
chapter 3

assume nothing

It ran slower than the original version!

33

chapter 3

understanding and using the Zen timer

understanding and using the zen timer

The Costs of Ignorance
As diligent as the author had been, he had nonetheless committed a cardinal sin of
x86 assembly language programming: He had assumed that the information avail-
able to him was both correct and complete. While the execution times provided by
Intel for its processors are indeed correct, they are incomplete; the other-and of-
ten more important-part of code performance is instruction fetch time, a topic to
which I will return in later chapters.
Had the author taken the time to measure the true performance of his code, he
wouldn’t have put his reputation on the line with relatively low-performance code.
What’s more, had he actually measured the performance of his code and found it to
be unexpectedly slow, curiosity might well have led him to experiment further and
thereby add to his store of reliable information about the CPU.

There you have an important tenet of assembly language optimization: After craft- 1 ing the best code possible, check it in action to see if it j . really doing what you
think it is. r f it k not behaving as expected, that 5. all to the good, since solving
mysteries is thepath to knowledge. You’ll learn more in this way, Iassure you, than
from any manual or book on assembly language.

Assume nothing. I cannot emphasize this strongly enough-when you care about per-
formance, do your best to improve the code and then measure the improvement. If
you don’t measure performance, you’re just guessing, and if you’re guessing, you’re
not very likely to write top-notch code.
Ignorance about true performance can be costly. When I wrote video games for a
living, I spent days at a time trying to wring more performance from my graphics
drivers. I rewrote whole sections of code just to save a few cycles, juggled registers,
and relied heavily on blurry-fast register-to-register shifts and adds. As I was writing
my last game, I discovered that the program ran perceptibly faster if I used look-up
tables instead of shifts and adds for my calculations. It shouldn’t have run faster, ac-
cording to my cycle counting, but it did. In truth, instruction fetching was rearing its
head again, as it often does, and the fetching of the shifts and adds was taking as
much as four times the nominal execution time of those instructions.
Ignorance can also be responsible for considerable wasted effort. I recall a debate in
the letters column of one computer magazine about exactly how quickly text can be
drawn on a Color/Graphics Adapter (CGA) screen without causing snow. The letter-
writers counted every cycle in their timing loops, just as the author in the story that
started this chapter had. Like that author, the letter-writers had failed to take the
prefetch queue into account. In fact, they had neglected the effects of video wait
states as well, so the code they discussed was actually much slower than their esti-
mates. The proper test would, of course, have been to run the code to see if snow
resulted, since the only true measure of code performance is observing it in action.

34 Chapter 3

The Zen Timer
Clearly, one key to mastering Zen-class optimization is a tool with which to measure
code performance. The most accurate way to measure performance is with expen-
sive hardware, but reasonable measurements at no cost can be made with the PC’s
8253 timer chip, which counts at a rate of slightly over 1,000,000 times per second.
The 8253 can be started at the beginning of a block of code of interest and stopped
at the end of that code, with the resulting count indicating how long the code took
to execute with an accuracy of about 1 microsecond. (A microsecond is one millionth of
a second, and is abbreviated ps). To be precise, the 8253 counts once every 838.1
nanoseconds. (A nanosecond is one billionth of a second, and is abbreviated ns.)
Listing 3.1 shows 8253-based timer software, consisting of three subroutines:
ZTmerOn, ZTimerOff, and ZTimerReport. For the remainder of this book, 1’11 re-
fer to these routines collectively as the “Zen timer.” C-callable versions of the two
precision Zen timers are presented in Chapter K on the companion CD-ROM.

LISTING 3.1 PZTIMER.ASM
The p r e c i s i o n Zen t i m e r (PZTIMER.ASM)

Uses t h e 8253 t i m e r t o t i m e t h e p e r f o r m a n c e o f c o d e t h a t t a k e s
l e s s t h a n a b o u t 54 m i l l i s e c o n d s t o e x e c u t e , w i t h a r e s o l u t i o n
o f b e t t e r t h a n 10 microseconds.

By Michael Abrash

E x t e r n a l l y c a l l a b l e r o u t i n e s :

ZTimerOn: S t a r t s t h e Zen t i m e r , w i t h i n t e r r u p t s d i s a b l e d .

ZT imerOf f : S tops t he Zen t i m e r , s a v e s t h e t i m e r c o u n t ,
t i m e s t h e o v e r h e a d c o d e , a n d r e s t o r e s i n t e r r u p t s t o t h e
s t a t e t h e y w e r e i n when ZTimerOn was c a l l e d .

Z T i m e r R e p o r t : P r i n t s t h e n e t t i m e t h a t p a s s e d b e t w e e n s t a r t i n g
a n d s t o p p i n g t h e t i m e r .

Note: I f l o n g e r t h a n a b o u t 54 ms passes between ZTimerOn and
Z T i m e r O f f c a l l s , t h e t i m e r t u r n s o v e r a n d t h e c o u n t i s
i n a c c u r a t e . When t h i s h a p p e n s , an e r r o r message i s d i s p l a y e d
i n s t e a d o f a c o u n t . The l o n g - p e r i o d Zen t i m e r s h o u l d b e u s e d
i n such cases.

N o t e : I n t e r r u p t s *MUST* be l e f t o f f b e t w e e n c a l l s t o ZTimerOn
a n d Z T i m e r O f f f o r a c c u r a t e t i m i n g a n d f o r d e t e c t i o n o f
t i m e r o v e r f l o w .

N o t e : T h e s e r o u t i n e s c a n i n t r o d u c e s l i g h t i n a c c u r a c i e s i n t o t h e
s y s t e m c l o c k c o u n t f o r e a c h c o d e s e c t i o n t i m e d e v e n i f
t i m e r 0 d o e s n ’ t o v e r f l o w . I f t i m e r 0 d o e s o v e r f l o w , t h e
sys tem c lock can become s l o w b y v i r t u a l l y any amount o f
t i m e , s i n c e t h e s y s t e m c l o c k c a n ’ t a d v a n c e w h i l e t h e
p r e c i s o n t i m e r i s t i m i n g . C o n s e q u e n t l y , i t ’ s a good idea
t o r e b o o t a t t h e end o f e a c h t i m i n g s e s s i o n . (T h e

Assume Nothing 35

: b a t t e r y - b a c k e d c l o c k , i f any. i s n o t a f f e c t e d b y t h e Zen
: t i m e r .)

: All r e g i s t e r s , and a l l f l a g s e x c e p t t h e i n t e r r u p t f l a g , a r e
: p r e s e r v e d b y a l l r o u t i n e s . I n t e r r u p t s a r e e n a b l e d a n d t h e n d i s a b l e d
: b y Z T i m e r O n . a n d a r e r e s t o r e d b y Z T i m e r O f f t o t h e s t a t e t h e y w e r e
: i n when ZTimerOn was c a l l e d .

Code segment word pub l i c ' C O D E '
assume cs:Code. ds:nothing
p u b l i c ZTimerOn. ZTimerOff . ZTimerReport

: Base a d d r e s s o f t h e 8 2 5 3 t i m e r c h i p .

EASEL8253 equ 40h

: T h e a d d r e s s o f t h e t i m e r 0 c o u n t r e g i s t e r s i n t h e 8 2 5 3 .

TIMER-0-8253 equ BASE-8253 + 0

; T h e a d d r e s s o f t h e mode r e g i s t e r i n t h e 8253.

MODEL8253 equ EASEL8253 + 3

: The add ress o f Opera t i on Command Word 3 i n t h e 8259 Programmable
: I n t e r r u p t C o n t r o l l e r (P I C) (w r i t e o n l y , a n d w r i t a b l e o n l y when
: b i t 4 o f t h e b y t e w r i t t e n t o t h i s a d d r e s s i s 0 and b i t 3 i s 1).

OCW3 equ 20h

: T h e a d d r e s s o f t h e I n t e r r u p t R e q u e s t r e g i s t e r i n t h e 8 2 5 9 P I C
: (r e a d o n l y . a n d r e a d a b l e o n l y when b i t 1 o f OCW3 - 1 and b i t 0
: o f OCW3 - 0) .

I RR equ 20h

: Macro t o e m u l a t e a POPF i n s t r u c t i o n i n o r d e r t o f i x t h e b u g i n some
: 8 0 2 8 6 c h i p s w h i c h a l l o w s i n t e r r u p t s t o o c c u r d u r i n g a POPF even when
: i n t e r r u p t s r e m a i n d i s a b l e d .

MPOPF macro
l o c a l p l . p2
jmp sho r t p2

p l : i r e t
p2: push cs

c a l l p l
endm

: Macro t o d e l a y b r i e f l y
: between success ive 1/0

jump t o pushed address & p o p f l a g s
c o n s t r u c t f a r r e t u r n a d d r e s s t o
t h e n e x t i n s t r u c t i o n

t o e n s u r e t h a t e n o u g h t i m e h a s e l a p s e d
accesses so t h a t t h e

: can respond t o b o t h a c c e s s e s e v e n on a v e r y

DELAY macro
jmp $+2
jmp 5+2
jmp S+2
endm

d e v i c e b e i n g a c c e s s e d
f a s t PC.

36 Chapter 3

O r i g i n a l F l a g s

TimedCount

Referencecount

O v e r f l owFl ag

: S t r i n g p r i n t e d

O u t p u t S t r l a b e l
db

ASCIICountEnd
db
db

: S t r i n g p r i n t e d

O v e r f l o w S t r l a b e l

db ? :

dw ? :

dw

db ? :

s t o r a g e f o r u p p e r b y t e o f
FLAGS r e g i s t e r when
ZTimerOn c a l l e d
t i m e r 0 c o u n t when t h e t i m e r
i s s t o p p e d
number o f c o u n t s r e q u i r e d t o
execu te t imer ove rhead code
used t o i n d i c a t e w h e t h e r t h e
t i m e r o v e r f l o w e d d u r i n g t h e
t i m i n g i n t e r v a l

t o r e p o r t r e s u l t s .

b y t e
Odh. Oah. 'T imed count : ' , 5 dup (?)
l a b e l b y t e
' m i c r o s e c o n d s ' , Odh. Oah
' f '

t o r e p o r t t i m e r o v e r f l o w .

b y t e
db Odh. Oah

db Odh. Oah
db ' * The t i m e r o v e r f l o w e d , so t h e i n t e r v a l t i m e d was * '
db Odh. Oah
db ' * t o o l o n g f o r t h e p r e c i s i o n t i m e r t o m e a s u r e . * '
db Odh, Oah
db ' * P l e a s e p e r f o r m t h e t i m i n g t e s t a g a i n w i t h t h e * '
db Odh. Oah
db ' * l o n g - p e r i o d t i m e r . *.
db Odh. Oah

db Odh. Oah
db ' t '

db .

db .

.
: * R o u t i n e c a l l e d t o s t a r t t i m i n g . * .

ZTimerOn proc near

; Save t h e c o n t e x t o f t h e p r o g r a m b e i n g t i m e d .

push ax
p u s h f
POP ax

mov c s : [O r i g i n a l F l a g s] . a h :

and ah.0fdh

g e t f l a g s so we can keep
i n t e r r u p t s o f f when l e a v i n g
t h i s r o u t i n e
remember t h e s t a t e o f t h e
I n t e r r u p t f l a g
s e t p u s h e d i n t e r r u p t f l a g
t o 0

push ax

: T u r n o n i n t e r r u p t s , s o t h e t i m e r i n t e r r u p t c a n o c c u r i f i t ' s
: pending.

s t i

Assume Nothing 37

S e t t i m e r 0 o f t h e 8 2 5 3 t o mode 2 (d i v i d e - b y - N) . t o cause
l i n e a r c o u n t i n g r a t h e r t h a n c o u n t - b y - t w o c o u n t i n g . A l s o
l e a v e s t h e 8 2 5 3 w a i t i n g f o r t h e i n i t i a l t i m e r 0 c o u n t t o
be loaded.

mov a l .00110100b ;mode 2
o u t MODEL8253 .a1

S e t t h e t i m e r c o u n t t o 0 . so we know we w o n ' t g e t a n o t h e r
t i m e r i n t e r r u p t r i g h t away.
N o t e : t h i s i n t r o d u c e s a n i n a c c u r a c y o f u p t o 54 ms i n t h e s y s t e m
c l o c k c o u n t e a c h t i m e i t i s executed.

DELAY
sub a1 ,a1
o u t TIMER-0-8253.al
DELAY

; l s b

o u t TIMER-0-8253.al :msb

W a i t b e f o r e c l e a r i n g i n t e r r u p t s t o a l l o w t h e i n t e r r u p t g e n e r a t e d
when s w i t c h i n g f r o m mode 3 t o mode 2 t o be recogn ized. The d e l a y
must be a t l e a s t 2 1 0 n s l o n g t o a l l o w t i m e f o r t h a t i n t e r r u p t t o
o c c u r . H e r e , 1 0 j u m p s a r e u s e d f o r t h e d e l a y t o e n s u r e t h a t t h e
d e l a y t i m e will be more than long enough even on a v e r y f a s t PC.

r e p t 1 0
jmp S+2
endm

D i s a b l e i n t e r r u p t s t o g e t an accu ra te coun t .

c l i

S e t t h e t i m e r c o u n t t o 0 a g a i n t o s t a r t t h e t i m i n g i n t e r v a l .

mov a l .00110100b
o u t MODE-8253.al
DELAY
s u b a l . a l
o u t TIMER-0-8253,al
DELAY

; l o a d c o u n t l s b

o u t TIMER-0-8253.al ; l o a d c o u n t msb

; s e t up t o l o a d i n i t i a l
; t i m e r c o u n t

; R e s t o r e t h e c o n t e x t a n d r e t u r n .

MPOPF
POP ax
r e t

; k e e p s i n t e r r u p t s o f f

ZTimerOn endp

.
;* R o u t i n e c a l l e d t o s t o p t i m i n g a n d g e t c o u n t . *
.

ZT imerOf f p roc near

38 Chapter 3

: Save t h e c o n t e x t o f t h e p r o g r a m b e i n g t i m e d .

push ax
push cx
push f

: L a t c h t h e c o u n t .

mov a l ,00000000b ; l a t c h t i m e r 0
o u t MODE-8253,al

: See i f t h e t i m e r h a s o v e r f l o w e d b y c h e c k i n g t h e 8 2 5 9 f o r a pend ing
: t i m e r i n t e r r u p t .

mov a l .00001010b : OCW3. s e t up t o r e a d
o u t OCW3.al
DELAY
i n a1,IRR ; r e a d I n t e r r u p t R e q u e s t

and a l , 1 : s e t AL t o 1 i f IRQO (t h e

mov c s : [0 v e r f l o w F l a g] . a l : s t o r e t h e t i m e r o v e r f l o w

: I n t e r r u p t R e q u e s t r e g i s t e r

; r e g i s t e r

: t i m e r i n t e r r u p t) i s p e n d i n g

: s t a t u s

: A l l o w i n t e r r u p t s t o happen again.

s t i

: Read o u t t h e c o u n t we l a t c h e d e a r l i e r .

i n al.TIMER_0-8253 ; l e a s t s i g n i f i c a n t b y t e
DELAY
mov ah .a l
i n a1 .TIMER-0-8253 ; m o s t s i g n i f i c a n t b y t e
xchg ah.a l
neg ax : conver t f r om coun tdown

; r e m a i n i n g t o e l a p s e d
: c o u n t

mov cs: [T imedCount l .ax
: Time a z e r o - l e n g t h c o d e f r a g m e n t , t o g e t a r e f e r e n c e f o r how
; much o v e r h e a d t h i s r o u t i n e h a s . T i m e it 16 t imes and average i t ,
: f o r a c c u r a c y , r o u n d i n g t h e r e s u l t .

mov cs: [ReferenceCount l ,O
mov cx.16
c l i : i n t e r r u p t s o f f t o a l l o w a

: D r e c i s e r e f e r e n c e c o u n t
RefLoop:

ca l l Re fe renceZT imerDn
c a l l R e f e r e n c e Z T i m e r O f f
1 oop Ref Loop
s t i
add cs: [ReferenceCount] .8 : t o t a l + (
mov c l . 4
sh r cs : [Re fe renceCoun t] . c l : (t o t a l) /

: R e s t o r e o r i g i n a l i n t e r r u p t s t a t e .

POP ax : r e t r i e v e

0.5 * 16)

16 + 0.5

f l a g s when c a l l e d

Assume Nothing 39

mov c h . ~ s : [O r i g i n a l F l a g s 1 :

and ch.not Ofdh

and ah.0fdh

o r ah.ch

push ax

: R e s t o r e t h e c o n t e x t

MPOPF

POP c x

r e t

ZTimerOff endp

POP ax

: Ca l led by ZT imerOf f

ReferenceZTimerOnproc

: Save t h e c o n t e x t o f

push ax

g e t b a c k t h e o r i g i n a l u p p e r
b y t e o f t h e FLAGS r e g i s t e r
o n l y c a r e a b o u t o r i g i n a l
i n t e r r u p t f l a g ...
... keep all o t h e r f l a g s i n
t h e i r c u r r e n t c o n d i t i o n
make f l a g s w o r d w i t h o r i g i n a l
i n t e r r u p t f l a g
p r e p a r e f l a g s t o b e p o p p e d

o f t h e p r o g r a m b e i n g t i m e d a n d r e t u r n t o i t .

: r e s t o r e t h e f l a g s w i t h t h e
: o r i g i n a l i n t e r r u p t s t a t e

t o s t a r t t i m e r f o r o v e r h e a d m e a s u r e m e n t s .

nea r

t h e p r o g r a m b e i n g t i m e d

p u s h f : i n t e r r u p t s a r e a l r e a d y o f f

: S e t t i m e r 0 o f t h e 8 2 5 3 t o mode 2 (d i v i d e - b y - N) , t o c a u s e
: l i n e a r c o u n t i n g r a t h e r t h a n c o u n t - b y - t w o c o u n t i n g .

mov al .00110100b : s e t up t o l o a d
o u t MODE-8253.al : i n i t i a l t i m e r c o u n t
DELAY

: S e t t h e t i m e r c o u n t t o 0.

sub a1,a l
o u t TIMER-0-8253,al : l o a d c o u n t l s b
DELAY
out T IMER-08253,a l : l o a d c o u n t msb

: R e s t o r e t h e c o n t e x t o f t h e p r o g r a m b e i n g t i m e d a n d r e t u r n t o i t .

MPOPF
POP ax
r e t

ReferenceZTimerOnendp

: C a l l e d b y Z T i m e r O f f t o s t o p t i m e r a n d a d d r e s u l t t o R e f e r e n c e c o u n t
: fo r overhead measurements .

40 Chapter 3

ReferenceZTimerOf f

: Save t h e c o n t e x t

p r o c n e a r

o f t h e p r o g r a m b e i n g t i m e d .

push ax
push cx
push f

: L a t c h t h e c o u n t a n d r e a d

mov
o u t
DELAY

DELAY
i n

mov
i n
xchg
neg

add

a1 .00000000b
MODEU3253,al

a1 .TIMER-0_8253

ah .a l
al.TIMER-OC8253
ah .a l
ax

it.

cs : [Re fe renceCoun t l , ax

: l a t c h t i m e r 0

: l s b

: msb

: conver t f r om coun tdown
: r e m a i n i n g t o amount
: coun ted down

: R e s t o r e t h e c o n t e x t o f t h e p r o g r a m b e i n g t i m e d a n d r e t u r n t o it.

MPOPF
POP cx
POP ax
r e t

ReferenceZTimerOff endp

.
; * R o u t i n e c a l l e d t o r e p o r t t i m i n g r e s u l t s . * .

ZT imerRepor t p roc near

p u s h f
push ax
push bx
push cx
push dx
push s i
push ds

push cs : DOS f u n c t i o n s r e q u i r e t h a t DS p o i n t

assume ds :Code
POP ds : t o t e x t t o b e d i s p l a y e d on t h e s c r e e n

; Check f o r t i m e r 0 o v e r f l o w .

cmp [O v e r f l owFl a g l .O
j z Pr in tGoodCount
mov d x . o f f s e t O v e r f l o w S t r
mov ah.9
i n t 21h
jmp shor t EndZTimerRepor t

: C o n v e r t n e t c o u n t t o d e c i m a l A S C I I i n m i c r o s e c o n d s .

Assume Nothing 4 1

Pr intGoodCount :
mov ax.CTimedCount1
sub ax. [ReferenceCount]
mov s i , o f f s e t A S C I I C o u n t E n d - 1

; C o n v e r t c o u n t t o m i c r o s e c o n d s b y m u l t i p l y i n g b y . 8 3 8 1 .

mov dx.8381
mu1 dx
mov bx, 10000
d i v b x :* .8381 - * 8381 / 10000

: C o n v e r t t i m e i n m i c r o s e c o n d s t o 5 dec imal A S C I I d i g i t s

mov bx. 10
mov cx.5

sub dx.dx
d i v bx
add d1:O‘
mov [s i l . d l
dec s i
1 oop CTSLoop

CTSLoop:

; P r i n t t h e r e s u l t s .

mov ah.9
mov d x , o f f s e t O u t p u t S t r
i n t 21h

EndZTimerReport :
POP ds
pop s i
POP dx
POP c x
POP b x

MPOPF
POP ax

r e t

ZTimerReport endp

Code ends
end

The Zen Timer Is a Means, Not an End
We’re going to spend the rest of this chapter seeing what the Zen timer can do,
examining how it works, and learning how to use it. I’ll be using the Zen timer again
and again over the course of this book, so it’s essential that you learn what the Zen
timer can do and how to use it. On the other hand, it is by no means essential that
you understand exactly how the Zen timer works. (Interesting, yes; essential, no.)
In other words, the Zen timer isn’t really part of the knowledge we seek; rather, it’s
one tool with which we’ll acquire that knowledge. Consequently, you shouldn’t worry
if you don’t fully grasp the inner workings of the Zen timer. Instead, focus on learn-
ing how to use it, and you’ll be on the right road.

42 Chapter 3

Starting the Zen Timer
ZTimerOn is called at the start of a segment of code to be timed. ZTimerOn saves
the context of the calling code, disables interrupts, sets timer 0 of the 8253 to mode
2 (divide-by-N mode), sets the initial timer count to 0, restores the context of the
calling code, and returns. (I’d like to note that while Intel’s documentation for the
8253 seems to indicate that a timer won’t reset to 0 until it finishes counting down, in
actual practice, timers seem to reset to 0 as soon as they’re loaded.)
Two aspects of ZTimerOn are worth discussing further. One point of interest is that
ZTimerOn disables interrupts. (ZTimerOff later restores interrupts to the state they
were in when ZTimerOn was called.) Were interrupts not disabled by ZTimerOn,
keyboard, mouse, timer, and other interrupts could occur during the timing inter-
val, and the time required to service those interrupts would incorrectly and erratically
appear to be part of the execution time of the code being measured. As a result,
code timed with the Zen timer should not expect any hardware interrupts to occur
during the interval between any call to ZTimerOn and the corresponding call to
ZTimerOff, and should not enable interrupts during that time.

Time and the PC
A second interesting point about ZTimerOn is that it may introduce some small
inaccuracy into the system clock time whenever it is called. To understand why this is
so, we need to examine the way in which both the 8253 and the PC’s system clock
(which keeps the current time) work.
The 8253 actually contains three timers, as shown in Figure 3.1. All three timers are
driven by the system board’s 14.31818 MHz crystal, divided by 12 to yield a 1.19318
MHz clock to the timers, so the timers count once every 838.1 ns. Each of the three
timers counts down in a programmable way, generating a signal on its output pin
when it counts down to 0. Each timer is capable of being halted at any time via a 0
level on its gate input; when a timer’s gate input is 1, that timer counts constantly. All
in all, the 8253’s timers are inherently very flexible timing devices; unfortunately,
much of that flexibility depends on how the timers are connected to external cir-
cuitry, and in the PC the timers are connected with specific purposes in mind.
Timer 2 drives the speaker, although it can be used for other timing purposes
when the speaker is not in use. As shown in Figure 3.1, timer 2 is the only timer
with a programmable gate input in the PC; that is, timer 2 is the only timer that can
be started and stopped under program control in the manner specified by Intel.
On the other hand, the output of timer 2 is connected to nothing other than the
speaker. In particular, timer 2 cannot generate an interrupt to get the 8088’s attention.
Timer 1 is dedicated to providing dynamic RAM refresh, and should not be tam-
pered with lest system crashes result.

Assume Nothing 43

From bit 0
of port 61 h

+5 volts
(makes the
timers run
non-stop
in all the

modes we'll
discuss)

Timer 2
Output. b

* Gate

Timer 1

output 1 b

Gate

Timer 0
output b

Gate

8253 Timer Chip

To speaker
circuitry

DRAM refresh

To IRQO (hardware
interrupt 0, the
timer interrupt)

The configuration of the 8253 timer chip in the PC.
Figure 3.1

Finally, timer 0 is used to drive the system clock. As programmed by the BIOS at power-
up, every 65,536 (64K) counts, or 54.925 milliseconds, timer 0 generates a rising edge
on its output line. (A millisecond is one-thousandth of a second, and is abbreviated
ms.) This line is connected to the hardware interrupt 0 (IRQO) line on the system
board, so every 54.925 ms, timer 0 causes hardware interrupt 0 to occur.
The interrupt vector for IRQO is set by the BIOS at power-up time to point to a BIOS
routine, TJMER-INT, that maintains a time-ofday count. TIMER-INT keeps a 16-bit
count of IRQO interrupts in the BIOS data area at address 0000:046C (all addresses
in this book are given in segment:offset hexadecimal pairs); this count turns over
once an hour (less a few microseconds), and when it does, TIMER-INT updates a
16-bit hour count at address 0000:046E in the BIOS data area. This count is the basis
for the current time and date that DOS supports via functions 2AH (2A hexadeci-
mal) through 2DH and by way of the DATE and TIME commands.
Each timer channel of the 8253 can operate in any of six modes. Timer 0 normally
operates in mode 3: square wave mode. In square wave mode, the initial count is counted
down two at a time; when the count reaches zero, the output state is changed. The
initial count is again counted down two at a time, and the output state is toggled back
when the count reaches zero. The result is a square wave that changes state more
slowly than the input clock by a factor of the initial count. In its normal mode of

44 Chapter 3

operation, timer 0 generates an output pulse that is low for about 27.5 ms and high for
about 27.5 ms; this pulse is sent to the 8259 interrupt controller, and its rising edge
generates a timer interrupt once every 54.925 ms.
Square wave mode is not very useful for precision timing because it counts down by two
twice per timer interrupt, thereby rendering exact timings impossible. Fortunately, the
8253 offers another timer mode, mode 2 (divide-by-N mode), which is both a good
substitute for square wave mode and a perfect mode for precision timing.
Divide-by-N mode counts down by one from the initial count. When the count reaches
zero, the timer turns over and starts counting down again without stopping, and a
pulse is generated for a single clock period. While the pulse is not held for nearly as
long as in square wave mode, it doesn’t matter, since the 8259 interrupt controller is
configured in the PC to be edge-triggered and hence cares only about the existence
of a pulse from timer 0, not the duration of the pulse. As a result, timer 0 continues
to generate timer interrupts in divide-by-N mode, and the system clock continues to
maintain good time.
Why not use timer 2 instead of timer 0 for precision timing? After all, timer 2 has a
programmable gate input and isn’t used for anything but sound generation. The
problem with timer 2 is that its output can’t generate an interrupt; in fact, timer 2
can’t do anything but drive the speaker. We need the interrupt generated by the
output of timer 0 to tell us when the count has overflowed, and we will see shortly
that the timer interrupt also makes it possible to time much longer periods than the
Zen timer shown in Listing 3.1 supports.
In fact, the Zen timer shown in Listing 3.1 can only time intervals of up to about 54
ms in length, since that is the period of time that can be measured by timer 0 before
its count turns over and repeats. fifty-four ms may not seem like a very long time, but
even a CPU as slow as the 8088 can perform more than 1,000 divides in 54 ms, and
division is the single instruction that the 8088 performs most slowly. If a measured
period turns out to be longer than 54 ms (that is, if timer 0 has counted down and
turned over), the Zen timer will display a message to that effect. A long-period Zen
timer for use in such cases will be presented later in this chapter.
The Zen timer determines whether timer 0 has turned over by checking to see whether
an IRQO interrupt is pending. (Remember, interrupts are off while the Zen timer
runs, so the timer interrupt cannot be recognized until the Zen timer stops and
enables interrupts.) If an IRQO interrupt is pending, then timer 0 has turned over
and generated a timer interrupt. Recall that ZTimerOn initially sets timer 0 to 0, in
order to allow for the longest possible period-about 54 ms-before timer 0 reaches
0 and generates the timer interrupt.
Now we’re ready to look at the ways in which the Zen timer can introduce inaccuracy
into the system clock. Since timer 0 is initially set to 0 by the Zen timer, and since the
system clock ticks only when timer 0 counts off 54.925 ms and reaches 0 again, an
average inaccuracy of one-half of 54.925 ms, or about 27.5 ms, is incurred each time

Assume Nothing 45

the Zen timer is started. In addition, a timer interrupt is generated when timer 0 is
switched from mode 3 to mode 2, advancing the system clock by up to 54.925 ms,
although this only happens the first time the Zen timer is run after a warm or cold
boot. Finally, up to 54.925 ms can again be lost when ZTimerOff is called, since that
routine again sets the timer count to zero. Net result: The system clock will run up to
110 ms (about a ninth of a second) slow each time the Zen timer is used.
Potentially far greater inaccuracy can be incurred by timing code that takes longer
than about 110 ms to execute. Recall that all interrupts, including the timer inter-
rupt, are disabled while timing code with the Zen timer. The 8259 interrupt controller
is capable of remembering at most one pending timer interrupt, so all timer inter-
rupts after the first one during any given Zen timing interval are ignored.
Consequently, if a timing interval exceeds 54.9 ms, the system clock effectively stops
54.9 ms after the timing interval starts and doesn’t restart until the timing interval
ends, losing time all the while.
The effects on the system time of the Zen timer aren’t a matter for great concern, as
they are temporary, lasting only until the next warm or cold boot. Systems that have
battery-backed clocks, (AT-style machines; that is, virtually all machines in common
use) automatically reset the correct time whenever the computer is booted, and sys-
temswithout battery-backed clocks prompt for the correct date and time when booted.
Also, repeated use of the Zen timer usually makes the system clock slow by at most a
total of a few seconds, unless code that takes much longer than 54 ms to run is timed
(in which case the Zen timer will notify you that the code is too long to time).
Nonetheless, it’s a good idea to reboot your computer at the end of each session with
the Zen timer in order to make sure that the system clock is correct.

Stopping the Zen Timer
At some point after ZTimerOn is called, ZTimerOff must always be called to mark
the end of the timing interval. ZTimerOff saves the context of the calling program,
latches and reads the timer 0 count, converts that count from the countdown value
that the timer maintains to the number of counts elapsed since ZTimerOn was called,
and stores the result. Immediately after latching the timer 0 count-and before en-
abling interrupts-ZTimerOff checks the 8259 interrupt controller to see if there is
a pending timer interrupt, setting a flag to mark that the timer overflowed if there is
indeed a pending timer interrupt.
After that, ZTimerOff executes just the overhead code of ZTimerOn and ZTimerOff
16 times, and averages and saves the results in order to determine how many of the
counts in the timing result just obtained were incurred by the overhead of the Zen
timer rather than by the code being timed.
Finally, ZTimerOff restores the context of the calling program, including the state of the
interrupt flag that was in effect when ZTimerOn was called to start timing, and returns.

46 Chapter 3

One interesting aspect of ZTimerOff is the manner in which timer 0 is stopped in
order to read the timer count. We don’t actually have to stop timer 0 to read the
count; the 8253 provides a special latched read feature for the specific purpose of
reading the count while a time is running. (That’s a good thing, too; we’ve no docu-
mented way to stop timer 0 if we wanted to, since its gate input isn’t connected. Later
in this chapter, though, we’ll see that timer 0 can be stopped after all.) We simply tell
the 8253 to latch the current count, and the 8253 does so without breaking stride.

Reporting Timing Results
ZTimerReport may be called to display timing results at any time after both ZTimerOn
and ZTiierOff have been called. ZTimerReport first checks to see whether the timer
overflowed (counted down to 0 and turned over) before ZTiierOff was called; if
overflow did occur, ZTimerOff prints a message to that effect and returns. Otherwise,
ZTimerReport subtracts the reference count (representing the overhead of the Zen
timer) from the count measured between the calls to ZTimerOn and ZTimerOff, con-
verts the result from timer counts to microseconds, and prints the resulting time in
microseconds to the standard output.
Note that ZTimerReport need not be called immediately after ZTimerOff. In fact,
after a given call to ZTimerOff, ZTimerReport can be called at any time right up
until the next call to ZTimerOn.
You may want to use the Zen timer to measure several portions of a program while it
executes normally, in which case it may not be desirable to have the text printed by
ZTimerReport interfere with the program’s normal display. There are many ways to
deal with this. One approach is removal of the invocations of the DOS print string
function (INT 21H with AH equal to 9) from ZTimerReport, instead running the
program under a debugger that supports screen flipping (such as Turbo Debugger
or Codeview), placing a breakpoint at the start of ZTimerReport, and directly ob-
serving the count in microseconds as ZTimerReport calculates it.
A second approach is modification of ZTimerReport to place the result at some safe
location in memory, such as an unused portion of the BIOS data area.
A third approach is alteration of ZTimerReport to print the result over a serial port
to a terminal or to another PC acting as a terminal. Similarly, many debuggers can
be run from a remote terminal via a serial link.
Yet another approach is modification of ZTimerReport to send the result to the
printer via either DOS function 5 or BIOS interrupt 17H.
A final approach is to modify ZTimerReport to print the result to the auxiliary out-
put via DOS function 4, and to then write and load a special device driver named
AUX, to which DOS function 4 output would automatically be directed. This device
driver could send the result anywhere you might desire. The result might go to the
secondary display adapter, over a serial port, or to the printer, or could simply be

Assume Nothing 47

stored in a buffer within the driver, to be dumped at a later time. (Credit for this
final approach goes to Michael Geary, and thanks go to David Miller for passing the
idea on to me.)
You may well want to devise still other approaches better suited to your needs than
those I’ve presented. Go to it! I’ve just thrown out a few possibilities to get you started.

Notes on the Zen Timer
The Zen timer subroutines are designed to be near-called from assembly language
code running in the public segment Code. The Zen timer subroutines can, however,
be called from any assembly or high-level language code that generates OBJ files
that are compatible with the Microsoft linker, simply by modifymg the segment that
the timer code runs in to match the segment used by the code being timed, or by
changing the Zen timer routines to far procedures and making far calls to the Zen
timer code from the code being timed, as discussed at the end of this chapter. All
three subroutines preserve all registers and all flags except the interrupt flag, so calls
to these routines are transparent to the calling code.
If you do change the Zen timer routines to far procedures in order to call them from
code running in another segment, be sure to make all the Zen timer routines far,
including ReferenceZTimerOn and ReferenceZTimerOff. (You’ll have to put FAR
PTR overrides on the calls from ZTimerOff to the latter two routines if you do make
them far.) If the reference routines aren’t the same type-near or far-as the other
routines, they won’t reflect the true overhead incurred by starting and stopping the
Zen timer.
Please be aware that the inaccuracy that the Zen timer can introduce into the system
clock time does not affect the accuracy of the performance measurements reported
by the Zen timer itself. The 8253 counts once every 838 ns, giving us a count resolu-
tion of about lps, although factors such as the prefetch queue (as discussed below),
dynamic RAM refresh, and internal timing variations in the 8253 make it perhaps
more accurate to describe the Zen timer as measuring code performance with an
accuracy of better than lops. In fact, the Zen timer is actually most accurate in assess-
ing code performance when timing intervals longer than about 100 ps. At any rate,
we’re most interested in using the Zen timer to assess the relative performance of
various code sequences-that is, using it to compare and tweak code-and the timer
is more than accurate enough for that purpose.
The Zen timer works on all PGcompatible computers I’ve tested it on, including XTs,
ATs, PS/2 computers, and 386,486, and Pentium-based machines. Of course, I haven’t
been able to test it on all PC-compatibles, but I don’t expect any problems; comput-
ers on which the Zen timer doesn’t run can’t truly be called “PC-compatible.”
On the other hand, there is certainly no guarantee that code performance as mea-
sured by the Zen timer will be the same on compatible computers as on genuine

48 Chapter 3

IBM machines, or that either absolute or relative code performance will be similar
even on different IBM models; in fact, quite the opposite is true. For example, every
PS/2 computer, even the relatively slow Model 30, executes code much faster than
does a PC or XT. As another example, I set out to do the timings for my earlier book
Zen of Assembly Language on an XT-compatible computer, only to find that the com-
puter wasn't quite IBM-compatible regarding code performance. The differences
were minor, mind you, but my experience illustrates the risk of assuming that a spe-
cific make of computer will perform in a certain way without actually checking.
Not that this variation between models makes the Zen timer one whit less useful-
quite the contrary. The Zen timer is an excellent tool for evaluating code performance
over the entire spectrum of PC-compatible computers.

A Sample Use of the Zen Timer
Listing 3.2 shows a test-bed program for measuring code performance with the Zen
timer. This program sets DS equal to CS (for reasons we'll discuss shortly), includes
the code to be measured from the file TESTCODE, and calls ZTimerReport to dis-
play the timing results. Consequently, the code being measured should be in the file
TESTCODE, and should contain calls to ZTimerOn and ZTimerOff.

LISTING 3.2 PZTEST.ASM
Program t o measure performance o f c o d e t h a t t a k e s l e s s t h a n
54 ms t o e x e c u t e . (PZTEST.ASM)

L i n k w i t h PZTIMER.ASM (L i s t i n g 3 . 1) . PZTEST.BAT (L i s t i n g 3 . 4)
can be used t o assemble and l i n k b o t h f i l e s . Code t o be
measured must be i n t h e f i l e TESTCODE; L i s t i n g 3 . 3 shows
a sample TESTCODE f i l e .

By Michae l Abrash

mystack segment para s tack 'STACK'

mystack ends
db 512 dup(?)

Code

S t a r t

s e g m e n t p a r a p u b l i c ' C O D E '
assume cs:Code. ds:Code
ex t rn ZT imer0n :near . ZT imer0 f f : nea r . 2T imerRepor t :nea r
p roc nea r
push cs
pop ds ; s e t DS t o p o i n t t o t h e code segment,

; s o d a t a a s w e l l a s c o d e c a n e a s i l y
; b e i n c l u d e d i n TESTCODE

i n c l u d e TESTCODE ;code t o be measured , i nc lud ing
: c a l l s t o ZTimerOn and ZTimerOff

; D i s p l a y t h e r e s u l t s .

c a l l Z T i m e r R e p o r t

; T e r m i n a t e t h e p r o g r a m .

Assume Nothing 49

mov ah.4ch
i n t 21h

S t a r t e n d p
Code ends

e n d S t a r t

Listing 3.3 shows some sample code to be timed. This listing measures the time re-
quired to execute 1,000 loads of AL from the memory variable MemVar. Note that
Listing 3.3 calls ZTimerOn to start timing, performs 1,000 MOV instructions in a
row, and calls ZTimerOff to end timing. When Listing 3.2 is named TESTCODE and
included by Listing 3.3, Listing 3.2 calls ZTimerReport to display the execution time
after the code in Listing 3.3 has been run.

LISTING 3.3 LST3-3.ASM
: T e s t f i l e :
; Measures t he pe r fo rmance o f 1 ,000 l oads o f AL f r o m
; memory. (Use by renaming t o TESTCODE. w h i c h i s
; i n c l u d e d b y PZTEST.ASM (L i s t i n g 3.2) . PZTIME.BAT
; (L i s t i n g 3 . 4) d o e s t h i s , a l o n g w i t h a l l a s s e m b l y
; a n d l i n k i n g .)

jmp Sk ip : jump a round de f ined da ta

MemVar db ?

Sk ip :

; S t a r t t i m i n g .

c a l l ZTimerOn

r e p t 1 0 0 0
mov a1 , [MemVarl
endm

: S t o p t i m i n g .

c a l l Z T i m e r O f f

It’s worth noting that Listing 3.3 begins by jumping around the memory variable
MemVar. This approach lets us avoid reproducing Listing 3.2 in its entirety for each code
fragment we want to measure; by defining any needed data right in the code segment
and jumping around that data, each listing becomes selfcontained and can be plugged
directly into Listing 3.2 as TESTCODE. Listing 3.2 sets DS equal to CS before doing
anything else precisely so that data can be embedded in code fragments being timed.
Note that only after the initial jump is performed in Listing 3.3 is the Zen timer
started, since we don’t want to include the execution time of start-up code in the
timing interval. That’s why the calls to ZTimerOn and ZTimerOff are in TESTCODE,
not in PZTESTMM; this way, we have full control over which portion of TESTCODE
is timed, and we can keep set-up code and the like out of the timing interval.

50 Chapter 3

Listing 3.3 is used by naming it TESTCODE, assembling both Listing 3.2 (which
includes TESTCODE) and Listing 3.1 with TASM or MASM, and linking the two
resulting OBJ files together by way of the Borland or Microsoft linker. Listing 3.4
shows a batch file, PZTIME.BAT, which does all that; when run, this batch file gener-
ates and runs the executable file PZTEST.EXE. PZTIME.BAT (Listing 3.4) assumes
that the file PZTIMER.ASM contains Listing 3.1, and the file PZTEST.ASM contains
Listing 3.2. The command-line parameter to PZTIME.BAT is the name of the file to
be copied to TESTCODE and included into PZTEST.ASM. (Note that Turbo Assem-
bler can be substituted for MASM by replacing “masm” with “tasm” and “link” with
“tlink” in Listing 3.4. The same is true of Listing 3.7.)

LISTING 3.4 PZTIME.BAT
echo o f f
rem
rem *** L i s t i n g 3 . 4 ***
rem
rem .
rem * B a t c h f i l e PZTIME.BAT, w h i c h b u i l d s a n d r u n s t h e p r e c i s i o n *
rem * Zen t i m e r p r o g r a m PZTEST.EXE t o t i m e t h e c o d e named a s t h e *
rem * c o m m a n d - l i n e p a r a m e t e r . L i s t i n g 3 . 1 m u s t b e named *
rem * PZTIMER.ASM. and L i s t i n g 3 . 2 m u s t b e named PZTEST.ASM. To *
rem * t i m e t h e c o d e i n L S T 3 - 3 . y o u ’ d t y p e t h e DOS command: *
rem * *
rem * p z t i m e l s t 3 - 3 *
rem * *
rem * N o t e t h a t MASM and LINK must be i n t h e c u r r e n t d i r e c t o r y o r *
rem * on t h e c u r r e n t p a t h i n o r d e r f o r t h i s b a t c h f i l e t o w o r k . *
rem * *
rem * T h i s b a t c h f i l e c a n b e s p e e d e d u p b y a s s e m b l i n g PZTIMER.ASM *
rem * o n c e , t h e n r e m o v i n g t h e l i n e s : *
rem * *
rem * masm p z t i m e r ; *
rem * i f e r r o r l e v e l 1 g o t o e r r o r e n d *
rem * *
rem * f r o m t h i s f i l e . *
rem * *
rem * By Michae l Abrash *
rem .
rem
rem Make s u r e a f i l e t o t e s t was s p e c i f i e d .
rem
i f n o t x % l - x g o t o c k e x i s t

echo * P l e a s e s p e c i f y a f i l e t o t e s t . *

go to end
rem
rem Make s u r e t h e f i l e e x i s t s .
rem
: c k e x i s t
i f e x i s t %1 goto docopy

echo * T h e s p e c i f i e d f i l e , “%1,” d o e s n ’ t e x i s t , *

goto end

echo .

echo .

echo .

echo .

Assume Nothing 5 1

Assuming that Listing 3.3 is named LST3-3.ASM and Listing 3.4 is named
PZTIME.BAT, the code in Listing 3.3 would be timed with the command:

p z t i m e LST3-3.ASM

which performs all assembly and linking, and reports the execution time of the code
in Listing 3.3.
When the above command is executed on an original 4.77 MHz IBM PC, the time
reported by the Zen timer is 3619 ps, or about 3.62 ps per load of AL from memory.
(While the exact number is 3.619 ps per load of AL, I’m going to round off that last
digit from now on. No matter how many repetitions of a given instruction are timed,
there’s just too much noise in the timing process-between dynamic RAM refresh,
the prefetch queue, and the internal state of the processor at the start of timing-for
that last digit to have any significance.) Given the test PC’s 4.77 MHz clock, this
works out to about 17 cycles per MOV, which is actually a good bit longer than Intel’s
specified 10-cycle execution time for this instruction. (See the MASM or TASM docu-
mentation, or Intel’s processor reference manuals, for official execution times.) Fear
not, the Zen timer is right-MOV AL,[MEMVAR] really does take 1’7 cycles as used
in Listing 3.3. Exactly why that is so is just what this book is all about.
In order to perform any of the timing tests in this book, enter Listing 3.1 and name
it PZTIMERMM, enter Listing 3.2 and name it PZTESTASM, and enter Listing 3.4
and name it PZTIME.BAT. Then simply enter the listing you wish to run into the file
filename and enter the command:

p z t i m e < f i l e n a m e >

In fact, that’s exactly how I timed each of the listings in this book. Code fragments
you write yourself can be timed in just the same way. If you wish to time code directly
in place in your programs, rather than in the test-bed program of Listing 3.2, simply

52 Chapter 3

insert calls to ZTimerOn, ZTimerOff, and ZTimerReport in the appropriate places
and link PZTIMER to your program.

The Long-Period Zen Timer
With a few exceptions, the Zen timer presented above will serve us well for the remain-
der of this book since we’ll be focusing on relatively short code sequences that generally
take much less than 54 ms to execute. Occasionally, however, we will need to time
longer intervals. What’s more, it is very likely that you will want to time code sequences
longer than 54 ms at some point in your programming career. Accordingly, I’ve also
developed a Zen timer for periods longer than 54 ms. The long-period Zen timer (so
named by contrast with the precision Zen timer just presented) shown in Listing 3.5
can measure periods up to one hour in length.
The key difference between the long-period Zen timer and the precision Zen timer
is that the long-period timer leaves interrupts enabled during the timing period. As
a result, timer interrupts are recognized by the PC, allowing the BIOS to maintain an
accurate system clock time over the timing period. Theoretically, this enables mea-
surement of arbitrarily long periods. Practically speaking, however, there is no need
for a timer that can measure more than a few minutes, since the DOS time of day
and date functions (or, indeed, the DATE and TIME commands in a batch file) serve
perfectly well for longer intervals. Since very long timing intervals aren’t needed,
the long-period Zen timer uses a simplified means of calculating elapsed time that is
limited to measuring intervals of an hour or less. If a period longer than an hour is
timed, the long-period Zen timer prints a message to the effect that it is unable to
time an interval of that length.
For implementation reasons, the long-period Zen timer is also incapable of timing
code that starts before midnight and ends after midnight; if that eventuality occurs,
the long-period Zen timer reports that it was unable to time the code because mid-
night was crossed. If this happens to you, just time the code again, secure in the
knowledge that at least you won’t run into the problem again for 23-odd hours.
You should not use the long-period Zen timer to time code that requires interrupts
to be disabled for more than 54 ms at a stretch during the timing interval, since
when interrupts are disabled the long-period Zen timer is subject to the same 54 ms
maximum measurement time as the precision Zen timer.
While permitting the timer interrupt to occur allows long intervals to be timed, that
same interrupt makes the long-period Zen timer less accurate than the precision
Zen timer, since the time the BIOS spends handling timer interrupts during the
timing interval is included in the time measured by the long-period timer. Likewise,
any other interrupts that occur during the timing interval, most notably keyboard
and mouse interrupts, will increase the measured time.

Assume Nothing 53

The long-period Zen timer has some of the same effects on the system time as does
the precision Zen timer, so it’s a good idea to reboot the system after a session with
the long-period Zen timer. The long-period Zen timer does not, however, have the
same potential for introducing major inaccuracy into the system clock time during a
single timing run since it leaves interrupts enabled and therefore allows the system
clock to update normally.

Stopping the Clock
There’s a potential problem with the long-period Zen timer. The problem is this: In
order to measure times longer than 54 ms, we must maintain not one but two timing
components, the timer 0 count and the BIOS time-of-day count. The time-of-day
count measures the passage of 54.9 ms intervals, while the timer 0 count measures
time within those 54.9 ms intervals. We need to read the two time components simul-
taneously in order to get a clean reading. Otherwise, we may read the timer count
just before it turns over and generates an interrupt, then read the BIOS time-of-day
countjust after the interrupt has occurred and caused the time-of-day count to turn
over, with a resulting 54 ms measurement inaccuracy. (The opposite sequence-
reading the time-of-day count and then the timer count-can result in a 54 ms
inaccuracy in the other direction.)
The only way to avoid this problem is to stop timer 0, read both the timer and time-of-
day counts while the timer is stopped, and then restart the timer. Alas, the gate input to
timer 0 isn’t programcontrollable in the PC, so there’s no documented way to stop the
timer. (The latched read feature we used in Listing 3.1 doesn’t stop the timer; it latches
a count, but the timer keeps running.) What should we do?
As it turns out, an undocumented feature of the 8253 makes it possible to stop the
timer dead in its tracks. Setting the timer to a new mode and waiting for an initial
count to be loaded causes the timer to stop until the count is loaded. Surprisingly,
the timer count remains readable and correct while the timer is waiting for the ini-
tial load.
In my experience, this approach works beautifully with fully 8253-compatible chips.
However, there’s no guarantee that it will always work, since it programs the 8253 in
an undocumented way. What’s more, IBM chose not to implement compatibility
with this particular 8253 feature in the custom chips used in PS/2 computers. On
PS/2 computers, we have no choice but to latch the timer 0 count and then stop the
BIOS count (by disabling interrupts) as quickly as possible. We’ll just have to accept
the fact that on PS/2 computers we may occasionally get a reading that’s off by 54
ms, and leave it at that.
I’ve set up Listing 3.5 so that it can assemble to either use or not use the undocumented
timer-stopping feature, as you please. The PS2 equate selects between the two modes
of operation. If PS2 is 1 (as it is in Listing 3.5), then the latch-and-read method is used;
if PS2 is 0, then the undocumented timer-stop approach is used. The latch-and-read

54 Chapter 3

method will work on all PGcompatible computers, but may occasionally produce re-
sults that are incorrect by 54 ms. The timer-stop approach avoids synchronization
problems, but doesn't work on all computers.

LISTING 3.5 UTIMER.ASM

T h e l o n g - p e r i o d Zen t i m e r . (LZTIMER.ASM)
Uses t h e 8 2 5 3 t i m e r a n d t h e BIOS t i m e - o f - d a y c o u n t t o t i m e t h e
p e r f o r m a n c e o f c o d e t h a t t a k e s l e s s t h a n a n h o u r t o e x e c u t e .
B e c a u s e i n t e r r u p t s a r e l e f t on (i n o r d e r t o a l l o w t h e t i m e r
i n t e r r u p t t o b e r e c o g n i z e d) , t h i s i s l e s s a c c u r a t e t h a n t h e
p r e c i s i o n Zen t i m e r , s o it i s b e s t u s e d o n l y t o t i m e c o d e t h a t t a k e s
m o r e t h a n a b o u t 5 4 m i l l i s e c o n d s t o e x e c u t e (c o d e t h a t t h e p r e c i s i o n
Zen t i m e r r e p o r t s o v e r f l o w on). R e s o l u t i o n i s l i m i t e d b y t h e
o c c u r r e n c e o f t i m e r i n t e r r u p t s .

By Michael Abrash

E x t e r n a l l y c a l l a b l e r o u t i n e s :

ZTimerOn: Saves the B I O S t i m e o f d a y c o u n t a n d s t a r t s t h e
l o n g - p e r i o d Zen t i m e r .

Z T i m e r O f f : S t o p s t h e l o n g - p e r i o d Zen t i m e r a n d s a v e s t h e t i m e r
coun t and t he BIOS t i m e - o f - d a y c o u n t .

Z T i m e r R e p o r t : P r i n t s t h e t i m e t h a t p a s s e d b e t w e e n s t a r t i n g a n d
s t o p p i n g t h e t i m e r .

Note: I f e i t h e r m o r e t h a n a n h o u r p a s s e s o r m i d n i g h t f a l l s b e t w e e n
c a l l s t o ZTimerOn and ZTimerOf f , an er ror i s r e p o r t e d . F o r
t i m i n g c o d e t h a t t a k e s m o r e t h a n a f e w m i n u t e s t o e x e c u t e ,
e i t h e r t h e OOS TIME command i n a b a t c h f i l e b e f o r e and a f t e r
e x e c u t i o n o f t h e c o d e t o t i m e o r t h e u s e o f t h e DOS
t i m e - o f - d a y f u n c t i o n i n p l a c e o f t h e l o n g - p e r i o d Zen t i m e r i s
more than adequate.

Note: The P S / 2 v e r s i o n i s a s s e m b l e d b y s e t t i n g t h e s y m b o l PS2 t o 1.
PS2 m u s t b e s e t t o 1 on P S / 2 computers because the P S / Z ' s
t i m e r s a r e n o t c o m p a t i b l e w i t h an undocumented t imer -s topp ing
f e a t u r e o f t h e 8 2 5 3 : t h e a l t e r n a t i v e t i m i n g a p p r o a c h t h a t
must be used on PS/2 computers leaves a sho r t w indow
d u r i n g w h i c h t h e t i m e r 0 coun t and t he BIOS t i m e r c o u n t may
n o t b e s y n c h r o n i z e d . You s h o u l d a l s o s e t t h e PS2 symbol t o
1 i f y o u ' r e g e t t i n g e r r a t i c o r o b v i o u s l y i n c o r r e c t r e s u l t s .

Note: When PS2 i s 0. t h e c o d e r e l i e s o n an undocumented 8253
f e a t u r e t o g e t more r e l i a b l e r e a d i n g s . It i s p o s s i b l e t h a t
t h e 8 2 5 3 (o r w h a t e v e r c h i p i s e m u l a t i n g t h e 8 2 5 3) may b e p u t
i n t o an u n d e f i n e d o r i n c o r r e c t s t a t e when t h i s f e a t u r e i s
used.

.
* I f y o u r c o m p u t e r d i s p l a y s a n y h i n t o f e r r a t i c b e h a v i o r *
* a f t e r t h e l o n g - p e r i o d Zen t i m e r i s u s e d , s u c h a s t h e f l o p p y *
* d r i v e f a i l i n g t o o p e r a t e p r o p e r l y , r e b o o t t h e s y s t e m , s e t *
* PS2 t o 1 and leave i t t h a t way! *
.

Assume Nothing 55

: N o t e : E a c h b l o c k o f c o d e b e i n g t i m e d s h o u l d i d e a l l y b e r u n s e v e r a l
: t i m e s , w i t h a t l e a s t t w o s i m i l a r r e a d i n g s r e q u i r e d t o
: e s t a b l i s h a t r u e measurement, i n o r d e r t o e l i m i n a t e any
: v a r i a b i l i t y c a u s e d b y i n t e r r u p t s .

: N o t e : I n t e r r u p t s m u s t n o t b e d i s a b l e d f o r m o r e t h a n 54 ms a t a
: s t r e t c h d u r i n g t h e t i m i n g i n t e r v a l . B e c a u s e i n t e r r u p t s
: a r e e n a b l e d , k e y s , m i c e , a n d o t h e r d e v i c e s t h a t g e n e r a t e
: i n t e r r u p t s s h o u l d n o t b e u s e d d u r i n g t h e t i m i n g i n t e r v a l .

: Note: Any e x t r a c o d e r u n n i n g o f f t h e t i m e r i n t e r r u p t (s u c h a s
: some m e m o r y - r e s i d e n t u t i l i t i e s) will i n c r e a s e t h e t i m e
: measured by the Zen t i m e r .

: N o t e : T h e s e r o u t i n e s c a n i n t r o d u c e i n a c c u r a c i e s o f UD t o a few

: All

Code

t e n t h s o f a second i n t o t h e s y s t e m c l o c k c o u n t f o r e a c h
c o d e s e c t i o n t i m e d . C o n s e q u e n t l y , i t ' s a g o o d i d e a t o
r e b o o t a t t h e c o n c l u s i o n o f t i m i n g s e s s i o n s . (T h e
b a t t e r y - b a c k e d c l o c k , i f any. i s n o t a f f e c t e d b y t h e Zen
t i m e r .)

r e g i s t e r s and a l l f l a g s a r e p r e s e r v e d b y a l l r o u t i n e s .

segment word publ ic ' C O D E '
assume cs:Code. ds:nothing
p u b l i c ZTimerOn. ZTimerOff . ZTimerReport

Se t P S 2 t o 0 t o a s s e m b l e f o r u s e on a f u l l y 8 2 5 3 - c o m p a t i b l e
system: when PS2 i s 0 . t h e r e a d i n g s a r e m o r e r e l i a b l e i f t h e
c o m p u t e r s u p p o r t s t h e u n d o c u m e n t e d t i m e r - s t o p p i n g f e a t u r e ,
b u t may b e b a d l y o f f i f t h a t f e a t u r e i s n o t s u p p o r t e d . I n
f a c t , t i m e r - s t o p p i n g may i n t e r f e r e w i t h y o u r c o m p u t e r ' s
o v e r a l l o p e r a t i o n b y p u t t i n g t h e 8 2 5 3 i n t o an u n d e f i n e d o r
i n c o r r e c t s t a t e . Use w i t h c a u t i o n ! ! !

Set PS2 t o 1 t o assemble f o r u s e on non-8253-compat ib le
s y s t e m s , i n c l u d i n g P S / 2 computers: when PS2 i s 1. r e a d i n g s
may o c c a s i o n a l l y be o f f by 54 ms. b u t t h e c o d e will work
p r o p e r l y on all systems.

A s e t t i n g o f 1 i s s a f e r and will work on more systems,
w h i l e a s e t t i n g o f 0 p r o d u c e s m o r e r e l i a b l e r e s u l t s i n s y s t e m s
w h i c h s u p p o r t t h e u n d o c u m e n t e d t i m e r - s t o p p i n g f e a t u r e o f t h e
8253. The choice i s y o u r s .

PS2 equ 1

: B a s e a d d r e s s o f t h e 8 2 5 3 t i m e r c h i p .

BASE-8253 equ 40h

: T h e a d d r e s s o f t h e t i m e r 0 c o u n t r e g i s t e r s i n t h e 8 2 5 3 .

TIMER-0-8253 equ BASE-8253 + 0

: The add ress o f t he mode r e g i s t e r i n t h e 8 2 5 3 .

MODEL8253 equ BASEL8253 + 3

56 Chapter 3

; The address o f t h e B I O S t i m e r c o u n t v a r i a b l e i n t h e BIOS
: data segment .

TIMER-COUNT equ 46ch

: Macro t o e m u l a t e a POPF i n s t r u c t i o n i n o r d e r t o f i x t h e b u g i n some
; 80286 c h i p s w h i c h a l l o w s i n t e r r u p t s t o o c c u r d u r i n g a POPF even when
: i n t e r r u p t s r e m a i n d i s a b l e d .

MPOPF macro
l o c a l p l . p 2
j m p s h o r t p 2

p l : i r e t ; jump t o pushed address & p o p f l a g s
p2: push c s : c o n s t r u c t f a r r e t u r n a d d r e s s t o

c a l l p l : t h e n e x t i n s t r u c t i o n
endm

; Macro t o d e l a y b r i e f l y t o e n s u r e t h a t e n o u g h t i m e h a s e l a p s e d
: between success ive 1 / 0 accesses s o t h a t t h e d e v i c e b e i n g a c c e s s e d
; can respond t o b o t h a c c e s s e s e v e n o n a v e r y f a s t PC.

DELAY macro
jmp J+2
jmp J+2
jmp 6+2
endm

StartBIOSCountLowdw

Star tB IOSCountH igh

EndBIOSCountLow

EndBIOSCountHigh

EndTimedCount

Referencecount

: S t r i n g p r i n t e d

O u t p u t S t r l a b e l
db

TimedCountStr
db
db

dw

?

dw

dw

?

dw

dw

:BIOS c o u n t l o w w o r d a t t h e
: s t a r t o f t h e t i m i n g p e r i o d

? :BIOS c o u n t h i g h w o r d a t t h e
; s t a r t o f t h e t i m i n g p e r i o d

? ;BIOS c o u n t l o w w o r d a t t h e
: end o f t h e t i m i n g p e r i o d
:BIOS c o u n t h i g h w o r d a t t h e
; end o f t h e t i m i n g p e r i o d

? : t i m e r 0 c o u n t a t t h e e n d o f
: t h e t i m i n g p e r i o d

? ;number o f c o u n t s r e q u i r e d t o
: execu te t imer ove rhead code

t o r e p o r t r e s u l t s .

b y t e
Odh. Oah. 'T imed count : '
db 10 dup (?)
' m i c r o s e c o n d s ' , Odh. Oah
' J '

: T e m p o r a r y s t o r a g e f o r t i m e d c o u n t as i t ' s d i v i d e d down by powers
: o f t e n when c o n v e r t i n g f r o m d o u b l e w o r d b i n a r y t o A S C I I .

CurrentCountLow dw ?
Cur ren tCountH igh dw ?

: Powers o f t e n t a b l e u s e d t o p e r f o r m d i v i s i o n by 10 when d o i n g
; d o u b l e w o r d c o n v e r s i o n f r o m b i n a r y t o A S C I I .

PowersOfTen 1 abel word
dd 1
dd 1 0

Assume Nothing 57

dd 100
dd 1000
dd 10000
dd 100000
dd 1000000
dd 10000000
dd 100000000
dd 1000000000

PowersOfTenEnd l a b e l w o r d

: S t r i n g p r i n t e d t o r e p o r t t h a t t h e h i g h w o r d o f t h e B I O S c o u n t
: c h a n g e d w h i l e t i m i n g (a n h o u r e l a p s e d o r m i d n i g h t was c r o s s e d) ,
: and s o t h e c o u n t i s i n v a l i d a n d t h e t e s t n e e d s t o b e r e r u n .

T u r n O v e r S t r l a b e l b y t e
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db

Odh. Oah

Odh. Oah
' * E i t h e r m i d n i g h t p a s s e d o r a n h o u r o r m o r e p a s s e d * '
Odh. Oah
' * w h i l e t i m i n g was i n p r o g r e s s . I f t h e f o r m e r was * '
Odh. Oah
'* t h e c a s e , p l e a s e r e r u n t h e t e s t : i f t h e l a t t e r * '
Odh. Oah
' * was t h e c a s e , t h e t e s t c o d e t a k e s t o o l o n g t o * '
Odh. Oah
' * r u n t o b e t i m e d b y t h e l o n g - p e r i o d Zen t i m e r . * '
Odh. Oah
' * S u g g e s t i o n s : u s e t h e DOS TIME command, t h e DOS * '
Odh. Oah
' * t i m e f u n c t i o n , o r a watch. * '
Odh. Oah

Odh. Oah
' 0 '

.

.

.
:* R o u t i n e c a l l e d t o s t a r t t i m i n g . *
.

ZTimerOn proc near

Save t h e c o n t e x t o f t h e p r o g r a m b e i n g t i m e d .

push ax
push f

S e t t i m e r 0 o f t h e 8253 t o mode 2 (d i v i d e - b y - N) . t o c a u s e
l i n e a r c o u n t i n g r a t h e r t h a n c o u n t - b y - t w o c o u n t i n g . A l s o s t o p s
t i m e r 0 u n t i l t h e t i m e r c o u n t i s l o a d e d , e x c e p t on PS/2
computers.

mov a l .00110100b
o u t MODE-8253.al

:mode 2

S e t t h e t i m e r c o u n t t o 0, so we know we w o n ' t g e t a n o t h e r
t i m e r i n t e r r u p t r i g h t away.
N o t e : t h i s i n t r o d u c e s a n i n a c c u r a c y o f u p t o 54 ms i n t h e s y s t e m
c l o c k c o u n t e a c h t i m e i t i s executed.

58 Chapter 3

DELAY
sub a1 .a1
o u t TIMERPOP8253.al : l s b
DELAY
o u t TIMER-0-8253,al :msb

: I n c a s e i n t e r r u p t s a r e d i s a b l e d , e n a b l e i n t e r r u p t s b r i e f l y t o a l l o w
: t h e i n t e r r u p t g e n e r a t e d when s w i t c h i n g f r o m mode 3 t o mode 2 t o be
: r e c o g n i z e d . I n t e r r u p t s m u s t b e e n a b l e d f o r a t l e a s t 2 1 0 n s t o a l l o w
: t i m e f o r t h a t i n t e r r u p t t o o c c u r . H e r e , 10 j u m p s a r e u s e d f o r t h e
: d e l a y t o e n s u r e t h a t t h e d e l a y t i m e will be more than long enough
: even on a v e r y f a s t P C .

p u s h f
s t i
r e p t 1 0
jmp 1+2

MPOPF
endm

: S t o r e t h e t i m i n g s t a r t BIOS c o u n t .
: (S i n c e t h e t i m e r c o u n t was j u s t s e t t o 0 . t h e B I O S c o u n t will
: s t a y t h e same f o r t h e n e x t 5 4 ms. s o we d o n ' t n e e d t o d i s a b l e
: i n t e r r u p t s i n o r d e r t o a v o i d g e t t i n g a h a l f - c h a n g e d c o u n t .)

push ds
sub ax.ax

mov ax,ds:[TIMERPCOUNT+2]
mov ds.ax

mov cs:[StartBIOSCountHighl.ax
mov ax.ds:[TIMERPCOUNT]
mov cs:[StartBIOSCountLow],ax
POP ds

: S e t t h e t i m e r c o u n t t o 0 a g a i n t o s t a r t t h e t i m i n g i n t e r v a l .

mov a l . 0 0 1 1 0 1 0 0 b : s e t u p t o l o a d i n i t i a l
o u t MOOEL8253,al
DELAY
sub a1 .a1
o u t TIMER-0-8253,al
DELAY

: l o a d c o u n t l s b

o u t TIMER-0-8253.al : l o a d c o u n t msb

: t i m e r c o u n t

: R e s t o r e t h e c o n t e x t o f t h e p r o g r a m b e i n g t i m e d a n d r e t u r n t o i t .

MPOPF
POP ax
r e t

ZTimerOn endp

.
:* R o u t i n e c a l l e d t o s t o p t i m i n g a n d g e t c o u n t . *
.

ZT imerOf f p roc nea r

: Save t h e c o n t e x t o f t h e p r o g r a m b e i n g t i m e d .

Assume Nothing 59

push f
push ax
push cx

: I n c a s e i n t e r r u p t s a r e d i s a b l e d , e n a b l e i n t e r r u p t s b r i e f l y t o a l l o w
: a n y p e n d i n g t i m e r i n t e r r u p t t o b e h a n d l e d . I n t e r r u p t s m u s t b e
: e n a b l e d f o r a t l e a s t 210 ns t o a l l o w t i m e f o r t h a t i n t e r r u p t t o
: o c c u r . H e r e , 1 0 j u m p s a r e u s e d f o r t h e d e l a y t o e n s u r e t h a t t h e
: d e l a y t i m e will be more than long enough even on a v e r y f a s t PC.

s t i
r e p t 1 0
jmp 9+2
endm

: L a t c h t h e t i m e r c o u n t .

i f PS2

mov a l ,00000000b
o u t MODE-8253.al : l a t c h t i m e r 0 coun t

: T h i s i s where a o n e - i n s t r u c t i o n - l o n g w i n d o w e x i s t s on t h e PS/2.
: The t i m e r c o u n t a n d t h e B I O S c o u n t c a n l o s e s y n c h r o n i z a t i o n :
: s i n c e t h e t i m e r k e e p s c o u n t i n g a f t e r i t ' s l a t c h e d , i t c a n t u r n
: o v e r r i g h t a f t e r i t ' s l a t c h e d and cause the B I O S c o u n t t o t u r n
: o v e r b e f o r e i n t e r r u p t s a r e d i s a b l e d , l e a v i n g us w i t h t h e t i m e r
: c o u n t f r o m b e f o r e t h e t i m e r t u r n e d o v e r c o u p l e d w i t h t h e B I O S
: c o u n t f r o m a f t e r t h e t i m e r t u r n e d o v e r . The r e s u l t i s a coun t
: t h a t ' s 54 ms t o o l o n g .

e l s e

: S e t t i m e r 0 t o mode 2 (d i v i d e - b y - N) , w a i t i n g f o r a 2 - b y t e c o u n t
: l o a d , w h i c h s t o p s t i m e r 0 u n t i l t h e c o u n t i s l o a d e d . (O n l y w o r k s
: on f u l l y 8 2 5 3 - c o m p a t i b l e c h i p s .)

mov a l .00110100b :mode 2
o u t MODEL8253,al
DELAY
mov a l . 0 0 0 0 0 0 0 0 b : l a t c h t i m e r 0 c o u n t
o u t MODEL8253,al

end i f

c l i ; s t o p t h e B I O S c o u n t

: Read t h e B I O S c o u n t . (S i n c e i n t e r r u p t s a r e d i s a b l e d , t h e B I O S
: count won ' t change.)

push ds
sub ax.ax
mov ds,ax
mov ax,ds:[TIMER_COUNT+2]
mov cs:[EndBIOSCountHighl,ax
mov ax,ds:[TIMERLCOUNT1

60 Chapter 3

mov cs:[EndBIOSCountLowl.ax
POP ds

; Read t h e t i m e r c o u n t a n d s a v e i t .

i n a1 .TIMERpOp8253
DELAY

: l s b

mov ah .a l
i n a1 ,TIMERp0-8253 :msb
xchg ah.a l
neg ax ;conver t f rom countdown

: r e m a i n i n g t o e l a p s e d
: count

mov cs: [EndTimedCount l .ax

: R e s t a r t t i m e r 0 . w h i c h i s s t i l l w a i t i n g f o r an i n i t i a l c o u n t
: t o be loaded.

i f e P S 2

DELAY
mov a1 .00110100b :mode 2 . w a i t i n g t o l o a d a

o u t MODEL8253,al
DELAY
sub a1 .a1
o u t TIMERpOp8253.al
DELAY

: l s b

mov a1 ,ah
o u t TIMERpOp8253.al
DELAY

:msb

: 2 - b y t e c o u n t

e n d i f

s t i ; l e t t h e B I O S c o u n t c o n t i n u e

: Time a z e r o - l e n g t h c o d e f r a g m e n t , t o g e t a r e f e r e n c e f o r how
: much o v e r h e a d t h i s r o u t i n e h a s . T i m e i t 16 t imes and average it,
: f o r a c c u r a c y , r o u n d i n g t h e r e s u l t .

mov cs : [ReferenceCount l .O
mov cx.16
c l i : i n t e r r u p t s o f f t o a l l o w a

: p r e c i s e r e f e r e n c e c o u n t
Ref Loop:

c a l l ReferenceZTimerOn
c a l l R e f e r e n c e Z T i m e r O f f
1 oop Ref Loop
s t i
add cs : [Re fe renceCoun t l . 8 : t o ta l + (0 . 5 * 1 6)
mov c l . 4
s h r c s : [R e f e r e n c e C o u n t l . c l : (t o t a l) / 16 + 0.5

; R e s t o r e t h e c o n t e x t o f t h e p r o g r a m b e i n g t i m e d a n d r e t u r n t o i t .

POP c x
POP ax
M P O P F
r e t

Assume Nothing 61

ZTimerOff endp

: C a l l e d b y Z T i m e r O f f t o s t a r t t h e t i m e r f o r o v e r h e a d m e a s u r e m e n t s .

ReferenceZTimerOnproc near

: Save t h e c o n t e x t o f t h e p r o g r a m b e i n g t i m e d .

push ax
p u s h f

: S e t t i m e r 0 o f t h e 8253 t o mode 2 (d i v i d e - b y - N) . t o c a u s e
: l i n e a r c o u n t i n g r a t h e r t h a n c o u n t - b y - t w o c o u n t i n g .

: Set

mov a1 .00110100b ;mode 2
o u t MODE-8253.al

t h e t i m e r c o u n t t o 0

DELAY
sub a 1 ,a1
o u t TIMER-0-8253.al : l s b
DELAY
o u t TIMERPOP8253.al ;msb

: R e s t o r e t h e c o n t e x t

M P O P F

r e t
POP ax

ReferenceZTimerOnendp

: C a l l e d b y Z T i m e r O f f

o f t h e p r o g r a m b e i n g t i m e d a n d r e t u r n t o i t .

t o s t o p t h e t i m e r a n d a d d t h e r e s u l t t o
: Referencecount for overhead measurements. Doesn ' t need t o l o o k
: a t t h e B I O S c o u n t b e c a u s e t i m i n g a z e r o - l e n g t h c o d e f r a g m e n t
: i s n ' t g o i n g t o t a k e a n y w h e r e n e a r 5 4 ms.

Re fe renceZT imerOf f p roc nea r

: Save t h e c o n t e x t o f t h e p r o g r a m b e i n g t i m e d .

p u s h f
push ax
push cx

: M a t c h t h e i n t e r r u p t - w i n d o w d e l a y i n Z T i m e r O f f

s t i
r e p t 10
jmp $+2
endm

mov al .00000000b
o u t MODE-8253,al : l a t c h t i m e r

62 Chapter 3

: Read the coun t and save i t .

DELAY
i n a1 ,TIMER_0_8253 ; l s b

mov ah.al
i n a1 .TIMER_0_8253 ;msb
xchg ah ,a l
neg ax ;conver t f rom countdown

DELAY

; r e m a i n i n g t o e l a p s e d
: c o u n t

add cs: [ReferenceCount l ,ax

; R e s t o r e t h e c o n t e x t a n d r e t u r n .

POP c x
POP ax
MPOPF
r e t

ReferenceZTimerOf f endp

.
;* R o u t i n e c a l l e d t o r e p o r t t i m i n g r e s u l t s . *
.

ZT imerRepor t p roc near

p u s h f
push ax
push bx
push cx
push dx
push s i
p u s h d i
push ds

push c s :DOS f u n c t i o n s r e q u i r e t h a t DS p o i n t
POP ds : t o t e x t t o b e d i s p l a y e d on t h e s c r e e n
assume ds :Code

; See i f m i d n i g h t o r m o r e t h a n a n h o u r p a s s e d d u r i n g t i m i n g . I f so ,
; n o t i f y t h e u s e r .

mov ax . [S tar tB IOSCountH igh l
cmp ax. [EndBIOSCountHighl
j z Ca lcBIOSTime ;hour count d idn ' t change,

i n c a x
cmp ax. [EndBIOSCountHighl
j n z T e s t T o o L o n g : m i d n i g h t o r t w o h o u r

; s o e v e r y t h i n g ' s f i n e

: boundar ies passed, s o t h e
: r e s u l t s a r e n o g o o d

mov ax.CEndBIOSCountLowl
cmp ax . [S tar tB IOSCountLowl
j b CalcBIOSTime :a s ing le hour boundary

; p a s s e d - - t h a t ' s OK. s o l o n g a s
: t h e t o t a l t i m e w a s n ' t m o r e
; t h a n an hour

Assume Nothing 63

: O v e r a n h o u r e l a p s e d o r m i d n i g h t p a s s e d d u r i n g t i m i n g , w h i c h
: r e n d e r s t h e r e s u l t s i n v a l i d . N o t i f y t h e u s e r . T h i s m i s s e s t h e
: case where a m u l t i p l e o f 24 h o u r s h a s p a s s e d , b u t w e ' l l r e l y
: o n t h e p e r s p i c a c i t y o f t h e user t o d e t e c t t h a t c a s e .

TestTooLong:
mov ah.9
mov d x . o f f s e t T u r n O v e r S t r
i n t 21h
jmp shor t ZTimerRepor tOone

: C o n v e r t t h e BIOS t i m e t o m i c r o s e c o n d s .

CalcBIOSTime:
mov ax.CEndBIOSCountLowl
sub ax. [StartBIOSCountLow]
mov dx. 54925 :number o f m i c r o s e c o n d s e a c h

mu1 d x
mov b x . a x : s e t a s i d e BIOS c o u n t i n
mov cx .dx : microseconds

: BIOS c o u n t r e p r e s e n t s

: C o n v e r t t i m e r c o u n t t o m i c r o s e c o n d s .

mov ax, [EndTimedCount]
mov s i ,8381
mu1 s i
mov s i ,10000
d i v s i :* .E381 - * 8381 / 10000

: Add t i m e r a n d B I O S c o u n t s t o g e t h e r t o g e t a n o v e r a l l t i m e i n
: microseconds.

add bx.ax
adc cx .0

: S u b t r a c t t h e t i m e r o v e r h e a d a n d s a v e t h e r e s u l t .

mov ax. [ReferenceCount]
mov s i ,8381
mu1 s i
mov s i , 10000
d i v s i :* .E381 - * 8381 / 10000
sub bx.ax
sbb cx.0
mov [Cur ren tCountLowl .bx
mov [C u r r e n t C o u n t H i g h] . ~ ~

: c o n v e r t t h e r e f e r e n c e c o u n t
: t o m i c r o s e c o n d s

: C o n v e r t t h e r e s u l t t o an ASCII s t r i n g b y t r i a l s u b t r a c t i o n s o f
: powers o f 1 0 .

mov d i . o f f s e t PowersOfTenEnd - o f f s e t PowersOfTen - 4
mov s i . o f f s e t T i m e d C o u n t S t r

mov b l ,'O'

mov ax . [Cur ren tCountLow]
mov dx , [Cur ren tCountH igh]
sub ax.PowersOfTen[di]

CTSNextOigi t :

CTSLoop:

64 Chapter 3

s b b dx.PowersOfTenCdi+2l
j c CTSNextPowerDown
i n c b l
mov CCurrentCountLowl.ax
mov [Cur ren tCountH igh] .dx
jrnp CTSLoop

rnov [s i l . b l
i n c s i
s u b d i . 4
j n s C T S N e x t D i g i t

CTSNextPowerDown:

: P r i n t t h e r e s u l t s .

mov ah.9
rnov d x , o f f s e t O u t p u t S t r
i n t 21h

ZTirnerReportDone:
POP ds
pop d i
pop s i
POP dx
POP c x
POP bx
POP ax
MPOPF
r e t

ZTimerReport endp

Code ends
end

Moreover, because it uses an undocumented feature, the timer-stop approach could
conceivably cause erratic 8253 operation, which could in turn seriously affect your
computer’s operation until the next reboot. In non-8253-compatible systems, I’ve
observed not only wildly incorrect timing results, but also failure of a diskette drive
to operate properly after the long-period Zen timer with PS2 set to 0 has run, so be
alert for signs of trouble if you do set PS2 to 0.
Rebooting should clear up any timer-related problems of the sort described above.
(This gives us another reason to reboot at the end of each code-timing session.) You
should immediately reboot and set the PS2 equate to 1 if you get erratic or obviously
incorrect results with the long-period Zen timer when PS2 is set to 0. If you want to set
PS2 to 0, it would be a good idea to time a few of the listings in this book with PS2 set
first to 1 and then to 0, to make sure that the results match. If they’re consistently
different, you should set PS2 to 1.
While the the non-PS/2 version is more dangerous than the PS/2 version, it also
produces more accurate results when it does work. If you have a non-PS/Z PC-com-
patible computer, the choice between the two timing approaches is yours.

Assume Nothing 65

If you do leave the PS2 equate at 1 in Listing 3.5, you should repeat each code-timing
run several times before relying on the results to be accurate to more than 54 ms, since
variations may result from the possible lack of synchronization between the timer 0
count and the BIOS time-ofday count. In fact, it’s a good idea to time code more than
once no matter which version of the long-period Zen timer you’re using, since inter-
rupts, which must be enabled in order for the long-period timer to work properly, may
occur at any time and can alter execution time substantially.
Finally, please note that the precision Zen timer works perfectly well on both PS/2
and non-PS/S computers. The PS/2 and 8253 considerations we’ve just discussed
apply only to the long-period Zen timer.

Example Use of the Long-Period Zen Timer
The long-period Zen timer has exactly the same calling interface as the precision Zen
timer, and can be used in place of the precision Zen timer simply by linking it to the
code to be timed in place of linking the precision timer code. Whenever the precision
Zen timer informs you that the code being timed takes too long for the precision timer
to handle, all you have to do is link in the long-period timer instead.
Listing 3.6 shows a test-bed program for the long-period Zen timer. While this pro-
gram is similar to Listing 3.2, it’s worth noting that Listing 3.6 waits for a few seconds
before calling ZTimerOn, thereby allowing any pending keyboard interrupts to be
processed. Since interrupts must be left on in order to time periods longer than 54
ms, the interrupts generated by keystrokes (including the upstroke of the Enter key
press that starts the program)-or any other interrupts, for that matter-could in-
correctly inflate the time recorded by the long-period Zen timer. In light of this,
resist the temptation to type ahead, move the mouse, or the like while the long-
period Zen timer is timing.

LISTING 3.6 UTEST.ASM
: Program t o measure per formance o f code tha t takes longer than
: 54 ms t o e x e c u t e . (LZTEST.ASM)

: L i n k w i t h LZTIMER.ASM (L i s t i n g 3 . 5) . LZTIME.BAT (L i s t i n g 3 . 7)
: can be used t o assemble and l i n k b o t h f i l e s . Code t o b e
: measured must be i n t h e f i l e TESTCODE: L i s t i n g 3 . 8 shows
: a sample f i l e (LST3-8.ASM) which should be named TESTCODE.

: By Michael Abrash

mystack segment para stack ‘STACK’

mystack ends

Code segment para publ ic ‘CODE’

db 512 dup(?)

assume cs:Code. ds:Code
ex t rn ZT imer0n:near . ZT imer0 f f :near . ZT imerRepor t :near

push cs
S t a r t p r o c n e a r

66 Chapter 3

pop ds : p o i n t D S t o t h e code segment.
: so da ta a s w e l l as code can e a s i l y
: b e i n c l u d e d i n TESTCODE

: Delay f o r 6 - 7 s e c o n d s . t o l e t t h e E n t e r k e y s t r o k e t h a t s t a r t e d t h e
: program come back up.

mov ah,2ch
i n t 21h
mov bh.dh

mov ah.2ch
push bx
i n t 21h
POP bx
cmp dh,bh

jnb CheckDelayTime
add dh.60

Del ayLoop:

CheckDelayTime:
sub dh,bh
cmp dh.7
j b Del ayLoop

i n c l u d e TESTCODE

: D i s p l a y t h e r e s u l t s .

c a l l Z T i m e r R e p o r t

: Terminate the p rogram.

mov ah.4ch
i n t 21h

S t a r t endp
Code ends

end S t a r t

: g e t t h e c u r r e n t t i m e
: s e t t h e c u r r e n t t i m e a s i d e

; p r e s e r v e s t a r t t i m e
: g e t t i m e
: r e t r i e v e s t a r t t i m e
: i s t h e new seconds count less t h a n
: t h e s t a r t s e c o n d s c o u n t ?
:no
:yes. a m inu te mus t have t u rned ove r ,
; so add one m i n u t e

: g e t t i m e t h a t ' s p a s s e d
;has i t been more than 6 seconds ye t?
; n o t y e t

:code t o b e m e a s u r e d , i n c l u d i n g c a l l s
: t o ZTimerOn and ZTimerOff

As with the precision Zen timer, the program in Listing 3.6 is used by naming the file
containing the code to be timed TESTCODE, then assembling both Listing 3.6 and
Listing 3.5 with MASM or TASM and linking the two files together by way of the
Microsoft or Borland linker. Listing 3.7 shows a batch file, named LZTIME.BAT,
which does all of the above, generating and running the executable file LZTEST.EXE.
LZTIME.BAT assumes that the file LZTIMER.ASM contains Listing 3.5 and the file
LZTEST.ASM contains Listing 3.6.

LISTING 3.7 UTIME.BAT
echo o f f
rem
rem *** L i s t i n g 3.7 ***
rem
rem .
rem * B a t c h f i l e LZTIME.BAT, w h i c h b u i l d s a n d r u n s t h e *
rem * l o n g - p e r i o d Zen t i m e r p r o g r a m LZTEST.EXE t o t i m e t h e c o d e *

Assume Nothing 67

rem * named a s t h e c o m m a n d - l i n e p a r a m e t e r . L i s t i n g 3 . 5 m u s t b e *
rem * named LZTIMER.ASM. and L i s t i n g 3 . 6 m u s t b e named *
rem * LZTEST.ASM. T o t i m e t h e c o d e i n L S T 3 - 8 , y o u ' d t y p e t h e *
rem * DOS command: *
rem * *
rem * l z t i m e l s t 3 - 8 *
rem * *
rem * N o t e t h a t MASM and LINK must be i n t h e c u r r e n t d i r e c t o r y o r *
rem * o n t h e c u r r e n t p a t h i n o r d e r f o r t h i s b a t c h f i l e t o w o r k . *
rem * *
rem * T h i s b a t c h f i l e c a n b e s p e e d e d up by assembl ing LZTIMER.ASM *
rem * o n c e , t h e n r e m o v i n g t h e l i n e s : *
rem * *
rem * masm l z t i m e r : *
rem * i f e r r o r l e v e l 1 g o t o e r r o r e n d *
rem * *
rem * f r o m t h i s f i l e . *
rem * *
rem * By Michael Abrash *
rem .
rem
rem Make s u r e a f i l e t o t e s t was s p e c i f i e d .
rem
i f n o t x%l-x g o t o c k e x i s t

echo * P l e a s e s p e c i f y a f i l e t o t e s t . *

go to end
rem
rem Make s u r e t h e f i l e e x i s t s .
rem
: c k e x i s t
i f e x i s t %1 go to docopy

echo * T h e s p e c i f i e d f i l e , "%1." d o e s n ' t e x i s t . *
echo .
go to end
rem
r e m c o p y t h e f i l e t o m e a s u r e t o TESTCODE.
:docopy
copy %1 t e s t c o d e
masm l z t e s t ;
i f e r r o r l e v e l 1 g o t o e r r o r e n d
masm l z t i m e r :
i f e r r o r l e v e l 1 g o t o e r r o r e n d
l i n k l z t e s t + l z t i m e r :
i f e r r o r l e v e l 1 g o t o e r r o r e n d
1 z t e s t
g o t o e n d
: e r r o r e n d

echo * An e r r o r o c c u r r e d w h i l e b u i l d i n g t h e l o n g - p e r i o d Zen t i m e r . *

:end

echo .

echo .

echo .

echo .

echo .

Listing 3.8 shows sample code that can be timed with the test-bed program of Listing 3.6.
Listing 3.8 measures the time required to execute 20,000 loads of AL from memory,
a length of time too long for the precision Zen timer to handle on the 8088.

68 Chapter 3

LISTING 3.8 LST3-8.ASM

: Measures t h e p e r f o r m a n c e o f 20.000 l o a d s o f AL from
: memory. (U s e by renaming t o TESTCOOE. wh ich i s
; i n c l u d e d b y LZTEST.ASM (L i s t i n g 3 . 6) . LZTIME.BAT
: (L i s t i n g 3 . 7) does t h i s , a l o n g w i t h a l l a s s e m b l y
: a n d T i n k i n g .)

: N o t e : t a k e s a b o u t t e n m i n u t e s t o a s s e m b l e on a s low P C i f
; you a r e u s i n g MASM

jmp Sk ip : j ump a round de f i ned da ta

MemVar db ?

S k i p :

: S t a r t t i m i n g .

c a l l ZTimerOn

r e p t 20000
mov a1 , [MemVar]
endm

; S t o p t i m i n g .

c a l l Z T i m e r O f f

When LZTIME.BAT is run on a PC with the following command line (assuming the
code in Listing 3.8 is the file LST3-8.ASM)

l z t i m e l s t 3 - 8 . a s m

the result is 72,544 ps, or about 3.63 ps per load of AL from memory. This is just
slightly longer than the time per load of AL measured by the precision Zen timer, as
we would expect given that interrupts are left enabled by the long-period Zen timer.
The extra fraction of a microsecond measured per MOV reflects the time required
to execute the BIOS code that handles the 18.2 timer interrupts that occur each
second.
Note that the command can take as much as 10 minutes to finish on a slow PC if you
are using MASM, with most of that time spent assembling Listing 3.8. Why? Because
MASM is notoriously slow at assembling REPT blocks, and the block in Listing 3.8 is
repeated 20,000 times.

Using the Zen Timer from C
The Zen timer can be used to measure code performance when programming in
C-but not right out of the box. As presented earlier, the timer is designed to be
called from assembly language; some relatively minor modifications are required
before the ZTimerOn (start timer), ZTimerOff (stop timer), and ZTimerReport

Assume Nothing 69

(display timing results) routines can be called from C. There are two separate cases
to be dealt with here: small code model and large; I’ll tackle the simpler one, the
small code model, first.
Altering the Zen timer for linking to a small code model C program involves the follow-
ing steps: Change ZTimerOn to -ZTimerOn, change ZTimerOff to -ZTimerOff, change
ZTimerReport to -ZTiierReport, and change Code to -TEXT. Figure 3.2 shows the
line numbers and new states of all lines from Listing 3.1 that must be changed. These
changes convert the code to use Cstyle external label names and the small model C code
segment. (In C++, use the “C” specifier, as in

e x t e r n “ C ” ZT imerOn(vo id) ;

when declaring the timer routines extern, so that name-mangling doesn’t occur, and
the linker can find the routines’ C-style names.)
That’s all it takes; after doing this, you’ll be able to use the Zen timer from C, as, for
example, in:

ZTimerOn(:
f o r (i - 0 . x-0; i<lOO; i++)

ZTimerOf f (;
Z T i m e r R e p o r t O ;

x +- i;

(I’m talking about the precision timer here. The long-period timer-Listing 3.5-
requires the same modifications, but to different lines.)

L i n e # Nw S t a t e
-

47 - TEXT segmen t word pub l i c ‘ C O D E ’
4a assume cs:-TEXT. d s : n o t h i n g
49 p u b l i c - ZTimerOn. -2TimerOf f . -2TimerRepor t

140 ZTimerOn proc near

216 ZT imerOf f p roc nea r
296 - ZTimerOf f endp

210 ~ ZTimerOn endp

372 - ZTimerRepor t p roc near
384 assume ds:-TEXT
437 -
439 -

ZTimerReport endp
TEXT ends

These are the lines in Listing 3.1 that must be changed for use with small code
model C, and the states of the lines after the changes are made.

Changes for use with small code model C.
Figure 3.2

70 Chapter 3

Altering the Zen timer for use in C’s large code model is a tad more complex, be-
cause in addition to the above changes, all functions, including the internal reference
timing routines that are used to calculate overhead so it can be subtracted out, must
be converted to far. Figure 3.3 shows the line numbers and new states of all lines
from Listing 3.1 that must be changed in order to call the Zen timer from large code
model C. Again, the line numbers are specific to the precision timer, but the long-
period timer is very similar.
The full listings for the C-callable Zen timers are presented in Chapter K on the
companion CD-ROM.

Watch Out for Optimizing Assemblers!
One important safety tip when modifjmg the Zen timer for use with large code model
C code: Watch out for optimizing assemblers! TASM actually replaces

c a l l f a r p t r ReferenceZTimerOn

with

push cs
c a l l n e a r p t r R e f e r e n c e Z T i m e r O n

(and likewise for ReferenceZTimerOff) , which works because ReferenceZTimerOn
is in the same segment as the calling code. This is normally a great optimization,
being both smaller and faster than a far call. However, it’s not so great for the Zen

L i n e 11 New S t a t e
-

47
48
49

140
210
216
267
268
296
302
336
372
384
437
439

PZTIMER-TEXT segment word pub l i c ’ C O D E ’

p u b l i c -ZTimerOn. _ZTimerOff. -ZTimerReport
assume cs:PZTIMER-TEXT. d s : n o t h i n g

- ZT imerOn p roc f a r
-ZTimerOn endp
- Z T i m e r O f f p r o c f a r

c a l l f a r p t r ReferenceZTimerOn
c a l l f a r p t r R e f e r e n c e Z T i m e r O f f

- ZTimerOf f endp
ReferenceZTimerOn p roc fa r
R e f e r e n c e Z T i m e r O f f p r o c f a r
-ZT imerRepor t p roc f a r
assume ds:PZTIMER_TEXT

PZTIMER-TEXT ends
-ZTimerReport endp

These are the lines in Listing 3.1 that must be changed for use with large
code model C, and the states of the lines after the changes are made.

Changes for use with large code model C.
Figure 3.3

Assume Nothing 71

timer, because our purpose in calling the reference timing code is to determine
exactly how much time is taken by overhead code-including the far calls to
ZTimerOn and ZTimerOff ! By converting the far calls to push/near call pairs within
the Zen timer module, TASM makes it impossible to emulate exactly the overhead of
the Zen timer, and makes timings slightly (about 16 cycles on a 386) less accurate.
What’s the solution? Put the NOSMART directive at the start of the Zen timer code.
This directive instructs TASM to turn off all optimizations, including converting far
calls to push/near call pairs. By the way, there is, to the best of my knowledge, no
such problem with MASM up through version 5.10A.
In my mind, the whole business of optimizing assemblers is a mixed blessing. In
general, it’s nice to have the assembler shorteningjumps and selecting sign-extended
forms of instructions for you. On the other hand, the benefits of tricks like substituting
push/near call pairs for far calls are relatively small, and those tricks can get in the
way when complete control is needed. Sure, complete control is needed very rarely,
but when it is, optimizing assemblers can cause subtle problems; I discovered TASM’s
alteration of far calls only because I happened to view the code in the debugger, and
you might want to do the same if you’re using a recent version of MASM.
I’ve tested the changes shown in Figures 3.2 and 3.3 with TASM and Borland C++
4.0, and also with the latest MASM and Microsoft C/C++ compiler.

Further Reading
For those of you who wish to pursue the mechanics of code measurement further,
one good article about measuring code performance with the 8253 timer is “Pro-
gramming Insight: High-Performance Software Analysis on the IBM PC,” by Byron
Sheppard, which appeared in the January, 1987 issue of Byte. For complete if some-
what cryptic information on the 8253 timer itself, I refer you to Intel’s Microsystem
Components Handbook, which is also a useful reference for a number of other PC
components, including the 8259 Programmable Interrupt Controller and the 8237
DMA Controller. For details about the way the 8253 is used in the PC, as well as a
great deal of additional information about the PC’s hardware and BIOS resources, I
suggest you consult IBM’s series of technical reference manuals for the PC, XT, AT,
Model 30, and microchannel computers, such as the Models 50, 60, and 80.
For our purposes, however, it’s not critical that you understand exactly how the Zen
timer works. All you really need to know is what the Zen timer can do and how to use
it, and we’ve accomplished that in this chapter.

Armed with the Zen Timer, Onward and Upward
The Zen timer is not perfect. For one thing, the finest resolution to which it can
measure an interval is at best about l p , a period of time in which a 66 MHz Pentium
computer can execute as many as 132 instructions (although an 8088-based PC would

72 Chapter 3

be hard-pressed to manage two instructions in a microsecond). Another problem is
that the timing code itself interferes with the state of the prefetch queue and proces-
sor cache at the start of the code being timed, because the timing code is not
necessarily fetched and does not necessarily access memory in exactly the same time
sequence as the code immediately preceding the code under measurement normally
does. This prefetch effect can introduce as much as 3 to 4 ps of inaccuracy. Similarly,
the state of the prefetch queue at the end of the code being timed affects how long
the code that stops the timer takes to execute. Consequently, the Zen timer tends to
be more accurate for longer code sequences, since the relative magnitude of the
inaccuracy introduced by the Zen timer becomes less over longer periods.
Imperfections notwithstanding, the Zen timer is a good tool for exploring C code
and x86 family assembly language, and it’s a tool we’ll use frequently for the remain-
der of this book.

Assume Nothing 73

	next:
	home:
	previous:

