Mode X

256-Color
Animation

e the VGA Really Get up and Dance

Okay—no amusing stories or informative anecdotes to kick off this chapter; lotta
ground to cover, gotta hurry—you’re impatient, I can smell it. | won’t talk about the
time a friend made the mistake of loudly saying “$100bill” during an animated dis-
cussion while walkin ngthe bums on Market Street in San Francisco one night,
thereby graphically illastrating that context is everything. I can’t spare a word about
how my daughter thinks my 11-year-old floppy-disk-based CP/M machine is more
powerful than my 386 with its 100-MBhard disk because the CP/M machine’s word
1d runs twice as fast as the 386's Windows-based word processor,
; progress is not the neat exponential curve we’d like to think it s,
and that features and performance are often conflicting notions. And, lord knows, [
can’t take the time todiscuss the habits of small white dogs, notwithstanding that
such dogs seem to be relevant to just about every aspect of computing, as Jeff
Duntemann’swritings make manifest. No lighthearted fluff for us; we have real work
to do, for today we animate with 256 colors in Mode X.

Masked Copying

Over the past two chapters, we’ve put together most of the tools needed to imple-
ment animation in the VGA’s undocumented 320x240 256-color Mode X. We now
have mode set code, solid and 4x4 pattern fills, system memory-to-display memory
block copies, and display memory-to-display memory block copies. The final piece

915

of the puzzle is the ability to copy a nonrectangular image to display memory. I call
this masked copying.

Masked copying is sort of like drawing through a stencil, in that only certain pixels
within the destination rectangle are drawn. The objective is to fit the image seamlessly
into the background, without the rectangular fringe that results when nonrectangular
images are drawn by block copying their bounding rectangle. This is accomplished
by using a second rectangular bitmap, separate from the image but corresponding
to it on a pixel-by-pixel basis, to control which destination pixels are set from the
source and which are left unchanged. With a masked copy, only those pixels prop-
erly belonging to an image are drawn, and the image fits perfectly into the
background, with no rectangular border. In fact, masked copying even makes it pos-
sible to have transparent areas within images.

Note that another way to achieve this effect is to implement copying code that sup-
ports a transparent color; that is, a color that doesn’t get copied but rather leaves the
destination unchanged. Transparent copying makes for more compact images, be-
cause no separate mask is needed, and is generally faster in a software-only
implementation. However, Mode X supports masked copying but not transparent
copying in hardware, so we’ll use masked copying in this chapter.

The system memory to display memory masked copy routine in Listing 49.1 imple-
ments masked copying in a straightforward fashion. In the main drawing loop, the
corresponding mask byte is consulted as each image pixel is encountered, and the
image pixel is copied only if the mask byte is nonzero. As with most of the system-to-
display code I've presented, Listing 49.1 is not heavily optimized, because it’s
inherently slow; there’s a better way to go when performance matters, and that’s to
use the VGA’s hardware.

LISTING 49.1 149-1.ASM

; Mode X (320x240, 256 colors) system memory-to-display memory masked copy

; routine. Not particularly fast; images for which performance is critical

; should be stored in off-screen memory and copied to screen via latches. Works
; on all VGAs. Copies up to but not including column at SourceEndX and row at

; SourceEndY. No clipping is performed. Mask and source image are both byte-

; per-pixel, and must be of same widths and reside at same coordinates in their
; respective bitmaps. Assembly code tested with TASM C near-callable as:

H void CopySystemToScreenMaskedX(int SourceStartX,

; int SourceStartY, int SourceEndX, int SourcekEndY,
H int DestStartX, int DestStartY, char * SourcePtr,
H unsigned int DestPageBase, int SourceBitmapWidth,
: int DestBitmapWidth, char * MaskPtr);

SC_INDEX equ 03c4h ;Sequence Controller Index register port
MAP_MASK equ 02h ;index in SC of Map Mask register
SCREEN_SEG equ 0a000h ;segment of display memory in mode X
parms struc
dw 2 dup (?) ;pushed BP and return address
SourceStartX dw ? ;X coordinate of upper left corner of source

; (source is in system memory)

916 Chapter 49

SourceStarty
SourceEndX

SourceEndY
DestStartX
DestStartY

SourcePtr
DestPageBase

dw ?
dw ?
dw ?
dw ?
dw ?
dw ?
dw ?

SourceBitmapWidth dw ?

;Y coordinate of upper left corner of source

;X coordinate of lower right corner of source

; (the column at EndX is not copied)

;Y coordinate of Tower right corner of source

; (the row at EndY is not copied)

;X coordinate of upper left corner of dest

; (destination is in display memory)

;Y coordinate of upper left corner of dest

;pointer in DS to start of bitmap which source resides
;base offset in display memory of page in

; which dest resides

:# of pixels across source bitmap (also must

; be width across the mask)

:# of pixels across dest bitmap (must be multiple of 4)
;pointer in DS to start of bitmap in which mask

; resides (byte-per-pixel format, just like the source
; image; O-bytes mean don't copy corresponding source
; pixel, l-bytes mean do copy)

;local storage for width of rectangle
;local storage for height of rectangle
:local storage for left rect edge plane mask

;preserve caller's stack frame

;point to local stack frame

;allocate space for local vars
;preserve caller's register variables

;point ES to display memory

;top source rect scan line

;offset of first source rect pixel
; in DS
;offset of first mask pixel in DS

;convert to width in addresses

;remember address width
;top dest rect scan Tine

:X/4 = offset of first dest rect pixel in

; scan line

;offset of first dest rect pixel in page
;offset of first dest rect pixel

; in display memory

;CL = first dest pixel's plane

supper nibble comes into play when plane wraps
; from 3 back to 0

;set the bit for the first dest pixel’s plane

DestBitmapWidth dw ?
MaskPtr dw ?
parms ends
RectWidth equ -2
RectHeight equ -4
LeftMask equ -6
STACK_FRAME_SIZE equ 6
.model small
.code
pubtic _CopySystemToScreenMaskedX
_CopySystemToScreenMaskedX proc near
push bp
mov bp.sp
sub sp,STACK_FRAME_SIZE
push si
push di
mov ax,SCREEN_SEG
mov es,ax
mov ax,[bp+SourceBitmapWidth]l
mul [bp+SourceStartY]
add ax,[bp+SourceStartX]
mov bx,ax
add ax,[bp+SourcePtr]
mov si,ax
add bx,[bp+MaskPtr]
mov ax,[bp+DestBitmapWidth]
shr ax,1
shr ax,1
mov [bp+DestBitmapWidth],ax
mul [bp+DestStarty]
mov di,[bp+DestStartX]
mov cx,di
shr di,1
shr di,1
add di,ax
add di,[bp+DestPageBase]
and c1,011b
mov al,11lh
shl al,cl
mov [bp+LeftMask],al

; in each nibble to 1

Mode X 256-Color Animation

17

mov
sub
jle
mov
sub

mov
sub
jle
mov
mov
mov
out
inc
CopyRowsLoop:
mov
mov
push

ax,[bp+SourceEndX]
ax,[bp+SourceStartX]
CopyDone
[bp+RectWidth],ax

;calculate # of pixels across
; rect
;skip if 0 or negative width

word ptr [bp+SourceBitmapWidth],ax
;distance from end of one source scan line to start of next

ax, [bp+SourceEndY]
ax, [bp+SourceStartY]
CopyDone
[bp+RectHeight],ax
dx,SC_INDEX
al,MAP_MASK

dx,al

dx

al,[bptLeftMask]
cx,[bp+RectWidth]
di

CopyScanLineLoop:

cmp
Jjz

out
mov
mov
MaskOff:
inc
inc
rol
adc

Toop

pop
add

add
add

dec
inz
CopyDone:
pop
pop
mov
pop
ret

byte ptr [bx].0
MaskOff

dx.al
ah,[si]
es:[dil,ah

bx
si
al,1
di,0

CopyScanLineloop
di
di,[bp+DestBitmapWidth]

si,[bp+SourceBitmapWidth]
bx, [bp+SourceBitmapWidth]

word ptr [bp+RectHeight]
CopyRowsLoop

di
si
sp,bp
bp

_CopySystemToScreenMaskedX endp

end

Faster Masked Copying

In the previous chapter we saw how the VGA’s latches can be used to copy four pixels
ata time from one area of display memory to another in Mode X. We’ve further seen
that in Mode X the Map Mask register can be used to select which planes are copied.
That’s all we need to know to be able to perform fast masked copies; we can store an
image in off-screen display memory, and set the Map Mask to the appropriate mask

;height of rectangle
;skip if 0 or negative height

;point to SC Index register

;point SC Index reg to the Map Mask
;point DX to SC Data reg

;remember the start offset in the dest

;is this pixel mask-enabled?
;no, so don't draw it

;yes, draw the pixel

;set the plane for this pixel
;get the pixel from the source
;copy the pixel to the screen

;advance the mask pointer

;advance the source pointer

;set mask for next pixel’s plane
;advance destination address only when
; wrapping from plane 3 to plane 0

;retrieve the dest start offset
;point to the start of the

; next scan line of the dest
;point to the start of the

; next scan line of the source
;point to the start of the

; next scan line of the mask
;count down scan lines

;restore caller's register variables

;discard storage for local variables
;restore caller’s stack frame

value as up to four pixels at a time are copied.

918 Chapter 49

There’s a slight hitch, though. The latches can only be used when the source and
destination left edge coordinates, modulo four, are the same, as explained in the
previous chapter. The solution is to copy all four possible alignments of each image
to display memory, each properly positioned for one of the four possible destina-
tion-left-edge-modulo-four cases. These aligned images must be accompanied by the
four possible alignments of the image mask, stored in system memory. Given all four
image and mask alignments, masked copying is a simple matter of selecting the align-
ment that’s appropriate for the destination’s left edge, then setting the Map Mask
with the 4-bit mask corresponding to each four-pixel set as we copy four pixels at a
time via the latches.

Listing 49.2 performs fast masked copying. This code expects to receive a pointer to
a MaskedImage structure, which in turn points to four AlignedMaskedImage struc-
tures that describe the four possible image and mask alignments. The aligned images
are already stored in display memory, and the aligned masks are already stored in
system memory; further, the masks are predigested into Map Mask register-compat-
ible form. Given all that ready-to-use data, Listing 49.2 selects and works with the
appropriate image-mask pair for the destination’s left edge alignment.

LISTING 49.2 L49-2.ASM

; Mode X (320x240, 256 colors) display memory to display memory masked copy

; routine. Works on all VGAs. Uses approach of reading 4 pixels at a time from
; source into latches, then writing Tatches to destination, using Map Mask

; register to perform masking. Copies up to but not including column at

; SourceEndX and row at SourceEndY. No clipping is performed. Results are not
; guaranteed if source and destination overlap. C near-callable as:

H void CopyScreenToScreenMaskedX(int SourceStartX,

H int SourceStartY, int SourceEndX, int SourceEndY,

; int DestStartX, int DestStartY, MaskedImage * Source,
; unsigned int DestPageBase, int DestBitmapWidth):

SC_INDEX equ 03c4h ;Sequence Controller Index register port
MAP_MASK equ 02h ;index in SC of Map Mask register
GC_INDEX equ 03ceh ;Graphics Controlier Index register port
BIT_MASK equ 08h ;index in GC of Bit Mask register
SCREEN_SEG equ 0a000h ;segment of display memory in mode X

parms struc

dw 2 dup (?) ;pushed BP and return address
SourceStartX dw ? ;X coordinate of upper left corner of source
SourceStartyY dw ? ;Y coordinate of upper left corner of source
SourcetbndX dw ? ;X coordinate of lower right corner of source
; (the column at SourceEndX is not copied)
SourceEndY dw ? ;Y coordinate of lower right corner of source
; (the row at SourceEndY is not copied)
DestStartX dw ? ;X coordinate of upper left corner of dest
DestStartyY dw ? ;Y coordinate of upper left corner of dest
Source dw ? ;pointer to MaskedImage struct for source
; which source resides
DestPageBase dw ? ;base offset in display memory of page in
; which dest resides
DestBitmapWidth dw ? +# of pixels across dest bitmap (must be multiple of 4)

parms ends

Mode X 256-Color Animation

219

SourceNextScanOffset equ -2
DestNextScanOffset equ -4
RectAddrWidth equ -6
RectHeight equ -8

SourceBitmapWidthequ -10

;local storage for distance from end of

; one source scan line to start of next
;1ocal storage for distance from end of

; one dest scan line to start of next

;Yocal storage for address width of rectangle
;:1ocal storage for height of rectangle

;local storage for width of source bitmap

; (in addresses)

;pointers to AlignedMaskedImages for the
; 4 possible destination image alignments

;image width in addresses (also mask width in bytes)
;offset of image bitmap in display memory
;pointer to mask bitmap in DS

;preserve caller’s stack frame

spoint to Tocal stack frame

;allocate space for Tocal vars
;preserve caller's register variables

;set the bit mask to select all bits
; from the latches and none from

; the CPU, so that we can write the
; latch contents directly to memory
;point ES to display memory

sconvert to width in addresses

;top dest rect scan line

;X/4 = offset of first dest rect pixel in
; scan line

;offset of first dest rect pixel in page
;offset of first dest rect pixel in display
: memory. now look up the image that's

; aligned to match left-edge alignment

; of destination

;DestStartX modulo 4

;set aside alignment for later

;prepare for word look-up

;point to source MaskedImage structure
;point to AlignedMaskedImage

s struc for current left edge alignment
;image width in addresses

sremember image width in addresses
;top source rect scan line

;X/4 = address of first source rect pixel in
; scan line

STACK_FRAME_SIZE equ 10
MaskedImage struc
Alignments dw 4 dup(?)
MaskedImage ends
AlignedMaskedImage struc
ImageWidth dw ?
ImagePtr dw ?
MaskPtr dw ?
AlignedMaskedImage ends
.model small
.code
public _CopyScreenToScreenMaskedX
_CopyScreenToScreenMaskedX proc near
push bp
mov bp,sp
sub sp,STACK_FRAME_SIZE
push si
push di
cld
mov dx,GC_INDEX
mov ax,00000h+BIT_MASK
out dx,ax
mov ax,SCREEN_SEG
mov es,ax
mov ax,[bp+DestBitmapWidth]
shr ax,1
shr ax,1
mul [bp+DestStarty]
mov di,[bp+DestStartX]
mov si,di
shr di,1
shr di,l
add di,ax
add di,[bp+DestPageBase]
and si,3
mov cx,si
shl si,l
mov bx, [bp+Source]
mov bx, [bx+Alignments+si]
mov ax,[bx+ImageWidth]
moy [bp+SourceBitmapWidth],ax
mul [bp+SourceStartY]
mov si,[bp+SourceStartX]
shr si,1
shr si.l
add si,ax

920 Chapter 49

;offset of first source rect pixel in image

mov
add
mov
add

mov
add
add
cmp
jle
add
and
sub
shr
shr
mov
sub
ile
mov
mov
shr
shr
sub
mov
mov
sub
mov
mov

mov
mov
out
inc

CopyRowsloop:

mov

ax,si

si,[bxtMaskPtr] ;point to mask offset of first mask pixel in DS
bx,[bx+ImagePtr] ;offset of first source rect pixel

bx,ax ; in display memory

ax,[bptSourceStartX] ;calculate # of addresses across

ax,cx ; rect, shifting if necessary to

cx, [bp+SourcekEndX] ; account for alignment

CX,ax

CopyDone ;skip if 0 or negative width

cx,3

ax,not 011lb

cX,ax

cx,1

cx,1 ;# of addresses across rectangle to copy
ax,[bp+SourcekndY]

ax, [bp+SourceStartyY] ;AX = height of rectangle

CopyDone ;skip if 0 or negative height

[bp+RectHeight],ax
ax,[bp+DestBitmapWidth]

ax,1 ;convert to width in addresses

ax,1

ax,cx ;distance from end of one dest scan Tine to start of next
[bp+DestNextScan0ffset],ax

ax,[bp+tSourceBitmapWidth] ;width in addresses

ax,cx ;distance from end of source scan line to start of next

[bp+SourceNextScan0ffset],ax
[bp+RectAddrWidth],cx ;remember width in addresses

dx,SC_INDEX

al,MAP_MASK

dx,al ;point SC Index register to Map Mask
dx ;point to SC Data register

cx,[bp+RectAddrWidth]l ;width across

CopyScanLineLoop:

lodsb

out
mov
mov
inc
inc
dec
jnz

mov
add
add
add
dec
jnz

CopyDone:
mov
mov
out

pop
pop
mov

;get the mask for this four-pixel set
; and advance the mask pointer

dx,al ;set the mask
al,es:[bx] ;1oad the latches with four-pixel set from source
es:[di],al ;copy the four-pixel set to the dest
bx ;advance the source pointer
di ;advance the destination pointer
cX ;count off four-pixel sets
CopyScanlLinelLoop
ax,[bp+SourceNextScanOffset]
si,ax ;point to the start of
bx,ax ; the next source, mask,
di,[bp+DestNextScanOffset] ; and dest lines
word ptr [bp+RectHeight] ;count down scan lines
CopyRowsLoop
dx,GC_INDEX+1 ;restore the bit mask to its default,
al,0ffh ; which selects all bits from the CPU
dx,al ; and none from the latches (the GC

; Index still points to Bit Mask)
di ;restore caller's register variables
si
sp.bp ;discard storage for local variables

Mode X 256-Color Animation

921

pop bp ;restore caller's stack frame
ret

_CopyScreenToScreenMaskedX endp
end

It would be handy to have a function that, given a base image and mask, generates
the four image and mask alignments and fills in the MaskedImage structure. Listing
49.3, together with the include file in Listing 49.4 and the system memory-to-display
memory block-copy routine in Listing 48.4 (in the previous chapter) does just that.
It would be faster if Listing 49.3 were in assembly language, but there’s no reason to
think that generating aligned images needs to be particularly fast; in such cases, 1
prefer to use G, for reasons of coding speed, fewer bugs, and maintainability.

LISTING 49.3 149-3.C

/* Generates all four possible mode X image/mask alignments, stores image
alignments in display memory, allocates memory for and generates mask
alignments, and fills out an AlignedMaskedImage structure. Image and mask must
both be in byte-per-pixel form, and must both be of width ImageWidth. Mask

maps isomorphically (one to one) onto image, with each O-byte in mask masking
off corresponding image pixel (causing it not to be drawn), and each non-0-byte
allowing corresponding image pixel to be drawn. Returns 0 if failure, or # of
display memory addresses (4-pixel sets) used if success. For simplicity,
allocated memory is not deallocated in case of failure. Compiled with

Borland C++ in C compilation mode. */

#include <stdio.h>
jHinclude <stdlib.h>
#include "maskim.h"

extern void CopySystemToScreenX(int, int, int, int, int, int, char *,
unsigned int, int, int);

unsigned int CreateAlignedMaskedImage(MaskedImage * ImageToSet,
unsigned int DispMemStart, char * Image, int ImageWidth,
int ImageHeight, char * Mask)

int Align, ScanLine, BitNum, Size, TempImageWidth;
unsigned char MaskTemp;
unsigned int DispMemOffset = DispMemStart;
AlignedMaskedImage *WorkingAMImage;
char *NewMaskPtr, *01dMaskPtr;
/* Generate each of the four alignments in turn. */
for (Align = 0; Align < 4; Align++) {
/* Allocate space for the AlignedMaskedImage struct for this alignment. */
if ((WorkingAMImage = ImageToSet->Alignments[Align] =
malloc(sizeof(AlignedMaskedImage))) == NULL)
return 0;
WorkingAMImage->ImageWidth =
(ImageWidth + Align + 3) / 4; /* width in 4-pixel sets */
WorkingAMImage->ImagePtr = DispMemOffset; /* image dest */
/* Download this alignment of the image. */
CopySystemToScreenX(0, 0, ImageWidth, ImageHeight, Align, O,
Image, DispMemOffset, ImageWidth, WorkingAMImage->ImageWidth * 4);
/* Calculate the number of bytes needed to store the mask in
nibble (Map Mask-ready) form, then allocate that space. */
Size = WorkingAMImage->ImageWidth * ImageHeight;
if ((WorkingAMImage->MaskPtr = malloc(Size)) == NULL)
return 0;

922 Chapter 49

/* Generate this nibble oriented (Map Mask-ready) alignment of
the mask, one scan line at a time. */

01dMaskPtr = Mask;

NewMaskPtr = WorkingAMImage->MaskPtr;

for (ScanlLine = 0; ScanLine < ImageHeight; ScanLine++) {
BitNum = Align;

MaskTemp = 0;
TempImageWidth = ImageWidth;
do {

/* Set the mask bit for next pixel according to its alignment. */
MaskTemp |= (*01dMaskPtr++ != 0) << BitNum;
if (++BitNum > 3) (
*NewMaskPtr++ = MaskTemp;
MaskTemp = BitNum = 0;
}
} while (--TempImageWidth);
/* Set any partial final mask on this scan line. */
if (BitNum != 0) *NewMaskPtr++ = MaskTemp;
}
DispMemOffset += Size; /* mark off the space we just used */
);
return DispMemOffset - DispMemStart;

LISTING 49.4 MASKIM.H

/* MASKIM.H: structures used for storing and manipulating masked
images */

/* Describes one alignment of a mask-image pair. */
typedef struct {
int ImageWidth; /* image width in addresses in display memory (also
mask width in bytes) */
unsigned int ImagePtr; /* offset of image bitmap in display mem */
char *MaskPtr; /* pointer to mask bitmap */
} AlignedMaskedImage;

/* Describes all four alignments of a mask-image pair. */
typedef struct {
AlignedMaskedImage *Alignments[4]; /* ptrs to AlignedMaskedImage
structs for four possible destination
image alignments */
} MaskedImage;

Notes on Masked Copying

Listings 49.1 and 49.2, like all Mode X code I've presented, perform no clipping,
because clipping code would complicate the listings too much. While clipping can
be implemented directly in the low-level Mode X routines (at the beginning of List-
ing 49.1, for instance), another, potentially simpler approach would be to perform
clipping at a higher level, modifying the coordinates and dimensions passed to low-
level routines such as Listings 49.1 and 49.2 as necessary to accomplish the desired
clipping. It is for precisely this reason that the low-level Mode X routines support
programmable start coordinates in the source images, rather than assuming (0,0);
likewise for the distinction between the width of the image and the width of the area
of the image to draw.

Mode X 256-Color Animation

923

Also, it would be more efficient to make up structures that describe the source and
destination bitmaps, with dimensions and coordinates builtin, and simply pass point-
ers to these structures to the low level, rather than passing many separate parameters,
as is now the case. I've used separate parameters for simplicity and flexibility.

or not it’s actually faster than software-only masked or transparent copying de-
pends upon the processor and the video adapter. The advantage of Mode X masked
copying is the 32-bit parallelism; the disadvantages are the need to read display
memory and the need to perform an OUT for every four pixels. (OUT is a slow
486/Pentium instruction, and most VGAs respond to QOUTs much more slowly than
to display memory writes.)

\;p Be aware that as nifty as Mode X hardware-assisted masked copying is, whether

Animation

Gosh. There’s just no way I can discuss high-level animation fundamentals in any
detail here; I could spend an entire (and entirely separate) book on animation tech-
niques alone. You might want to have a look at Chapters 43 through 46 before
attacking the code in this chapter; that will have to do us for the present volume. (I
will return to 3-D animation in the next chapter.)

Basically, I'm going to perform page flipped animation, in which one page (thatis, a
bitmap large enough to hold a full screen) of display memory is displayed while
another page is drawn to. When the drawing is finished, the newly modified page is
displayed, and the other—now invisible—page is drawn to. The process repeats ad
infinitum. For further information, some good places to start are Computer Graphics,
by Foley and van Dam (Addison-Wesley); Principles of Interactive Computer Graphics, by
Newman and Sproull (McGraw Hill); and “Real-Time Animation” by Rahner James
(January 1990, Dr. Dobb’s Journal).

Some of the code in this chapter was adapted for Mode X from the code in Chapter
44—yet another reason to read that chapter before finishing this one.

Mode X Animation in Action

Listing 49.5 ties together everything I've discussed about Mode X so far in a compact
but surprisingly powerful animation package. Listing 49.5 first uses solid and pat-
terned fills and system-memory-to-screen-memory masked copying to draw a static
background containing a mountain, a sun, a plain, water, and a house with puffs of
smoke coming out of the chimney, and sets up the four alignments of a masked kite
image. The background is transferred to both display pages, and drawing of 20 kite
images in the nondisplayed page using fast masked copying begins. After all images
have been drawn, the page is flipped to show the newly updated screen, and the kites
are moved and drawn in the other page, which is no longer displayed. Kites are
erased at their old positions in the nondisplayed page by block copying from the

924 Chapter 49

An animated Mode X screen.
Figure 49.1

background page. (See the discussion in the previous chapter for the display memory
organization used by Listing 49.5.) So far as the displayed image is concerned, there
is never any hint of flicker or disturbance of the background. This continues at a rate
of up to 60 times a second until Esc is pressed to exit the program. See Figure 49.1
for a screen shot of the resulting image—add the animation in your imagination.

LISTING 49.5 L49-5.C

/* Sample mode X VGA animation program. Portions of this code first appeared
in PC Techniques. Compiled with Borland C++ 2.0 in C compilation mode. */

#include <stdio.h>
#include <conio.h>
#include <dos.h>
f#include <math.h>
#include "maskim.h"

fidefine SCREEN_SEG 0xA000
fidefine SCREEN_WIDTH 320
fidefine SCREEN_HEIGHT 240

fidefine PAGEO_START_OFFSET 0

jidefine PAGE1_START_OFFSET (((1ong)SCREEN_HEIGHT*SCREEN_WIDTH)/4)
Jidefine BG_START_OFFSET (((1ong)SCREEN_HEIGHT*SCREEN_WIDTH*2)/4)
fidefine DOWNLOAD_START_OFFSET (((Tong)SCREEN_HEIGHT*SCREEN_WIDTH*3)/4)

static unsigned int PageStartOffsets[2] = {PAGEQ_START_OFFSET,PAGE1_START_OFFSET};
static char GreenAndBrownPattern[] = {2,6,2,6, 6,2,6,2, 2,6,2,6, 6,2,6,2};

static char PineTreePattern(] = {2,2,2,2, 2,6,2,6, 2,2,6,2, 2,2,2,2};

static char BrickPattern[] - {6,6,7.,6, 7,7,7,7, 7,6,6,6, 7,7,7,7,};

static char RoofPattern[] - (8,8,8,7, 7,7,7,7, 8,8,8,7, 8,8.8,7};

ffdefine SMOKE_WIDTH 7
jidefine SMOKE_HEIGHT 7

Mode X 256-Color Animation 925

static char SmokePixels[] = {

0, 0,15,15,15, 0, 0,

static char SmokeMask[] = {

0, 0,
fidefine KITE_WIOTH 10

#define KITE_HEIGHT 16

static char KitePixels[] =

0008901000000403
< < O W

.50,50,50.50.
,51,51,51,51
52

0078901230000000
4445555
0008901000000000
< < O

0000900000000000

static char KiteMas

0, 0,0,0,1,0,0,0,0,0,

.« e a A = O R Y

000000000001101

000100000000010

001111000000101

011111110000001

111111111100010

111111111111100

111111111100000

011111110000000

001111000000000

000100000000000

stat1c Maskedlmage Kitelmage

fidefine NUM_OBJECTS 20

typedef struct {

int X,Y,Width,Height,XDir,YDir, XOtherPage,Y0therPage;

MaskedImage *Image;
} AnimatedObject;

926 Chapter 49

AnimatedObject AnimatedObjects[] = {

{ 0, O,KITE_WIDTH,KITE_HEIGHT, 1, 1, 0, 0,&Kitelmage},
10, 10,KITE_WIDTH,KITE_HEIGHT, 0, 1, 10, 10,&KitelImage},
20, 20,KITE_WIDTH,KITE_HEIGHT,-1, 1, 20, 20,&Kitelmage},
30, 30,KITE_WIDTH,KITE_HEIGHT,-1,-1, 30, 30,&Kitelmage},
40, 40,KITE_WIDTH,KITE_HEIGHT, 1,-1, 40, 40,&Kitelmage},
50, 50,KITE_WIDTH,KITE_HEIGHT, 0,-1, 50, 50,&KitelImage},
60, 60,KITE_WIDOTH,KITE_HEIGHT, 1, 0, 60, 60.,&Kitelmage},
70, 70,KITE_WIDTH,KITE_HEIGHT,-1, 0, 70, 70,&KiteImage},
80, 80,KITE_WIDTH,KITE_HEIGHT, 1, 2, 80, 80,&Kitelmage},
{ 90, 90,KITE_WIDTH,KITE_HEIGHT, 0, 2, 90, 90,&Kitelmage},
{100,100,KITE_WIDTH,KITE_HEIGHT,-1, 2,100,100,&KiteImage},
{110,110,KITE_WIDTH,KITE_HEIGHT,-1,-2,110,110,&KiteImage},
{120,120,KITE_WIDTH,KITE_HEIGHT, 1,-2,120,120,&4Kitelmage},
{130,130,KITE_WIDTH,KITE_HEIGHT, 0,-2,130,130,4Kitelmage},
{140,140,KITE_WIDTH,KITE_HEIGHT, 2, 0,140,140,4Kitelmage},
{150,150,KITE_WIDTH,KITE_HEIGHT,-2, 0,150,150,&Kitelmage},
{160,160,KITE_WIDTH,KITE_HEIGHT, 2, 2,160,160,&KiteImage},
{170,170,KITE_WIDTH,KITE_HEIGHT,-2, 2,170,170,&KiteImage},
{180,180,KITE_WIDTH,KITE_HEIGHT,-2,-2,180,180,&Kitelmage},
{190,190 ,KITE_WIDTH,KITE_HEIGHT, 2,-2,190,190,&KitelImage},

- - - - e

I

void main(void);

void DrawBackground(unsigned int);

void MoveObject{AnimatedObject *);

extern void Set320x240Mode(void);

extern void FillRectangleX(int, int, int, int, unsigned int, int):

extern void FillPatternX(int, int, int, int, unsigned int, char*);

extern void CopySystemToScreenMaskedX(int, int, int, int, int, int,
char *, unsigned int, int, int, char *);

extern void CopyScreenToScreenX(int, int, int, int, int, int,
unsigned int, unsigned int, int, int);

extern unsigned int CreateAlignedMaskedImage(MaskedImage *,
unsigned int, char *, int, int, char *);

extern void CopyScreenToScreenMaskedX(int, int, int, int, int, int,
MaskedImage *, unsigned int, int);

extern void ShowPage(unsigned int);

void main()
{
int DisplayedPage, NonDisplayedPage, Done, i;
union REGS regset;
Set320x240Mode();
/* Download the kite image for fast copying later. */
if (CreateAlignedMaskedImage(&KiteImage, DOWNLOAD_START_OFFSET,
KitePixels, KITE_WIDTH, KITE_HEIGHT, KiteMask) == 0) {
regset.x.ax = 0x0003; int86(0x10, ®set, ®set);
printf("Couldn't get memory\n"): exit();
}
/* Draw the background to the background page. */
DrawBackground(BG_START_OFFSET);
/* Copy the background to both displayable pages. */
CopyScreenToScreenX(0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, 0, O,
BG_START_OFFSET, PAGEO_START_OFFSET, SCREEN_WIDTH, SCREEN_WIDTH);
CopyScreenToScreenX(0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, 0, 0,
BG_START_OFFSET, PAGE1_START_OFFSET, SCREEN_WIDTH, SCREEN_WIDTH);
/* Move the objects and update their images in the nondisplayed
page, then flip the page, until Esc is pressed. */
Done = DisplayedPage = 0;
do {
NonDisplayedPage = DisplayedPage * 1;

Mode X 256-Color Animation 927

/* Erase each object in nondisplayed page by copying block from
background page at tast location in that page. */
for (i=0; 1<NUM_OBJECTS; i++) (
CopyScreenToScreenX(AnimatedObjects[i].X0therPage,
AnimatedObjects[i].YOtherPage,
AnimatedObjects[i].XOtherPage +
AnimatedObjects[i].Width,
AnimatedObjects[i].YOtherPage +
AnimatedObjects[i].Height,
AnimatedObjects[i].X0OtherPage,
AnimatedObjects[i].YOtherPage, BG_START_OFFSET,
PageStartOffsets[NonDisplayedPage], SCREEN_WIDTH, SCREEN_WIDTH);
}
/* Move and draw each object in the nondisplayed page. */
for (i=0; 1<NUM_OBJECTS; i++) {
MoveObject(&AnimatedObjects[il);
/* Draw object into nondisplayed page at new location */
CopyScreenToScreenMaskedX(0, 0, AnimatedObjects[i].Width,
AnimatedObjects[i].Height, AnimatedCbjects[i].X,
AnimatedObjects[i].Y, AnimatedObjects[i].Image,
PageStartOffsets[NonDisplayedPage], SCREEN_WIDTH);
}
/* F1ip to the page into which we just drew. */
ShowPage(PageStartOffsets[DisplayedPage = NonDisplayedPage]);
/* See if it's time to end. */
if (kbhit(}) {
if (getch() == 0x1B) Done = 1; /* Esc to end */
}
} while (!Done);
/* Restore text mode and done. */
regset.x.ax = 0x0003; int86(0x10, ®set, ®set);
}
void DrawBackground(unsigned int PageStart)
{
int i,j,Temp;
/* Fi11 the screen with cyan. */
FillRectangleX(0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, PageStart., 11);
/* Draw a green and brown rectangle to create a flat plain. */
Fil1PatternX(0, 160, SCREEN_WIDTH, SCREEN_HEIGHT, PageStart,
GreenAndBrownPattern);
/* Draw blue water at the bottom of the screen. */
Fi11RectangleX(0, SCREEN_HEIGHT-30, SCREEN_WIDTH, SCREEN_HEIGHT,
PageStart, 1);
/* Draw a brown mountain rising out of the plain. */
for (i=0; 1<120; i++)
Fil1TRectangl1eX(SCREEN_WIDTH/2-30-1i, 51+i, SCREEN_WIDTH/2-30+i+1,
51+i+1, PageStart, 6);
/* Draw a yellow sun by overlapping rects of various shapes. */
for (i=0; i<=20; i++) {
Temp = (int)(sqrt(20.0*20.0 - (float)i*(float)i) + 0.5);
Fil1RectangleX(SCREEN_WIDTH-25-4, 30-Temp, SCREEN_WIDTH-25+i+1,
30+Temp+1, PageStart, 14);
}
/* Draw green trees down the side of the mountain. */
for (i=10; i<90; i += 15)
for (j=0; j<20; j++)
Fil1PatternX(SCREEN_WIDTH/2+i-j/3-15, i+j+51,SCREEN_WIDTH/2+i+j/3-15+1,
i+j+51+1, PageStart, PineTreePattern);
/* Draw a house on the plain. */
FillPatternX(265, 150, 295, 170, PageStart, BrickPattern);

928 Chapter 49

}

Fil1PatternX(265, 130, 270, 150, PageStart, BrickPattern);
for (i=0; i<12; i++)
FillPatternX(280-i*2, 138+i, 280+i*2+1, 138+i+1, PageStart, RoofPattern);
/* Finally, draw puffs of smoke rising from the chimney. */
for (i=0; i<4; i++)
CopySystemToScreenMaskedX(0, 0O, SMOKE _WIDTH, SMOKE_HEIGHT, 264,
110-i*20, SmokePixels, PageStart, SMOKE_WIDTH,SCREEN_WIDTH, SmokeMask);

/* Move the specified object, bouncing at the edges of the screen and

remembering where the object was before the move for erasing next time. */

void MoveObject(AnimatedObject * ObjectToMove) {

}

Here’s something worth noting: The animation is extremely smooth on a 20 MHz
386. It is somewhat more jerky on an 8 MHz 286, because only 30 frames a second
can be processed. If animation looks jerky on your PC, try reducing the number of kites.

The kites draw perfectly into the background, with no interference or fringe, thanks
to masked copying. In fact, the kites also cross with no interference (the last-drawn
kite is always in front), although that’s not readily apparent because they all look the
same anyway and are moving fast. Listing 49.5 isn’t inherently limited to kites; create
your own images and initialize the object list to display a mix of those images and see

int X, Y;

X = ObjectToMove->X + ObjectToMove->XDir;

Y = ObjectToMove->Y + ObjectToMove->YDir;

if ((X < 0) || (X > (SCREEN_WIDTH - ObjectToMove->Width))) {
ObjectToMove->XDir = -ObjectToMove->XDir;
X = ObjectToMove->X + ObjectToMove->XDir;

}

if ((Y < 0) || (Y > (SCREEN_HEIGHT - ObjectToMove->Height))) {
ObjectToMove->YDir = -0ObjectToMove->YDir;
Y = ObjectToMove->Y + ObjectToMove->YDir;

}

/* Remember previous location for erasing purposes. */

ObjectToMove->X0therPage = ObjectToMove->X;

ObjectToMove->Y0therPage = ObjectToMove->Y;

ObjectToMove->X = X; /* set new location */

ObjectToMove->Y = Y;

the full power of Mode X animation.

The external functions called by Listing 49.5 can be found in Listings 49.1, 49.2,

49.3, and 49.6, and in the listings for the previous two chapters.

LISTING 49.6 149-6.ASM

Shows the page at the specified offset in the bitmap. Page is displayed when
this routine returns.

; C near-callable as: void ShowPage(unsigned int StartOffset);

INPUT_STATUS_1 equ 03dah ;Input Status 1 register
CRTC_INDEX equ 03d4h ;CRT Controller Index reg
START_ADDRESS_HIGH equ Och ;bitmap start address high byte
START_ADDRESS_LOWequ 0dh ;bitmap start address low byte
ShowPageParms struc

dw 2 dup (?) ;pushed BP and return address
StartOffset dw ? ;offset in bitmap of page to display

ShowPageParms ends

Mode X 256-Color Animation

929

.model small

.code
publiic _ShowPage
_ShowPage proc near
push bp ;preserve caller's stack frame
mov bp.sp ;point to local stack frame

; Wait for display enable to be active (status is active low), to be
; sure both halves of the start address will take in the same frame.

mov b1,START_ADDRESS_LOW ;preload for fastest
mov bh,byte ptr StartOffset[bp] ; flipping once display
mov c1,START_ADDRESS_HIGH ; enable is detected
mov ch,byte ptr StartOffset+1[bp]
mov dx, INPUT_STATUS 1
WaitDE:
in al,dx
test al,0lh
jnz WaitDE ;display enable is active low (0 = active)

; Set the start offset in display memory of the page to display.
mov dx,CRTC_INDEX

mov ax,bx
out dx,ax ;start address low
mov ax,cx
out dx,ax ;start address high

; Now wait for vertical sync, so the other page will be invisible when
; We start drawing to it.

mov dx, INPUT_STATUS_1
WaitVvs:
in al,dx
test al,08h
jz Waitvs ;vertical sync is active high (1 = active)
pop bp ;restore caller's stack frame
ret
_ShowPage endp
end

Works Fast, Looks Great

We now end our exploration of Mode X, although we’ll use it again shortly for 3-D
animation. Mode X admittedly has its complexities; that’s why I've provided a broad
and flexible primitive set. Still, so what if it is complex? Take a look at Listing 49.5 in
action. That sort of colorful, high-performance animation is worth jumping through
a few hoops for; drawing 20, or even 10, fair-sized objects at a rate of 60 Hz, with no
flicker, interference, or fringe, is no mean accomplishment, even on a 386.

There’s much more we could do with animation in general and with Mode X in
particular, but it’s time to move on to new challenges. In closing, I'd like to point out
that all of the VGA’s hardware features, including the built-in AND, OR, and XOR
functions, are available in Mode X, just as they are in the standard VGA modes. If
you understand the VGA’s hardware in mode 12H, try applying that knowledge to
Mode X; you might be surprised at what you find you can do.

930 Chapter 49

	previous:
	home:
	next:

