Нравятся статьи? Поддержите проект на Patreon: подписка всего от $1/мес!

Спросите Итана: можно ли спасти нашу Галактику от «неминуемой» судьбы?


Галактики, в которых за миллиарды лет не появилось ни одной новой звезды, и в которых не осталось свободного газа, считаются “красными и мёртвыми”. При ближайшем рассмотрении галактика NGC 1277 (на фото выше) может оказаться первой подобной галактикой поблизости от нас. Наша Галактика тоже станет такой, звёзды в ней умрут, и будут выброшены гравитацией наружу, и в итоге наша Местная группа галактик перестанет существовать.

Мы появились во Вселенной в весьма выгодный момент. Появись мы на пару миллиардов лет раньше, и мы не смогли бы увидеть признаки существования тёмной материи, из-за чего не узнали бы судьбу Вселенной. Родись мы через несколько десятков миллиардов лет – всего через несколько промежутков времени, равных текущему возрасту Вселенной – наша Местная группа стала бы просто одной гигантской эллиптической галактикой, а других галактик на сотни миллиардов лет вокруг видно бы не было. Судя по всем наблюдениям, наша Вселенная угасает, и её ожидает “тепловая смерть“. Возможно, остановить этот процесс не удастся, но не могли бы мы как-нибудь, используя достаточно развитые технологии, отсрочить этот конец? Такой вопрос задаёт наш читатель:

Прочитав вашу статью о естественной кончине Вселенной, я задумался: не могла бы очень продвинутая цивилизация третьего типа сделать что-то, чтобы галактика или местная группа галактик “эффективно” и с пользой существовала дольше? Есть ли способы создать нечто вроде гигантского демона Максвелла, который бы управлял энтропией и контролировал энергетический бюджет галактики?

(далее…)

Спросите Итана: почему Вселенная плоская?


Двигаясь по прямой линии в гиперторовой модели Вселенной, вы вернётесь в исходную точку, даже если пространство-время не будет искривлённым. Также Вселенная может быть замкнутой, имея положительную кривизну – как гиперсфера.

Какой формы Вселенная? Если бы вы жили до XIX века, вам бы, наверное, не пришло в голову, что у Вселенной вообще может быть какая-то форма. Вы, как и все остальные, начали бы изучать геометрию с правил Евклида, для которого пространство было всего лишь трёхмерной решёткой. Затем вы применяли бы физические законы Ньютона, и предполагали, что взаимодействия двух любых объектов направлены вдоль одной прямой линии, их соединяющей. Но с тех пор мы очень многое поняли. Пространство не просто искривляется в присутствии материи и энергии – мы можем это наблюдать. И всё же, если речь заходит о Вселенной в целом, пространство ничем не отличается от идеально плоского. Почему? На эту тему задаёт вопрос и наш читатель:

Почему вселенная относительно плоская, а не имеет форму сферы? Разве вселенная не будет расширяться перпендикулярно к плоской поверхности?

Давайте начнём со старого определения пространства, которое большинство из нас и представляет: в виде некоей трёхмерной решётки.
(далее…)

Десятилетия поисков раскрыли подробности того, как ведёт себя антиматерия внутри протона

Двадцать лет назад физики занялись исследованием загадочной асимметрии внутренностей протона. И вот результаты их работы демонстрируют, как антиматерия помогает стабилизировать ядро каждого атома.


На первый взгляд протон состоит из трёх частиц, кварков. Но если присмотреться к нему поближе, можно обнаружить море частиц, возникающих и вновь исчезающих в небытие.

Нечасто можно встретить упоминание того, что протон, положительно заряженная частица, составляющая ядра атомов, частично состоит из антиматерии.

В школе мы узнаём, что протон – это клубок из трёх элементарных частиц, кварков. Его составляют два “верхних” кварка и один “нижний”, комбинация электрических зарядов которых (+2/3 и -1/3 соотв.) в сумме дают заряд протона в +1. Однако это упрощение, за которым скрывается гораздо более удивительная и ещё не до конца понятая история.

На самом же деле внутри протона вьётся постоянно изменяющееся количество кварков шести разновидностей, их двойников из антиматерии с противоположным зарядом (антикварков), и глюонов – частиц, связывающих их вместе, превращающихся в них и с лёгкостью множащихся. И каким-то образом этот мутный водоворот оказывается идеально стабильным и внешне простым – имитируя в некоторых аспектах простую тройку кварков. “Как это всё работает – это, честно говоря, больше похоже на чудо”, – сказал Дональд Гизаман, специалист по ядерной физике из Аргонской национальной лаборатории в Иллинойсе.
(далее…)

Как в одном атоме умещается вся физика


Большинство людей, представляя себе атом, рисуют в воображении небольшое ядро, состоящее из протонов и нейтронов, вокруг которого двигаются один или несколько электронов. Это представление основано на интерпретации квантовой механики, основанной на частицах. Но для описания атомов в стандартных условиях его недостаточно.

Если вы хотите раскрыть секреты Вселенной, вам только и нужно, что допрашивать её, пока она не выдаст ответы в такой форме, в какой вы сможете их понять. При взаимодействии двух квантов энергии – будь то частицы или античастицы, массивные они или безмассовые, фермионы или бозоны – его результат в принципе может рассказать вам о правилах и законах, которым подчиняется эта система. Если мы будем знать о всех возможных вариантах результатов любого взаимодействия, включая их относительные вероятности – только тогда мы сможем говорить о том, что понимаем, что происходит.

Удивительно, но всё, что мы знаем о Вселенной, можно так или иначе привязать к самой скромной из всех известных нам сущностей: к атому. Атом – это мельчайшая единица материи, всё ещё сохраняющая уникальные характеристики макроскопического мира, такие, как физические и химические свойства. И при этом это фундаментально квантовая сущность, со своими уровнями энергии, свойствами и законами сохранения. Более того, этот непримечательный атом связан со всеми четырьмя известными фундаментальными взаимодействиями. В единственном атоме на самом деле можно увидеть всю физику. И вот, что она может рассказать нам о Вселенной.
(далее…)

Возможно, без использования комплексных чисел нельзя описать реальность

Из нового мысленного эксперимента следует, что квантовая механика не работает без использования этих странных чисел, становящихся отрицательными при возведении в квадрат

Несколько десятилетий назад математиков неприятно поразило одно откровение: для вычисления свойств определённых кривых требовалось, казалось, невозможное – ввести числа, квадрат которых будет отрицательным.

Любое число с числовой прямой в квадрате будет положительным: 22 = 4, и (-2)2 = 4. Математики начали называть эти привычные числа “действительными” [по-английски их называют real, т.е. “реальными” / прим. пер.], а вроде бы невозможную породу чисел “мнимой”.

Мнимые числа, которые записывали при помощи i (где, к примеру, (2i)2 = -4), постепенно стали неотъемлемой частью абстрактного математического мира. Физикам же хватало и действительных чисел для описания реальности. Иногда т.н. “комплексные числа”, содержащие действительную и мнимую часть, типа 2 + 3i, ускоряли вычисления, но были, в общем-то, необязательными. Ещё ни один прибор не возвращал показаний, в которых содержалась бы мнимая единица.
(далее…)

Новый загадочный объект космоса может оказаться чёрной дырой нового семейства

Долгое время учёные не могли найти чёрные дыры небольшого размера – астрономы даже задумались о том, а существуют ли такие вообще. Но новая серия открытий, включая обнаружение чёрной дыры-“единорога”, дало надежду на решение этой давней загадки.

Почти десять лет назад Фериал Озель с коллегами заметили нечто странное. Хотя в нашей Галактике нашлось множество чёрных дыр различного размера, не было найдено ни одной, размер которой был бы меньше определённой величины. “Наблюдался дефицит чёрных дыр массой меньше пяти солнечных, – сказала она. – Это было очень важно со статистической точки зрения”.

С тех пор, как в Озель, астрофизик из Аризонского университета, опубликовала в 2010-м работу по этому вопросу, этот “разрыв масс” оставался необъяснимым. И даже после того, как детекторы гравитационных волн LIGO и Virgo начали находить десятки ранее скрытых чёрных дыр – не исключая и некоторые неожиданные варианты – разрыв масс никуда не делся.

В какой-то момент астрофизики начали задумываться: небольшие чёрные дыры просто трудно найти, или их вообще нет? “Важно подтвердить наблюдениями реальность этого разрыва, либо решить, что это – артефакт наблюдений”, – сказала Вики Калогера, астрофиизк из Северо-западного Университета, лидер команды LIGO.
(далее…)

Планет какого типа во Вселенной больше всего?


Как художник видит экзопланету Проксима b. Считается, что она недружелюбна для жизни из-за того, что не имеет атмосферы из-за свойств родительской звезды. Это, как говорят астрономы, “глазеющий” мир – одна сторона планеты постоянно смотрит на звезду, и жарится в её свете, а другая замерзает. Возможно, именно таких планет больше всего во Вселенной.

В астрономии есть один популярный миф о том, что Солнце – это типичная звезда. Если речь о том, что Солнце ничем особенным не выделяется – то да, так и есть. Оно состоит из тех же ингредиентов, что и остальные звёзды. Это 70% водорода, 28% гелия, 1-2% других элементов. Энергию оно получает из ядерного синтеза, происходящего в ядре. В каком-то смысле, это “типичная” звезда, входящая в подавляющее большинство из примерно 1024 звёзд, содержащихся в границах наблюдаемой Вселенной.

