I thought my previous post rather funny, and was surprised seeing it initially receive so few views. I thought the entertainment flopped, but fortunately I was wrong. I therefore feel it my duty before my readers to address the subject of the Landau & Lifschitz proof of the invariance of the interval.
You can find the summary of it in Wikipedia. Making their starting point the light-like interval always being equal to zero, Landau & Lifschitz seem to make a great fuss about it. The Wikipedia article even says: ‘This is the immediate mathematical consequence of the invariance of the speed of light.’ No, it is not.
I beg everyone’s pardon, but the light-like interval always being equal to zero is nothing else but the following statement: ‘The length of a ray of light will always be equal to the length of this ray of light’. Sounds like a cool story, bros and sis, but I cannot see what further inferences can be drawn from it. The ‘proof’ of this truism cannot fail under any circumstances whatever – whether you keep the speed of light invariant, or keep or change the metric of space or time or both – or make both metric and speed of light change – the light-like interval will remain equal to zero. I am okay with anyone wanting to prove it if they feel like it, but you cannot make it an ‘immediate mathematical consequence of the invariance of the speed of light’. Neither is it possible to make the constancy of the speed of light a consequence of the invariance of the light-like interval for the reason already mentioned: this is a truism. It does not prove anything, nor can it be a consequence of anything. When Landau & Lifschitz insist that this is a consequence of the constancy of the speed of light, that is either an error or a downright subterfuge, a means employed to create a spectre of logical connection between two unconnected notions, and charge this ghostly connection with pretended significance. And, since the following proof of invariance of an arbitrary interval hangs on the invariance of the light-like interval, we can altogether dismiss it: the necessity of introduction of such a measure as interval cannot be derived from the statement that a length of something will be equal to itself in whatever frame of reference it is measured.