A3504 Lenstra) Guy

Sent. Add to let

Mathematisch Instituut Universiteit van Amsterdam

Roetersstraat 15, Amsterdam-1004 Netherlands Tel. (020) 522.9111/522.2299

Amsterdam, April 24, 1975.

Dear Mr. Sloane:

As an expert on integer sequences you might be interested in the following question which took me several days to decide: let the sequence (a_n) be defined by

$$a_1 = \frac{1}{1 + a_1^2 + a_2^2 + \dots + a_n^2}$$
 $a_{n+1} = \frac{1}{n}$

(so the sequence starts 1, 2, 3, 5, 10, 28, ...); does this sequence obey the first four rules of section 1.5 of your Handbook?

Another question: which rule governs your numbering of the Rules in section 1.5? I couldn't find the answer, but it must be somewhere between mock theta numbers and binary codes, I guess.

Perhaps the solution is contained in the Supplements which I understand you are issuing. I would be most interested in obtaining a copy of these, if possible. Thank you very much.

Sincerely yours,

HWLenn

Dr (H.W. Lenstra, Jr.)

121 (12)

466_1345794146_0641338430_9896491930_5264116096

[1,2,3,5,10,28,154,3520,1551880,26_7593772160, 71_6064269012_2633501504 , 466_1345794146_0641338430_9896491930_52641160_ 96 1 a(·)

(2,6,15,40,140,924,24640,12415040,240_8343949440, 716_0642690122_6335015040 , 5127_4803735606_7054722740_8861411235_790527_ 7056 , 217281_4461260320_1307908899_5633000490_1297838505_0783094682_272_ 1842693_6926713623_0071558272)

New Sequence, please enter

The University of Calgary

2920 24 AVE. N.W. CALGARY, CANADA T2N 1N4 FACULTY OF SCIENCE Department of Mathematics & Statistics Area Code 403, Telephone 284-5202

78:11:16

N.J.A. Sloane, Bell Telephone Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974. USA.

Dear Neil,

613547, 5511 (Univ) 2728 (O)

613 389 7340 (H)

Another sequence which I didn't find in the good book. It was shown to me by Alfred J. van der Poorten; perhaps he can supply a reference. He is at Queen's University (Ontario!) this year. I don't know whether it actually qualifies for membership of the Handbook, since I don't know if it's an integer sequence or not! Perhaps Alf does? Even if it's unknown (or known that it's not!) then I think it should go in (as a joke!). It is defined by

$$x_n = \frac{1 + x_o^2 + \dots + x_{n-1}^2}{n}$$
 , $x_o = 1$,

which gives

 $x_1 = 2$, $x_2 = 3$, $x_3 = 5$, $x_4 = 10 = 2.5$, $x_5 = 28 = 2^27$, $x_6 = 154 = 2.7.11$, $x_7 = 3520 = 2^65.11$, $x_8 = 1551880 = 2^35.11.3527$, $x_9 = 267593772160 = 2^75.11.13.829.3527....$

From here on it's easier to note that

$$nx_n = 1 + x_0^2 + \dots + x_{n-1}^2$$

$$(n+1)x_{n+1} = 1 + x_0^2 + \dots + x_{n-1}^2 + x_n^2$$

$$(n+1)x_{n+1} - nx_n = x_n^2$$

 $(n+1)x_{n+1} = x_n(x_n+n)$.

 $x_9 + 9 = 809.330771041$, so $x_{10} = 7160642690122633501504 = 2^611.13.829$.

 $x_{10} + 10 = 2.199.769.23396052728279347$, so $x_{11} = 4661345794146064133843098964919305264116096$

 $= 2^{7}13.199.769.809.829.3527.330771041.$ 23396052728279347.

Name: $A(N) = (1 + A(0) **2 + \cdots A(N-1) **2) / N_{\bullet}$

- NOT ALWAYS AN INTEGER!

Ref: none

By use of suitable small moduli it can be checked that x_{12} , x_{13} , x_{14} , x_{15} , x_{16} and x_{17} are all integers (of 85,168,334,667,1332 and 2661 decimal digits). I don't know the status of $(x_{11}+11)/3$.

Best wishes,

Yours sincerely,

RKG:jw

Richard K. Guy.

cc. A.J. van der Poorten.

P.S have checked up to x23

600 Mountain Avenue Murray Hill, New Jersey 07974 Phone (201) 582-3000

November 30, 1978

Professor R. K. Guy Mathematics Department University of Calgary Calgary, Alberta CANADA T2N 1N4

Dear Richard:

Thanks for your letter of November 16 about the sequence $\{x_n\}$. In a letter to me dated May 13, 1975 H. W. Lenstra, Jr. said that he had proved that x_n is an integer if and only if $n \le 43$.

very best regards,

MH-1216-NJAS-mv

N. J. A. Sloane

Copy to Prof. A. J. van der Poorten

Mathematisch Instituut Universiteit van Amsterdam

Roetersstraat 15, Amsterdam-1004

Tel. (020) 522.9111 / 522.2299

Amsterdam,

May 13, 1975.

HWL/vw/230.75

Dr. N.J.A. Sloane Mathematics Research Center Bell Laboratories 600 Mountain Avenue MURRAY HILL, New Jersey. 07974. U. S. A.

Dear Dr. Sloane,

Thank you very much for sending me the reprint + the first supplement.

The sequence from my letter of April 14:

$$a_1 = 1$$
 $a_{1+a_1+a_2+\cdots+a_n}$
 $a_{n+1} = \frac{1+a_1^2+a_2^2+\cdots+a_n^2}{1+a_1^2+a_2^2+\cdots+a_n^2}$

 $a_{1} = 1$ $a_{n+1} = \frac{1 + a_{1}^{2} + a_{2}^{2} + \dots + a_{n}^{2}}{6 \cdot 7}$ $(1, 2, 3, 5, 10, 28, 154, 3520, 1551880, 267593772160, \dots)$ was mentioned to me by F. Gobel, when he saw my copy of your book. I was able to explain its absence by proving

$$a_n \in \mathbb{Z} \Leftrightarrow n \leq 43$$
.

(In particular your formula does not hold.) So you could include it by way of exception to Rule 1, just as Rule 2 has its exceptions.

With kindest regards,

Herhen

H.W. Lenstra, Jr.

