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Abstract: Pisot sequences (sequences an with initial terms a0 = x, a1 = y, and defined for n > 1

by an = ⌊a2n−1/an−2 +
1
2⌋) often satisfy linear recurrences with constant coefficients that are valid

for all n ≥ 0, but there are also cautionary examples where there is a linear recurrence that is

valid for an initial range of values of n but fails to be satisfied beyond that point, providing further

illustrations of Richard Guy’s celebrated “Strong Law of Small Numbers”. In this paper we present

a decision algorithm, fully implemented in an accompanying Maple program (Pisot.txt), that

first searches for a putative linear recurrence and then decides whether or not it holds for all values

of n. We also explain why the failures happen (in some cases the ‘fake’ linear recurrence may be

valid for thousands of terms). We conclude by defining, and studying, higher-order analogs of Pisot

sequences, and point out that similar phenomena occur there, albeit far less frequently.

0. Maple Package and Sample Output

This article is accompanied by a Maple package, Pisot.txt, that is available, along with six input

and output files, from

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/pisot.html .

1. Preface

Richard Guy famously formulated the Strong Law of Small Numbers, and in two classic articles

[G1, G2] gave many examples of pairs of sequences that are equal for a certain number of initial

terms, but eventually differ. Before him, around 1820 Charles Babbage [Ba] had already discussed

numerous examples, and recalled how Fermat was misled by the numbers 22
n

+1, and Euler [E] was

almost led to believe that the central trinomial coefficients are the product of consecutive Fibonacci

numbers.

But in all these examples, the sequences only agree for a moderate number of terms. As shown by

David G. Cantor [C1, C2] and David Boyd [B1–B5] , the so-called Pisot sequences provide much

more dramatic examples of Richard Guy’s Strong Law of Small Numbers. Here we find pairs of

distinct sequences which agree for tens of thousands of terms. (Even more extreme examples arise

from game theory–see for example entry A078608 in [OEIS], where there are two sequences which

agree for all n from 1 to 777451915729367 but differ at 777451915729368.)

2. Pisot Sequences

We first recall the definition (cf. [Pi], [Ca], [B5]).

Definition: The Pisot sequence with index r, Er(x, y) (0 ≤ r ≤ 1), where 0 < x < y are integers,
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is defined by the following nonlinear recurrence:

a0 = x , a1 = y ,

and, for n > 1,

an :=

⌊
a2n−1

an−2
+ r

⌋
,

where, as usual, ⌊x ⌋ denotes the largest integer that is ≤ x.

The most important special cases are:

• r = 0, when E0(x, y) is abbreviated T (x, y) ,

• r = 1
2 , when E 1

2
(x, y) is written E(x, y) , and

• r = 1, when E1(x, y) is abbreviated S(x, y) .

In the present article we will not consider the limiting cases r = 0 or r = 1 (that is, T (x, y) and

S(x, y)), although analogous arguments, somewhat more subtle, can be applied to them also.

For many choices of initial conditions x, y, Pisot sequences do satisfy linear recurrences that hold

for all n (and in this article we present an algorithm–fully implemented in Maple–that rigorously

proves it if this is indeed the case), but there are also many examples where there exists a recurrence

that is valid for a long time, only to eventually break down.

For example, Max Alekseyev [Al] showed that E(5, 17) (sequence A010914) satisfies the linear

recurrence

an = 4an−1 − 2an−2 ,

for all n ≥ 2. On the other hand, David Boyd [B5] found that E(10, 219) (see sequence A007699)

satisfies the linear recurrence

an = 22an−1 − 3an−2 + 18an−3 − 11an−4 ,

for 4 ≤ n ≤ 1402, but that this breaks down at n = 1403.

Also, one of us (SBE) found (see the bottom of the output file

http://www.math.rutgers.edu/~zeilberg/tokhniot/oPisot2a.txt) that the Pisot sequence

E(30, 989) (A276396) satisfies the recurrence

an = 33an−1 − 2an−2 + 30an−3 − 11an−4 ,

for 4 ≤ n ≤ 15888, but that this breaks down at n = 15889.

The main tool for explaining why these Pisot sequences sometimes have such doppelgängers (se-

quences generated by linear recurrences which agree with them for many terms but eventually

differ) is the following result:
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Theorem (Flor [Fl], Boyd B5]) If Er(x, y) (0 ≤ r ≤ 1) satisfies a linear recurrence then the

defining polynomial M(t) of the linear recurrence is either (t− 1)2 or else has a single root r1 > 1

outside the unit circle with the remaining roots on or inside the unit circle, the roots on the unit

circle being simple roots.

