Mode X Marks
the Latch

&£
4

, of Animation’s Best Video Display Mode

In the prev10us cha ter, I introduced you to what I call Mode X, an undocumented
320x240 256-color n'k?de of the VGA. Mode X is distinguished from mode 13H, the
documented 320x200256-color VGA mode, in that it supports page flipping, makes
off-screen memory ava&fmm square pixels, and, above all, lets you use the VGA’s
hardware to mcreaseéberformance by as much as four times. (Of course, those four
times come at the C0§t of more complex and demanding programming, to be sure—
but end users care about results, not how hard the code was to write, and Mode X
delivers results in/a big way.) In the previous chapter we saw how the VGA’s plane-
oriented hafrdw can be used to speed solid fills. That’s a nice technique, but now
we’re going to move, up to the big guns—the VGA latches.

The VGA has four latéhes, one for each plane of display memory. Each latch stores
exactly one byte, and that byte is always the last byte read from the corresponding
plane of display memory, as shown in Figure 48.1. Furthermore, whenever a given
address in display memory is read, all four planes’ bytes at that address are read and
stored in the corresponding latches, regardless of which plane supplied the byte
returned to the CPU (as determined by the Read Map register). As with so much else
about the VGA, the above will make little sense to VGA neophytes, but the important
point is this: By reading one display memory byte, 4 bytes—one from each plane—
can be loaded into the latches at once. Any or all of those 4 bytes can then be written
anywhere in display memory with a single byte-sized write, as shown in Figure 48.2.

897

The value 49, from plane 1, is read by the CPU
?

Plane select
on reads

- Read Map register
o] (currently selects plane 1)

A R BN All four latches are loaded from

[51] [50] [49] [48] the corresponding planes by every

4 display memory read

I 48 Plane O
149 | Plane 1
(50| Plane 2
51 Plane 3

How the VGA latches are loaded.
Figure 48.1

The value OFFh is written by the CPU

[51]([50](|49]|[48] «—— The Latches
Bit Mask rgglster eoch 1 blt selects correlspondmg

=1 = [0] bit from C
A seffing of 00h selects all bits from latches

[77016] Map Mask register; each 1 bit enables writes to
- « [110th] correspond u?gg plane, each 0 bit blocks

each 0 bit selects bit from latches

48 | Plane 0
| 19] Plane 1
I E Plane 2
51 Plane 3

Display Memory

Writing 4 bytes to display memory in a single operation.

Figure 48.2

898 Chapter 48

The upshot is that the latches make it possible to copy data around from one part of
display memory to another, 32 bits (four pixels) at a time—four times as fast as nor-
mal. (Recall from the previous chapter that in Mode X, pixels are stored one per
byte, with four pixels in a row stored in successive planes at the same address, one
pixel per plane.) However, any one latch can only be loaded from and written to the
corresponding plane, so an individual latch can only work with every fourth pixel on
the screen; the latch for plane 0 can work with pixels 0, 4, 8..., the latch for plane 1
with pixels 1, 5, 9..., and so on.

The latches aren’t intended for use in 256-color mode—they were designed to allow
individual bits of display memory to be modified in 16-color mode—but they are
nonetheless very useful in Mode X, particularly for patterned fills and screen-to-screen
copies, including scrolls. Patterned filling is a good place to start, because patterns
are widely used in windowing environments for desktops, window backgrounds, and
scroll bars, and for textures and color dithering in drawing and game software.

Fast Mode X fills using patterns that are four pixels in width can be performed by
drawing the pattern once to the four pixels at any one address in display memory,
reading that address to load the pattern into the latches, setting the Bit Mask register
to 0 to specify that all bits drawn to display memory should come from the latches,
and then performing the fill pretty much as we did in the previous chapter—except
that each line of the pattern must be loaded into the latches before the correspond-
ing scan line on the screen is filled. Listings 48.1 and 48.2 together demonstrate a
variety of fast Mode X four-by-four pattern fills. (The mode set function called by
Listing 48.1 is from the previous chapter’s listings.)

LISTING 48.1 L48-1.C

/* Program to demonstrate Mode X (320x240, 256 colors) patterned
rectangle fills by filling the screen with adjacent 80x60
rectangles in a variety of patterns. Tested with Borland C++
in C compilation mode and the small model */

f#include <conio.h>

#include <dos.h>

void Set320x240Mode(void);
void FillPatternX(int, int, int, int, unsigned int, char*);

/* 16 4x4 patterns */

static char Patto[]=(10,0,10,0,0,10,0,10,10,0,10,0,0,10,0,10};
static char Pattl[]={9.,0,0,0,0,9,0,0,0,0,9,0,0,0,0,9};

static char Patt2(]={5,0,0,0,0,0,5,0,5,0,0,0,0,0,5,0};

static char Patt3[]={14,0,0,14,0,14,14,0,0,14,14,0,14,0,0,14}
static char Patt4(]={15,15,15,1,15,15,1,1,15,1,1,1,1,1,1,1};

static char Patts[]={12,12,12,12,6,6,6,12,6.6,6,12,6,6,6,12};

static char Patté6{]=(80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,15};
static char Patt7[]={78,78,78,78,80,80,80,80,82,82,82,82,84,84,84,84};
static char Patt8[]-{78,80,82,84,80,82,84,78,82,84,78,80,84,78,80,82};
static char Patt9[]=(78,80,82,84,78,80,82,84,78,80,82,84,78,80,82,84};
static char Pattlo[]=(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};

static char Pattll[]={0.1,2,3,0,1,2,3,0,1.2,3,0,1,2,3};

static char Patt12[1={14,14,9,9,14,9,9,14,9.9,14,14,9,14,14,9}:

static char Patt13[{]={15,8,8,8,15,15,15,8,15,15,15,8,15,8,8,8};

Mode X Marks the Latch 899

200

static char Patt14[1~{3,3,3,3.3.,7,7,3,3,7.7.3,3,3,3.3};
static char Patt15{}-(0,0,0,0,0,64,0,0,0,0,0,0,0,0,0,89);
/* Table of pointers to the 16 4x4 patterns with which to draw */
static char* PattTable[] = {PattO,Pattl,Patt2,Patt3,Patt4,Patt5,Patté,
Patt7,Patt8,Patt9,Pattl0,Pattll,Pattl2,Pattl3,Pattl4, Pattls};

void main() {

int i.];:

union REGS regset;

Set320x240Mode();

for (j = 0; J < 4; j++) {
for (i = 0; i < 4; i++) {

Fit1PatternX(i*80,j*60,1*80+80,j*60+60,0,PattTable[j*4+i]);

}

}

getch();

regset.x.ax = 0x0003; /* switch back to text mode and done */

int86(0x10, ®set, ®set);

LISTING 48.2 L48-2.ASM

Mode X (320x240, 256 colors) rectangle 4x4 pattern fill routine.
Upper left corner of pattern is always aligned to a muitiple-of-4

; row and column. Works on all VGAs. Uses approach of copying the
pattern to off-screen display memory, then loading the latches with
the pattern for each scan 1ine and filling each scan line four
pixels at a time. Fills up to but not including the column at EndX
; and the row at EndY. No clipping is performed. A1l ASM code tested
with TASM. C near-callable as:

H void FillPatternX(int StartX, int StartY, int EndX, int EndY,

H unsigned int PageBase, char* Pattern);

SC_INDEX equ 03c4h ;Sequence Controller Index register port

MAP_MASK equ 02h ;index in SC of Map Mask register

GC_INDEX equ 03ceh ;Graphics Controller Index register port

BIT_MASK equ 08h ;index in GC of Bit Mask register

PATTERN_BUFFER equ Offfch ;offset in screen memory of the buffer used
; to store each pattern during drawing

SCREEN_SEG equ 0a000Ch ;segment of display memory in Mode X

SCREEN_WIDTH equ 80 ;width of screen in addresses from one scan

; line to the next
parms struc

dw 2 dup (?) ;pushed BP and return address

StartX dw ? ;X coordinate of upper left corner of rect

Starty dw ? ;Y coordinate of upper left corner of rect

EndX dw ? ;X coordinate of lower right corner of rect
; (the row at EndX is not filled)

EndY dw ? ;Y coordinate of lower right corner of rect
; (the column at EndY is not filled)

PageBase dw ? ;base offset in display memory of page in
; which to fill rectangle

Pattern dw ? ;4x4 pattern with which to fill rectangle

parms ends

NextScanOffset equ -2 ;local storage for distance from end of one
; scan line to start of next

RectAddrWidth equ -4 ;local storage for address width of rectangle

Height equ -6 ;local storage for height of rectangle

STACK_FRAME_SIZE equ 6

Chapter 48

; Plane masks for clipping left and right edges of rectangle.

