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There is a deep link between logic and programming, that connects the world of abstract
reasoning and computing in a fundamental and universal way, and that is the notion of propo-
sitions as types. The notion is that very fundamental logic such as propositional, predicate, and
second-order logic, as well as logic systems such as natural deduction and sequent calculus can
be expressed by types in a programming language (specifically the typed lambda calculus), and
programs in that language are then proofs of those propositions.

Here programming languages refer to a set of instructions to be carried out by a computer,
and types are a way of marking values in programming languages so that we can check whether
the value can be used in some way. For example, if we have a numerical value in a programming
language, we can mark it as such and then have the computer make sure that we don’t mix up
numbers and letters for example. Another example might be the way that physicists use different
units of measurements for different things. They then commonly use these units to guide their
calculations, and make sure that they end up with units that match the problem, such as getting
km
s for the speed of a car, and not elephants

km2 .

The notion of propositions as types in programming languages was discovered when a con-
nection between the rules for lambda calculus, a set of rules and notation to describe a kind
of very simple programming language, and the rules of natural deduction, a formal system for
proving propositions, was observed.

Lambda calculus was initially presented by Alonzo Church as a way to define notations for
logical formulas, like a macro language [1]. It is very compact, and contains only three constructs:

• Variables: Variables are a label represented by a letter (e.g. x), and used to denote some
value that is not yet defined (such as true or false). A variable is in itself a term in the
lambda calculus.

• Function abstraction: If t is a term and x is a variable, then the term (λx.t) is a function
abstraction.

• Function application: If t and s are lambda terms, then (t s) is a function application. An
example would be that if t is (λx. x x) and s is the variable y, then ((λx. x x)(y)) is the
application of t to s.
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Computation in the lambda calculus is then done by normalizing lambda terms as follows: If
t is a lambda term containing x and (λx.t) is a lambda abstraction, then ((λx.t)y) is normalized
to the term t′, where all instances of the variable x has been replaced by the variable y.

The simple lambda calculus is however inconsistent [1], and as such not a good way to describe
logical notations. This was however rectified by introducing types into the language, much as
Russell and Whitehead solved their paradox by introducing types. The resulting calculus was
then known as the typed lambda calculus.

The programming language we will talk about in this summary is the typed lambda calcu-
lus, since it is simple and easy to reason about, it forms the basis of all functional languages,
and it presents an intuitive connection between natural deduction, the sequent calculus and
programming.

Natural deduction is a formal logic framework to formally write down proofs based on strict
rules, so as to not allow any hand-waving in the proofs themselves where not explicitly stated. It
was developed by Gerhard Gentzen in 1935 [1], and he showed that there was a way to normalize
proofs in it so that they were not round-about, i.e. that the proofs themselves did not contain
anything not stated as preconditions for the proof. He had the insight that formal rules of logic
for proofs should come in pairs, one rule to introduce a new variable, and another to eliminate a
variable from the proof, i.e. one way to construct a value and another to use that value in some
way.

Other approaches to programming such as imperative programming that are based on the
computing ability of Turing machines [2] are also related to logic systems, like Turing machines are
related to dynamic logic [3]. These logic systems are defined after the invention and acceptance
of computers precisely to match these programming models, so the connection between intuitive
logic and these systems is less clear.

This notion is often referred to as the Curry-Howard correspondence, and was discovered
by Haskell Curry in 1934 [4] and refined by William Howard in 1969 [5]. The article we are
summarizing is itself a kind of summary of the topic and its history by Philip Wadler, and
describes the notion, its history, and inspirations in simple terms.

By viewing values in a program as axioms or already proven propositions, and functions
as instructions on how we can prove a new proposition given some previous proposition, the
connection is clear. We then say that the proposition has some type, and functions have a type
from some proposition to another. In a simple example we could have a function that says “if
your name is John, then Bob’s your uncle”, and we’re provided with a proof of the proposition
that your name is indeed John, then using the provided proof and the function, we can produce
a proof that Bob’s your uncle. Here the proposition has a type of “Your name is John”, and the
function has a type of “Your name is John” to “Bob’s your uncle”.

A more in-depth example would be that if we have a given function f of type A → B (we
denote this with f : A→ B), then given a value of type A, we can apply the function to the value
and get a value of type B. This is similar to natural deduction, where if we have an implication
(incidentally also written as A→ B in current standard notation) and a proposition of type A,
we can use the implication elimination rule and get a proof of B. This similarity inspired Howard
to make the following observations:

• Conjunction: A and B (written A ∧ B) in natural deduction corresponds to a Cartesian
product (an ordered pair) of type A×B. This follows from the observation that to prove
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(called introduction in natural deduction) A∧B, we must prove A, and we must prove B.
To construct a Cartesian product of type A×B, we must provide a value of type A and a
value of type B. If we have a value of type A×B, we can extract from it a value of A and
a value of B. Similarly for conjunction, if we have a proof of A ∧ B in natural deduction,
we can extract from it a proof of A and a proof of B.

• Disjunction: A or B (written A ∨ B) in natural deduction corresponds to a sum type,
i.e. a type with two alternatives. A sum type is a type denoted by A | B, and is a type
whose value is either of type A or of type B, with a mark to distinguish between them. To
introduce (prove) A ∨ B, we must provide a proof of either A or of type B, and indicate
which one it is that we proved. To construct a value of type A | B, we must provide a
value of either type A or B and denote which one of them it is. If we have a proof of a
disjunction, we can extract a proof of A or a proof of B by using the mark to distinguish
which one of them the proof is of. Similarly, to extract a value of type A or type B from
a provided value of type A |B, we can use the supplied mark to know which type of value
it is and extract the value of type A or type B accordingly.

• Implication: As mentioned before, the proposition that A implies B (written as A→ B) in
natural deduction corresponds to functions and function application. This follows from the
observation that to prove that A→ B in natural deduction, we must assume that we have
a proposition A, and prove that B follows from A. To create a function of type A → B,
we must provide a function that, given a value of type A produces a value of type B. As
previously described, function application corresponds to the application of implication in
natural deduction.

By using the notion of propositions as types to connect the worlds of logic and programming,
we can use programs to prove theorems that may otherwise have been intractable by hand, while
still being able to convince ourselves of the correctness of the proofs that the program provides.
The most famous example of this is perhaps the formal computer-generated proof of the four
color theorem in the Coq programming language [6], a language that uses propositions as types as
well as a rich type system to express those types as a base for creating programs that are verified,
and programs that represent proofs of mathematical theorems. The notion of propositions as
types is used to prove that four colors are sufficient to color any planar graph, without human
intervention (modulo the initial programming of course). The four color theorem is notorious
for being the first long outstanding theorem to be proven with the assistance of a computer [7],
but the initial proof was in a language which does not include this notion as a paradigm. This
left a lot of mathematician unsatisfied, since it only demonstrated the fact correct, but did not
provide any insight into the problem itself or the patterns at work. This cast doubt on the
correctness of the proof as well, since the program had to be verified by hand, with few built-in
logical guarantees to assist with the verification. When the notion of types as propositions was
later used to prove the theorem, it left little doubt of the proofs correctness. This was mainly
due to the strong formal foundations that the notion provided to the proof.

Other concrete uses of this notion include CompCert [8], an optimizing compiler for all of
the C programming language, a proof of correctness of the disjoint-set data structure [9], and a
proof of the Feit-Thompson theorem [10]. The increased use of proof assistants shows the power
of this notion in helping mathematicians go beyond what was previously possible with the help
of computers, but on solid foundations by using propositions as types.

The notion also makes other benefits from logic available in programming, since we can
use methods and principles from logic to assure us that programs that we write in languages
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that embed the notion are correct, since the compiler can check that the types are correct, which
ensures (and provides a proof of!) that no logical structure embedded at the type level is misused
in the program. This can give the programmer some peace of mind since a large source of errors
can be eliminated right from the beginning. This also benefits businesses, since by employing a
programming language embedding this notion, they can get some guarantees about the reliability
and correctness of the program that would otherwise have to be checked by hand (in an often
error prone way).

How well we can utilize this connection between propositions and types depends on how
expressive the type system in a given language is. This is analogous to how expressiveness affects
what we can propose, and thus what we can prove. There is also danger inherent in having
too much expressiveness, as Gödel [11] proved with his incompleteness theorems, that too much
expressiveness allows us to propose either unprovable or untrue propositions.

Some languages such as Coq and Agda [12] implement type systems where the type definition
can depend on a value, called dependent types [13]. In a fully dependent type system, there is no
distinction between terms and types, and as such most of what is possible to do in the language
itself is possible in the type system. As an example, this allows for there to be a type for each
of the natural numbers, allowing us to express lists of a given length or arrays of a given size in
the type system. That then allows us to prove that a function always returns a list of a given
length, and allows us to avoid out-of-bounds errors, since we know precisely the allowed indices
of the list.

In conclusion, the notion of propositions as types forms a deep connection between logic and
programming and is a point in favor of the view that concepts in mathematics and computer
science are discovered, not invented. The structure of certain programming languages (namely
functional programming languages) is closely related to the structure of logic, and it is hard
to conceive of logic having a fundamentally different structure than we have seen before. This
can inform our views of programming languages and suggests that functional languages may
be somehow more fundamental than others, and at the very least more universal than other
paradigms [1].
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