
CS221
Final project report

Matthias Pall Gissurarson
mpgis@stanford.edu

Vilhjalmur Vilhjalmsson
villi@stanford.edu

ABSTRACT
Working with data from the Magellan expedition, we built a
classifier to classify whether a patch of an image contained a
volcano or not. Using a machine learning pipeline comprised
of normalization, principal component analysis and a sup-
port vector machine with a radial basis function, we built a
classifier that achieved a high ROC AUC score, higher than
a baseline classifier provided with the data.

1. INTRODUCTION
The data we’re working with are images that come from

the radar on the Magellan expedition to Venus [2]. The
radar beam was projected from the satellite down onto the
surface, and the intensity of the back-scatter then recorded.
These images have then been pre-processed by JPL, using
computer vision techniques (“focus of attention”) to detect
possible areas that might contain volcanoes. Examples of
images from the data set can be found in figures 1, 2 and
3. These areas were then labeled by geology experts with
a label of 0 to 4, 0 indicating that there was not a volcano
in the picture, 1 being “definitely a volcano”, 2 “probably a
volcano”, 3 “possibly a volcano” and 4 “only a pit is visible”.
The data from the area is then aggregated, so that 4 pix-
els become one in the data set called “chips”. These chips
contain a list of 15x15 floating point numbers representing
matrices, each of which indicates an area. They come with
the aforementioned labels, and are split into different data
sets, and each data set into a test set and a training set. We
used only two of the available data sets, C1 and D4.

Description of the work is outlined in “Learning to Rec-
ognize Volcanoes on Venus (1998)” by M. C. Burl, L. Asker,
P. Smyth, U. Fayyad, P. Perona, L. Crumpler and J. Aubele
[1]. Burl et. Al’s paper also defined a classifier, which we
implement to compare ourselves against.

1.1 Justification
The goal of this project is to identify whether a piece of an

image contains a volcano or not. We have very few positive

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
(C) 2013.

samples, so judging models by misclassification error would
be useless, as getting a 3% error would be trivial by always
guessing “not volcano”. It is intended to ease researchers
job and spare them the pain of going through thousands of
images, and reduce the set down to a manageable size. We
thus want a high true positive rate, but a low false positive
rate, i.e. trying to get a good TPR/FPR ratio while still
finding a significant portion of the volcanoes. This can be
measured using area under the curve in a ROC plot.

The justification is that researchers do not have the time
to manually label and identify volcanoes by hand, and a
computer assisted method would really help them with their
research.

Figure 1: A picture from the data set with the label 0 (Not
a volcano)

2. HYPOTHESIS
Burl et. Al define a bayesian classifier in their report,

which is intended as a baseline for evaluating how well other
classifiers do on the data. Our hypothesis is that by using
features learned by clustering, we can do better than the

Figure 2: Labeled 1: (Definitely a volcano)

Figure 3: Labeled 2: (Probably a volcano)

Figure 4: Labeled 3: (Possibly a volcano)

Figure 5: Labeled 4: (Only a pit visible)

baseline classifier. As the best metric in our case is the area
under curve on a ROC plot, which gives an estimate on how
well a classifier is doing via the fpr and tpr classification
rates. The Bayesian baseline classifier has an AUC of 0.85,
and our hypothesis is that we can beat this.

3. PROBLEM MODEL

3.1 Selection
The features of each image that are possibly interesting

have been found by the “focus of attention” algorithm as
applied by JPL already. Thus, we decided to use the entire
matrix for each data point in each chip. Every piece might
contain the telltale signs of a volcano, or reveal that it is
actually just a canyon. We could possibly have dropped
all but the middle of the matrix, as the computer vision
algorithm centered on the feature it deemed volcano like,
but again, this might drop data that would imply a canyon.

3.2 Preprocessing
As the chips are from various sites on Venus, each taken at

a different time and angle, the intensity values did not mean
the same in all the pictures. It might be from ground that
has different texture, maybe taken during the different time
of day, or other confounding factors. Thus, we normalize
each matrix so that each of its values represents how many
σ’s the value was from the mean of the matrix.

3.3 Transformation
After the selection and pre-processing, we had matrices

that were 15x15 and normalized. This means that it had
225 features, one for each value of the matrix. Considering
how unbalanced the labels are and how few positive sam-
ples are in the data set we knew that this would be way to
many features to be able to meaningfully use for data min-
ing, so we used a feature reduction method called principal
component analysis, or PCA for short. What principal com-
ponents are is basically vectors that best represent the data
in a given number of features. These principle components
are found, and then each data point is transformed into the
lower dimensional space represented by the principal com-
ponents. Using this we could reduce our features from 225
to any number we want. With decision trees, a value of 5
worked very well, but using SVMs, values from 40-80 worked
much better.

3.4 Machine Learning

3.4.1 The baseline classifier
The first classifier we tried was a Bayesian classifier used in

the original testing of the data, in Burl et. Al’s paper, which
will be used as a baseline. The idea is to find the means
of the positive and negative classes and assume the class-
conditional densities are Gaussian. Then we can calculate
the probability of seeing a image given it is of a particular
label, p(ωi|yi), where ωi is an image and yi is its label. From
Bayes theorem we get

p(ωi|yi) =
p(yi|ωi)p(ωi)

p(y1|ω1)p(ω1) + p(y2|ω2)p(ω2)

where p(yi|ωi) = N(yi;µi,Σi) and can be calculated using
a probability density function. This approach worked rea-

sonably well and resulted in an AUC of 0.85, which will be
our baseline for measuring other classifiers.

3.4.2 Initial experimentation
We started out by implementing AdaBoost in python.

This AdaBoost used weighted random sampling with re-
placement to weigh the examples by the weights, so that
it did not need a classifier that takes in weights. We then
implemented K-Means clustering, to find centroids in the
data, which, when applied to images, resemble edges in the
images. We then extracted features for each data point by
calculating by how much the data point resembled these
edges. These features were then run through a linear gra-
dient descent classifier, which used a logit function as a hy-
pothesis function. This approach was very slow, and did not
yield good results at all. The slowness also hindered much
testing, as every run took a long time.

We decided that K-Means was not the way to go for fea-
ture reduction, and decided to use PCA, principal compo-
nent analysis, to determine features. Principle component
analysis aims to find vectors which best describe the data if
you take a linear combination of them.

We initially tried to use these as data in the classifier, but
the PCA and K-Means seemed to clash a lot, yielding poor
results. We then stopped using the K-Means, and it got a
little better, but not as good as we hoped.

3.4.3 AdaBoosted decision trees
We then tried using decision trees. These were also imple-

mented in python by us, but were perhaps very suboptimal
in their implementation, as they were slow an unpruned.
They used entropy as a measure of how good the split was.
It was with them that we realized that the classifier was
going to need a lot more examples of volcanoes so that it
could do its job, so instead of using just the initial ordering
of the data set, we transformed it such that all the volca-
noes that we were sure of were in the list, and then some
variable amount of non volcanic examples, as determined by
the ratio of volcanoes to non volcanoes.

It was at this stage that we had finally implemented plots,
and we could finally begin to classify the models based on
AUC. The first AdaBoosted model did not work very well,
yielding a AUC of 0.55. We decided that maybe it would be
better to have the ratio more precise, so instead of running
the whole data set through, we selected a random subset
with replacement for every run.

We then fiddled around with the parameters a lot, varying
the ratio of volcanoes to non volcanoes, and the amount of
features PCA reduced the set to. We found that a value of
5 PCA features were good, and that might be because of
luck in the AdaBoost random selection from the weighted
dictionary, but we got a plot that was pretty impressive for
only 5 features per data point, as can be seen from it’s ROC
curve in figure 9.

3.4.4 Other classifiers
After trying for a long time to find good values for the

AdaBoosted decision tree, we could never get it’s AUC to
go above 0.65. We then turned to other classifiers, to see
if we could beat the AdaBoosted trees. Without selecting
any special subset of the data in particular, we used each
classifier directly on the PCA transformed data, with various
settings. The results of these trials can be seen in 1.

We tried some classifiers from scikit learn, and we saw
that Gradient Boosting and Support Vector Machines did a
really good job, beating the classifier described in the paper.
By tuning the SVM, such as using a radial basis function
kernel (“rbf”) it had a AUC of 0.90.

We fiddled with other types of SVM and they did much
worse, thus resulting in using the SVM with the rbf kernel
as our final model.

As a late addition, we tried to send the normalized fea-
tures through an artificial neural network to learn features,
and then piping that to an svm for classification. It pre-
formed very poorly, essentially not doing anything. We also
tried to pipe those features to a logistic regression classifier,
and it did not do well either.

Figure 6: ROC plot from a SVM using a radial basis function
kernel, with 60 principal components

4. INTERPETATION/EVALUATION

Figure 7: ROC of the Gradient Boosting classifier

Figure 8: ROC of the Random forest classifier

Figure 9: ROC of the AdaBoosted Decision Tree classifier

Figure 10: ROC of the Burl et. Al’s classifier

Name of classifier Transformation Settings AUC
AdaBoosted Decision Tree PCA PC = 5, Hypotheses = 5, Volcanoes

to Non-volcanoes = 0.2
0.65

AdaBoosted Decision Tree PCA PC = 5, Hypotheses = 5, Volcanoes
to Non-volcanoes = 0.1

0.49

AdaBoosted Decision Tree PCA PC = 50, Hypotheses = 5, Volca-
noes to Non-volcanoes = 0.2

0.61

Gradient Boosted Decision Tree PCA PC = 40, Default settings 0.86
Support Vector Machine PCA PC = 5, Default settings, kernel =

“rbf” (“radial basis function”)
0.65

Support Vector Machine PCA PC = 40, Default settings, kernel =
“rbf” (“radial basis function”)

0.89

Support Vector Machine PCA PC = 60, Default settings, kernel =
“rbf” (“radial basis function”)

0.90

Support Vector Machine PCA PC = 80, Default settings, kernel =
“rbf” (“radial basis function”)

0.89

Support Vector Machine PCA PC = 60, Default settings, kernel =
“linear”

0.55

Support Vector Machine Artificial Neu-
ral Network

Default settings, kernel = “linear” 0.50

Support Vector Machine Artificial Neu-
ral Network

Default settings, kernel = “poly” 0.50

Support Vector Machine Artificial Neu-
ral Network

Default settings, kernel = “rbf” 0.50

Logistic Regression Artificial Neu-
ral Network

Default settings 0.50

Random Forest PCA PC = 40, Default scikit settings 0.71
Burl et. Al’s Simple classifier PCA PC = 40 0.84
Burl et. Al’s Simple classifier PCA PC = 5 0.74

Table 1: Area Under Curve for various classifiers and settings

The AUC value of the various models we tried can be seen
in 1. The ROC plot for the RBF SVM can be seen in figure
6, and the others can be seen in figures 7,8,9 and 10. These
values were found by running each model a few times, using
different splits of our data set. We evaluated the models
by taking the entire data set and randomly shuffling it, and
then split it into 5 parts. We then used 1 part as a test set,
and trained the model with the other 4 parts. We then did
this for all the parts and taking the average AUC score of
the results, thus preforming cross evaluation.

After much trial, we were very happy with how well the
support vector machine turned out. It seems that using the
“rbf” kernel is the trick, though we can’t really say that we
understand why it works so well, as we do not have enough
experience with kernels, and SVM are not very opaque when
using complicated kernels.

5. CONCLUSION
As we can see, support vector machines out preformed all

of the other models, and reaching an AUC of 0.90, which
most consider to be quite good. We beat the AUC of the
Bayesian classifier, showing that using an SVM out pre-
formed a Bayesian assumption. Our K means clustering
feature learning method did not work at all.

We though that artificial neural networks would be good
at this area, but it seems that the features are very confusing.
We had a look at some of the pictures ourselves, and could
often not deduce anything from them, leading us to think
that this is probably not a project suited for the kind of
image recognition artificial neural networks use.

Next steps might be to use even more advanced feature
selection techniques, and try to get even more examples clas-
sified by the experts to use for training. This could be an on-
line process, with a classifier that learns from each example
it presents to experts as a possible volcano, and dynamically
updates itself as it learns more. We could not test this, as
we have no access to experts, but it could improve classifiers
quite a lot.

6. REFERENCES
[1] Michael C. Burl, Lars Asker, Padhraic Smyth, Usama

Fayyad, Pietro Perona, Larry Crumpler, and Jayne
Aubele. Learning to recognize volcanoes on venus.
Machine Learning, 30(2-3):165–194, 1998.

[2] Michael C. Burl, Lars Asker, Padhraic Smyth, Usama
Fayyad, Pietro Perona, Larry Crumpler, and Jayne
Aubele. Volcanoes on venus - jartool experiments, 1999.
[Online; accessed 17-August-2013].

	Introduction
	Justification

	Hypothesis
	Problem model
	Selection
	Preprocessing
	Transformation
	Machine Learning
	The baseline classifier
	Initial experimentation
	AdaBoosted decision trees
	Other classifiers

	Interpetation/Evaluation
	Conclusion
	References

