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Abstract

It is shown that, given any (n − 1)-dimensional lattice Λ, there is a vector v ∈ Zn such that
the orthogonal projection of Zn onto v⊥ is, up to a similarity, arbitrarily close to Λ. The problem
arises in attempting to find the largest cylinder anchored at two points of Zn and containing no
other points of Zn.
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1. Introduction

Let Zn denote the cubic lattice with basis e1 := (1, 0, . . . , 0), . . . , en := (0, 0, . . . , 1). If we project
Zn onto the (n− 1)-dimensional subspace

v⊥ := {x ∈ Rn : x · v = 0}

perpendicular to a vector v ∈ Zn, we obtain an (n − 1)-dimensional lattice that we denote by Λv.
We will show that, given any (n − 1)-dimensional lattice Λ, we can choose v ∈ Zn so that Λv is
arbitrarily close to a lattice that is geometrically similar to Λ. More precisely, we will establish:

Theorem 1. Let Λ be an (n − 1)-dimensional lattice with Gram matrix A (with respect to some
basis for Rn−1). For any ε > 0, there exist a nonzero vector v ∈ Zn, a basis B for the (n − 1)-
dimensional lattice Λv and a number c such that if Av denotes the Gram matrix of B, then

‖A− cAv‖∞ < ε . (1)

The theorem is at first surprising, since A has
(
n+1

2

)
degrees of freedom, whereas v has only n

degrees of freedom (for the explanation see the remark following the proof of Theorem 2).
The problem arises from a question in communication theory (see §5), which calls for projections

Λv with high packing density. Since both the determinant and minimal norm of a lattice are
continuous functions of the entries in the Gram matrix, so is the packing density.1 The theorem

1The minimal norm µ of a d-dimensional lattice with Gram matrix A is the minimum over all z ∈ Zd, z 6= 0, of the
quadratic form zAztr. It is enough to consider the finite set of z in some ball around the origin. For a given z 6= 0,
zAztr is a continuous function of the entries of A, and since the minimum of a finite set of continuous functions is
continuous, µ is a continuous function of the entries of A.
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therefore implies that the packing density of Λv can be made arbitrarily close to that of Λ. So if
we know a dense lattice in Rn−1, we can find projections that converge to it in density.

Remark. We know (see for example [2, Cor. 8]) that if Λ is a classically integral (n − 1)-
dimensional lattice then Λ can be embedded in some odd unimodular lattice K of dimension
k ≤ n + 2, although for n ≥ 7 K need not be Zk. In any case this does not imply that Λ can be
recovered as a projection of K.

Notation. Λ∗ denotes the dual lattice to Λ, Atr is the transpose of A, and ‖A‖∞ = maxi,j |Ai,j |.
Our vectors are row vectors. For undefined terms from lattice theory see [3].

2. Proof of Theorem 1

We begin with some preliminary remarks about the projection lattice Λv and its dual Λ∗v. For
simplicity we will only consider projections that use vectors of the form v = (1, v1, v2, . . . , vn−1) ∈
Zn. Let v̂ := (v1, v2, . . . , vn−1), M := ‖v‖2 = 1 +

∑
v2
i .

The matrix that orthogonally projects Rn onto v⊥ is P := In − 1
M vtrv. As a generator matrix

G for Zn (expressed in terms of e1, . . . , en) we take In with its first row replaced by v. Let
Gv be obtained by omitting the first (zero) row of GP . Then Gv is an (n − 1) × n generator
matrix for the projection lattice Λv, and Av := GvG

tr
v = In−1 − 1

M v̂trv̂ is its Gram matrix, with
det Λv = detAv = 1

M .
It is often easier to work with the dual lattice Λ∗v. This is the intersection of Zn with the

subspace v⊥, and has generator matrix
−v1 1 0 . . . 0
−v2 0 1 . . . 0

...
...

...
. . .

...
−vn−1 0 0 . . . 1

 , (2)

Gram matrix A∗v = In−1 + v̂trv̂, and determinant M .
If a sequence of matrices Ti converges in the ‖ ‖∞ norm to a positive-definite matrix T , then

T−1
i converges to T−1. So the following theorem is equivalent to Theorem 1.

Theorem 2. Let Λ be an (n − 1)-dimensional lattice with Gram matrix A (with respect to some
basis for Rn−1). For any ε > 0, there exist a nonzero vector v ∈ Zn, a basis B for the (n − 1)-
dimensional lattice Λ∗v and a number c such that if A∗v denotes the Gram matrix of B, then

‖A− cA∗v‖∞ < ε . (3)

Proof of Theorem 2. We may write A = LLtr where L = [Li,j ] is an (n − 1) × (n − 1) lower
triangular matrix. For w = 1, 2, . . . let us form the (n− 1)× n matrix

Lw := −
[
bwLc 000

]
+

[
000 In−1

]
=


−bwL1,1c 1 0 . . . 0 0
−bwL2,1c −bwL2,2c 1 . . . 0 0

...
...

...
. . .

...
...

−bwLn−1,1c −bwLn−1,2c −bwLn−1,3c . . . −bwLn−1,n−1c 1

 , (4)
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where 000 denotes a column of n− 1 zeros. We call Lw a “lifted” version of L.
We apply elementary row operations to Lw so as to put it in the form

L̃w :=


−v1 1 0 . . . 0 0
−v2 0 1 . . . 0 0

...
...

...
. . .

...
...

−vn−2 0 0 . . . 1 0
−vn−1 0 0 . . . 0 1

 , (5)

and take v = (1, v1, . . . , vn−1). Then Λ∗v has generator matrix L̃w. But L̃w and Lw generate the
same lattice. It follows that Λ∗v has a Gram matrix

A∗v = LwLtr
w = w2A + B = w2

(
A +

1
w2

B
)
, (6)

using (4), where the entries in B are of order O(w) as w →∞. This implies (3) (with c = 1/w2).

Remark. The apparent paradox mentioned in §1 is explained by the fact that we use
(
n
2

)
degrees

of freedom in going from (4) to (5).

3. Examples

3.1. The lattice 2Z⊕ Z

We start with a concrete example. If we take v = (1, 1, 0) then Λv has Gram matrix 1
2

[
2 0
0 1

]
, and

is geometrically similar to
√

2Z⊕ Z. Similarly v = (1, 1, 1) produces the hexagonal (or A2) lattice,
and in general v = (1, 1, . . . , 1) gives An−1. On the other hand, there is no v = (1, v1, v2) ∈ Z3 such
that Λv is geometrically similar to 2Z ⊕ Z (see Proposition 3). However, we can find projections
which converge to a lattice that is geometrically similar to 2Z⊕Z. Since any two-dimensional lattice

is geometrically similar to its dual, we can apply Theorem 2 with Λ = 2Z⊕ Z. Then L =
[
2 0
0 1

]
,

the lifted generator matrix is Lw =
[
−2w 1 0

0 −w 1

]
, L̃w =

[
−2w 1 0
−2w2 0 1

]
, v = (1, 2w, 2w2), and a

Gram matrix for Λ∗v is I2 + ṽtrṽ =
[
4w2 + 1 4w3

4w3 4w4 + 1

]
. If we subtract w times the first generator

from the second, this becomes[
4w2 + 1 −w
−w w2 + 1

]
= w2

[
4 + 1/w2 −1/w
−1/w 1 + 1/w2

]
,

which converges to w2

[
4 0
0 1

]
as w →∞.

Proposition 3. There is no vector v = (1, a, b) ∈ Z3 such that Λ∗v is geometrically similar to
2Z⊕ Z.
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Proof. From (2), Λ∗v has Gram matrix A :=
[
a2 + 1 ab

ab b2 + 1

]
. If Λ∗v is geometrically similar to

2Z⊕ Z then there is a matrix T :=
[
r s
t u

]
∈ SL2(Z) and λ ∈ R such that

A = λ T

[
4 0
0 1

]
T tr = λ

[
4r2 + s2 4rt + su
4rt + su 4t2 + u2

]
.

This implies λ ∈ Q, and taking the determinant and trace of both sides we obtain a2 +b2 +1 = 4λ2,
a2 + b2 + 2 = 4λ2 + 1 = λσ, where σ := 4r2 + 4t2 + s2 + u2 ∈ Z. Hence the discriminant of the
quadratic for λ, σ2 − 16, is a perfect square, so σ = 4 or 5, λ = 1

2 , 1
4 or 1, a2 + b2 + 1 = 1, 1

4 or 3,
none of which are possible.

3.2. The lattice 51

For an example where the floor operations in (4) are actually needed, consider the lattice Λ with

Gram matrix
[
3 1
1 2

]
and determinant 5 (this is the lattice 51 in the notation of [1]). Again there

is no v = (1, v1, v2) ∈ Z3 such that Λv is geometrically similar to Λ. We take L =

[√
3 0

1√
3

√
5
3

]
, and

find that
v =

(
1, b

√
3 wc, b

√
3 wcb

√
5/3 wc+ bw/

√
3c

)
.

3.3. The lattice Dm, m ≥ 3

As generator matrix for D∗
m we take ([3, p. 120])

1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0

1/2 1/2 1/2 . . . 1/2 1/2

 . (7)

We set w = 2t, t ∈ Z, and obtain

v =
(

1, 2t, (2t)2, . . . , (2t)m−1, t
(2t)m − 1

2t− 1

)
.

In particular, when m = 3, we have

v = (1, 2t, 4t2, 4t3 + 2t2 + t) , (8)

for which Λ∗v converges to the body-centered cubic lattice D∗
3 and Λv to the face-centered cubic

lattice D3.

3.4. The lattice E8

Using the generator matrix given in [3, p. 121], we find that v = (1, v1, v2, . . . , v8) is given by
v1 = 2w, v2 = 2w2 −w, vi = w(vi−1 − vi−2) for i = 3, 4, . . . , 7, and v8 = (w/2)(1 +

∑7
i=1 vi), where

w is even.
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3.5. The Leech lattice

Using [3, Fig. 4.12], we find that v = (1, v1, v2, . . . , v24) is given by

v1 = 8w,

vi = 4w(vi−1 + 1), for i = 2, . . . , 7, 9, 10, 11, 13, 17,

vi = 2w(
∑
j∈Si

vj + 1), for i = 8, 12, 14, 15, 16, 18, 19, 20,

vi = 2w
∑
j∈Si

vj , for i = 21, 22, 23,

v24 = w(
23∑
i=1

vi − 3), (9)

where S8 = {1, 2, . . . , 7}, S12 = {1, 2, 3, 8, 9, 10, 11}, S14 = {1, 4, 5, 8, 9, 12, 13}, S15 = {2k, 1 ≤
k ≤ 7}, S16 = {3, 4, 7, 8, 11, 12, 15}, S18 = {2, 4, 7, 8, 9, 16, 17}, S19 = {3, 4, 5, 8, 10, 16, 18}, S20 =
{1, 4, 6, 8, 11, 16, 19}, S21 = {1, 2, 3, 4, 8, 12, 16, 20}, S22 = {8, 9, 12, 13, 16, 17, 20, 21}, S23 = {2k, k =
4, 5, . . . , 11}.

4. Faster convergence

The construction in Theorem 2 produces a vector v of length ‖v‖ = O(wn), while from (6) we have
‖A− 1

w2 A∗v‖∞ = O( 1
w ) = O( 1

‖v‖1/n ). It is sometimes possible to obtain a faster rate of convergence.
Suppose Λ is D3, and instead of (7) let us take the following generator matrix for D∗

3:

L :=

−1 −1 1
1 −1 1
1 1 1

 .

Let

Lw =

 w − 1 w + 1 −w 0
−w − 1 w −w + 1 0
−w −w −w 1

 =
[
−wL 000

]
+

[
000 I3

]
+

−1 0 0 0
−1 0 0 0
0 0 0 0

 , (10)

with

A∗v = LwLtr
w =

3w2 + 2 w2 + 1 −w2

w2 + 1 3w2 + 2 w2

−w2 w2 3w2 + 1

 . (11)

The last matrix in (10) is chosen so that there are no terms of order w in (11). Let Hw denote the
3× 3 matrix formed by the last three columns of Lw, and define v1, v2, v3 by

H−1
w Lw =

−v1 1 0 0
−v2 0 1 0
−v3 0 0 1

 .

Then
v = (1, v1, v2, v3) = (1, 2w2 − w + 1, 2w2 + w + 1, 4w3 + 3w) (12)

has ‖v‖ = O(w3), and now ‖A − 1
w2 A∗v‖∞ = O( 1

‖v‖2/3 ), which is a faster convergence than we
found in §3.3. We do not know if similar speedups are always possible. Incidentally, we first found
(12)—before Theorem 1 was proved—by a combination of computer search and guesswork.
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5. The fat strut problem

The problem studied in this paper arose when constructing codes for a certain analog communica-
tion channel [6]. The codes require that one finds a curved tube in the sphere S2n−1 which does
not intersect itself, has a specified length and as large a volume as possible. The method used in
[6] is based on finding a vector v ∈ Zn with a specified value of ‖v‖, such that there is a cylinder of
large volume with axis

−→
0v which contains no points of Zn other that 0 and v. The cross-section of

the cylinder is an (n− 1)-dimensional ball, and 0 and v are the centers of the two end-faces. The
radius of the cylinder is taken to be as large as possible subject to the condition that the interior
contains no point of Zn. The problem is to choose v, for a given length ‖v‖, so that the volume of
the resulting cylinder is maximized. We call a cylinder which achieves the maximal volume a fat
strut.

A fat strut has the property that the projection of the cylinder onto v⊥ does not contain the
image of any nonzero point of Zn. The radius of the cylinder is therefore equal to the radius of
the largest (n− 1)-dimensional sphere in the projection lattice Λv which contains no nonzero point
of Λv. In other words, finding a fat strut for a given length ‖v‖ is equivalent to maximizing the
density of the projection lattice Λv.

It is worth contrasting the fat strut problem with the result of [4] and [5] that for any lattice
sphere packing in dimension three or higher there is always an infinite cylinder of nonzero radius
(obviously not passing through the origin) which does not touch any of the spheres.
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Sect. Math., 3–4 (1960/1961), 89–90.
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