
chapter 24

parallel processing with the vga

raphics Memory Four Bytes at a Time
the ability of the VGA chip to manipulate up to four bytes of

lar, the VGA provides four ALUs (Arithmetic Logic
display memory writes, and this hardware is a tre-
manipulating the VGA's sizable frame buffer. The
the surprisingly complex data flow architecture of
d in almost all memory access operations, they're

VGA amming: ALUs and Latches
I'm going to begin o4detailed tour of the VGA at the heart of the flow of data through
the VGA the four ALhs built into the VGA's Graphics Controller (GC) circuitry. The
&Us (one for each display memory plane) are capable of ORing, ANDing, and XORing
CPU data and display memory data together, as well as masking off some or all of the bits
in the data from affecting the find result. All the ALUs perform the same logical opera-
tion at any given time, but each ALU operates on a different display memory byte.
Recall that the VGA has four display memory planes, with one byte in each plane at
any given display memory address. All four display memory bytes operated on are
read from and written to the same address, but each ALU operates on a byte that was
read from a different plane and writes the result to that plane. This arrangement
allows four display memory bytes to be modified by a single CPU write (which must

45 1

often be preceded by a single CPU read, as we will see). The benefit is vastly im-
proved performance; if the CPU had to select each of the four planes in turn via
OUTS and perform the four logical operations itself, VGA performance would slow
to a crawl.
Figure 24.1 is a simplified depiction of data flow around the &Us. Each ALU has a
matching latch, which holds the byte read from the corresponding plane during the
last CPU read from display memory, even if that particular plane wasn’t the plane
that the CPU actually read on the last read access. (Only one byte can be read by the
CPU with a single display memory read; the plane supplying the byte is selected by
the Read Map register. However, the bytes at the specified address in all four planes
are always read when the CPU reads display memory, and those four bytes are stored
in their respective latches.)
Each ALU logically combines the byte written by the CPU and the byte stored in the
matching latch, according to the settings of bits 3 and 4 of the Data Rotate register
(and the Bit Mask register as well, which I’ll cover next time), and then writes the
result to display memory. It is most important to understand that neither ALU oper-
and comes directly from display memory. The temptation is to think of the ALUs as
combining CPU data and the contents of the display memory address being written
to, but they actually combine CPU data and the contents of the last display memory
location read, which need not be the location being modified. The most common

452 Chapter 24

application of the ALUs is indeed to modify a given display memory location, but
doing so requires a read from that location to load the latches before the write that
modifies it. Omission of the read results in a write operation that logically combines
CPU data with whatever data happens to be in the latches from the last read, which
is normally undesirable.
Occasionally, however, the independence of the latches from the display memory
location being written to can be used to great advantage. The latches can be used to
perform 4byte-at-a-time (one byte from each plane) block copying; in this applica-
tion, the latches are loaded with a read from the source area and written unmodified
to the destination area. The latches can be written unmodified in one of two ways: By
selecting write mode 1 (for an example of this, see the last chapter), or by setting the
Bit Mask register to 0 so only the latched bits are written.
The latches can also be used to draw a fairly complex area fill pattern, with a differ-
ent bit pattern used to fill each plane. The mechanism for this is as follows: First,
generate the desired pattern across all planes at any display memory address. Gener-
ating the pattern requires a separate write operation for each plane, so that each
plane's byte will be unique. Next, read that memory address to store the pattern in
the latches. The contents of the latches can now be written to memory any number
of times by using either write mode 1 or the bit mask, since they will not change until
a read is performed. If the fill pattern does not require a different bit pattern for
each plane-that is, if the pattern is black and white-filling can be performed more
easily by simply fanning the CPU byte out to all four planes with write mode 0. The
set/reset registers can be used in conjunction with fanning out the data to support a
variety of two-color patterns. More on this in Chapter 25.
The sample program in Listing 24.1 fills the screen with horizontal bars, then illustrates
the operation of each of the four ALU logical functions by writing avertical SO-pixel-wide
box filled with solid, empty, and vertical and horizontal bar patterns over that back-
ground using each of the functions in turn. When observing the output of the sample
program, it is important to remember that all four vertical boxes are drawn with exactly
the same code-only the logical function that is in effect differs from box to box.
All graphics in the sample program are done in black-and-white by writing to all
planes, in order to show the operation of the ALUs most clearly. Selective enabling
of planes via the Map Mask register and/or set/reset would produce color effects; in
that case, the operation of the logical functions must be evaluated on a plane-by-
plane basis, since only the enabled planes would be affected by each operation.

LISTING 24.1 124- 1 .ASM
: Program t o i l l u s t r a t e o p e r a t i o n o f ALUs and l a t c h e s o f t h e VGA's
; G r a p h i c s C o n t r o l l e r . Draws a v a r i e t y o f p a t t e r n s a g a i n s t
; a h o r i z o n t a l l y s t r i p e d b a c k g r o u n d , u s i n g e a c h o f t h e 4 a v a i l a b l e
; l o g i c a l f u n c t i o n s (d a t a u n m o d i f i e d , AND, OR, X O R) i n t u r n t o combine
; t h e images w i th t he backg round .
; By Michael Abrash.

Parallel Processing with the VGA 453

s tack segment para stack 'STACK'
db 512 dup(?)

stack ends

VGA-VIDEO-SEGMENT equ OaOOOh :VGA d i s p l a y memory segment
SCREEN-HEIGHT equ 350
SCREEN-WIDTH-IN-BYTES equ 80
DEMO-AREA-HEIGHT equ 336 :# o f scan 1 i n e s i n a r e a

: l o g i c a l f u n c t i o n o p e r a t i o n

DEMO-AREA-WIDTH-IN-BYTES equ 40
: i s demonstrated i n
: w i d t h i n b y t e s o f a r e a
: l o g i c a l f u n c t i o n o p e r a t i o n

VERTICAL-BOX-WIDTH-IN-BYTES equ 10
: i s demonstrated i n
: w i d t h i n b y t e s o f t h e b o x used t o
: demons t ra te each l og i ca l f unc t i on

; VGA reg i s te r equa tes .

GC-INDEX
GC-ROTATE

equ 3ceh ;GC i n d e x r e g i s t e r
equ 3 :GC d a t a r o t a t e / l o g i c a l f u n c t i o n

GC-MODE
: r e g i s t e r i n d e x

equ 5 :GC mode r e g i s t e r i n d e x

dseg segment para common 'DATA'

: S t r i n g used t o l a b e l l o g i c a l f u n c t i o n s .

L a b e l s t r i n g l a b e l b y t e

LABEL-STRING-LENGTH equ S - L a b e l S t r i n g

: S t r i n g s used t o l a b e l fill p a t t e r n s .

F i 11 PatternFF db 'Fill Pat te rn : OFFh'
FILL-PATTERN-FF-LENGTH equ S - F i l l P a t t e r n F F
F i 11 P a t t e r n 0 0 d b ' F i l l P a t t e r n : 0 0 0 h '
FILL-PATTERN-00-LENGTH equ S - F i l l P a t t e r n 0 0
F i 11 Pat te rnVer t db
FILL-PATTERN-VERT-LENGTH

'Fill P a t t e r n : V e r t i c a l B a r '
equ S - Fill Pat te rnVer t

F i 11 Pat te rnHorz db 'Fill P a t t e r n : H o r i z o n t a l B a r '
FILL-PATTERN-HORZ-LENGTH equ S - F i l l P a t t e r n H o r z

dseg ends

: Macro t o s e t i n d e x e d r e g i s t e r INDEX o f GC c h i p t o SETTING.

SETGC macro INDEX. SETTING

db 'UNMODIFIED AND OR XOR '

mov dx, GC-INDEX
mov ax.(SETTING SHL 8) OR I N D E X
out dx.ax
endm

: Macro t o c a l l BIOS w r i t e s t r i n g f u n c t i o n t o d i s p l a y t e x t s t r i n g
: TEXT-STRING. o f l e n g t h TEXT-LENGTH, a t l o c a t i o n ROW.COLUMN.

TEXT-UP macro TEXT-STRING. TEXT-LENGTH. ROW. COLUMN
mov ah.13h :BIOS w r i t e s t r i n g f u n c t i o n
mov b p . o f f s e t TEXT-STRING ;ES:BP p o i n t s t o s t r i n g
mov cx.TEXT-LENGTH

454 Chapter 24

mov dx.(ROW SHL 8) OR COLUMN : p o s i t i o n
sub a1 ,a1 : s t r i n g i s c h a r s o n l y , c u r s o r n o t moved
mov b l ,7 : t e x t a t t r i b u t e i s w h i t e (l i g h t g r a y)
i n t 10h
endm

cseg segment para publ ic ' C O D E '

s t a r t p r o c n e a r
assume cs:cseg. ds:dseg

mov ax, dseg
mov ds.ax

: S e l e c t 640x350 g r a p h i c s mode.

mov ax.010h
i n t 10h

: ES p o i n t s t o VGA memory.

mov ax,VGA-VIDEO-SEGMENT
mov es.ax

: Draw b a c k g r o u n d o f h o r i z o n t a l b a r s .

mov dx,SCREEN_HEIGHT/4

sub d i . d i : s t a r t a t o f f s e t 0 i n d i s p l a y memory
mov a x . 0 f f f f h :fill p a t t e r n f o r l i g h t a r e a s o f b a r s
mov bx.DEMO-AREA-WIOTH-IN-BYTES / 2 : l e n g t h o f e a c h b a r
mov si.SCREEN-WIOTH-IN-BYTES - DEMO-AREA-WIDTH-IN-BYTES
mov bp.(SCREEN-WIDTH-IN-BYTES * 3) - DEMO-AREA-WIDTH-INKBYTES

mov cx. bx : l e n g t h o f b a r

add d i . s i : p o i n t t o s t a r t o f b o t t o m h a l f o f b a r
mov cx, bx : l e n g t h o f b a r

a d d d i , b p : p o i n t t o s t a r t o f t o p o f n e x t b a r
dec dx
j n z BackgroundLoop

:# o f b a r s t o draw (each 4 p i x e l s h i g h)

BackgroundLoop:

r e p s t o s w : d r a w t o p h a l f o f b a r

rep s tosw :d raw bo t tom ha l f o f ba r

: D r a w v e r t i c a l boxes f i l l e d w i t h a v a r i e t y o f fill p a t t e r n s
: u s i n g e a c h o f t h e 4 l o g i c a l f u n c t i o n s i n t u r n .

SETGC GC-ROTATE. 0 : s e l e c t d a t a u n m o d i f i e d

mov d i .O
cal l DrawVert ica lBox ; . . .and draw box

: l o g i c a l f u n c t i o n . . .

SETGC
mov
c a l l

SETGC
mo v
c a l l

SETGC
mov
c a l l

GC-ROTATE, 08h : s e l e c t AND l o g i c a l f u n c t i o n . . .
d i .10
DrawVert icalBox : . . .and draw box

GC-ROTATE, 10h : se lec t OR l o g i c a l f u n c t i o n . . .
d i .20
DrawVert ica lBox ; . . .and draw box

GC-ROTATE, 18h :se lec t X O R l o g i c a l f u n c t i o n ...
d i .30
DrawVer t i ca l Box :...and draw box

Parallel Processing with the VGA 455

: R e s e t t h e l o g i c a l f u n c t i o n t o d a t a u n m o d i f i e d , t h e d e f a u l t s t a t e .

SETGC GC-ROTATE. 0

: Labe l the sc reen.

push ds
POP e s ; s t r i n g s w e ' l l d i s p l a y a r e p a s s e d t o B I O S

: by p o i n t i n g ES:BP t o them

: L a b e l t h e l o g i c a l f u n c t i o n s , u s i n g t h e VGA BIOS'S
: w r i t e s t r i n g f u n c t i o n .