As we will see from the analysis and examples below, if there is a second root r2 that is just outside

the unit circle, the doppelgänger defined by the recurrence can agree with the Pisot sequence for a

large number of terms.

How likely is it that a second root r2 exists outside the unit circle? If the coefficients of the quotient

M(t)/(t− r1) were random (which of course they are not), then studies of the locations of roots of

random polynomials suggest that the roots tend to be concentrated in a narrow annulus containing

the unit circle (see for example [IZ] and the earlier references cited there). If this were true here

then we should expect doppelgängers to be fairly common. Both Cantor [Ca] and Boyd [B1-B5]

have carried out systematic studies of various classes of Pisot sequences. It would be nice to have

more statistics about the minimal polynomials M(t) that arise.

3. How to Prove that a Proposed Linear Recurrence for a Pisot Sequence Holds for

All Values

For the sake of pedagogy, before discussing the general case, in this section we will study a specific

example.

The sequence E(4, 7), A010901, let’s call it {an}, starts with

4, 7, 12, 21, 37, 65, 114, 200, 351, 616, 1081, 1897, 3329, 5842, 10252, 17991, 31572, 55405, 97229, . . .

The OEIS entry formerly contained the conjecture that this satisfies the linear recurrence

an = 2an−1 − an−2 + an−3 ,

wth initial conditions

a0 = 4 , a1 = 7 , a2 = 12 ,

together with the remark that this is satisfied for n ≤ 50000. To prove that this holds for all n we

proceed as follows (the same method was used by Max Alekseyev [Al] to establish the recurrence

for E(5, 17) mentioned above). Recall that by the definition of Pisot sequences

an :=

⌊
a2n−1

an−2
+

1

2

⌋
.

Let’s define the sequence bn to be the (obviously unique) sequence satisfying the recurrence

bn = 2bn−1 − bn−2 + bn−3 ,

3



subject to the initial conditions

b0 = 4 , b1 = 7 , b2 = 12 .

We have to prove that an = bn for all n ≥ 0. Using the symmetry of the “=” relation, we will

prove the equivalent statement that bn = an. In other words we must show that

bn =

⌊
b2n−1

bn−2
+

1

2

⌋
.

But, recalling that N = ⌊x⌋ is just shorthand for

N ≤ x < N + 1 ,

our task is to prove that

bn ≤
b2n−1

bn−2
+

1

2
< bn + 1 ,

or equivalently,

−1

2
≤

b2n−1 − bnbn−2

bn−2
<

1

2
.

Define the sequence cn by

cn := b2n−1 − bnbn−2 .

From the linear recurrence defining bn, we know that bn is given explicitly by

bn = 3.902586801 · (1.754877667)n+(0.04870659984− 0.09364053397 i) (0.1225611669 + 0.7448617670 i)
n

+(0.04870659949 + 0.09364053445 i) (0.1225611669− 0.7448617670 i)
n

,

where we have used floating-point numbers for convenience. (To make this rigorous we could instead

use rational interval arithmetic. We emphasize that we do not need to solve the characteristic

polynomial of the recurrence exactly, although in this case of course we could, since it is a cubic

polynomial.)

It follows that the sequence cn is given by

cn = 0.02472469487 · (0.5698402912)n+(0.4876376523 + 1.233168614 i) (0.2150798545 + 1.307141279 i)
n

+(0.4876376524− 1.233168615 i) (0.2150798545− 1.307141279 i)
n

.

Hence, since the absolute value of the largest terms in cn, 0.2150798545±1.307141279 i, is 1.324717958,

we have

|cn| = O(1.324717958n) ,

and similarly

bn = Ω(1.754877667n) ,
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where the implied constants can be easily made explicit if desired. It follows that∣∣∣∣ cn
bn−2

∣∣∣∣ = O

((
1.324717958

1.754877667

)n)
= O((0.7548776664)n)

and now one can easily find an N0 such that | cn
bn−2

| < 1
2 for n ≥ N0, and the computer can check

that this is valid for the first N0 values. This completes the proof.

To get the Maple package to carry out this calculation, you would first load the package by typing

read ‘Pisot.txt‘; and then running the command

PtoRv(4, 7, 1/2, 12, 60, 50000); .