.model small

.data
LeftClipPlaneMask db
RightClipPlaneMask db

.code

public _FillPatternX
_FilipPatternX proc near

push bp

mov bp,sp

sub sp,STACK_FRAME_SIZE

push si

push di

cld

mov ax,SCREEN_SEG

mov es,ax

mov si,[bp+Pattern]

mov di,PATTERN_BUFFER

mov dx,SC_INDEX

mov al,MAP_MASK

out dx,al

inc dx

mov cx,4
DownloadPatternLoop:

mov al,1

out dx,al

movsb

dec di

mov al,2

out dx,al

movsh

dec di

mov al,4

out dx,al

movsb

dec di

mov al,8

out dx,al

movsbh

Toop DownloadPatternLoop

mov dx,GC_INDEX

mov ax,00000h+BIT_MASK

out dx,ax

mov ax,[bp+StartY]

mov si,ax

and si,011b

add si,PATTERN_BUFFER

mov dx,SCREEN_WIDTH

mul dx

mov di,[bp+StartX]

mov bx,di

shr di.1l

shr di,1

add di,ax

00fh,00eh,00ch,008h
00fh,001h,003h,007h

;preserve caller's stack frame

;point to Tocal stack frame

;allocate space for local vars
;preserve caller’s register variables

;point ES to display memory

;copy pattern to display memory buffer
;point to pattern to fill with

;point ES:DI to pattern buffer

;point Sequence Controller Index to

; Map Mask

;point to SC Data register
;4 pixel quadruplets in pattern

;select plane 0 for writes
;copy over next plane 0 pattern pixel
;stay at same address for next plane
;select plane 1 for writes
;copy over next plane 1 pattern pixel
;stay at same address for next plane

;select plane 2 for writes

;copy over next plane 2 pattern pixel
;stay at same address for next plane
;select plane 3 for writes

;copy over next plane 3 pattern pixel
; and advance address

;set the bit mask to select all bits
; from the latches and none from

; the CPU, so that we can write the
; latch contents directly to memory
;top rectangle scan line

;top rect scan line modulo 4

;point to pattern scan line that

; maps to top line of rect to draw

;offset in page of top rectangle scan line

;X/4 = offset of first rectangle pixel in scan

i Tine
;offset of first rectangle pixel in page

Mode X Marks the Latch

901

add

and
mov
mov
and
mov
mov

mov
mov
cmp
jle
dec
and
sub
shr
shr
jnz
and

MasksSet:
mov
sub
jle
mov
mov
sub
dec
mov
mov
mov

Fil11RowsLoop:
mov
mov

inc

jnz

sub
NoWrap:

mov

out

stosb

dec
Js
jz
mov
out
rep

DoRightEdge:
mov
out
stosb

Fil1LoopBottom:
add

902 Chapter 48

di,[bp+PageBase]

bx,0003h
ah,LeftClipPlaneMask[bx]
bx, [bp+EndX]

bx,0003h
al,RightClipPlaneMask[bx]
bx,ax

cx, [bp+EndX]
ax,[bp+StartX]
CX,ax
Fi11Done

cX

ax,not 011b
CX,ax

cx,1

cx,1
MasksSet

bh, bl

ax, [bp+EndY]

ax, [bp+Starty]
Fi11Done
[bp+Height],ax
ax,SCREEN_WIDTH

ax,cx

ax
[bp+NextScanOffset],ax
[bp+RectAddrWidth], cx
dx,SC_INDEX+1

cx,[bptRectAddriWidth]
al,es:{si]

si
short NoWrap
si,4

al,bh
dx,al

cx
FillLoopBottom
DoRightEdge
al,00fh

dx,al

stosb

al,bl
dx,al

di,[bp+NextScanOffset]

;offset of first rectangle pixel in
; display memory

;Jook up left edge plane mask

; to clip

;1ook up right edge plane
; mask to clip
;put the masks in BX

;calculate # of addresses across rect

;skip if 0 or negative width

;# of addresses across rectangle to fill - 1
;there's more than one pixel to draw

;there's only one pixel, so combine the left-
; and right-edge clip masks

;AX = height of rectangle
;skip if 0 or negative height

;distance from end of one scan line to start
; of next

;remember width in addresses - 1
;point to Sequence Controller Data reg
; (SC Index still points to Map Mask)

;width across - 1
;read display memory to latch this scan
; line's pattern

;point to the next pattern scan line, wrapping

; back to the start of the pattern if
; we've run off the end

;put left-edge clip mask in AL

;set the left-edge plane (clip) mask
;draw the left edge (pixels come from Tatches;
; value written by CPU doesn't matter)

;count off left edge address

;that's the only address

;there are only two addresses

;middle addresses are drawn 4 pixels at a pop
;set the middle pixel mask to no clip

;draw the middle addresses four pixels apiece

; (from latches; value written doesn't matter)

;put right-edge clip mask in AL

;set the right-edge plane (clip) mask
;draw the right edge (from latches; value
; written doesn't matter)

;point to the start of the next scan
; line of the rectangle

dec word ptr [bp+Height] ;count down scan lines

jnz Fil1RowsLoop
FillDone:
mov dx,GC_INDEX+1 ;restore the bit mask to its default,
mov al,0ffh ; which selects all bits from the CPU
out dx,al ; and none from the Tatches (the GC
; Index still points to Bit Mask)
pop di ;restore caller's register variables
pop si
mov sp.bp ;discard storage for local variables
pop bp ;restore caller's stack frame
ret
_FillPatternX endp
end

Four-pixel-wide patterns are more useful than you might imagine. There are actually
2128 possible patterns (16 pixels, each with 28 possible colors); that set is certainly
large enough for most color-dithering purposes, and includes many often-used pat-
terns, such as halftones, diagonal stripes, and crosshatches.

Furthermore, eight-wide patterns, which are widely used, can be drawn with two
passes, one for each half of the pattern. This principle can in fact be extended to
patterns of arbitrary multiple-of-four widths. (Widths that aren’t multiples of four
are considerably more difficult to handle, because the latches are four pixels wide;
one possible solution is expanding such patterns via repetition until they are mul-
tiple-of-four widths.)

Allocating Memory in Mode X

Listing 48.2 raises some interesting questions about the allocation of display memory
in Mode X. In Listing 48.2, whenever a pattern is to be drawn, that pattern is first
drawn in its entirety at the very end of display memory; the latches are then loaded
from that copy of the pattern before each scan line of the actual fill is drawn. Why
this double copying process, and why is the pattern stored in that particular area of
display memory?

The double copying process is used because it’s the easiest way to load the latches.
Remember, there’s no way to get information directly from the CPU to the latches;
the information must first be written to some location in display memory, because
the latches can be loaded only from display memory. By writing the pattern to off-
screen memory, we don’t have to worry about interfering with whatever is currently
displayed on the screen.

As for why the pattern is stored exactly where it is, that’s part of a master memory
allocation plan that will come to fruition in the next chapter, when I implement a
Mode X animation program. Figure 48.3 shows this master plan; the first two pages
of memory (each 76,800 pixels long, spanning 19,200 addresses—that is, 19,200 pixel
quadruplets—in display memory) are reserved for page flipping, the next page of
memory (also 76,800 pixels long) is reserved for storing the background (which is

Mode X Marks the Latch 903

Offset 0

Page O

Displayed on every
other page flip

Offset 19200

Page 1

Displayed on every
other page flip

Offset 38400

Background page

Stores complete static
| background; used to
| redraw other pages

Offset 57600

Storage for images,
icons, and buffers

Offset 65532 Temporary pattern

__buffer

A useful Mode X display memory layout.
Figure 48.3

used to restore the holes left after images move), the last 16 pixels (four addresses)
of display memory are reserved for the pattern buffer, and the remaining 31,728
pixels (7,932 addresses) of display memory are free for storage of icons, images,
temporary buffers, or whatever.

This is an efficient organization for animation, but there are certainly many other
possible setups. For example, you might choose to have a solid-colored background,
in which case you could dispense with the background page (instead using the solid
rectangle fill routine to replace the background after images move), freeing up an-
other 76,800 pixels of off-screen storage for images and buffers. You could even
eliminate page-flipping altogether if you needed to free up a great deal of display
memory. For example, with enough free display memory it is possible in Mode X to
create a virtual bitmap three times larger than the screen, with the screen becoming
a scrolling window onto that larger bitmap. This technique has been used to good
effect in a number of animated games, with and without the use of Mode X.

904 Chapter 48

Copying Pixel Blocks within Display Memory

Another fine use for the latches is copying pixels from one place in display memory
to another. Whenever both the source and the destination share the same nibble
alignment (that is, their start addresses modulo four are the same), it is not only
possible but quite easy to use the latches to copy four pixels at a time. Listing 48.3
shows a routine that copies via the latches. (When the source and destination do not
share the same nibble alignment, the latches cannot be used because the source and
destination planes for any given pixel differ. In that case, you can set the Read Map
register to select a source plane and the Map Mask register to select the correspond-
ing destination plane. Then, copy all pixels in that plane, repeating for all four planes.)

Although copying through the latches is, in general, a speedy technique, espe-
cially on slower VGAs, it’s not always a win. Reading video memory tends to be
quite a bit slower than writing, and on a fast VLB or PCI adapter, it can be faster
to copy from main memory to display memory than it is to copy from display memory
to display memory via the latches.

I.ISTING 48.3 L48-3.ASM

Mode X (320x240, 256 colors) display memory to display memory copy

; routine. Left edge of source rectangle modulo 4 must equal left edge
; of destination rectangle modulo 4. Works on all VGAs. Uses approach

; of reading 4 pixels at a time from the source into the latches, then
; writing the latches to the destination. Copies up to but not

; including the column at SourceEndX and the row at SourceEndY. No

; clipping is performed. Results are not guaranteed if the source and

; destination overlap. C near-callable as:

H void CopyScreenToScreenX(int SourceStartX, int SourceStarty,
; int SourceEndX, int SourceEndY, int DestStartX,

H int DestStartY, unsigned int SourcePageBase,

H unsigned int DestPageBase, int SourceBitmapWidth,

: int DestBitmapWidth);

SC_INDEX equ 03c4h ;Sequence Controller Index register port
MAP_MASK equ 02h ;index in SC of Map Mask register
GC_INDEX equ 03ceh ;Graphics Controller Index register port
BIT_MASK equ 08h ;index in GC of Bit Mask register
SCREEN_SEG equ 0a000h ;segment of display memory in Mode X

parms struc

dw 2 dup (?) ;pushed BP and return address
SourceStartX dw ? ;X coordinate of upper-left corner of source
SourceStarty dw ? ;Y coordinate of upper-left corner of source
SourceEndX dw ? ;X coordinate of lower-right corner of source
; (the row at SourceEndX is not copied)
SourceEndY dw ? ;Y coordinate of lower-right corner of source
; (the column at SourceEndY is not copied)
DestStartX dw ? ;X coordinate of upper-left corner of dest
DestStartY dw ? ;Y coordinate of upper-left corner of dest
SourcePageBase dw ? ;base offset in display memory of page in
; which source resides
DestPageBase dw ? ;base offset in display memory of page in

; which dest resides

Mode X Marks the Latch 905

SourceBitmapWidt
DestBitmapWidth

parms ends

SourceNextScan0f
DestNextScan0ffs

RectAddrWidth
Height
STACK_FRAME_SIZE

.model
.data
; Plane masks fo
LeftClipPlaneMas
RightClipPlaneMa
.code
public
_CopyScreenToScr
push
mov
sub
push
push
push

cld
mov
mov
out

mov
mov
mov
shr
shr
mul
mov
shr
shr
add
add

mov
shr
shr
mul
mov
mov
shr
shr
add
add

and

mov
mov

906 Chapter 48

h dw ?
dw ?

fset equ -2

et equ -4
equ -6
equ -8
equ 8

small

r clipping

k db

sk db

_CopyScreenToScreenX

eenX proc near

bp

bp.sp

sp,STACK_FRAME_SIZE
si
di
ds

dx,GC_INDEX
ax,00000h+BIT_MASK
dx,ax

ax,SCREEN_SEG

es,ax

ax, [bp+DestBitmapWidth]
ax,1

ax,1

[bp+DestStartY]
di.(bp+DestStartX]
di.l

di,1

di,ax
di,[bp+DestPageBase]

; in display memory
ax,[bp+SourceBitmapWidth]
ax,1
ax,1
[bp+SourceStartY]
si,[bp+SourceStartXx]
bx,si
si,l
si,1
si,ax
si,[bp+SourcePageBase]

bx,0003h
ah,LeftClipPlaneMask[bx]
bx, [bp+SourceEndX]

:# of pixels across source bitmap
; (must be a multiple of 4)

;# of pixels across dest bitmap

; (must be a multiple of 4)

;local storage for distance from end of

; one source scan line to start of next
;local storage for distance from end of

; one dest scan line to start of next

;local storage for address width of rectangle
;local storage for height of rectangle

left and right edges of rectangle.
00fh,00eh,00ch,008h
00fh,001h,003h,007h

;preserve caller's stack frame

;point to Tocal stack frame

;allocate space for local vars
;preserve caller's register variables

;set the bit mask to select all bits
; from the latches and none from

; the CPU, so that we can write the
: latch contents directly to memory
;point ES to display memory

;convert to width in addresses
;top dest rect scan line

;X/4 = offset of first dest rect pixel in
; scan line

;offset of first dest rect pixel in page
;offset of first dest rect pixel

;convert to width in addresses

;top source rect scan line

1 X/4 = offset of first source rect pixel in
; scan line

;offset of first source rect pixel in page
;offset of first source rect

; pixel in display memory

;1ook up left edge plane mask

; to clip

and bx,0003h
mov al,RightCiipPtaneMask[bx]
mov bx,ax
mov cx,[bp+SourceEndX]
mov ax,[bp+SourceStartX]
cmp cX,ax
jle CopyDone
dec cx
and ax,not 0llb
sub CX,ax
shr cx,1
shr cx,1
jnz MasksSet
and bh,bl
MasksSet:
mov ax, [bp+SourceEndY]
sub ax, [bp+SourceStartY]
jle CopyDone
mov [bp+Height],ax
mov ax, [bp+DestBitmapWidth]
shr ax,1l
shr ax,1
sub ax,cx
dec ax
mov [bptDestNextScan0ffset],ax
mov ax,[bp+SourceBitmapWidth]
shr ax,1
shr ax,1
sub ax,cx
dec ax
mov [bp+SourceNextScanOffset],ax
mov [bp+RectAddrWidth],cx
R R R BUG FIX
mov dx,SC_INDEX
mov al,MAP_MASK
out dx,al
inc dx
Ha e BUG FIX
mov ax,es
mov ds,ax
CopyRowsLoop:
mov cx, [bp+RectAddrWidth]
mov al,bh
out dx,al
movsb
dec (3
js CopyLoopBottom
jz DoRightEdge
mov al,00fh
out dx,al
rep movsb
DoRightEdge:
mov al,bl
out dx,al
movsb

;1ook up right-edge plane
; mask to clip
;put the masks in BX

;calculate # of addresses across
; rect

;skip if 0 or negative width

:## of addresses across rectangle to copy - 1
;there's more than one address to draw
;there's only one address, so combine the

; left- and right-edge clip masks

;AX = height of rectangle
;skip if 0 or negative height

;convert to width in addresses

;distance from end of one dest scan line to
; start of next

;convert to width in addresses

;distance from end of one source scan line to
; start of next

;remember width in addresses - 1

;point SC Index reg to Map Mask
;point to SC Data reg

;DS=ES=screen segment for MOVS

;width across - 1

;put Teft-edge clip mask in AL

;set the left-edge plane (clip) mask

;copy the left edge (pixels go through

; latches)

;count off left edge address

sthat's the only address

;there are only two addresses

;middle addresses are drawn 4 pixels at a pop
;set the middle pixel mask to no clip

;draw the middle addresses four pixels apiece
; (pixels copied through latches)

;put right-edge clip mask in AL

;set the right-edge plane (clip) mask

;draw the right edge (pixels copied through
; latches)

Mode X Marks the Latch

907

CopyLoopBottom:

add si,[bptSourceNextScanOffset] ;point to the start of
add di,[bp+DestNextScanOffset] ; next source & dest lines
dec word ptr [bp+Height] ;count down scan lines
jnz CopyRowsLoop
CopyDone:
mov dx,GC_INDEX+1 ;restore the bit mask to its default,
mov al,0ffh ; which selects all bits from the CPU
out dx,al ; and none from the latches (the GC
; Index still points to Bit Mask)
pop ds
pop di ;restore caller's register variables
pop si
mov sp,bp ;discard storage for local variables
pop bp srestore caller's stack frame
ret
_CopyScreenToScreenX endp
end

Listing 48.3 has an important limitation: It does not guarantee proper handling when
the source and destination overlap, as in the case of a downward scroll, for example.
Listing 48.3 performs top-to-bottom, left-to-right copying. Downward scrolls require
bottom-to-top copying; likewise, rightward horizontal scrolls require right-to-left copy-
ing. As it happens, my intended use for Listing 48.3 is to copy images between
off-screen memory and on-screen memory, and to save areas under pop-up menus
and the like, so I don’t really need overlap handling—and I do really need to keep
the complexity of this discussion down. However, you will surely want to add overlap
handling if you plan to perform arbitrary scrolling and copying in display memory.

Now that we have a fast way to copy images around in display memory, we can draw
icons and other images as much as four times faster than in mode 13H, depending
on the speed of the VGA’s display memory. (In case you're worried about the nibble-
alignment limitation on fast copies, don’t be; I'll address that fully in due time, but
the secret is to store all four possible rotations in off-screen memory, then select the
correct one for each copy.) However, before our fast display memory-to-display
memory copy routine can do us any good, we must have a way to get pixel patterns
from system memory into display memory, so that they can then be copied with the
fast copy routine.

Copying to Display Memory

The final piece of the puzzle is the system memory to display-memory-copy-routine
shown in Listing 48.4. This routine assumes that pixels are stored in system memory
in exactly the order in which they will ultimately appear on the screen; that is, in the
same linear order that mode 13H uses. It would be more efficient to store all the
pixels for one plane first, then all the pixels for the next plane, and so on for all four
planes, because many OUTs could be avoided, but that would make images rather
hard to create. And, while it is true that the speed of drawing images is, in general,
often a critical performance factor, the speed of copying images from system memory

908 Chapter 48

to display memory is not particularly critical in Mode X. Important images can be
stored in offsscreen memory and copied to the screen via the latches much faster than
even the speediest system memory-to-display memory copy routine could manage.

I'm not going to present a routine to perform Mode X copies from display memory to
system memory, but such a routine would be a straightforward inverse of Listing 48.4.

LISTING 48.4 L48-4.ASM

Mode X (320x240, 256 colors) system memory to display memory copy

; routine. Uses approach of changing the plane for each pixel copied;

; this is slower than copying all pixels in one plane, then all pixels
; in the next plane, and so on, but it is simpler; besides, images for
; which performance is critical should be stored in off-screen memory
; and copied to the screen via the latches. Copies up to but not

; including the column at SourceEndX and the row at SourceEndY. No

; clipping is performed. C near-callable as:

3 void CopySystemToScreenX(int SourceStartX, int SourceStarty,

H int SourceEndX, int SourceEndY, int DestStartX,

; int DestStartY, char* SourcePtr, unsigned int DestPageBase,
: int SourceBitmapWidth, int DestBitmapWidth);

SC_INDEX equ 03c4h ;Sequence Controller Index register port
MAP_MASK equ 02h ;index in SC of Map Mask register
SCREEN_SEG equ 0a000h ;segment of display memory in Mode X
parms struc
dw 2 dup (?) ;pushed BP and return address
SourceStartX dw ? ;X coordinate of upper-left corner of source
SourceStartyY dw ? ;Y coordinate of upper-left corner of source
SourcekndX dw ? ;X coordinate of lower-right corner of source
; (the row at EndX is not copied)
SourceEndY dw ? ;Y coordinate of lower-right corner of source
; (the column at EndY is not copied)
DestStartX dw ? ;X coordinate of upper-left corner of dest
DestStartY dw ? ;Y coordinate of upper-left corner of dest
SourcePtr dw ? ;pointer in DS to start of bitmap in which
; source resides
DestPageBase dw ? ;base offset in display memory of page in
; which dest resides
SourceBitmapWidth dw ? ;# of pixels across source bitmap
DestBitmapWidth dw ? +# of pixels across dest bitmap
: (must be a multiple of 4)
parms ends
RectWidth equ -2 ;local storage for width of rectangle
LeftMask equ -4 ;:local storage for left rect edge plane mask

STACK_FRAME_SIZE equ 4

.model small

.code
public _CopySystemToScreenX
_CopySystemToScreenX proc near
push bp ;preserve caller's stack frame
mov bp,sp ;point to Tocal stack frame
sub sp,STACK_FRAME_SIZE ;allocate space for local vars
push si ;preserve caller's register variables
push di

Mode X Marks the Latch

909

cld

mov ax,SCREEN_SEG
mov es,ax
mov ax, [bp+SourceBitmapWidth]
mul [bp+SourceStarty]
add ax, [bp+SourceStartX]
add ax,[bp+SourcePtr]
mov si,ax
mov ax,[bp+DestBitmapWidth]
shr ax,1
shr ax,1
mov [bp+DestBitmapWidth],ax
mul [bp+DestStartY]
mov di,[bp+DestStartX]
mov cx,di
shr di,1
shr di,1
add di,ax
add di,[bp+DestPageBase]
and cl1,011b
mov al,1lh
shi al,cl
mov [bp+LeftMask],al
mov cx, [bp+SourceEndX]
sub c¢x, [bp+SourceStartX]
jle CopyDone
mov [bp+RectWidth], cx
mov bx, [bp+SourceEndY]
sub bx,[bp+SourceStartY]
jle CopyDone
mov dx,SC_INDEX
mov al,MAP_MASK
out dx,al
inc dx

CopyRowsLoop:
mov ax, [bp+tLeftMask]
mov cx,[bp+RectWidth]
push si
push di

CopyScanlLineboop:
out dx,al
movsb
rol al,1
cme
shb di,o0

Toop CopyScanLinelLoop
pop di
add di,[bp+DestBitmapWidth]

pop si

add si,[bp+SourceBitmapWidth]
dec bx

jnz CopyRowstoop

910 Chapter 48

;point ES to display memory

;top source rect scan line

;offset of first source rect pixel
; in DS

;convert to width in addresses

;remember address width
;top dest rect scan line

;X/4 = offset of first dest rect pixel in
; scan line

;offset of first dest rect pixel in page
;offset of first dest rect pixel

; in display memory

;CL =~ first dest pixel's plane

;upper nibble comes into play when

; plane wraps from 3 back to 0

;set the bit for the first dest pixel's

; plane in each nibble to 1

;calculate # of pixels across
; rect
;skip if 0 or negative width

;BX = height of rectangle
;skip if 0 or negative height
;point to SC Index register

;point SC Index reg to the Map Mask
;point DX to SC Data reg

;remember the start offset in the source
;remember the start offset in the dest

;set the plane for this pixel

;copy the pixel to the screen

;set mask for next pixel’s plane
;advance destination address only when
; wrapping from plane 3 to plane 0

; (else undo INC DI done by MOVSB)

;retrieve the dest start offset
;point to the start of the

; next scan line of the dest
;retrieve the source start offset
;point to the start of the

; next scan line of the source
;count down scan Tlines

CopyDone:

pop di ;restore caller's register variables
pop si

mov sp,bp ;discard storage for local variables
pop bp ;restore caller's stack frame

ret
_CopySystemToScreenX endp
end

Who Was that Masked Image Copier?

At this point, it’s getting to be time for us to take all the Mode X tools we’ve devel-
oped, together with one more tool—masked image copying—and the remaining
unexplored feature of Mode X, page flipping, and build an animation application. I
hope that when we’re done, you’ll agree with me that Mode X is the way to animate
on the PC.

In truth, though, it matters less whether or not you think that Mode X is the best way
to animate than whether or not your users think it’s the best way based on results;
end users care only about results, not how you produced them. For my writing, you
folks are the end users—and notice how remarkably little you care about how this
book gets written and produced. You care that it turned up in the bookstore, and
you care about the contents, but you sure as heck don’t care about how it got that far
from a bin of tree pulp. When you're a creator, the process matters. When you're a
buyer, results are everything. All important. Sine gua non. The whole enchilada.

If you catch my drift.

Mode X Marks the Latch 911

	previous:
	home:
	next:

