login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001227 Number of odd divisors of n. 405
1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 4, 1, 2, 3, 2, 2, 4, 2, 2, 2, 3, 2, 4, 2, 2, 4, 2, 1, 4, 2, 4, 3, 2, 2, 4, 2, 2, 4, 2, 2, 6, 2, 2, 2, 3, 3, 4, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, 2, 6, 1, 4, 4, 2, 2, 4, 4, 2, 3, 2, 2, 6, 2, 4, 4, 2, 2, 5, 2, 2, 4, 4, 2, 4, 2, 2, 6, 4, 2, 4, 2, 4, 2, 2, 3, 6, 3, 2, 4, 2, 2, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Also (1) number of ways to write n as difference of two triangular numbers (A000217), see A136107; (2) number of ways to arrange n identical objects in a trapezoid. - Tom Verhoeff

Also number of partitions of n into consecutive positive integers including the trivial partition of length 1 (e.g., 9 = 2+3+4 or 4+5 or 9 so a(9)=3). (Useful for cribbage players.) See A069283. - Henry Bottomley, Apr 13 2000

This has been described as Sylvester's theorem, but to reduce ambiguity I suggest calling it Sylvester's enumeration. - Gus Wiseman, Oct 04 2022

a(n) is also the number of factors in the factorization of the Chebyshev polynomial of the first kind T_n(x). - Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 28 2003

Number of factors in the factorization of the polynomial x^n+1 over the integers. See also A000005. - T. D. Noe, Apr 16 2003

a(n) = 1 iff n is a power of 2 (see A000079). - Lekraj Beedassy, Apr 12 2005

Number of occurrences of n in A049777. - Philippe Deléham, Jun 19 2005

For n odd, n is prime iff the n-th term of the sequence is 2. - George J. Schaeffer (gschaeff(AT)andrew.cmu.edu), Sep 10 2005

Also number of partitions of n such that if k is the largest part, then each of the parts 1,2,...,k-1 occurs exactly once. Example: a(9)=3 because we have [3,3,2,1],[2,2,2,2,1] and [1,1,1,1,1,1,1,1,1]. - Emeric Deutsch, Mar 07 2006

Also the number of factors of the n-th Lucas polynomial. - T. D. Noe, Mar 09 2006

Lengths of rows of triangle A182469;

Denoted by Delta_0(n) in Glaisher 1907. - Michael Somos, May 17 2013

Also the number of partitions p of n into distinct parts such that max(p) - min(p) < length(p). - Clark Kimberling, Apr 18 2014

Row sums of triangle A247795. - Reinhard Zumkeller, Sep 28 2014

Row sums of triangle A237048. - Omar E. Pol, Oct 24 2014

A069288(n) <= a(n). - Reinhard Zumkeller, Apr 05 2015

A000203, A000593 and this sequence have the same parity: A053866. - Omar E. Pol, May 14 2016

a(n) is equal to the number of ways to write 2*n-1 as (4*x + 2)*y + 4*x + 1 where x and y are nonnegative integers. Also a(n) is equal to the number of distinct values of k such that k/(2*n-1) + k divides (k/(2*n-1))^(k/(2*n-1)) + k, (k/(2*n-1))^k + k/(2*n-1) and k^(k/(2*n-1)) + k/(2*n-1). - Juri-Stepan Gerasimov, May 23 2016, Jul 15 2016

Also the number of odd divisors of n*2^m for m >= 0. - Juri-Stepan Gerasimov, Jul 15 2016

a(n) is odd iff n is a square or twice a square. - Juri-Stepan Gerasimov, Jul 17 2016

a(n) is also the number of subparts in the symmetric representation of sigma(n). For more information see A279387 and A237593. - Omar E. Pol, Nov 05 2016

a(n) is also the number of partitions of n into an odd number of equal parts. - Omar E. Pol, May 14 2017 [This follows from the g.f. Sum_{k >= 1} x^k/(1-x^(2*k)). - N. J. A. Sloane, Dec 03 2020]

The smallest integer with exactly m odd divisors is A038547(m). - Bernard Schott, Nov 21 2021

REFERENCES

B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 487 Entry 47.

L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 306.

J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4).

Ronald. L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics, 2nd ed. (Addison-Wesley, 1994), see exercise 2.30 on p. 65.

P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 28.

LINKS

N. J. A. Sloane, Table of n, a(n) for n = 1..10000

K. S. Brown's Mathpages, Partitions into Consecutive Integers.

J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).

A. Heiligenbrunner, Sum of adjacent numbers (in German).

Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160, March 2016, Pages 60-75, function tau_o(n).

M. A. Nyblom, On the representation of the integers as a difference of nonconsecutive triangular numbers, Fibonacci Quarterly 39:3 (2001), pp. 256-263.

R. C. Read, Letter to N. J. A. Sloane, Oct. 29, 1976.

N. J. A. Sloane, Transforms.

T. Verhoeff, Rectangular and Trapezoidal Arrangements, J. Integer Sequences, Vol. 2 (1999), Article 99.1.6.

Eric Weisstein's World of Mathematics, Binomial Number and Odd Divisor Function.

Eric Weisstein's World of Mathematics, q-Polygamma Function.

Index entries for "core" sequences.

Index entries for sequences mentioned by Glaisher.

FORMULA

Dirichlet g.f.: zeta(s)^2*(1-1/2^s).

Comment from N. J. A. Sloane, Dec 02 2020 (Start):

By counting the odd divisors f n in different ways, we get three different ways of writing the ordinary generating function. It is:

A(x) = x + x^2 + 2*x^3 + x^4 + 2*x^5 + 2*x^6 + 2*x^7 + x^8 + 3*x^9 + 2*x^10 + ...

= Sum_{k >= 1} x^(2*k-1)/(1-x^(2*k-1))

= Sum_{k >= 1} x^k/(1-x^(2*k))

= Sum_{k >= 1} x^(k*(k+1)/2)/(1-x^k) [Ramanujan, 2nd notebook, p. 355.].

(This incorporates comments from Vladeta Jovovic, Oct 16 2002 and Michael Somos, Oct 30 2005.) (End)

G.f.: x/(1-x) + Sum_{n>=1} x^(3*n)/(1-x^(2*n)), also L(x)-L(x^2) where L(x) = Sum_{n>=1} x^n/(1-x^n). - Joerg Arndt, Nov 06 2010

a(n) = A000005(n)/(A007814(n)+1) = A000005(n)/A001511(n).

Multiplicative with a(p^e) = 1 if p = 2; e+1 if p > 2. - David W. Wilson, Aug 01 2001

a(n) = A000005(A000265(n)). - Lekraj Beedassy, Jan 07 2005

Moebius transform is period 2 sequence [1, 0, ...] = A000035, which means a(n) is the Dirichlet convolution of A000035 and A057427.

a(n) = A113414(2*n). - N. J. A. Sloane, Jan 24 2006 (corrected Nov 10 2007)

a(n) = A001826(n) + A001842(n). - Reinhard Zumkeller, Apr 18 2006

Sequence = M*V = A115369 * A000005, where M = an infinite lower triangular matrix and V = A000005, d(n); as a vector: [1, 2, 2, 3, 2, 4, ...]. - Gary W. Adamson, Apr 15 2007

Equals A051731 * [1,0,1,0,1,...]; where A051731 is the inverse Mobius transform. - Gary W. Adamson, Nov 06 2007

a(n) = A000005(n) - A183063(n).

a(n) = d(n) if n is odd, else d(n) - d(n/2), where d(n) is the number of divisors of n (A000005). (See the Weisstein page.) - Gary W. Adamson, Mar 15 2011

Dirichlet convolution of A000005 and A154955 (interpreted as a flat sequence). - R. J. Mathar, Jun 28 2011

a(A000079(n)) = 1; a(A057716(n)) > 1; a(A093641(n)) <= 2; a(A038550(n)) = 2; a(A105441(n)) > 2; a(A072502(n)) = 3. - Reinhard Zumkeller, May 01 2012

a(n) = 1 + A069283(n). - R. J. Mathar, Jun 18 2015

a(A002110(n)/2) = n, n >= 1. - Altug Alkan, Sep 29 2015

a(n*2^m) = a(n*2^i), a((2*j+1)^n) = n+1 for m >= 0, i >= 0 and j >= 0. a((2*x+1)^n) = a((2*y+1)^n) for positive x and y. - Juri-Stepan Gerasimov, Jul 17 2016

Conjectures: a(n) = A067742(n) + 2*A131576(n) = A082647(n) + A131576(n). - Omar E. Pol, Feb 15 2017

a(n) = A000005(2n) - A000005(n) = A099777(n)-A000005(n). - Danny Rorabaugh, Oct 03 2017

L.g.f.: -log(Product_{k>=1} (1 - x^(2*k-1))^(1/(2*k-1))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Jul 30 2018

G.f.: (psi_{q^2}(1/2) + log(1-q^2))/log(q), where psi_q(z) is the q-digamma function. - Michael Somos, Jun 01 2019

a(n) = A003056(n) - A238005(n). - Omar E. Pol, Sep 12 2021

Sum_{k=1..n} a(k) ~ n*log(n)/2 + (gamma + log(2)/2 - 1/2)*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 27 2022

EXAMPLE

G.f. = q + q^2 + 2*q^3 + q^4 + 2*q^5 + 2*q^6 + 2*q^7 + q^8 + 3*q^9 + 2*q^10 + ...

From Omar E. Pol, Nov 30 2020: (Start)

For n = 9 there are three odd divisors of 9; they are [1, 3, 9]. On the other hand there are three partitions of 9 into consecutive parts: they are [9], [5, 4] and [4, 3, 2], so a(9) = 3.

Illustration of initial terms:

Diagram

n a(n) _

1 1 _|1|

2 1 _|1 _|

3 2 _|1 |1|

4 1 _|1 _| |

5 2 _|1 |1 _|

6 2 _|1 _| |1|

7 2 _|1 |1 | |

8 1 _|1 _| _| |

9 3 _|1 |1 |1 _|

10 2 _|1 _| | |1|

11 2 _|1 |1 _| | |

12 2 |1 | |1 | |

...

a(n) is the number of horizontal line segments in the n-th level of the diagram. For more information see A286001. (End)

MAPLE

for n from 1 by 1 to 100 do s := 0: for d from 1 by 2 to n do if n mod d = 0 then s := s+1: fi: od: print(s); od:

A001227 := proc(n) local a, d;

a := 1 ;

for d in ifactors(n)[2] do

if op(1, d) > 2 then

a := a*(op(2, d)+1) ;

end if;

end do:

a ;

end proc: # R. J. Mathar, Jun 18 2015

MATHEMATICA

f[n_] := Block[{d = Divisors[n]}, Count[ OddQ[d], True]]; Table[ f[n], {n, 105}] (* Robert G. Wilson v, Aug 27 2004 *)

Table[Total[Mod[Divisors[n], 2]], {n, 105}] (* Zak Seidov, Apr 16 2010 *)

f[n_] := Block[{d = DivisorSigma[0, n]}, If[ OddQ@ n, d, d - DivisorSigma[0, n/2]]]; Array[f, 105] (* Robert G. Wilson v *)

a[ n_] := Sum[ Mod[ d, 2], { d, Divisors[ n]}]; (* Michael Somos, May 17 2013 *)

a[ n_] := DivisorSum[ n, Mod[ #, 2] &]; (* Michael Somos, May 17 2013 *)

Count[Divisors[#], _?OddQ]&/@Range[110] (* Harvey P. Dale, Feb 15 2015 *)

(* using a262045 from A262045 to compute a(n) = number of subparts in the symmetric representation of sigma(n) *)

(* cl = current level, cs = current subparts count *)

a001227[n_] := Module[{cs=0, cl=0, i, wL, k}, wL=a262045[n]; k=Length[wL]; For[i=1, i<=k, i++, If[wL[[i]]>cl, cs++; cl++]; If[wL[[i]]<cl, cl--]]; cs]

a001227[105] (* sequence data *) (* Hartmut F. W. Hoft, Dec 16 2016 *)

a[n_] := DivisorSigma[0, n / 2^IntegerExponent[n, 2]]; Array[a, 100] (* Amiram Eldar, Jun 12 2022 *)

PROG

(PARI) {a(n) = sumdiv(n, d, d%2)}; /* Michael Somos, Oct 06 2007 */

(PARI) {a(n) = direuler( p=2, n, 1 / (1 - X) / (1 - kronecker( 4, p) * X))[n]}; /* Michael Somos, Oct 06 2007 */

(PARI) a(n)=numdiv(n>>valuation(n, 2)) \\ Charles R Greathouse IV, Mar 16 2011

(PARI) a(n)=sum(k=1, round(solve(x=1, n, x*(x+1)/2-n)), (k^2-k+2*n)%(2*k)==0) \\ Charles R Greathouse IV, May 31 2013

(PARI) a(n)=sumdivmult(n, d, d%2) \\ Charles R Greathouse IV, Aug 29 2013

(Haskell)

a001227 = sum . a247795_row

-- Reinhard Zumkeller, Sep 28 2014, May 01 2012, Jul 25 2011

(Sage)

def A001227(n): return len([1 for d in divisors(n) if is_odd(d)])

[A001227(n) for n in (1..80)] # Peter Luschny, Feb 01 2012

(Magma) [NumberOfDivisors(n)/Valuation(2*n, 2): n in [1..100]]; // Vincenzo Librandi, Jun 02 2019

(Python3)

from functools import reduce

from operator import mul

from sympy import factorint

def A001227(n): return reduce(mul, (q+1 for p, q in factorint(n).items() if p > 2), 1) # Chai Wah Wu, Mar 08 2021

CROSSREFS

Cf. A000005, A000079, A000593, A010054 (char. func.), A038547, A050999, A051000, A051001, A051002, A051731, A054844, A069283, A069288, A109814, A115369, A118235, A118236, A125911, A136655, A183063, A183064, A237593, A247795, A272887, A273401, A279387, A286001.

Cf. A000203, A001620, A053866, A060831.

If this sequence counts gapless sets by sum (by Sylvester's enumeration), these sets are ranked by A073485 and A356956. See also A055932, A066311, A073491, A107428, A137921, A333217, A356224, A356841, A356845.

Sequence in context: A327657 A301957 A318874 * A060764 A105149 A355748

Adjacent sequences: A001224 A001225 A001226 * A001228 A001229 A001230

KEYWORD

nonn,easy,nice,mult,core,changed

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 18:40 EST 2022. Contains 358510 sequences. (Running on oeis4.)