The arguments to PtoRv are the parameters x, y, r that define the Pisot sequence, then the

maximal order of a recurrence you wish to search for (here, 12), then the number of terms of the

Pisot sequence Er(x, y) you would like printed (here, 60), and finally the number of terms the

program should check before giving up (here, 50000). PtoRv is the verbose version; PtoR is more

succinct.

By using this program we were able to prove conjectured recurrences for 21 entries in the OEIS:

A010901, A010904, A010906–A010913, A010924, A020698, A020704, A020720, . . . .

4. The General Case

Suppose we have found a putative sequence {bn} that appears to agree with a Pisot sequence. Let

bn satisfy a linear recurrence equation of order k with constant coefficients, say

bn =
k∑

i=1

Aibn−i ,

for some integer coefficients A1, . . . , Ak and given values of b0, . . . , bk−1.

Let r1, . . . , rk be the k roots (for the sake of simplicity we assume that they are distinct) of the

characteristic polynomial

tk −
k∑

i=1

Ait
k−i = 0 ,

and let r1 be the largest root in absolute value, which we assume is real and positive. (This is

reasonable, given the theorem in Section 2.) Label the roots so that r1 > |r2| ≥ |r3| ≥ . . . ≥ |rk|.

It follows that bn satisfies a Binet-type formula

bn =

k∑
i=1

Cir
n
i ,

for some explicit constants, C1, . . . , Ck that can easily be found by linear algebra, in terms of the

initial values b0, . . . , bk−1. Hence

cn := b2n−1 − bnbn−2 =

(
k∑

i=1

Cir
n−1
i

)2

−

(
k∑

i=1

Cir
n
i

)(
k∑

i=1

Cir
n−2
i

)
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=
k∑

i=1

k∑
j=1

CiCj(r
n−1
i rn−1

j − rni r
n−2
j ) =

k∑
i=1

k∑
j=1

CiCjr
n−2
i rn−2

j (rirj − r2i )

=
∑

1≤i,j≤k
i=j

CiCjr
n−2
i rn−2

j (rirj − r2i ) +
∑

1≤i,j≤k
i ̸=j

CiCjr
n−2
i rn−2

j (rirj − r2i )

= 0 +
∑

1≤i<j≤k

CiCjr
n−2
i rn−2

j (2rirj − r2i − r2j )

= −
∑

1≤i<j≤k

CiCjr
n−2
i rn−2

j (ri − rj)
2 .

Hence |cn| = O((r1|r2|)n). We also have that bn = Ω(rn1 ). If |r2| < 1, then cn
bn−2

goes to zero

exponentially fast, and to check that

bn ≤
b2n−1

bn−2
+ r < bn + 1 ,

once again we need to find an N0 such that for n ≥ N0

−r ≤ cn
bn−2

< 1− r ,

and check it for the finitely many cases n < N0.

5. Why does E(30,989)’s Doppelgänger Hold for so Many Terms?

We have already mentioned that the Pisot sequence E(30, 989) satisfies the recurrence

an = 33an−1 − 2an−2 + 30an−3 − 11an−4 ,

for 4 ≤ n ≤ 15888 but fails for n = 15889.

If we apply the above analysis to this recurrence, then we find that r2 is just outside the unit circle:

|r2| = 1.00003759711047, and so bn = an as long as

0.2751394860 · (1.00003759711047)n <
1

2
.

Taking logarithms

(0.00003759629325) · n < 0.5973299074 ,

this is true for n ≤ 15888 but fails beyond that point.

6. Infinite Families

There are many infinite families of Pisot sequences that do satisfy linear recurrences. Already in

1938 Pisot [Pi] showed that if x = 2 or x = 3 then E(x, y) satisfies a linear recurrence of low order,
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and determined the coefficients. A very large number of other families with x in the range 4 to 20

can be viewed here:

http://www.math.rutgers.edu/~zeilberg/tokhniot/oPisot5.txt .

For the record here are the first few examples with x = 4, 5, 6. We denote the unique solution of

the linear recurrence (of order m)

an =

m∑
i=1

Aian−i , a0 = d1, . . . , am−1 = dm ,

by the pair of lists

[[d1, . . . , dm] , [A1, . . . , Am]] .

For k ≥ 1 (and sometimes, if it makes sense, for k = 0), we have:

E (4, 16 k + 1) = [[4, 16 k + 1], [4 k, k]] ,

E (4, 16 k + 2) = [[4, 16 k + 2, 64 k2 + 16 k + 1], [1 + 4 k,−2 k,−k]] ,

E (4, 16 k + 5) = [[4, 16 k + 5], [2 + 4 k,−1− 3 k]] ,

E (4, 16 k + 7) = [[4, 16 k + 7, 64 k2 + 56 k + 12], [2 + 4 k,−1− k, 1 + 2 k]] ,

E (4, 16 k + 9) = [[4, 16 k + 9, 64 k2 + 72 k + 20], [2 + 4 k, k, 1 + 2 k]] ,

E (4, 16 k + 10) = [[4, 16 k + 10, 64 k2 + 80 k + 25], [3 + 4 k,−2− 2 k, 2 + 3 k]] ,

E (4, 16 k + 11) = [[4, 16 k + 11], [2 + 4 k, 2 + 3 k]] ,

E (4, 16 k + 14) = [[4, 16 k + 14, 64 k2 + 112 k + 49], [4 + 4 k,−2− 2 k, 1 + k]] ,

E (4, 16 k + 15) = [[4, 16 k + 15], [4 + 4 k,−1− k]] ,

. . . . . . . . .

E (5, 25 k + 1) = [[5, 25 k + 1], [5 k, k]] ,

E (5, 25 k + 2) = [[5, 25 k + 2, 125 k2 + 20 k + 1], [5 k, 2 k, k]] ,

E (5, 25 k + 3) = [[5, 25 k + 3, 125 k2 + 30 k + 2, 625 k3 + 225 k2 + 29 k + 1], [5 k, 3 k, 2 k, k]] .

. . . . . . . . .

E (6, 36 k + 1) = [[6, 36 k + 1], [6 k, k]] ,

E (6, 36 k + 2) = [[6, 36 k + 2, 216 k2 + 24 k + 1], [6 k, 2 k, k]] ,

E (6, 36 k + 3) = [[6, 36 k+3, 216 k2+36 k+2, 1296 k3+324 k2+33 k+1], [1+6 k,−3 k,−k,−k]] .

. . . . . . . . .

7



Note that Pisot [P1], Cantor [C2], Boyd [B5] already observed that the Pisot sequences Er(x, y)

tend to form families whose properties depend on the value of y mod x2, That is, the sequences

Er(x, kx
2 + j), k = 0, 1, 2, . . . all tend to satisfy similar linear recurrences, or appear not to satisfy

such a recurrence. The above examples are consistent with this observation.

It is likely that some of our results for x = 4 and 5 were already known to Galyean [Ga], but we

have not been able to get access to his dissertation.

It is also possible to find doubly-infinite (i.e. two-parameter) families, but we stop here.

7. Higher-Order Generalizations

A crucial property of Pisot sequences is that anan+2 − a2n+1 is small compared to an. Since

anan+2 − a2n+1 = det

(
an an+1

an+1 an+2

)
,

it is natural to generalize the definition, and to consider sequences for which, for some s > 1, the

Hankel determinant

∆s := det


an . . . an+s

an+1 . . . an+s+1

. . . . . . . . .

. . .

. . . . . . . . .
an+s . . . an+2s


is small.

Note that for any sequence that satisfies a linear recurrence with constant coefficients of order s,

the above determinant is identically zero.

Let us define Fs and Gs by writing

∆s = an+2sFs(a1, . . . , an+2s−1)−Gs(a1, . . . , an+2s−1) .

Then we define an order-s Pisot sequence, Er(a0, . . . , a2s−1) with parameter r (0 ≤ r ≤ 1) by the

rules that for 0 ≤ n ≤ 2s− 1 the value is an, and for n ≥ 0 we have

an+2s =

⌊
Gs(a1, . . . , an+2s−1)

Fs(a1, . . . , an+2s−1)
+ r

⌋
.

A calculation analogous to that in Section 4 shows that a necessary condition for a linear recurrence

with constant coefficients to be an order-s generalized Pisot sequence is that the (s+ 1)-st largest

absolute value of the roots is less then 1. (Presumably there is also an analog of the theorem in

Section 2 which applies here.) See the output file

http://www.math.rutgers.edu/ zeilberg/tokhniot/oPisot4.txt ,

8



for numerous examples.
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