Однако на самом деле Солнце ярче и массивнее, а продолжительность его жизни короче, чем у 95% звёзд Вселенной. Если выбрать любую случайную звезду, то с вероятностью 80% это будет красный карлик – он будет меньше, холоднее, тусклее и меньше по массе, чем наше Солнце. Большинство звёзд не такие, как наше Солнце.

А что насчёт планет? Если брать в расчёт только те, что мы обнаружили на сегодняшний день – а это уже более 4000 – можно заключить, что чаще всего встречаются планеты чуть больше Земли. Однако это, скорее всего, не так. Если не быть осторожными, Вселенная с лёгкостью может нас обмануть – однако у нас есть достаточно информации, чтобы этого избежать. И вот откуда мы знаем о том, какого типа планет во Вселенной больше всего.
(далее…)

Почему маховики не прижились в автомобилях?

Идея родилась при подготовке к гонкам Формулы-1, однако с переменным успехом выступила лишь на гонке “24 часа Ле-Мана”.

В 2010 году во время 10-часовой гонки Petit Le Mans, проводящейся в городе Брэзелтон, шт. Джорджия, США, экспериментальный гоночный автомобиль компании Porsche 911 GT3 R Hybrid находился в первой 20-ке среди 45 автомобилей. В это время репортёры телевизионной сети Speed брали интервью у Марго Т. Оге, которая тогда была директором отдела транспорта и качества воздуха при агентстве по охране окружающей среды США.

Репортёры при каждой возможности обращали внимание зрителей на новый автомобиль Porsche. Гибридные автомобили для дорог общего пользования становились всё более привычными, и Оге постоянно подчёркивала “большую значимость” этого автомобиля, вкупе с энергетической независимостью и низкими углеродными выбросами. Именно таких целей и добивалось агентство.
(далее…)

Обнаружена планета-странник, несущаяся сквозь нашу галактику

Небольшую планету-странника – свободно путешествующий булыжник без звезды – можно было заметить только в течение тех 42 минут, пока она проходила перед одной из звёзд

Астрономы обнаружили планету-странника, лишённую своей звезды, и несущуюся сквозь нашу галактику. По подсчётам учёных её масса сравнима с массой Марса – и это самая маленькая из всех подобных планет, обнаруженных на сегодня. Наблюдать её можно было только косвенно – при помощи т.н. гравитационного микролинзирования, технологии, которую часто используют для поиска экзопланет.

Впервые о существовании планет без звёзд, свободно перемещающихся по галактике, сообщили по результатом польского оптического эксперимента по гравитационному линзированию (Optical Gravitational Lensing Experiment, OGLE) в 2011 году. Но недавно обнаруженная планета стала самой мелкой из найденных – измеримый сигнал, связанный с ней, продлился всего 42 минуты. Сообщение об открытии опубликовали в журнале Astrophysical Journal Letters.

“Это самое краткое микролинзирование из всех обнаруженных, и, следовательно, самая мелкая планета, найденная таким методом”, – сказал Пшемек Мруз, первый автор работы, постдок из Калифорнийского технологического института. “Это очень здорово, поскольку это ведь совсем небольшой камушек”.
(далее…)

Учёные планируют использовать линзы из тёмной материи для наблюдения за отдалёнными уголками Вселенной

Возможно, в галактических скоплениях существует гораздо больше линз из тёмной материи, искажающих и усиливающих свет расположенных за ними объектов, чем считалось ранее


Гравитационная линза

Одна из самых мучительных загадок науки – это тёмная материя, причудливая субстанция, отвечающая за 85% массы Вселенной. Тёмную материю сложно наблюдать, поскольку она не испускает свет, но это не значит, что она со светом вообще не взаимодействует.

Более того, гравитационные поля сгустков тёмной материи могут в изобилии обеспечить нам “эффективные линзы”, способные усиливать свет, идущий от отдалённых объектов – такой вывод сделан в исследовании, опубликованном в журнале Science в сентябре.

Эти линзы из тёмной материи, искажающие свет на манер космических кривых зеркал, могут помочь астрономам наблюдать удалённые объекты, расположенные, с нашей точки зрения, за этими линзами, и проверять фундаментальные теории, связанные со Вселенной.

Под руководством Массимо Менегетти, космолога из астрофизической и космологической обсерватории в Болонье, учёные решили оценить, сколько таких небольших линз из тёмной материи можно найти в галактических скоплениях – огромных структурах, которые могут состоять из тысяч гравитационно связанных между собой галактик.

“Изучать распределение материи в галактических скоплениях важно по многим причинам, – пояснил нам Менегетти. – Во-первых, мы можем проверить предсказания модели холодной тёмной материи. Это общепринятая модель тёмной материи, поскольку она очень точно воспроизводит несколько свойств Вселенной на крупных масштабах (гораздо больших, чем масштабы галактик и их скоплений)”.
(далее…)