readahead?

– Called on pipe_context::set_framebuffer_state
– Uses driver-provided callbacks to parse command stream

● pipe_context::bind_fs_state
● pipe_context::bind_dsa_state
● pipe_context::blit
● ???
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Gallium: Resolve Attachments?
● Should scanout resolve attachments be 

provided in framebuffer state?
– https://gitlab.freedesktop.org/mesa/mesa/-/

merge_requests/18695



XDC 2022 Super. Good. Code.

Vulkan: Future Improvements For Tilers
● Working on something
● Not sure what it will end up being
● Hopefully solves these problems?

– Pros:
● Less CPU overhead from Gallium readahead
● Simpler code in Zink

– Cons:
● Will probably be a long time before this materializes
● More work for Ricardo
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Gallium: Slow Vertex State Changes
● pipe_context::set_vertex_buffers

– Has stride
● pipe_context::bind_vertex_elements_state

– Needs stride
● Overhead created in u_vbuf and Zink
● Hurt recent CPU benchmarks vs ANGLE

– Zink too heavy on CPU :(
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Gallium: Fast Vertex State Changes
● ???
● pipe_context::set_vertex_buffers_no_stride ?
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Zink: Benchmarking
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Zink: Benchmarking
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Zink: What’s Left?
● #1 priority: eliminate shader compile stutters:

– VK_KHR_dynamic_rendering
– VK_EXT_graphics_pipeline_library
– VK_EXT_non_seamless_cube_map
– VK_EXT_all_the_dynamic_states

                                 =
              P R E C O M P I L A T I O N
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Zink: No More Stuttering
...Sometimes

● Only with drivers also supporting:
– extendedDynamicState2PatchControlPoints
– graphicsPipelineLibraryFastLinking
– All the vertex attribute formats

● Also probably VK_EXT_vertex_input_dynamic_state
– GPL is ~20x slower
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● Vulkan is a great API to work with

...as long as the driver works as expected
● VKCTS only goes so far

– Leave Ricardo alone!
● GLCTS+piglit for extra coverage
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Vulkan: What Happens To Driver Bugs?
● Report issue
● ???
● Some drivers more responsive than others
● How can this be improved?
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Vulkan: What Happens To Slow Drivers?

● You thought I couldn’t plug it here
● https://github.com/zmike/vkoverhead/
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Vkoverhead: Enlarge Your Perf!
● Found slow VRAM read in Turnip push descriptors
● Found 50x performance loss in RADV sampled image 

descriptors
● At least one major hardware manufacturer uses it internally
● Don’t wait!
● Try vkoverhead today!
● 300% perf gains or your money back!
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Zink: The Future
● TOO MANY PIPE CAPS!

– Seriously
– Do you know how many there are?
– Over 100
– Over 200
– Over 250

● What do they even do?
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Zink: Platform Testing
● Zink runs on lots of drivers
● How to effectively test on CI?

– Is it feasible having jobs for every driver?
● How about worthwhile?

– CTS, piglit, traces, ???
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Zink: Platform Distribution
● Zink runs on Windows

– Apparently
– It even performs better than native GL

● Supposedly
● Check reddit for details

● Mesa ships no “official” Windows release
– Should this change?
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Zink Needs Your Help
● I am only one person

– There are 24 hours in a day
● 6 hours sleep
● 3 hours gym (primary workout; legs/chest/shoulders)
● 8 hours work (email/cts results/bisecting/telecons)
● 3 hours gym (secondary workout; cardio/arms/core)
● 4 hours work (maybe actually write code/probably more cts runs)
● 1 hour meaningful contributions to community discussions



XDC 2022 Super. Good. Code.

Zink Needs Your Help
● Big ticket with starter tasks

– https://gitlab.freedesktop.org/mesa/mesa/-/issues/5377
● Also plenty of other work to do on specific 

platforms
● Send memes too

– As long as they aren’t better than mine
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Zink: State Of Lavapipe
● All required features supported
● GL4.6 CTS passing with old version

– Still subgroup issues
● ES3.2 mostly passing

– Guardband clipping broken
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Zink: State Of ANV
● Most features supported

– Missing VK_EXT_vertex_input_dynamic_state
– extendedDynamicState2PatchControlPoints

● May add zink workaround for this?
– No precompile yet (soon?)
– Sparse binding support?

● GL4.6 CTS passing
● ES3.2 passing
● Variable perf 🤔
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Zink: State Of RADV
● All features supported

– Missing some sparse texture features
– No precompile yet (soon?)

● GL4.6 CTS passing
– Except one GTF test with uniform buffers

● Which will surely be fixed
– Right?

● It’s not like I’ve been pinging about it for a while or anything
● Or like there’s a ticket open

● ES3.2 has 2 remaining fails
– MR open to fix them

● ...since 2 months ago

● Perf is good.
– I mean really good
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Zink: State Of AMD(PRO)
● Missing (lots) of features

– Some dynamic state2 (but enabling it somehow breaks hundreds of tests?)
– VK_EXT_vertex_input_dynamic_state (No, GPL vertex input is NOT the same performance)
– No dynamic state3 support?
– GPL fast-linking could be faster 🤔

● GL4.6/ES3.2 CTS not passing
– O O F
– Tried shouting into the void

● Did not hear back
– Tried leaving a message

● Oddly difficult

● Perf is fine
– Better than native in some cases on Windows

● Supposedly?
● Check reddit for details
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Zink: State Of Turnip
● All features supported

– Precompile: S U P P O R T E D
– Sparse binding support?

● GL4.6/ES3.2 CTS nearly passing
– Failing fewer than 5 tests
– Great work since a couple months ago when it was in the hundreds

● Perf is pretty good
– Heroic work by anholt
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Zink: State Of NVIDIA
● All features supported

– Precompile: S U P P O R T E D
● GL4.6 CTS not passing

– Still failing a number of tests
● They have a spreadsheet of all the failures

– Surely they will be fixed?

● ES3.2 has lots of failures
– Haven’t reported yet
– Some failures also cause hangs

● Perf is good.
– Really good.
– Unless you hit one of the weird NVIDIA WSI bugs and your app won’t start (looking at you glretrace)
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Zink: State of NVK
● All features supported
● Passes GL4.6/ES3.2 CTS

– First try
● 5000% faster than nouveau
● 200% faster than NVIDIA proprietary in Tomb Raider
● 71% faster in DOOM2016
● Written in ASM
● First driver to use NIR 2.0
● jekstrand blocked me on IRC when I asked if he’d gotten any hangs yet
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Zink: State Of $DRIVER
● Your driver here in the next presentation!

– This could be you!
– Look at all this space!
– And I’m talking!

● But I could be talking about how great you are!
– Unless you’re not great

● In which case it’s great that you’re not here!
● But you should work on that!

● Find a hobby!
● Read a book!
● Hit the gym!
● Challenge yourself!

● So much presentation time and slide space to fill!
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Zink: Testimonials + Contact
● <mareko> zink+anything is always an interesting combination
● <anholt> well, perhaps zink exploding this nice shader out to being 64k instructions is 

part of zink perf issues /o\
● <alyssa> zmike: sorry zink has to go
● <jekstrand> Zink is weird.
● <kusma> ??? :)
● <anholt> "Type mismatch for SPIR-V SSA value 369636 bytes into the SPIR-V binary" 

what if I don't want to look 370kb into a spirv binary, huh?  have you considered that
● <dj-death> is is possible to run zink without all the winsys integration?

● <karolherbst> the more I think about using vulkan the more I am convinced in using zink tbh
● <airlied> okay zink and virgl no longer xplode
● <ManMower> like a zink developer vs the unending deluge of CI
● <rg3igalia> but it's true that zink is a very nice use case and I'm glad we have it to dig up bugs 

and flesh out some test concepts
● <jekstrand> Well, it's definitely a zink bug.
● <hakzsam> this is zink only, makes no sense
● <karolherbst> if a god exists, I am sure that one tries to convince me to just go straight with 

zink, and I don't listen
● <ajax> how am i still hitting that stupid wait_for_event deadlock

● #zink on OFTC network
● https://gitlab.freedesktop.org/mesa/mesa
● https://www.supergoodcode.com/
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