Pairwise Powers of 2 Problem

Alex Bradley

September 22, 2022

1 Abstract

A set $S \subseteq \mathbb{Z}$ is a solution to the Pairwise Powers of 2 problem if and only if every pair of distinct elements of S sum to a power of 2. That is,

$$\forall x, y \in S. \, \exists n \in \mathbb{Z}_+. \, (x \neq y \implies x + y = 2^n) \tag{1}$$

It is known that solutions of size 2 and 3 exist, for example $\{3,5\}$ and $\{-1,3,5\}$. In this paper I will prove that no solutions exists of size 4 (or greater).

2 No Solutions of Size 4

Observation 1. Any subset of a solution is also a solution.

For example, the solution of size 3 listed about is $\{-1,3,5\}$. Notice that $\{-1,3\}$, $\{-1,5\}$, and $\{3,5\}$ are all solutions of size 2.

Lemma 1. Any solution of size 3 must contain a negative integer.

Proof. Suppose by way of contradiction that $\{a, b, c\}$ is a solution of positive integers. Assume without loss of generality that a < b < c. Note that a + b < a + c < c + b and b + c < 2c < 2(a + c).

By definition, a+c and c+b are powers of 2, but note that a+c and 2(a+c) consecutive powers of 2, thus c+b cannot exist between them. We have reached a contradiction, so our assumption that an all-positive solution of size 3 exists must be false.

Theorem 1. There are no solutions of size 4.

Proof. Suppose by way of contradiction that a solution $S = \{a, b, c, d\}$ exists. Then by Observation 1, $\{a, b, c\}$ is a solution of size 3. By Lemma 1, one of a, b, or c must be negative. Let a < 0 without loss of generality.

Now note that again by Observation 1, $\{b, c, d\}$ is also a solution of size 3, and contains a negative value by Lemma 1. Let this negative value be $x \in \{b, c, d\}$.

Now we have $a, x \in S$ with a, x < 0 and $a \neq x$. Clearly a + x < 0 is not a power of 2, which means S is not a solution of size 4.

Corollary 1. There are not solutions of size greater than 4.

Proof. By Observation 1, any solution of size greater than 4 would contain a solution of size 4, which has already been shown to not exist. \Box