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Stan Wagon’s Problem of the week #1321 asks us to find 10 distinct integers
such that at least 14 of their pairwise sums are powers of 2. 15 is possible, given
by {−5,−3,−1, 1, 3, 5, 7, 9, 11, 13}, and an upper bound of 16 is known. In fact,
10 is the smallest number for which the true value is unknown. In this paper
we show that 15 is indeed optimal.

1 Introduction

Our main method of attack will be based on an idea of M.S.Smith. We will draw
a graph, henceforth called a ”power of 2 graph” on our 10 integers, connecting
two of them if and only if their sum is a power of 2. Smith was able to show the
graph contains no subgraph isomorphic to C4, which is already enough to lower
the bound on the number of edges to 16. In fact, there are only two possibilities
for a 16 edge 10 vertex squarefree graph by work of Clapham et. al [1], which

Figure 1: The two graphs, labelled A and B from left to right, which we must
eliminate

are shown in Figure 1. We will show neither of these possibilities can occur,
by showing that any set of 5 numbers for which the power of 2 graph is the
butterfly graph (See Figure 2) must have a very special form. From this we are
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Figure 2: The 5-vertex butterfly graph

able to show neither of the two square free 10 vertex graphs with 16 edges can
occur.

2 Special Subgraphs

Given a set of k integers {a1, . . . ak}, form a graph by connecting ai and aj if
ai+aj is a power of 2. We call any subgraph of a graph formed in this manner a
power of 2 graph. These graphs have very restricted structure, as one sees from
the following theorem originally due to Smith:

Theorem 1. Power of 2 graphs are ”squarefree” in that they contain no sub-
graph isomorphic to C4.

Proof. Such a subgraph corresponds to a solution to the system of equations

a+ b = 2n1

b+ c = 2n2

c+ d = 2n3

d+ a = 2n4

with the ni non-negative integers and a, b, c, d distinct integers. Then

2n4 − 2n3 = 2n1 − 2n2 .

If now n4 = n3, we find c = a, a contradiction. A similar argument shows
n2 ̸= n1. By considering the sign and 2-adic valuation of both sides, we see that
n2 = n3 is forced, but this implies b = d, a contradiction. Thus any such graph
cannot contain a subgraph isomorphic to C4.

This theorem is already enough to yield very good bounds on its own. As an
example, there is a classical argument that in a squarefree graph with n vertices
there are not more than n

4 (1 +
√
4n− 3) edges.

In order to explicitly solve the case of n = 10 vertices, we state the following
result of Clapham et. al.

Theorem 2. A square free graph with 10 vertices has at most 16 edges, and
there are exactly 2 such graphs with 16 edges (See figure 1).

Proof. See [1]

We now state our main result.
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Theorem 3. Neither of the two squarefree graphs with 10 vertices and 16 edges
is a power of 2 graph of some set of integers. Therefore, 15 is indeed the optimal
solution to problem of the week 1321.

The proof of Theorem 3 will rely heavily on the following lemma:

Lemma 4. Let a0, a1, a2, a3, a4 be distinct integers whose associated power of 2
graph is the butterfly graph, with a0 the vertex of degree 4 and {a0, a1, a2} one
of the 3-cycles. Then there exist integers n,m ≥ 0 with n ≥ m + 2 such that,
up to a graph automorphism, a0 = 2n + 2m, a1 = 2m − 2n, a2 = 3(2n) − 2m,
a3 = 3(2m) − 2n, a4 = 2n − 2m. In particular, a1 and a3 are negative and the
same power of 2 divides every ai.

a0

a1

a2a3

a4

2b1

2b22b3

2b42b4 2x2y

Proof. It will be useful to first argue which powers of 2 are possible sums for
all of the edges. Therefore let 2x = a1 + a2, 2

y = a3 + a4 be the powers of
2 associated to the ”wings” of the butterfly. Similarly let 2bi = a0 + ai for
i ∈ {1, 2, 3, 4}. If two edges are joined to the same vertex and have the same
value, the values of the other vertices they connect to must be the same. Thus
distinctness of the ai implies distinctness of the bi. Similarly we have that
x, b1, b2 are distinct and that y, b3, b4 are distinct.

The various definitions now give that

2b1 − 2x + 2b2 = 2a0 = 2b3 − 2y + 2b4

Distinctness of the powers of 2 occurring on each side tells us that min{x, b1, b2} =
min{y, b3, b4}. This together with distinctness of the bi tells us that up to a graph
automorphism that either x = y = min{x, b1, b2} or b1 = y = min{x, b1, b2}. If
the first case holds, then 2b1 +2b2 = 2b3 +2b4 , which quickly contradicts the idea
that the bi are distinct. Therefore we assume b1 = y = min{x, b1, b2}. Thus,

2b1+1 − 2x + 2b2 = 2b3 + 2b4 .

Positivity of the right hand side and the fact b1 = min{x, b1, b2} tells us b1+1 ≤
x < b2. If b1 + 1 = x, then 2b2 = 2b3 + 2b4 , contradicting the idea b3 ̸= b4. Thus
2b1+1 is the largest power of 2 dividing the left hand side. As b3 ̸= b4, up to
a graph automorphism (which will always be compatible with our first graph
automorphism) we can assume b1 + 1 = b3. We then see 2b2 − 2x = 2b4 , which
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forces x = b2 − 1. Thus, letting b1 = m+ 1, b2 = n, we have shown that

a0 + a1 = 2b1 = 2m+1

a0 + a2 = 2b2 = 2n+2

a0 + a3 = 2b3 = 2m+2

a0 + a4 = 2b4 = 2n+1

a1 + a2 = 2x = 2n+1

a3 + a4 = 2y = 2m+1

Solving this system yields the unique solution that

a0 = 2n + 2m

a1 = 2m − 2n

a2 = 3(2n)− 2m

a3 = 3(2m)− 2n

a4 = 2n − 2m

as desired.

2n + 2m

2m − 2n

3(2n)− 2m3(2m)− 2n

2n − 2m

Note m,n were such that m = b1 − 1 ≤ b2 = n, and that distinctness of the ai
fails if m = n or m+ 1 = n, so m− n ≥ 2. This quickly implies a1, a3 < 0.

We immediately use this lemma to eliminate possibilities of certain graphs oc-
curring as subgraphs of a power of 2 graph.

Corollary 4.1. The 7 vertex graph T consisting of 3 triangles joined as in
figure 3 is not a power of 2 graph.

Proof. This graph contains two copies of the butterfly graph which share ver-
tices, so the same power of 2 will divide every vertex. Thus by Lemma 4 we can
cancel a common power of 2 and assume the center of one butterfly is of the
form 2n + 1 and the other is of the form 2k + 1, n ̸= k and that both n, k > 1,
so the situation is as below.
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Figure 3: This 7 vertex graph T does not occur as a power of 2 graph

2k + 1

?

2n + 1?

?

?

?

As 2k + 1 is positive, by Lemma 4 we must have either 2k + 1 = 2n − 1 or
2k + 1 = 3(2n)− 1, but both equations fail modulo 4 since k, n > 1. Thus T is
not a power of 2 graph.

Corollary 4.2. The 16 edge 10 vertex graph B in figure 1 is not a power of 2
graph.

Proof. It contains the graph T of Corollary 4.1 as a subgraph, and thus cannot
appear.

Corollary 4.3. The 16 edge 10 vertex graph A in figure 1 is not a power of 2
graph

Proof. This graph contains two butterfly graphs as subgraphs, joined by 4 edges
attached to the wing vertices of the butterflies. We first aim to show that we
can assume every vertex is an odd number. To do this, suppose by Lemma
4 one butterfly has central vertex 2a + 2b and the other has central vertex
2c + 2d. By cancelling a common power of 2 suppose without loss of generality
that d = 0. In particular, one butterfly now consists of only odd numbers. If
the other butterfly consists only of even numbers, the sum along the 4 edges
joining the two butterflies must be 1, the only odd power of 2. Then the sum
of the 8 vertices of these edges must be 4, but by Lemma 4 this sum will also
equal 2a+1 + 2b+1 + 2c+1 + 2. Since one of a + 1 or b + 1 is greater than 2,
2a+1 + 2b+1 + 2c+1 + 2 > 4, a contradiction. Thus, after cancelling a common
power of 2, we can assume the vertices of our graph are only odd numbers.

Now suppose the centers of our butterflies are 2r + 1 and 2s + 1.
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2s + 1

1− 2s

3(2s)− 13− 2s

2s − 1

2r + 1

1− 2r

3(2r)− 13− 2r

2r − 1

Since we cannot join a negative vertex to a negative vertex and hope for them to
sum to a positive power of 2, we need only consider ways of joining the butterflies
which connect negative vertices to positive ones. It turns out there are exactly
two ways to join up the two butterflies in a way such that the resulting graph
is isomorphic to A and that every negative vertex is joined to a positive one.
In the first, we get the condition that the 4 edge sums 3(2r) − 2s, 2s − 2r,
3(2s) − 2r + 2, 2r − 2s + 2 must be powers of 2, but Lemma 4 implies r and s
are both greater than 1, so 2r − 2s + 2 is not a square modulo 4. The analysis
in the second case is identical with the roles of r and s swapped, so indeed A is
not a power of 2 graph.

Now corollaries 4.2 and 4.3 complete the proof of Theorem 3, so we have
indeed established that the known set of 15 is optimal. We note that our proof of
Corollary 4.3 yields infinitely many easy sets of 14 containing only odd numbers,
as taking s = r + 1 makes half of the sums joining the butterflies work. The
case r = 3 is illustrated

17

−15

47−13

15

9

−7

23−5

7
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