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Abstract—We present a novel technique for encoding and with the property that it is impossible to dissect one into a
decoding constant weight binary codes that uses a geometricfinite number of pieces that can be rearranged to give the
interpretation of the codebook. Our technique is based on giper je. that the two tetrahedra are not equidecomposable.

embedding the codebook in a Euclidean space of dimension equal . .
to the weight of the code. The encoder and decoder mappings areThe problem was immediately solved by Dehn [7]. In 1965,

then interpreted as a bijection between a certain hyper-rectangle after 20 years of effort, Sydler [23] completed Dehn’s work.
and a polytope in this Euclidean space. An inductive dissection The Dehn-Sydler theorem states that a necessary and sufficient

algorithm is developed for constructing such a bijection. We prove condition for two polyhedra to be equidecomposable is that
that the algorithm is correct and then analyze its complexity. they have the same volume and the same Dehn invariant. This

Zzetﬁg rg?;iﬁlt?/egg&egisignottEZrW:Ig:rtitﬁ%t:. efrﬁgeéggtrgggéh?sn invariant is a certain function of the edge-lengths and dihedral

advantageous when the weight is smaller than the square root angles of the polyhedron. An analogous theorem holds in
of the block length. four dimensions (Jessen [11]), but in higher dimensions it is

Index Terms— Constant weight codes, encoding algorithms, known only that equality of the Dehn invariants is a necessary
dissections, polyhedral dissections, bijections, mappings, Dehn¢qngition. In two dimensions any two polygons of equal area
invariant. . . .

are equidecomposable, a result due to Bolyai and Gerwein (see

Boltianskii [1]). Among other books dealing with the classical
dissection problem in two and three dimensions we mention
in particular Frederickson [8], Lindgren [13] and Sah [19].

We consider the problem of encoding and decoding binaryThe remainder of the paper is organized as follows. We
codes of constant Hamming weight and block lengthn.  provide background and review relevant previous work in Sec-
Such codes are useful in a variety of applications: a fejn |1. Section 11l describes our geometric approach and gives
examples are fault-tolerant circuit design and computing [13Jpme low-dimensional examples. Encoding and decoding al-
pattern generation for circuit testing [24], identification codyorithms are then given in Section IV, and the correctness of

ing [26] and optical overlay networks [25]. the algorithms is established. Section V summarizes the paper.
The problem of interest is that of designing the encoder and

decoder, i.e., the problem of mapping all binary (information) I
vectors of a given length onto a subset of lengtlvectors i _ _
of constant Hamming weight in a one-to-one manner. In Let us denote the Hamming weight of a lengttbinary
this work, we propose a novel geometric method in whichFquences := (31752;~~~.»3n) by w(s) == [{s; : s; = 1}],
information and code vectors are represented by vectous inWhere| - | is the cardinality of a set. _ _
dimensional Euclidean space, covering polytopes for the twoPefinition 1: An (n,w) constant weight binary codeé is
sets are identified, and a one-to-one mapping is establishecfp§et of length: sequences such that any sequeseeC has
dissecting the covering polytopes in a specific manner. THi§ightw(s) = w.

approach results in an invertible integer-to-integer mapping,!f € is an(n,w) constant weight code, then its rafe:=
thereby ensuring unique decodability. The proposed algoritHry™) 1082 [C| < R(n,w) := (1/n)log, (;,). For fixed 3 and
has a natural recursive structure, and an inductive proof#s= 3n], we have

I. INTRODUCTION

. BACKGROUND AND PREVIOUS METHODS

given for unique decodability. The issue of efficient encoding R:= lim R(n,w) = h(B) 1)
and decoding is also addressed. We show that the proposed n—o0 ’ ’

algorithm has complexity)(w?), wherew is the weight of where 1(3) = —flog,(3) — (1 — 8)logy(1 — f) is the
the codeword, independent of the codeword length. entropy function. Thusk is maximized when3 = 1/2, i.e.,

Dissections are of considerable interest in geometry, partlye asymptotic rate is highest when the code is balanced.
as a source of puzzles, but more importantly because they arghe (asymptotic) efficiency of a code relative to an infinite-

intrinsic to the notion of volume. Of the3 problems posed by |ength code with the same weight to length ratign, given by
David Hilbert at the International Congress of Mathematicians.— R/R, can be written ag = 1,7 wheren, := R/R(n, w)

in 1900, the third problem dealt with dissections. Hilbert askethd 7 := R(n,w)/R. The first term,n;, is the efficiency of

for a proof that there are two tetrahedra of the same volurgeparticular code relative to the best possible code with the
Chao Tian is with EPFL Lausanne. Vinay A. Vaishampayan and N. J Eame Iength E.md Welght; the SeC(.)nd tefpnis the.ef_flqlency
Sloane are with AT&T Shannon Labbratory, F.Iorham Park, NJ. This. werf the best finite-length code relative to the best infinite-length

was done while Chao Tian was visiting AT&T Shannon Laboratory. code.



run into problems with very long registers, but elegant finite-
length implementations are known and are widely used (Wit-
ten, Neal and Cleary [28]). For constant weight codes, the
idea is to reverse the roles of encoder and decoder, i.e., to
use an arithmetic decoder as an encoder and an arithmetic
encoder as a constant weight decoder (Ramabadran [16]).
Ramabadran gives an efficient algorithm based on an adaptive
probability model, in the sense that the probability that the
incoming bit is al depends on the number afs that have
0ss 1 already occurred. This approach successfully overcomes the
finite-register-length constraints associated with computing the
binomial coefficients and the resulting efficiency is often very
200 1000 1200 high, in many cases the loss of information being at most one
bit. The encoding complexity of the methoddXn).

Knuth’'s complementation method [12] relies on the key
observation that if the bits of a lengthbinary sequence are
complemented sequentially, starting from the beginning, there

I I
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Fig. 1. Efficiencyn as a function of block length whefi = 1/2

From Stirling’s formula we have must be a point at which the weight is equal|to/2]. Given
1 9 1 the transformed sequence, it is possible to recover the original
Tl ogy(2mnS(1 — B)) (2) sequence by specifying how many bits were complemented
2nh(f3) (or the weight of the original sequence). This information is

A plot of 77 as a function ofn is given in Fig. 1 for3 = 1/2. provided by a (relatively short) constant weight check string,
The slow convergence visible here is the reason one needsl the resulting code consists of the transformed sequence
codes with large block lengths. followed by the constant weight check bits. In a series of
Comprehensive tables and construction techniques for papers, Bose and colleagues extended Knuth’'s method in
nary constant weight codes can be found in [2] and th@rious ways, and determined the limits of this approach
references therein. However, the problem of finding efficie(gee [29] and references therein). The method is simple and
encoding and decoding algorithms has received consideraéfficient, and even though the overall complexity(én), for
less attention. We briefly discuss two previous methods that= 100 we found it to be eight times as fast as the method
are relevant to our work. The first, a general purpose technidogsed on arithmetic codes. However, the method only works
based on the idea of lexicographic ordering and enumeratifmm balanced codes, which restricts its applicability.
of codewords in a codebook (Schalkwijk [20], Cover [3]) is an The two techniques that we have described above both have
example of ranking/unranking algorithms that are well studiembmplexity that depends on the lengilof the codewords. In
in the combinatorial literature (Nijenhuis and Wilf [14]).contrast, the complexity of our algorithm depends only on
We refer to this as thenumerativeapproach. The secondthe weightw, which makes it more suitable for codes with
(Knuth [12]) is a special-purpose, highly efficient techniqueelatively low weight.
that works for balanced codes, i.e., when= |(n/2)|, and As a final piece of background information, we define what
is referred to as theomplementatiormethod. we mean by a dissection. We assume the reader is familiar with
The enumerative approach orders the codewords lexidhe terminology of polytopes (see for example Coxeter [5],
graphically (with respect to the partial order defineddby 1), Grinbaum [9], Ziegler [30]). Two polytope® and @ in
as in a dictionary. The encoder computes the codeword fraR¥ are said to becongruentif ¢Q can be obtained fronP
its dictionary index, and the decoder computes the dictiondoy a translation, a rotation and possibly a reflection in a
index from the codeword. The method is effective becaubgperplane. Two polytope® and @ in R¥ are said to be
there is a simple formula involving binomial coefficientequidecomposabiéthey can be decomposed into finite sets of
for computing the lexicographic index of a codeword. ThpolytopesPy,..., P, andQq,...,Q; , respectively, for some
resulting code is fully efficient in the sense that = 1. positive integert, such thatP; and @); are congruent for all
However, this method requires the computation of the exact 1,...,t (see Frederickson [8]). That iF is the disjoint
values of binomial coefficient@), and requires registers ofunion of the polytopes’;, and similarly for@. If this is the
lengthO(n), which limits its usefulness. case then we say thd@ can bedissectedo give @ (and that
An alternative is to use arithmetic coding (Rissanen ar@ can be dissected to give).
Langdon [18], Rissanen [17]; see also Cover and Thomas [4Note that we allow reflections in the dissection: there are
§13.3]). Arithmetic coding is an efficient variable length sourcat least four reasons for doing so. (i) It makes no difference
coding technique for finite alphabet sources. Given a sourtethe existenceof the dissection, since if two polytopes are
alphabet and a simple probability model for sequenges equidecomposable using reflections they are also equidecom-
let p(x) and F(x) denote the probability distribution andposable without using reflections. This is a classical theorem
cumulative distribution function, respectively. An arithmetién two and three dimensions [8, Chap. 20] and the proof is
encoder represents by a number in the intervalF(x) — easily generalized to higher dimensions. (ii) When studying
p(x), F(x)]. The implementation of such a coder can alscongruences, it is simpler not to have to worry about whether



the determinant of the orthogonal matrix has determinant 24 %A

or —1. (iii) Allowing reflections often reduces the number of
pieces. (iv) Since our dissections are mostly in dimensiors
greater than three, the question of “physical realizability” is 2
usually irrelevant. Note also that we do not require thatihe
can be obtained fron® by a succession of cuts along infinite
hyperplanes. All we require is thdt be a disjoint union of

the P;.
One final technical point: when defining dissections using 1 % A
coordinates, as in Egns. (3), (4) below, we use a mixture of B,

< and< signs in order to have unambiguously defined maps.
This is essential for our application. On the other hand, fg. 2. Two ways to dissect rectangl, to give triangleT:. Piece 1 may
means that the “pieces” in the dissection may be missihg rotated about center into its new position, or reflected in main diagonal
certain boundaries. It should therefore be understood thaf'if! fransiated downwards.
we were focusing on the dissections themselves, we would
replace each piece by its topological closure. algorithms are obtained by tracking how the poigtaind y’

For further information about dissections see the books, e during the dissection.

mentioned in Section . 1 1

The volume ofB,, is1x § x # x---x L = L This is also
the volume ofT’,, as the following argument shows. Classify

I1l. THE GEOMETRIC INTERPRETATION the pointsz = (1, ...,2,) in the unit cubel0, 1]* into w!

In this section, we first consider the problem of encodini@gions according to their order when sorted; the regions are
and decoding a binary constant weight code of weight 2 congruent, so all have volumig'w!, and the region where the
and arbitrary lengthn, i.e., where there are only two bitsz; are in nondecreasing orderT3,.
set to 1 in any codeword. Our approach is based on the We now return to the case = 2. There are many ways
fact that vectors of weight two can be represented as poit@sdissect the rectangl®, into the right triangleZ;. We
in two-dimensional Euclidean space, and can be scaled, vl consider two such dissections, both two-piece dissections
normalized, to lie in a right triangle. This approach is thehased on Fig. 2.
extended, first to weighty = 3, and then to arbitrary weights  In the first dissection, the triangular piece marked 1 in Fig. 2
w is rotated clockwise about the center of the square until it

-For any weightw and block lengthn, let C,, denote the reaches the position shown on the right in Fig. 2. In the second
set of all weightw vectors, with|C,,| = (). Our codebook dissection, the piece marked 1 is first reflected in the main

C will be a subset ofC,,, and will be equal toC,, for a diagonal of the square and then translated downwards until
fully efficient code, i.e., when); = 1. We will represent a it reaches the position shown on the right in Fig. 2. In both

codeword by thew-tuple v’ := (v},%5,...,4,), 1 <y, < dissections the piece marked 2 is fixed.
yh < ... < yl, < n, wherey] is the position of theith The two dissections can be specified in terms of coordi-
1 in the codeword, counting from the left. If we normalizenate$ as follows. For the first dissection, we set
MO .
these |nd|ce§yi by dividing them byn, the codebookC (2, 2h) = (1, 22) if 2, < 2o
becomes a discrete subset of the polyt@pe the convex hull 7N 1 _ : 3)
i w—19 w—2 1 ; ; (z1,25) = (1 =21, 1 —@2) if 21 >
of the points0™¥, 0% ~+1,0%~=11,...,01*¥~* 1¥. Ty is a right
triangle, T is a right tetrahedron and in general we will caland for the second, we set
T,, aunit orthgschenfe . (@), ) = (1, 2) if 21 < 24
The set of inputs to the encoder will be denoted By;: PN o 1y (4)
. . (xlva) T (1/2 2,21 2) if 1 > T2
we assume that this consistswftuplesy := (y1,v2, .- -, Yw)

which range over a-dimensional hyper-rectangle or “brick”. The first dissection involves only a rotation, but seems
After normalization by dividing they; by n, we may assume harder to generalize to higher dimensions. The second one
that the input vector is a point in the hyper-rectangle or “bricks the one we will generalize; it uses a reflection, but as
mentioned at the end of Section Il, this is permitted by the
By :=1[0,1) x [1=1/2,1) x ... x [1 = 1/w,1). definition of a dissection.
We will use = := (z1,22,...,24) = y/n € B, and We next iIIustratg how these dissectipns can be ponverted
&' = (z),2),...,2.) = y'/n € T, to denote the normal- into encodln_g algorithms for constant WEIgh'F (weighbinary
ized versions of the input vector and codeword, respectivefPdeS: Again there may be several solutions, and the best
defined byz; := y;/n anda’ == y!/n fori=1,...,w. algonthm may depend on gnthmenc propertlesm(such as
The basic idea underlying our approach is to find a didS Parity). We work now with the unnormalized séts and
section of B, that givesT,. The encoding and decodingC2- [N €ach case the output is a weighbinary vector with
1’s in positionsy; andyj.

1An orthoschemés aw-dimensional simplex having an edge path consist-
ing of w totally orthogonal vectors (Coxeter [5]). Inumit orthoschem¢hese 2For our use of a mixture ok and < signs, see the remark at the end of
edges all have length. Section II.



A. First Dissection, Algorithm 1 7

1) The input is an information vectdy;, y2) € Ro with

1<y <n-1land[n/2]+1<y; <n. 5 @

2) If y1 < yo, We sety] = y1, y5 = yo, Otherwise we set
yp=n—y andy; =n—yz + L. -

For n even, this algorithm generates all possibler — 1)/2

codewords. For odd it generates onlgn —1)? /2 codewords, Fig. 3. Transformation from tetrahedron to rectangular prism.

leading to a slight inefficiency, and the following algorithm is
to be preferred.

B. First Dissection, Algorithm 2

1) The input is an information vectdy,,y2) € Ro with
1<y <n, [(n+1)/2]+1 <y <n.
2) If y1 < y2, We sety; = y1, y5 = y2, Otherwise we set
Yi=n—yi+1,yp=n—ys+2.
Forn odd, this algorithm generates alin —1)/2 codewords,
but for n even it generates only(n — 1)/2 codewords, again
leading to a slight inefficiency.

C. Second Dissection

1) The Input Is an information Veth'yl’yQ) € Ro with Fig. 4. Four-piece dissection of tetrahedron to triangular prism. Pieces 2 and
1<y <n-1land[n/2]+1<y <n. 3 are reflected.
2) If y1 < y2, We sety; = y1, y5 = y2, Otherwise we set
yi=vy2—[n/2], yo =31 — [n/2] + 1. . _ . o
Forn even, this algorithm generates alln— 1) /2 codewords, With the tetrahedron and prism superimposed in Fig. 4, appears
but for » odd it generates onlgn —1)2/2 codewords, leading t0 P& new.
to a slight inefficiency. There is a similar algorithm, not given There is a well-known dissection of the same pair of
here, which is better when is odd. polyhedra that was first published by Hill in 1896 [10]. This
Note that only one test is required in any of the encodir@jS0 uses four pieces, and is discussed in several references:
algorithms. The mappings are invertible, with obvious decog&e Boltianskii [1, p. 99], Cromwell [6, p. 47], Frederickson [8,

ing algorithms corresponding to the inverse mappings ffgm Fig. 20.4], Sydler [22], Wells [27, p. 251]. However, Hill's
to Ro dissection seems harder to generalize to higher dimensions.

We now extend this method to weight = 3. Fortu- Hill's dissection does have the advantage over ours that it can
nately, the Dehn invariants for both the bridk; and our be accomplished purely by translations and rotations, whereas
unit orthoschemd’, which is the tetrahedrérwith vertices N our dissection two of the pieces (pieces labeled 2 and 3 in
(0,0,0), (0,0,1),(0,1,1) and(1,1,1), are zero (since in both Fig. 4) are also reflected. However, as mentioned at the end of
cases all dihedral angles are rational multiplesthfand so Section I, this is permitted by the definition of a dissection,
by the Dehn-Sydler theorem the polyhedBy and T; are and is not a drawback for our applicatichApart from this,
equidecomposable. As already mentioned in Section |, tAE' dls_sectlon is simpler than Hill's, in the sense that his
Dehn-Sydler theorem applies only in three dimensions. Bissection requires a cut along a skew plang< =3 = 1/3),
it will follow from the algorithm given in the next section thatwhereas all our cuts are parallel to coordinate axes.

B,, andT,, are equidecomposable in all dimensions. To obtain the four pieces shown in Fig. 4, we first make two

We will continue to describe the encoding step (the mdpPrizontal cuts along the planeg = 3 andxs = 3, dividing
from B,, to T,,) first. We will give an inductive dissection the tetrahedron into three slices. We then cut the middle slice
(see Fig. 3), transforming3; to T3 in two steps, effectively iNto two by a vertical cut along the plane = 3.
reducing the dimension by one at each step. In the first stepThere appears to be a tradition in geometry books that
the brick B; is dissected into a triangular prism (the produdliscuss dissections of not giving coordinates for the pieces.
of a right triangle,T%, and an interval), and in the second step0 an engineer this seems unsatisfactory, and so in Table |
this triangular prism is dissected into the tetrahedfgnNote We list the vertices of the four pieces in our dissection. Piece
that the first step has essentially been solved by the dissectlohas four vertices, while the other three pieces each have
given in Eqn. (4). six vertices. (In the Hill dissection the numbers of vertices of

For the second step we use a four-piece dissection of € four pieces are, 5, 6 and 6 respectively.) Given these
triangular prism to the tetrahedrdf. This dissection, shown coordinates, it is not difficult to verify that the four pieces can

3To solve Hilbert's third problem, Dehn showed that this tetrahedron is not*This dissection would also work if piece 2 was merely translated and
equidecomposable with a regular tetrahedron of the same volume. rotated, not reflected, but the reflection is required by our general algorithm.



be reassembled to form the triangular prism, as indicatedand x5 fall in this interval, given that(zy, z2,x3) is in the
Fig. 4. As already remarked, pieces 2 and 3 are also reflectddngular prism. There are three possibilities for whefdies
(or “turned over” in a fourth dimension). The correctness of relation to0 < z; < x5 < 1, and we further divide the case
the dissection also follows from the alternative description af; < z3 < x5 into two subcases depending on whether>

this dissection given below. % orx < % These are the four cases shown in Fig. 5, and
correspond one-to-one with the four dissection pieces in Fig. 4.
Piece| Coordinates Fig. 5 shows how the triples, z2, x3 (reindexed according
1 | [o0,0,0],[0,0,1/3],[0,1/3,1/3],[1/3,1/3,1/3]. to their relative positions) are mapped to the tripig¢sz?, z5.
2 | [0,0,1/3],[0,1/3,1/3],[1/3,1/3,1/3], The last column of Fig. 5 shows the ranges of #en the
[0,0,2/3],[0,1/3,2/3],[1/3,1/3,2/3]. four cases; the fact that these ranges are disjoint guarantees
3 |1[0,1/3,1/3],[1/3,1/3,1/3],[0,1/3,2/3], that the mapping fromey, xo, x5 to x},xh, x4 is invertible.
[0,2/3,2/3],[2/3,2/3,2/3],[1/3,1/3,2/3]. The ranges of the, will be discussed in more detail in the
4 110,0,2/3],[0,2/3,2/3],12/3,2/3,2/3], following section after the general algorithms are presented.
[0,0,1],10,1,1], [1,1,1]. This operation can now be described without explicitly

mentioning the underlying dissection. Each interval of length
1/w, together with the giverx; values within it, is treated

as a single complete unit. In the “cut and paste” operations,
these units are rearranged and relabeled in such a way that the
operation is invertible.

TABLE |
COORDINATES OF VERTICES OF PIECES IN DISSECTION OF TETRAHEDRON
SHOWN IN FIG. 4.

The dissection shown in Fig. 4 can be described alge-
braically as follows. We describe it in the more logical IV. ALGORITHMS AND PROOF OFCORRECTNESS
direction, going from the triangular prism to the tetrahedron | the previous section we provided an encoding and de-
since this is what we will generalize to higher dimensiorw&,dmg algorithm for weightsy = 2 andw = 3, based on our
in the next section. The input is a vectQr,, z2, z3) With  geometric interpretation af, andCs as points inR™. In this
0 <a <ap <1, 3§ <ay <1 the output is a vector section, the algorithm is generalized to larger values of the
(21,25, 3) with 0 < 27 < a5 < 2§ < 1, given by \ejghtw. We start with the geometry, and give a dissection
(z1, 25, 73) = of the “brick” B,, into the orthoschem&,,. We work with
the normalized coordinates = y;/n (for a point in B,,) and

if < o .
(xl,xgl, 3) 1 o “131 S %2 <3 z, = y//n (for a point inT,), wherel < i < w. Later in
(x1— 35,23 — 3,22 —3) if g <o <3< ) this section, we discuss the modifications needed to take into
(3 — 2,00 — 2,01 +3) ifa1 < <az<w account the fact that thg/ must be integers.
(563—%7561—§7$2—§) if 23 <ap < a9

_ _ A. An Inductive Decomposition of the Orthoscheme
The four cases in Eqn. (5), after being tra.nsfor'me(.j, Corre'Restating the problem, we wish to find a bijectiél be-
spond to the pieces labeled 4, 3, 2, 1 respectively in Fig. 4. cen the sets3,, andT,,. The inductive approach developed
see from Eqn. (5) that in the second and third cases the ling v v

¢ f tion has determinantl. indicating that th " & w=3 (where thew = 2 case was a subproblem) will be
ranstormation has determinastl, indicating that these two generalized. Of course the bijectidry betweenB; and T}
pieces must be reflected.

Si it is hard to visualize di " in di . tis trivial. We assume that a bijectiafi, _; is known between
ince it is hard to visualize dissections in dimensions grea r_1 and T, . and show how to construct a bijectidn,

than three, we give a schematic representation of the ab%ve%weenB and T
dissection that avoids drawing polyhedra. Fig. 5 shows a , - Iastwstep inuéhe induction uses a mpfrom the prism
representation of the transformation from the triangular pris&q

i . . w_1 X [1—2L 1) to Ty, (f2 is the map described in Eqn. (4)
to the tetrahedroff, equivalent to that given in Eqn. (5). The_ “ "~ w : :
steps shown in Fig. 5 may be referred to as “cut and pa:sar’]d fs s described in Eqn. (5)). The mappirig, from B,,

- . . % T, is then given recursively by, : (x e, T
operations, because, as Fig. 5 shows, the vector in the trian, *, , 9 y O < (@22, )
?gl,xQ,...,zw), where

gular prism is literally cut up into pieces which are rearrange

and relabeled. Note that, to complete the transformation, W&z}, x}, ... . 2!) := fu(Fu_1(21,22, ..., Tw_1),Tw) . (6)
precede this operation by the dissection given in Eqn. (4),
finally establishing the bijection betweds and 7. orw =1we set

We now describe the mapping shown in Fig. 5 in more Fyi=fi:By — T, (x1) = (27) = (21).

detail. The triangular prism is represented by the set of

partially ordered triplegz, 22, z3) with 0 < 23 < a5 < 1 By iterating Eqn. (6), we see thd, is obtained by succes-

and% < z3 < 1, and we wish to transform this into thesively applying the mapgi, f2,. .., fuw-

tetrahedron consisting of the poirits, , 24, %) with 0 < 2} < The following algorithm defineg,, for w > 2. We begin

xh <azh <1 with an algebraic definition of the mapping and its inverse,
We divide the intervall0,1) into w = 3 equal segments and then discuss it further in the following section. The input

of length1/w = 1/3, and consider where the poinis,z, to the mappingf, is a vectorz := (z1,xa,...,Zy), With



. X
if X <X <X IS R S N S 2y <1
L | | I ) Ve 1 )
it x>z X.lA.Z/X/?I/ R
i <
|f X1<X3—X2 1| X; | /l//XS/XZ | OSX']_,XI2<%
if <3 x‘% | ilSXla<g
3 1 2 3 3 3
Xa X, X
| | = 1
If X <x <X x‘xx/‘// Osx'l,x'z,x‘3<§
| 1 2 X3 | |

Fig. 5. Cut-and-paste description of the inverse transformation from triangular prism to tetrahedron.
(21,29, ...,Zy-1) € Ty—1 andx,, € [1—1/w,1); the output in either case, lety := jy + mo.
is a vectorx’ := (z},2h,...,2,) € Ty. 3) Setxy equal to:
Forward mappingf,, (w > 2): Thwgy — 228 fork=1,....jo
1) Let T+ e fork=jo+1,... 00— 1 @®
x4 W= for k=g, ..., w—1
io = min{i € {1,...,w} | xy < a;}. fc j0+_1|_ wjo—ig for k —
Tio—jo w =w
2) Let Note that the transformations in Eqn. (7) and Egn. (8) are
jo = min{i € {l,... 0} |w—io+i—1<wz}—1. formal inverses of each other, and that these transformations

are volume-preserving. The underlying linear transformations

3) Setz), equal to:

Tpij, — LHOZl for k=1,...,ip — jo — 1
xw_m fork:io_jo

w i .
1 . _ WwwTjo—%
‘Ek+]0_1 w

0—Jo
Th—wtjo T~

fork:i()*jo‘i’l,...,w*jg
fork=w—jo+1,...,w

are orthogonal transformations with determinatit or —1.
Before proceeding further, let us verify that in the case-
3, the mappingf,, = f5 agrees with that given in Eqgn. (5).
o If 1 <o < a3, thenig = 3, jo = 0 and the map is the
identity, as mentioned above.
o If 21 < z3 < x5 there are two subcases:

Eqn. (7) identifies the “cut and paste” operations required to
obtain z, for different ranges of the variable. If the initial o If 21 < 1 thenip =2, jo = 1.
index in one of the four cases in Egn. (7) is smaller than the f 2a < 21 < 2. thenia — 1. i — 0
final index, that case is to be skipped. A case is also skippe 3= 1= %3, HIEW0 = & Jo =5 ,
if the subscript for anz; is not in the range, ..., w. Note The transformations in Eqn. (7) now exactly match those in
in Step 1 thatip = w if ., is the largest of ther;’s. This EAN- ()-
implies thatj, = 0, and then Step 3 is the identity map.

The inverse mappind~,, from T;, to B,, has a similar g |nterpretations and Explanations
recursive definition. Thevth step in the induction is the map

o If % <z theni0:2, 7o = 0.

9w : Ty — Tw—1 x [L — £, 1) defined below. Fow = 1 we

set
Gi:=g1:T1 — By, (2]) — (z1) = (7).

The mapG,, is obtained by successively applying the mapstep, we begin with a list ab—1 numbergz;, z2, . .

Gwr Gw—15-++1 g1+
Inverse mappingy,, (w > 2):
1) Let
mo = max{i€{l,...,w}|i—1<wz}}.
2) If my = w, let jp := 0, otherwise let

Jo = w—max{i € {mo+1,...,w} | wz; <mp};

In Fig. 6, we give a graphical interpretation of the algorithm,
which can be regarded as a generalization of the “cut and
paste” description given above. This figure shows the trans-
formation defined by thesth stepf,, in the algorithm. At this
. 7xw—1)
in increasing order, and a further numhey which may be
anywhere in the intervdll — 1/w, 1). This list of w numbers
is plotted in the plane as the set af points (i, wz;) for
1 = 1,2,...,w (indicated by the solid black circles in Fig.
6). In the first step in the forward algorithm, the augmented
list (x1,22,...,2,) is sorted into increasing order. In the
sorted listx,, now occupies positioky, so the poin{w, wa,,)
moves to the left, to the new positidiy, wzx,, ), and the points
(i, wx;) for i =ip + 1,...,w — 1 move to the right. This is
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Fig. 6. A graphical illustration of the forward and inverse mapping.

indicated by the arrows in the figure. The new positions oéader can check that this process is exactly equivalent to the
these points are marked by hollow circles. algebraic description of,, given above.

The point(ig, wz,,) now lies between the grid points,, w) . IO re.?;\éegg)nﬁggé (é’ dvxgeefcljrgrtwgestierml?se trheii\'/s2||uetrzﬁ (i)n:;ex
and (ip,w — 1) (it may coincide with the latter point), since’? /0 p . MGR IS Precisely :
2w > 1— 1. We draw the liney = z +w — ip — 1 (shown as of the largestwz; that lies on or above the ling=x — 1 in

w = w ' € liney = 0 . thc? new coordinate system. Note that the position of this line
the dashed-and-dotted line in Fig. 6). This has unit slope and; ) ;o , .
passes through the point&, w — 1) and (0, w —io — 1). The > independent ofp andjo and (zy, 23, .-, &,,). This works
algorithm then computeg, + 1 to be the smallest indexfor because the pointgzy, ..., wa, in the original coordinate
which z; is on or above this line. Oncg and j, have been system, before the origin is shifted, are moved rightbynits

’ ) 0 nd upwards by units, so points below the dashed-and-dotted

deFermlned, the fprward m?‘pp'”g p_roceeds as_follows. T |ﬁe remain below the line. Furthermore, observe that in the
points (i, wz;) fori = 1,..., jo are shifted to the right of the

. : ,
figure and are moved upwards by the amogiat— jo) /w, new coordinate system the number of poifiswz;) below

their new positions being indicated by crosses in the figurt(ra1e liney = my is equal tow — jo. Thus the correct, and

Finally, the origin is moved to the grid poitifo, w — o + jo) 7o values may be recovered, and the inverse mapping can be
and the points are reindexed. Thg := iy — jo points which successfully _performed. )

originally had indicesj, + 1, ..., i, become pointd,...,my The foIIovymg remarks record two properties of the algo-
after reindexing. In the new coordinates, the final positiodghm that will be used later.

of the points lie inside the square regifnw) x [1,w). The Remark 1:Step 2 of the forward algorithm implies that



), < w=lotio=l andg; ., > L=t |t follows that there which is 1,2,4,7,11,... for w = 1,2,3,4,5,.... This is a

is no: in the rangel < ¢ < w for which well-known sequence, entry A124 in [21], which by coinci-
dence also arises in a different dissection problem: it is the
maximal number of pieces into which a circular disk can be
cut with w — 1 straight cuts. For example, with three cuts, a
pizza can be cut into a maximum of seven pieces, and this is
also the number of pieces in the dissection definedf by

w—19+jo—1 <x‘<w—i0-‘r]‘0
w - w '

Remark 2:The forward algorithm produces a vectaf
whose components satisfy

ng’lg...gxgo_joS...Sx;_j0<u7 9)
w E. The Algorithms for Positive Integers
i — Jo / / / To apply the above algorithm to the problem of encodin
w = Twmjort S Tujora S0 Sy <1 (10) and depcp(JZIing constant g3/veight codes,pwe must work Wit%
and positive integers rather than real numbers, which entails a
L k-1 . certain loss in rate, although the algorithms remain largely
o < —— forw—jot+l<k<uw. (11)  unchanged. LeN := {1,2,3,...}, and letn andw be given

Eqns. (9) and (10) follow from the minimizations in Steps Yt 2w < n. In a manner analogous to the real-valued case,
and 2 of the forward algorithm, respectively. The right-han e find a bijection between a finite hyper-rectangle or brick
’ B C N¥ and a subset of the finite orthoscherfig C

side of Egn. (11) expresses the fact, already mentioned, :1[3% here BY is th ¢ N
the first j points remain below the dotted-and-dashed lin€_- where B,, is the set of vectorsyi, vz, ..., yu) €
after they are shifted. satisfying
) n— (w—1) )
—(w—i)— | ———|+1<y; <n—(w—1),
C. Proof of Correctness n—(w=i-| i J+lsyisn—(w=i)
We now give the formal proof that the algorithm is correcfor i = 1,2,...,w, and T is the set of vectors
This is simply a matter of collecting together facts that wéyi,yo, ..., v.) € N* satisfying

have already observed.
Theorem1: For anyw > 1, the forward mappingf,, is

a one-to-one mapping frorf, 1 x [1 — ;1) to T, with Note that usuallyBY| < |T%|, which entails a loss in rate.

1<y <y < <y <n.

inversegs,. The forward mappingf,, is now replaced by the magy),
Proof: First, it follows from Remark 2 that, forr € which sendsy1,va, - - -, Yw) With (1,92, -, Y1) € TN,
Ty x [L— 3, 1), &' = (21,25, ...,,) satisfiesd <z} < andn — 2] +1 <y, < ntoan element of . Let us write
xy < --- <y, <1, and so is an element df,. n = pw + q, wherep > 0 and0 < ¢ < w — 1. We partition
Suppose there were two different choices farsay =" the rangel, 2,...,n into w parts, where the first — w — 1
andz®, such that parts each havp elements, the next parts each have + 1
f (w(n) —f (:c(Q)) — 2 elements, and the last part haglements (giving a total of

elements). This is similar to the real-valued case, where each

We know thate’ determinesng, jo andio. Soz™™) and=®  interval had length /.
have the same associated valuegyoénd j,. But for a given 1) Let
pair (4o, j0), Eqn. (7) is invertible. Hence™ = 2(?), and f,,
is one-to-one. ip = min{i € {1,...,w} | yw < vi}.

Note that the transformations in Eqn. (7) and Egn. (8) are 2) Let
inverses of each other. Hengg is also an onto map, ang,
is its inverse. m Jo = min{i € {1,...io} |Vi<wyi} -1,

) whereV; := (w —ip + i — 1)p + max{q — i¢ + i,0}.
D. Number of Pieces 3) Sety, equal to:
The mapf,,, which dissects the pristf,,_; x [1— 1, 1) to

give the orthoschem&,,, has one piece for each péi, jo). Yk+io ~ Vio+1 fork=1,...,% —jo—1

If iy = w thenjo = 0, while if 1 < iy < w — 1, jo takes all { Yw ~ Viot1 for k =0 — jo (12
values fromo to iy — 1. (It is easy to write down an explicit | Y&+io-1 1= Vit fork =io —jo+L...,w—jo
point in the interior of the piece corresponding to a specifiell Yh—w+io + 7= Viet1 fork=w—jo+1,...,w
pair of values ofi, andjy. Assumeip < w and set = 1/w3. The inverse mapping,, is similarly replaced by the map
Take the point with coordinatesy, ..., z,) given byz, = ¢& : TN — {(y1,v2,-- -, Yw) : (Y1,Y2, -+, Yw—1) € To_1,
(w—1)/w+6; 2 =1y +0(i —dp) fori=ip+1,...,w—1; n—|2]+1 <y, <n}, defined as follows. Again, assume
x;=({+w—ig—1=08)/wfori=1,...,jo;x; = (i+w— n=pw-+q.
ig—1+4+0)/wfori=jo+1,...,ip — 1.) The total number 1) Let
of pieces in the dissection is therefore _ ,

mo = max{i€{l,...,w}|W; <y},

w? —w+2
14142434+ (w-1)=—F—, whereW; := ¢ + (i — 1)p + min{i — ¢ — 1,0}.



2) If mg = w, let jo := 0, otherwise let
jo = w-—max{i € {mo+1,...,w} |y, < W, +p};

in either case, lety := jo + my.
3) Sety; equal to:

Yerw—jo — P~ Wiy fork=1,...,5
y;C,jD‘F’I’L—p—WmU fork:j0+1,...,io—1
Yiojor1 —L+n—p—Wp, fork=ip,...,w—1
Yig—jo T 1 =D~ Wi, for k = w

O(w?), independent of the length of the codewordslt is
especially suitable for constant weight codes of low weight.
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