TEXT-UP L a b e l s t r i n g , LABEL-STRING-LENGTH, 24. 0

: Labe l the fill p a t t e r n s , u s i n g t h e VGA BIOS'S
: w r i t e s t r i n g f u n c t i o n .

TEXT-UP F i l l P a t t e r n F F . FILL-PATTERN-FF-LENGTH. 3. 42
TEXT-UP F i l l P a t t e r n 0 0 . FILL-PATTERN-00-LENGTH. 9, 42
TEXT-UP F i l l P a t t e r n V e r t . FILL-PATTERN-VERT-LENGTH. 15. 42
TEXT-UP F i l l P a t t e r n H o r z , FILL-PATTERN-HORZ-LENGTH. 21. 42

: Wait u n t i l a key's been h i t t o r e s e t s c r e e n mode & e x i t .

WaitForKey:
mov ah.1
i n t 16h
jz WaitForKey

: F in i shed . C lea r key , rese t sc reen mode and e x i t .

Done:
mov ah .0 :c lear
i n t 16h

mov ax.3 : r e s e t
i n t 10h

k e y t h a t we j u s t d e t e c t e d

t o t e x t mode

mov ah.4ch : e x i t t o DOS
i n t Z l h

s t a r t endp

: S u b r o u t i n e t o d r a w a box 80x336 i n s i z e , u s i n g c u r r e n t l y s e l e c t e d
: l o g i c a l f u n c t i o n , w i t h u p p e r l e f t c o r n e r a t t h e d i s p l a y memory o f f s e t
: i n D I . Box i s f i l l e d w i t h f o u r p a t t e r n s . Top q u a r t e r o f a r e a i s
: f i l l e d w i t h OFFh (s o l i d) p a t t e r n , n e x t q u a r t e r i s f i l l e d w i t h OOh
: (e m p t y) p a t t e r n , n e x t q u a r t e r i s f i l l e d w i t h 33h (doub le p i xe l w ide
: v e r t i c a l b a r) p a t t e r n , and b o t t o m q u a r t e r i s f i l l e d w i t h d o u b l e p i x e l
: h i g h h o r i z o n t a l b a r p a t t e r n .

: Macro t o draw a column o f t h e s p e c i f i e d w i d t h i n b y t e s , o n e - q u a r t e r
: of t h e h e i g h t o f t h e b o x , w i t h t h e s p e c i f i e d fill p a t t e r n .

DRAW-BOX-QUARTER macro FILL, WIDTH
1 oca1 RowLoop. Col umnLoop
mov a1 .FILL :fill p a t t e r n
mov dx.DEMO-AREA-HEIGHT / 4 :1 /4 o f t h e f u l l box he igh t

456 Chapter 24

RowLoop:
mov cx.WIDTH

mov a h . e s : l d i l
ColumnLoop:

s t o s b

: l o a d d i s p l a y memory c o n t e n t s i n t o
: GC l a t c h e s (we d o n ' t a c t u a l l y c a r e
: a b o u t v a l u e r e a d i n t o AH)
: w r i t e p a t t e r n , w h i c h i s l o g i c a l l y
: c o m b i n e d w i t h l a t c h c o n t e n t s f o r e a c h
: p l a n e a n d t h e n w r i t t e n t o d i s p l a y
: memory

1 oop Col umnLoop
add di.SCREEN_WIDTH_IN-BYTES - WIDTH

dec dx
j n z RowLoop
endm

: p o i n t t o s t a r t o f n e x t l i n e down i n box

DrawVer t i ca l Box proc near
DRAW-BOXQUARTER O f f h . VERTICALLBOX-WIDTHKIN-BYTES

DRAW-BOX-OUARTER 0. VERTICAL_BOX-WIDTHKIN-BYTES

DRAWKBOXLOUARTER 033h. VERTICAL-BOXKWIDTHKIN-BYTES

: f i r s t fill p a t t e r n : s o l i d fill

:second fill p a t t e r n : empty fill

mov

sub
mov

dec
mov

mov
s tosb
1 oop
add
mov

mov
s t o s b
1 oop
add
i nc
mov

mov
s tosb

add
1 oop

mov

mov
s tosb
1 oop
add
dec
jnz

HorzBarLoop:

HBLoopl:

HBLoopE:

HBLoop3:

HBLoop4:

: t h i r d fill p a t t e r n : d o u b l e - p i x e l
: w i d e v e r t i c a l b a r s

dx.DEMOKAREALHEIGHT / 4 / 4
: f o u r t h fill p a t t e r n : h o r i z o n t a l b a r s i n
: s e t s o f 4 s c a n l i n e s

ax.ax
si.VERTICAL-BOXKWIDTH-IN-BYTES : w i d t h o f fill area

ax ; O f f h fill (s m a l l e r t o do word than byte D E C)
cx , s i : w i d t h t o fill

b l . e s : [d i l : l o a d l a t c h e s (d o n ' t c a r e a b o u t v a l u e)

HBLoopl
di.SCREEN-WIDTH_IN-BYTES - VERTICAL_BOX_WIDTH-IN_BYTES
c x . s i : w i d t h t o fill

b l , e s : [d i l :1 oad 1 atches

HBLoopE
di.SCREEN-WIDTH-IN-BYTES - VERTICAL-BOX-WIDTH-IN-BYTES
ax :O fill (s m a l l e r t o do word than byte DEC)
c x . s i : w i d t h t o fill

b l . e s : [d i l : 1 oad 1 atches

HBLoop3
di,SCREEN-WIDTH-IN-BYTES - VERTICAL-BOX_WIDTH-IN_BYTES
c x , s i : w i d t h t o fill

b l . e s : [d i l : l o a d l a t c h e s

HBLoop4
di.SCREENKWIDTH-IN_BYTES - VERTICALLBOXKWIDTH-IN-BYTES
dx
HorzBarLoop

: w r i t e s o l i d p a t t e r n , t h r o u g h ALUs

: w r i t e s o l i d p a t t e r n , t h r o u g h ALUs

: w r i t e empty p a t t e r n , t h r o u g h ALUs

: w r i t e empty p a t t e r n , t h r o u g h ALUs

Parallel Processing with the VGA 457

r e t
OrawVert icalBox endp
cseg ends

end s t a r t

Logical function 0, which writes the CPU data unmodified, is the standard mode of
operation of the ALUs. In this mode, the CPU data is combined with the latched
data by ignoring the latched data entirely. Expressed as a logical function, this could
be considered CPU data ANDed with 1 (or ORed with 0). This is the mode to use
whenever you want to place CPU data into display memory, replacing the previous
contents entirely. It may occur to you that there is no need to latch display memory
at all when the data unmodified function is selected. In the sample program, that is
true, but if the bit mask is being used, the latches must be loaded even for the data
unmodified function, as 1’11 discuss in the next chapter.
Logical functions 1 through 3 cause the CPU data to be ANDed, ORed, and XORed
with the latched data, respectively. Of these, XOR is the most useful, since exclusive-
ORing is a traditional way to perform animation. The uses of the AND and OR logical
functions are less obvious. AND can be used to mask a blank area into display memory,
or to mask off those portions of a drawing operation that don’t overlap an existing
display memory image. OR could conceivably be used to force an image into display
memory over an existing image. To be honest, I haven’t encountered any particu-
larly valuable applications for AND and OR, but they’re the sort of building-block
features that could come in handy in just the right context, so keep them in mind.

Notes on the ALU/Latch Demo Program
VGA settings such as the logical function select should be restored to their default
condition before the BIOS is called to output text or draw pixels. The VGA BIOS
does not guarantee that it will set most VGA registers except on mode sets, and there
are so many compatible BIOSes around that the code of the IBM BIOS is not a reliable
guide. For instance, when the BIOS is called to draw text, it’s likely that the result will
be illegible if the Bit Mask register is not in its default state. Similarly, a mode set should
generally be performed before exiting a program that tinkers with VGA settings.
Along the same lines, the sample program does not explicitly set the Map Mask register
to ensure that all planes are enabled for writing. The mode set for mode 10H leaves
all planes enabled, so I did not bother to program the Map Mask register, or any other
register besides the Data Rotate register, for that matter. However, the profusion of com-
patible BIOSes means there is some small risk in relying on the BIOS to leave registers
set properly. For the highly safety-conscious, the best course would be to program
data control registers such as the Map Mask and Read Mask explicitly before relying
on their contents.
On the other hand, any function the BIOS provides explicitly-as part of the inter-
face specification-such as setting the palette R A M , should be used in preference to

458 Chapter 24

programming the hardware directly whenever possible, because the BIOS may mask
hardware differences between VGA implementations.
The code that draws each vertical box in the sample program reads from display
memory immediately before writing to display memory. The read operation loads
the VGA latches. The value that is read is irrelevant as far as the sample program is
concerned. The read operation is present only because it is necessary to perform a
read to load the latches, and there is no way to read without placing a value in a register.
This is a bit of a nuisance, since it means that the value of some 8-bit register must be
destroyed. Under certain circumstances, a single logical instruction such as XOR or
AND can be used to perform both the read to load the latches and then write to
modify display memory without affecting any CPU registers, as we’ll see later on.
All text in the sample program is drawn by VGA BIOS function 13H, the write string
function. This function is also present in the AT’S BIOS, but not in the XT’s or PC’s,
and as a result is rarely used; the function is always available if a VGA is installed,
however. Text drawn with this function is relatively slow. If speed is important, a
program can draw text directly into display memory much faster in any given display
mode. The great virtue of the BIOS write string function in the case of the VGA is
that it provides an uncomplicated way to get text on the screen reliably in a n y mode
and color, over any background.
The expression used to load DX in the TEXT-UP macro in the sample program may
seem strange, but it’s a convenient way to save a byte of program code and a few cycles of
execution time. DX is being loaded with a word value that’s composed of two inde-
pendent immediate byte values. The obvious way to implement this would be with

MOV D L . V A L U E 1
MOV D H . V A L U E 2

which requires four instruction bytes. By shifting the value destined for the high byte
into the high byte with MASM’s shift- left operator, SHL (*100H would work also),
and then logically combining the values with MASM’s OR operator (or the ADD
operator), both halves of DX can be loaded with a single instruction, as in

MOV D X , (V A L U E E S H L 8) O R V A L U E 1

which takes only three bytes and is faster, being a single instruction. (Note, though,
that in 32-bit protected mode, there’s a size and performance penalty for 16-bit in-
structions such as the MOV above; see the first part of this book for details.) As
shown, a macro is an ideal place to use this technique; the macro invocation can
refer to two separate byte values, making matters easier for the programmer, while
the macro itself can combine the values into a single word-sized constant.

A minor optimization tip illustrated in the listing is the use of INCAX and DEC p AX in the DrawVerticalBox subroutine when only AL actually needs to be modi-
fied. Word-sized register increment and decrement instructions (or dword-sized

Parallel Processing with the VGA 459

instructions in 32-bit protected mode) are only one byte long, while byte-sized
register increment and decrement instructions are two bytes long. Consequentb,
when size counts, it is worth using a whole 16-bit (or 32-bit) register instead of the
low 8 bits of that register for INC and DEC-ifyou don 't need the upper portion
of the register for any other purpose, or ifyou can be sure that the INC or DEC
won't aflect the upperpart of the registex

The latches and ALUs are central to high-performance VGA code, since they allow
programs to process across all four memory planes without a series of OUTS and
read/write operations. It is not always easy to arrange a program to exploit this power,
however, because the &Us are far more limited than a CPU. In many instances,
however, additional hardware in the VGA, including the bit mask, the set/reset fea-
tures, and the barrel shifter, can assist the ALUs in controlling data, as we'll see in
the next few chapters.

460 Chapter 24

	next:
	home:
	previous:

